xref: /openbmc/linux/drivers/iio/afe/iio-rescale.c (revision 53a2a90d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * IIO rescale driver
4  *
5  * Copyright (C) 2018 Axentia Technologies AB
6  * Copyright (C) 2022 Liam Beguin <liambeguin@gmail.com>
7  *
8  * Author: Peter Rosin <peda@axentia.se>
9  */
10 
11 #include <linux/err.h>
12 #include <linux/gcd.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/property.h>
17 
18 #include <linux/iio/afe/rescale.h>
19 #include <linux/iio/consumer.h>
20 #include <linux/iio/iio.h>
21 
22 int rescale_process_scale(struct rescale *rescale, int scale_type,
23 			  int *val, int *val2)
24 {
25 	s64 tmp;
26 	int _val, _val2;
27 	s32 rem, rem2;
28 	u32 mult;
29 	u32 neg;
30 
31 	switch (scale_type) {
32 	case IIO_VAL_INT:
33 		*val *= rescale->numerator;
34 		if (rescale->denominator == 1)
35 			return scale_type;
36 		*val2 = rescale->denominator;
37 		return IIO_VAL_FRACTIONAL;
38 	case IIO_VAL_FRACTIONAL:
39 		/*
40 		 * When the product of both scales doesn't overflow, avoid
41 		 * potential accuracy loss (for in kernel consumers) by
42 		 * keeping a fractional representation.
43 		 */
44 		if (!check_mul_overflow(*val, rescale->numerator, &_val) &&
45 		    !check_mul_overflow(*val2, rescale->denominator, &_val2)) {
46 			*val = _val;
47 			*val2 = _val2;
48 			return IIO_VAL_FRACTIONAL;
49 		}
50 		fallthrough;
51 	case IIO_VAL_FRACTIONAL_LOG2:
52 		tmp = (s64)*val * 1000000000LL;
53 		tmp = div_s64(tmp, rescale->denominator);
54 		tmp *= rescale->numerator;
55 
56 		tmp = div_s64_rem(tmp, 1000000000LL, &rem);
57 		*val = tmp;
58 
59 		if (!rem)
60 			return scale_type;
61 
62 		if (scale_type == IIO_VAL_FRACTIONAL)
63 			tmp = *val2;
64 		else
65 			tmp = ULL(1) << *val2;
66 
67 		rem2 = *val % (int)tmp;
68 		*val = *val / (int)tmp;
69 
70 		*val2 = rem / (int)tmp;
71 		if (rem2)
72 			*val2 += div_s64((s64)rem2 * 1000000000LL, tmp);
73 
74 		return IIO_VAL_INT_PLUS_NANO;
75 	case IIO_VAL_INT_PLUS_NANO:
76 	case IIO_VAL_INT_PLUS_MICRO:
77 		mult = scale_type == IIO_VAL_INT_PLUS_NANO ? 1000000000L : 1000000L;
78 
79 		/*
80 		 * For IIO_VAL_INT_PLUS_{MICRO,NANO} scale types if either *val
81 		 * OR *val2 is negative the schan scale is negative, i.e.
82 		 * *val = 1 and *val2 = -0.5 yields -1.5 not -0.5.
83 		 */
84 		neg = *val < 0 || *val2 < 0;
85 
86 		tmp = (s64)abs(*val) * abs(rescale->numerator);
87 		*val = div_s64_rem(tmp, abs(rescale->denominator), &rem);
88 
89 		tmp = (s64)rem * mult + (s64)abs(*val2) * abs(rescale->numerator);
90 		tmp = div_s64(tmp, abs(rescale->denominator));
91 
92 		*val += div_s64_rem(tmp, mult, val2);
93 
94 		/*
95 		 * If only one of the rescaler elements or the schan scale is
96 		 * negative, the combined scale is negative.
97 		 */
98 		if (neg ^ ((rescale->numerator < 0) ^ (rescale->denominator < 0))) {
99 			if (*val)
100 				*val = -*val;
101 			else
102 				*val2 = -*val2;
103 		}
104 
105 		return scale_type;
106 	default:
107 		return -EOPNOTSUPP;
108 	}
109 }
110 
111 int rescale_process_offset(struct rescale *rescale, int scale_type,
112 			   int scale, int scale2, int schan_off,
113 			   int *val, int *val2)
114 {
115 	s64 tmp, tmp2;
116 
117 	switch (scale_type) {
118 	case IIO_VAL_FRACTIONAL:
119 		tmp = (s64)rescale->offset * scale2;
120 		*val = div_s64(tmp, scale) + schan_off;
121 		return IIO_VAL_INT;
122 	case IIO_VAL_INT:
123 		*val = div_s64(rescale->offset, scale) + schan_off;
124 		return IIO_VAL_INT;
125 	case IIO_VAL_FRACTIONAL_LOG2:
126 		tmp = (s64)rescale->offset * (1 << scale2);
127 		*val = div_s64(tmp, scale) + schan_off;
128 		return IIO_VAL_INT;
129 	case IIO_VAL_INT_PLUS_NANO:
130 		tmp = (s64)rescale->offset * 1000000000LL;
131 		tmp2 = ((s64)scale * 1000000000LL) + scale2;
132 		*val = div64_s64(tmp, tmp2) + schan_off;
133 		return IIO_VAL_INT;
134 	case IIO_VAL_INT_PLUS_MICRO:
135 		tmp = (s64)rescale->offset * 1000000LL;
136 		tmp2 = ((s64)scale * 1000000LL) + scale2;
137 		*val = div64_s64(tmp, tmp2) + schan_off;
138 		return IIO_VAL_INT;
139 	default:
140 		return -EOPNOTSUPP;
141 	}
142 }
143 
144 static int rescale_read_raw(struct iio_dev *indio_dev,
145 			    struct iio_chan_spec const *chan,
146 			    int *val, int *val2, long mask)
147 {
148 	struct rescale *rescale = iio_priv(indio_dev);
149 	int scale, scale2;
150 	int schan_off = 0;
151 	int ret;
152 
153 	switch (mask) {
154 	case IIO_CHAN_INFO_RAW:
155 		if (rescale->chan_processed)
156 			/*
157 			 * When only processed channels are supported, we
158 			 * read the processed data and scale it by 1/1
159 			 * augmented with whatever the rescaler has calculated.
160 			 */
161 			return iio_read_channel_processed(rescale->source, val);
162 		else
163 			return iio_read_channel_raw(rescale->source, val);
164 
165 	case IIO_CHAN_INFO_SCALE:
166 		if (rescale->chan_processed) {
167 			/*
168 			 * Processed channels are scaled 1-to-1
169 			 */
170 			*val = 1;
171 			*val2 = 1;
172 			ret = IIO_VAL_FRACTIONAL;
173 		} else {
174 			ret = iio_read_channel_scale(rescale->source, val, val2);
175 		}
176 		return rescale_process_scale(rescale, ret, val, val2);
177 	case IIO_CHAN_INFO_OFFSET:
178 		/*
179 		 * Processed channels are scaled 1-to-1 and source offset is
180 		 * already taken into account.
181 		 *
182 		 * In other cases, real world measurement are expressed as:
183 		 *
184 		 *	schan_scale * (raw + schan_offset)
185 		 *
186 		 * Given that the rescaler parameters are applied recursively:
187 		 *
188 		 *	rescaler_scale * (schan_scale * (raw + schan_offset) +
189 		 *		rescaler_offset)
190 		 *
191 		 * Or,
192 		 *
193 		 *	(rescaler_scale * schan_scale) * (raw +
194 		 *		(schan_offset +	rescaler_offset / schan_scale)
195 		 *
196 		 * Thus, reusing the original expression the parameters exposed
197 		 * to userspace are:
198 		 *
199 		 *	scale = schan_scale * rescaler_scale
200 		 *	offset = schan_offset + rescaler_offset / schan_scale
201 		 */
202 		if (rescale->chan_processed) {
203 			*val = rescale->offset;
204 			return IIO_VAL_INT;
205 		}
206 
207 		if (iio_channel_has_info(rescale->source->channel,
208 					 IIO_CHAN_INFO_OFFSET)) {
209 			ret = iio_read_channel_offset(rescale->source,
210 						      &schan_off, NULL);
211 			if (ret != IIO_VAL_INT)
212 				return ret < 0 ? ret : -EOPNOTSUPP;
213 		}
214 
215 		ret = iio_read_channel_scale(rescale->source, &scale, &scale2);
216 		return rescale_process_offset(rescale, ret, scale, scale2,
217 					      schan_off, val, val2);
218 	default:
219 		return -EINVAL;
220 	}
221 }
222 
223 static int rescale_read_avail(struct iio_dev *indio_dev,
224 			      struct iio_chan_spec const *chan,
225 			      const int **vals, int *type, int *length,
226 			      long mask)
227 {
228 	struct rescale *rescale = iio_priv(indio_dev);
229 
230 	switch (mask) {
231 	case IIO_CHAN_INFO_RAW:
232 		*type = IIO_VAL_INT;
233 		return iio_read_avail_channel_raw(rescale->source,
234 						  vals, length);
235 	default:
236 		return -EINVAL;
237 	}
238 }
239 
240 static const struct iio_info rescale_info = {
241 	.read_raw = rescale_read_raw,
242 	.read_avail = rescale_read_avail,
243 };
244 
245 static ssize_t rescale_read_ext_info(struct iio_dev *indio_dev,
246 				     uintptr_t private,
247 				     struct iio_chan_spec const *chan,
248 				     char *buf)
249 {
250 	struct rescale *rescale = iio_priv(indio_dev);
251 
252 	return iio_read_channel_ext_info(rescale->source,
253 					 rescale->ext_info[private].name,
254 					 buf);
255 }
256 
257 static ssize_t rescale_write_ext_info(struct iio_dev *indio_dev,
258 				      uintptr_t private,
259 				      struct iio_chan_spec const *chan,
260 				      const char *buf, size_t len)
261 {
262 	struct rescale *rescale = iio_priv(indio_dev);
263 
264 	return iio_write_channel_ext_info(rescale->source,
265 					  rescale->ext_info[private].name,
266 					  buf, len);
267 }
268 
269 static int rescale_configure_channel(struct device *dev,
270 				     struct rescale *rescale)
271 {
272 	struct iio_chan_spec *chan = &rescale->chan;
273 	struct iio_chan_spec const *schan = rescale->source->channel;
274 
275 	chan->indexed = 1;
276 	chan->output = schan->output;
277 	chan->ext_info = rescale->ext_info;
278 	chan->type = rescale->cfg->type;
279 
280 	if (iio_channel_has_info(schan, IIO_CHAN_INFO_RAW) &&
281 	    iio_channel_has_info(schan, IIO_CHAN_INFO_SCALE)) {
282 		dev_info(dev, "using raw+scale source channel\n");
283 	} else if (iio_channel_has_info(schan, IIO_CHAN_INFO_PROCESSED)) {
284 		dev_info(dev, "using processed channel\n");
285 		rescale->chan_processed = true;
286 	} else {
287 		dev_err(dev, "source channel is not supported\n");
288 		return -EINVAL;
289 	}
290 
291 	chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
292 		BIT(IIO_CHAN_INFO_SCALE);
293 
294 	if (rescale->offset)
295 		chan->info_mask_separate |= BIT(IIO_CHAN_INFO_OFFSET);
296 
297 	/*
298 	 * Using .read_avail() is fringe to begin with and makes no sense
299 	 * whatsoever for processed channels, so we make sure that this cannot
300 	 * be called on a processed channel.
301 	 */
302 	if (iio_channel_has_available(schan, IIO_CHAN_INFO_RAW) &&
303 	    !rescale->chan_processed)
304 		chan->info_mask_separate_available |= BIT(IIO_CHAN_INFO_RAW);
305 
306 	return 0;
307 }
308 
309 static int rescale_current_sense_amplifier_props(struct device *dev,
310 						 struct rescale *rescale)
311 {
312 	u32 sense;
313 	u32 gain_mult = 1;
314 	u32 gain_div = 1;
315 	u32 factor;
316 	int ret;
317 
318 	ret = device_property_read_u32(dev, "sense-resistor-micro-ohms",
319 				       &sense);
320 	if (ret) {
321 		dev_err(dev, "failed to read the sense resistance: %d\n", ret);
322 		return ret;
323 	}
324 
325 	device_property_read_u32(dev, "sense-gain-mult", &gain_mult);
326 	device_property_read_u32(dev, "sense-gain-div", &gain_div);
327 
328 	/*
329 	 * Calculate the scaling factor, 1 / (gain * sense), or
330 	 * gain_div / (gain_mult * sense), while trying to keep the
331 	 * numerator/denominator from overflowing.
332 	 */
333 	factor = gcd(sense, 1000000);
334 	rescale->numerator = 1000000 / factor;
335 	rescale->denominator = sense / factor;
336 
337 	factor = gcd(rescale->numerator, gain_mult);
338 	rescale->numerator /= factor;
339 	rescale->denominator *= gain_mult / factor;
340 
341 	factor = gcd(rescale->denominator, gain_div);
342 	rescale->numerator *= gain_div / factor;
343 	rescale->denominator /= factor;
344 
345 	return 0;
346 }
347 
348 static int rescale_current_sense_shunt_props(struct device *dev,
349 					     struct rescale *rescale)
350 {
351 	u32 shunt;
352 	u32 factor;
353 	int ret;
354 
355 	ret = device_property_read_u32(dev, "shunt-resistor-micro-ohms",
356 				       &shunt);
357 	if (ret) {
358 		dev_err(dev, "failed to read the shunt resistance: %d\n", ret);
359 		return ret;
360 	}
361 
362 	factor = gcd(shunt, 1000000);
363 	rescale->numerator = 1000000 / factor;
364 	rescale->denominator = shunt / factor;
365 
366 	return 0;
367 }
368 
369 static int rescale_voltage_divider_props(struct device *dev,
370 					 struct rescale *rescale)
371 {
372 	int ret;
373 	u32 factor;
374 
375 	ret = device_property_read_u32(dev, "output-ohms",
376 				       &rescale->denominator);
377 	if (ret) {
378 		dev_err(dev, "failed to read output-ohms: %d\n", ret);
379 		return ret;
380 	}
381 
382 	ret = device_property_read_u32(dev, "full-ohms",
383 				       &rescale->numerator);
384 	if (ret) {
385 		dev_err(dev, "failed to read full-ohms: %d\n", ret);
386 		return ret;
387 	}
388 
389 	factor = gcd(rescale->numerator, rescale->denominator);
390 	rescale->numerator /= factor;
391 	rescale->denominator /= factor;
392 
393 	return 0;
394 }
395 
396 static int rescale_temp_sense_rtd_props(struct device *dev,
397 					struct rescale *rescale)
398 {
399 	u32 factor;
400 	u32 alpha;
401 	u32 iexc;
402 	u32 tmp;
403 	int ret;
404 	u32 r0;
405 
406 	ret = device_property_read_u32(dev, "excitation-current-microamp",
407 				       &iexc);
408 	if (ret) {
409 		dev_err(dev, "failed to read excitation-current-microamp: %d\n",
410 			ret);
411 		return ret;
412 	}
413 
414 	ret = device_property_read_u32(dev, "alpha-ppm-per-celsius", &alpha);
415 	if (ret) {
416 		dev_err(dev, "failed to read alpha-ppm-per-celsius: %d\n",
417 			ret);
418 		return ret;
419 	}
420 
421 	ret = device_property_read_u32(dev, "r-naught-ohms", &r0);
422 	if (ret) {
423 		dev_err(dev, "failed to read r-naught-ohms: %d\n", ret);
424 		return ret;
425 	}
426 
427 	tmp = r0 * iexc * alpha / 1000000;
428 	factor = gcd(tmp, 1000000);
429 	rescale->numerator = 1000000 / factor;
430 	rescale->denominator = tmp / factor;
431 
432 	rescale->offset = -1 * ((r0 * iexc) / 1000);
433 
434 	return 0;
435 }
436 
437 static int rescale_temp_transducer_props(struct device *dev,
438 					 struct rescale *rescale)
439 {
440 	s32 offset = 0;
441 	s32 sense = 1;
442 	s32 alpha;
443 	int ret;
444 
445 	device_property_read_u32(dev, "sense-offset-millicelsius", &offset);
446 	device_property_read_u32(dev, "sense-resistor-ohms", &sense);
447 	ret = device_property_read_u32(dev, "alpha-ppm-per-celsius", &alpha);
448 	if (ret) {
449 		dev_err(dev, "failed to read alpha-ppm-per-celsius: %d\n", ret);
450 		return ret;
451 	}
452 
453 	rescale->numerator = 1000000;
454 	rescale->denominator = alpha * sense;
455 
456 	rescale->offset = div_s64((s64)offset * rescale->denominator,
457 				  rescale->numerator);
458 
459 	return 0;
460 }
461 
462 enum rescale_variant {
463 	CURRENT_SENSE_AMPLIFIER,
464 	CURRENT_SENSE_SHUNT,
465 	VOLTAGE_DIVIDER,
466 	TEMP_SENSE_RTD,
467 	TEMP_TRANSDUCER,
468 };
469 
470 static const struct rescale_cfg rescale_cfg[] = {
471 	[CURRENT_SENSE_AMPLIFIER] = {
472 		.type = IIO_CURRENT,
473 		.props = rescale_current_sense_amplifier_props,
474 	},
475 	[CURRENT_SENSE_SHUNT] = {
476 		.type = IIO_CURRENT,
477 		.props = rescale_current_sense_shunt_props,
478 	},
479 	[VOLTAGE_DIVIDER] = {
480 		.type = IIO_VOLTAGE,
481 		.props = rescale_voltage_divider_props,
482 	},
483 	[TEMP_SENSE_RTD] = {
484 		.type = IIO_TEMP,
485 		.props = rescale_temp_sense_rtd_props,
486 	},
487 	[TEMP_TRANSDUCER] = {
488 		.type = IIO_TEMP,
489 		.props = rescale_temp_transducer_props,
490 	},
491 };
492 
493 static const struct of_device_id rescale_match[] = {
494 	{ .compatible = "current-sense-amplifier",
495 	  .data = &rescale_cfg[CURRENT_SENSE_AMPLIFIER], },
496 	{ .compatible = "current-sense-shunt",
497 	  .data = &rescale_cfg[CURRENT_SENSE_SHUNT], },
498 	{ .compatible = "voltage-divider",
499 	  .data = &rescale_cfg[VOLTAGE_DIVIDER], },
500 	{ .compatible = "temperature-sense-rtd",
501 	  .data = &rescale_cfg[TEMP_SENSE_RTD], },
502 	{ .compatible = "temperature-transducer",
503 	  .data = &rescale_cfg[TEMP_TRANSDUCER], },
504 	{ /* sentinel */ }
505 };
506 MODULE_DEVICE_TABLE(of, rescale_match);
507 
508 static int rescale_probe(struct platform_device *pdev)
509 {
510 	struct device *dev = &pdev->dev;
511 	struct iio_dev *indio_dev;
512 	struct iio_channel *source;
513 	struct rescale *rescale;
514 	int sizeof_ext_info;
515 	int sizeof_priv;
516 	int i;
517 	int ret;
518 
519 	source = devm_iio_channel_get(dev, NULL);
520 	if (IS_ERR(source))
521 		return dev_err_probe(dev, PTR_ERR(source),
522 				     "failed to get source channel\n");
523 
524 	sizeof_ext_info = iio_get_channel_ext_info_count(source);
525 	if (sizeof_ext_info) {
526 		sizeof_ext_info += 1; /* one extra entry for the sentinel */
527 		sizeof_ext_info *= sizeof(*rescale->ext_info);
528 	}
529 
530 	sizeof_priv = sizeof(*rescale) + sizeof_ext_info;
531 
532 	indio_dev = devm_iio_device_alloc(dev, sizeof_priv);
533 	if (!indio_dev)
534 		return -ENOMEM;
535 
536 	rescale = iio_priv(indio_dev);
537 
538 	rescale->cfg = device_get_match_data(dev);
539 	rescale->numerator = 1;
540 	rescale->denominator = 1;
541 	rescale->offset = 0;
542 
543 	ret = rescale->cfg->props(dev, rescale);
544 	if (ret)
545 		return ret;
546 
547 	if (!rescale->numerator || !rescale->denominator) {
548 		dev_err(dev, "invalid scaling factor.\n");
549 		return -EINVAL;
550 	}
551 
552 	platform_set_drvdata(pdev, indio_dev);
553 
554 	rescale->source = source;
555 
556 	indio_dev->name = dev_name(dev);
557 	indio_dev->info = &rescale_info;
558 	indio_dev->modes = INDIO_DIRECT_MODE;
559 	indio_dev->channels = &rescale->chan;
560 	indio_dev->num_channels = 1;
561 	if (sizeof_ext_info) {
562 		rescale->ext_info = devm_kmemdup(dev,
563 						 source->channel->ext_info,
564 						 sizeof_ext_info, GFP_KERNEL);
565 		if (!rescale->ext_info)
566 			return -ENOMEM;
567 
568 		for (i = 0; rescale->ext_info[i].name; ++i) {
569 			struct iio_chan_spec_ext_info *ext_info =
570 				&rescale->ext_info[i];
571 
572 			if (source->channel->ext_info[i].read)
573 				ext_info->read = rescale_read_ext_info;
574 			if (source->channel->ext_info[i].write)
575 				ext_info->write = rescale_write_ext_info;
576 			ext_info->private = i;
577 		}
578 	}
579 
580 	ret = rescale_configure_channel(dev, rescale);
581 	if (ret)
582 		return ret;
583 
584 	return devm_iio_device_register(dev, indio_dev);
585 }
586 
587 static struct platform_driver rescale_driver = {
588 	.probe = rescale_probe,
589 	.driver = {
590 		.name = "iio-rescale",
591 		.of_match_table = rescale_match,
592 	},
593 };
594 module_platform_driver(rescale_driver);
595 
596 MODULE_DESCRIPTION("IIO rescale driver");
597 MODULE_AUTHOR("Peter Rosin <peda@axentia.se>");
598 MODULE_LICENSE("GPL v2");
599