1 /*
2  * Xilinx XADC driver
3  *
4  * Copyright 2013-2014 Analog Devices Inc.
5  *  Author: Lars-Peter Clauen <lars@metafoo.de>
6  *
7  * Licensed under the GPL-2.
8  *
9  * Documentation for the parts can be found at:
10  *  - XADC hardmacro: Xilinx UG480
11  *  - ZYNQ XADC interface: Xilinx UG585
12  *  - AXI XADC interface: Xilinx PG019
13  */
14 
15 #include <linux/clk.h>
16 #include <linux/device.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 #include <linux/sysfs.h>
26 
27 #include <linux/iio/buffer.h>
28 #include <linux/iio/events.h>
29 #include <linux/iio/iio.h>
30 #include <linux/iio/sysfs.h>
31 #include <linux/iio/trigger.h>
32 #include <linux/iio/trigger_consumer.h>
33 #include <linux/iio/triggered_buffer.h>
34 
35 #include "xilinx-xadc.h"
36 
37 static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
38 
39 /* ZYNQ register definitions */
40 #define XADC_ZYNQ_REG_CFG	0x00
41 #define XADC_ZYNQ_REG_INTSTS	0x04
42 #define XADC_ZYNQ_REG_INTMSK	0x08
43 #define XADC_ZYNQ_REG_STATUS	0x0c
44 #define XADC_ZYNQ_REG_CFIFO	0x10
45 #define XADC_ZYNQ_REG_DFIFO	0x14
46 #define XADC_ZYNQ_REG_CTL		0x18
47 
48 #define XADC_ZYNQ_CFG_ENABLE		BIT(31)
49 #define XADC_ZYNQ_CFG_CFIFOTH_MASK	(0xf << 20)
50 #define XADC_ZYNQ_CFG_CFIFOTH_OFFSET	20
51 #define XADC_ZYNQ_CFG_DFIFOTH_MASK	(0xf << 16)
52 #define XADC_ZYNQ_CFG_DFIFOTH_OFFSET	16
53 #define XADC_ZYNQ_CFG_WEDGE		BIT(13)
54 #define XADC_ZYNQ_CFG_REDGE		BIT(12)
55 #define XADC_ZYNQ_CFG_TCKRATE_MASK	(0x3 << 8)
56 #define XADC_ZYNQ_CFG_TCKRATE_DIV2	(0x0 << 8)
57 #define XADC_ZYNQ_CFG_TCKRATE_DIV4	(0x1 << 8)
58 #define XADC_ZYNQ_CFG_TCKRATE_DIV8	(0x2 << 8)
59 #define XADC_ZYNQ_CFG_TCKRATE_DIV16	(0x3 << 8)
60 #define XADC_ZYNQ_CFG_IGAP_MASK		0x1f
61 #define XADC_ZYNQ_CFG_IGAP(x)		(x)
62 
63 #define XADC_ZYNQ_INT_CFIFO_LTH		BIT(9)
64 #define XADC_ZYNQ_INT_DFIFO_GTH		BIT(8)
65 #define XADC_ZYNQ_INT_ALARM_MASK	0xff
66 #define XADC_ZYNQ_INT_ALARM_OFFSET	0
67 
68 #define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK	(0xf << 16)
69 #define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET	16
70 #define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK	(0xf << 12)
71 #define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET	12
72 #define XADC_ZYNQ_STATUS_CFIFOF		BIT(11)
73 #define XADC_ZYNQ_STATUS_CFIFOE		BIT(10)
74 #define XADC_ZYNQ_STATUS_DFIFOF		BIT(9)
75 #define XADC_ZYNQ_STATUS_DFIFOE		BIT(8)
76 #define XADC_ZYNQ_STATUS_OT		BIT(7)
77 #define XADC_ZYNQ_STATUS_ALM(x)		BIT(x)
78 
79 #define XADC_ZYNQ_CTL_RESET		BIT(4)
80 
81 #define XADC_ZYNQ_CMD_NOP		0x00
82 #define XADC_ZYNQ_CMD_READ		0x01
83 #define XADC_ZYNQ_CMD_WRITE		0x02
84 
85 #define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
86 
87 /* AXI register definitions */
88 #define XADC_AXI_REG_RESET		0x00
89 #define XADC_AXI_REG_STATUS		0x04
90 #define XADC_AXI_REG_ALARM_STATUS	0x08
91 #define XADC_AXI_REG_CONVST		0x0c
92 #define XADC_AXI_REG_XADC_RESET		0x10
93 #define XADC_AXI_REG_GIER		0x5c
94 #define XADC_AXI_REG_IPISR		0x60
95 #define XADC_AXI_REG_IPIER		0x68
96 #define XADC_AXI_ADC_REG_OFFSET		0x200
97 
98 #define XADC_AXI_RESET_MAGIC		0xa
99 #define XADC_AXI_GIER_ENABLE		BIT(31)
100 
101 #define XADC_AXI_INT_EOS		BIT(4)
102 #define XADC_AXI_INT_ALARM_MASK		0x3c0f
103 
104 #define XADC_FLAGS_BUFFERED BIT(0)
105 
106 static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
107 	uint32_t val)
108 {
109 	writel(val, xadc->base + reg);
110 }
111 
112 static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
113 	uint32_t *val)
114 {
115 	*val = readl(xadc->base + reg);
116 }
117 
118 /*
119  * The ZYNQ interface uses two asynchronous FIFOs for communication with the
120  * XADC. Reads and writes to the XADC register are performed by submitting a
121  * request to the command FIFO (CFIFO), once the request has been completed the
122  * result can be read from the data FIFO (DFIFO). The method currently used in
123  * this driver is to submit the request for a read/write operation, then go to
124  * sleep and wait for an interrupt that signals that a response is available in
125  * the data FIFO.
126  */
127 
128 static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
129 	unsigned int n)
130 {
131 	unsigned int i;
132 
133 	for (i = 0; i < n; i++)
134 		xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
135 }
136 
137 static void xadc_zynq_drain_fifo(struct xadc *xadc)
138 {
139 	uint32_t status, tmp;
140 
141 	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
142 
143 	while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
144 		xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
145 		xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
146 	}
147 }
148 
149 static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
150 	unsigned int val)
151 {
152 	xadc->zynq_intmask &= ~mask;
153 	xadc->zynq_intmask |= val;
154 
155 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
156 		xadc->zynq_intmask | xadc->zynq_masked_alarm);
157 }
158 
159 static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
160 	uint16_t val)
161 {
162 	uint32_t cmd[1];
163 	uint32_t tmp;
164 	int ret;
165 
166 	spin_lock_irq(&xadc->lock);
167 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
168 			XADC_ZYNQ_INT_DFIFO_GTH);
169 
170 	reinit_completion(&xadc->completion);
171 
172 	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
173 	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
174 	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
175 	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
176 	tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
177 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
178 
179 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
180 	spin_unlock_irq(&xadc->lock);
181 
182 	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
183 	if (ret == 0)
184 		ret = -EIO;
185 	else
186 		ret = 0;
187 
188 	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
189 
190 	return ret;
191 }
192 
193 static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
194 	uint16_t *val)
195 {
196 	uint32_t cmd[2];
197 	uint32_t resp, tmp;
198 	int ret;
199 
200 	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
201 	cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
202 
203 	spin_lock_irq(&xadc->lock);
204 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
205 			XADC_ZYNQ_INT_DFIFO_GTH);
206 	xadc_zynq_drain_fifo(xadc);
207 	reinit_completion(&xadc->completion);
208 
209 	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
210 	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
211 	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
212 	tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
213 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
214 
215 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
216 	spin_unlock_irq(&xadc->lock);
217 	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
218 	if (ret == 0)
219 		ret = -EIO;
220 	if (ret < 0)
221 		return ret;
222 
223 	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
224 	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
225 
226 	*val = resp & 0xffff;
227 
228 	return 0;
229 }
230 
231 static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
232 {
233 	return ((alarm & 0x80) >> 4) |
234 		((alarm & 0x78) << 1) |
235 		(alarm & 0x07);
236 }
237 
238 /*
239  * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
240  * threshold condition go way from within the interrupt handler, this means as
241  * soon as a threshold condition is present we would enter the interrupt handler
242  * again and again. To work around this we mask all active thresholds interrupts
243  * in the interrupt handler and start a timer. In this timer we poll the
244  * interrupt status and only if the interrupt is inactive we unmask it again.
245  */
246 static void xadc_zynq_unmask_worker(struct work_struct *work)
247 {
248 	struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
249 	unsigned int misc_sts, unmask;
250 
251 	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
252 
253 	misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
254 
255 	spin_lock_irq(&xadc->lock);
256 
257 	/* Clear those bits which are not active anymore */
258 	unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
259 	xadc->zynq_masked_alarm &= misc_sts;
260 
261 	/* Also clear those which are masked out anyway */
262 	xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
263 
264 	/* Clear the interrupts before we unmask them */
265 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
266 
267 	xadc_zynq_update_intmsk(xadc, 0, 0);
268 
269 	spin_unlock_irq(&xadc->lock);
270 
271 	/* if still pending some alarm re-trigger the timer */
272 	if (xadc->zynq_masked_alarm) {
273 		schedule_delayed_work(&xadc->zynq_unmask_work,
274 				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
275 	}
276 }
277 
278 static irqreturn_t xadc_zynq_threaded_interrupt_handler(int irq, void *devid)
279 {
280 	struct iio_dev *indio_dev = devid;
281 	struct xadc *xadc = iio_priv(indio_dev);
282 	unsigned int alarm;
283 
284 	spin_lock_irq(&xadc->lock);
285 	alarm = xadc->zynq_alarm;
286 	xadc->zynq_alarm = 0;
287 	spin_unlock_irq(&xadc->lock);
288 
289 	xadc_handle_events(indio_dev, xadc_zynq_transform_alarm(alarm));
290 
291 	/* unmask the required interrupts in timer. */
292 	schedule_delayed_work(&xadc->zynq_unmask_work,
293 			msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
294 
295 	return IRQ_HANDLED;
296 }
297 
298 static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
299 {
300 	struct iio_dev *indio_dev = devid;
301 	struct xadc *xadc = iio_priv(indio_dev);
302 	irqreturn_t ret = IRQ_HANDLED;
303 	uint32_t status;
304 
305 	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
306 
307 	status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
308 
309 	if (!status)
310 		return IRQ_NONE;
311 
312 	spin_lock(&xadc->lock);
313 
314 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
315 
316 	if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
317 		xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
318 			XADC_ZYNQ_INT_DFIFO_GTH);
319 		complete(&xadc->completion);
320 	}
321 
322 	status &= XADC_ZYNQ_INT_ALARM_MASK;
323 	if (status) {
324 		xadc->zynq_alarm |= status;
325 		xadc->zynq_masked_alarm |= status;
326 		/*
327 		 * mask the current event interrupt,
328 		 * unmask it when the interrupt is no more active.
329 		 */
330 		xadc_zynq_update_intmsk(xadc, 0, 0);
331 		ret = IRQ_WAKE_THREAD;
332 	}
333 	spin_unlock(&xadc->lock);
334 
335 	return ret;
336 }
337 
338 #define XADC_ZYNQ_TCK_RATE_MAX 50000000
339 #define XADC_ZYNQ_IGAP_DEFAULT 20
340 
341 static int xadc_zynq_setup(struct platform_device *pdev,
342 	struct iio_dev *indio_dev, int irq)
343 {
344 	struct xadc *xadc = iio_priv(indio_dev);
345 	unsigned long pcap_rate;
346 	unsigned int tck_div;
347 	unsigned int div;
348 	unsigned int igap;
349 	unsigned int tck_rate;
350 
351 	/* TODO: Figure out how to make igap and tck_rate configurable */
352 	igap = XADC_ZYNQ_IGAP_DEFAULT;
353 	tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
354 
355 	xadc->zynq_intmask = ~0;
356 
357 	pcap_rate = clk_get_rate(xadc->clk);
358 
359 	if (tck_rate > XADC_ZYNQ_TCK_RATE_MAX)
360 		tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
361 	if (tck_rate > pcap_rate / 2) {
362 		div = 2;
363 	} else {
364 		div = pcap_rate / tck_rate;
365 		if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
366 			div++;
367 	}
368 
369 	if (div <= 3)
370 		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
371 	else if (div <= 7)
372 		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
373 	else if (div <= 15)
374 		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
375 	else
376 		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
377 
378 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
379 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
380 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
381 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
382 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
383 			XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
384 			tck_div | XADC_ZYNQ_CFG_IGAP(igap));
385 
386 	return 0;
387 }
388 
389 static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
390 {
391 	unsigned int div;
392 	uint32_t val;
393 
394 	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
395 
396 	switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
397 	case XADC_ZYNQ_CFG_TCKRATE_DIV4:
398 		div = 4;
399 		break;
400 	case XADC_ZYNQ_CFG_TCKRATE_DIV8:
401 		div = 8;
402 		break;
403 	case XADC_ZYNQ_CFG_TCKRATE_DIV16:
404 		div = 16;
405 		break;
406 	default:
407 		div = 2;
408 		break;
409 	}
410 
411 	return clk_get_rate(xadc->clk) / div;
412 }
413 
414 static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
415 {
416 	unsigned long flags;
417 	uint32_t status;
418 
419 	/* Move OT to bit 7 */
420 	alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
421 
422 	spin_lock_irqsave(&xadc->lock, flags);
423 
424 	/* Clear previous interrupts if any. */
425 	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
426 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
427 
428 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
429 		~alarm & XADC_ZYNQ_INT_ALARM_MASK);
430 
431 	spin_unlock_irqrestore(&xadc->lock, flags);
432 }
433 
434 static const struct xadc_ops xadc_zynq_ops = {
435 	.read = xadc_zynq_read_adc_reg,
436 	.write = xadc_zynq_write_adc_reg,
437 	.setup = xadc_zynq_setup,
438 	.get_dclk_rate = xadc_zynq_get_dclk_rate,
439 	.interrupt_handler = xadc_zynq_interrupt_handler,
440 	.threaded_interrupt_handler = xadc_zynq_threaded_interrupt_handler,
441 	.update_alarm = xadc_zynq_update_alarm,
442 };
443 
444 static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
445 	uint16_t *val)
446 {
447 	uint32_t val32;
448 
449 	xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32);
450 	*val = val32 & 0xffff;
451 
452 	return 0;
453 }
454 
455 static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
456 	uint16_t val)
457 {
458 	xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val);
459 
460 	return 0;
461 }
462 
463 static int xadc_axi_setup(struct platform_device *pdev,
464 	struct iio_dev *indio_dev, int irq)
465 {
466 	struct xadc *xadc = iio_priv(indio_dev);
467 
468 	xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
469 	xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
470 
471 	return 0;
472 }
473 
474 static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
475 {
476 	struct iio_dev *indio_dev = devid;
477 	struct xadc *xadc = iio_priv(indio_dev);
478 	uint32_t status, mask;
479 	unsigned int events;
480 
481 	xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
482 	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
483 	status &= mask;
484 
485 	if (!status)
486 		return IRQ_NONE;
487 
488 	if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
489 		iio_trigger_poll(xadc->trigger);
490 
491 	if (status & XADC_AXI_INT_ALARM_MASK) {
492 		/*
493 		 * The order of the bits in the AXI-XADC status register does
494 		 * not match the order of the bits in the XADC alarm enable
495 		 * register. xadc_handle_events() expects the events to be in
496 		 * the same order as the XADC alarm enable register.
497 		 */
498 		events = (status & 0x000e) >> 1;
499 		events |= (status & 0x0001) << 3;
500 		events |= (status & 0x3c00) >> 6;
501 		xadc_handle_events(indio_dev, events);
502 	}
503 
504 	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
505 
506 	return IRQ_HANDLED;
507 }
508 
509 static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
510 {
511 	uint32_t val;
512 	unsigned long flags;
513 
514 	/*
515 	 * The order of the bits in the AXI-XADC status register does not match
516 	 * the order of the bits in the XADC alarm enable register. We get
517 	 * passed the alarm mask in the same order as in the XADC alarm enable
518 	 * register.
519 	 */
520 	alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
521 			((alarm & 0xf0) << 6);
522 
523 	spin_lock_irqsave(&xadc->lock, flags);
524 	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
525 	val &= ~XADC_AXI_INT_ALARM_MASK;
526 	val |= alarm;
527 	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
528 	spin_unlock_irqrestore(&xadc->lock, flags);
529 }
530 
531 static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
532 {
533 	return clk_get_rate(xadc->clk);
534 }
535 
536 static const struct xadc_ops xadc_axi_ops = {
537 	.read = xadc_axi_read_adc_reg,
538 	.write = xadc_axi_write_adc_reg,
539 	.setup = xadc_axi_setup,
540 	.get_dclk_rate = xadc_axi_get_dclk,
541 	.update_alarm = xadc_axi_update_alarm,
542 	.interrupt_handler = xadc_axi_interrupt_handler,
543 	.flags = XADC_FLAGS_BUFFERED,
544 };
545 
546 static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
547 	uint16_t mask, uint16_t val)
548 {
549 	uint16_t tmp;
550 	int ret;
551 
552 	ret = _xadc_read_adc_reg(xadc, reg, &tmp);
553 	if (ret)
554 		return ret;
555 
556 	return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
557 }
558 
559 static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
560 	uint16_t mask, uint16_t val)
561 {
562 	int ret;
563 
564 	mutex_lock(&xadc->mutex);
565 	ret = _xadc_update_adc_reg(xadc, reg, mask, val);
566 	mutex_unlock(&xadc->mutex);
567 
568 	return ret;
569 }
570 
571 static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
572 {
573 	return xadc->ops->get_dclk_rate(xadc);
574 }
575 
576 static int xadc_update_scan_mode(struct iio_dev *indio_dev,
577 	const unsigned long *mask)
578 {
579 	struct xadc *xadc = iio_priv(indio_dev);
580 	unsigned int n;
581 
582 	n = bitmap_weight(mask, indio_dev->masklength);
583 
584 	kfree(xadc->data);
585 	xadc->data = kcalloc(n, sizeof(*xadc->data), GFP_KERNEL);
586 	if (!xadc->data)
587 		return -ENOMEM;
588 
589 	return 0;
590 }
591 
592 static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
593 {
594 	switch (scan_index) {
595 	case 5:
596 		return XADC_REG_VCCPINT;
597 	case 6:
598 		return XADC_REG_VCCPAUX;
599 	case 7:
600 		return XADC_REG_VCCO_DDR;
601 	case 8:
602 		return XADC_REG_TEMP;
603 	case 9:
604 		return XADC_REG_VCCINT;
605 	case 10:
606 		return XADC_REG_VCCAUX;
607 	case 11:
608 		return XADC_REG_VPVN;
609 	case 12:
610 		return XADC_REG_VREFP;
611 	case 13:
612 		return XADC_REG_VREFN;
613 	case 14:
614 		return XADC_REG_VCCBRAM;
615 	default:
616 		return XADC_REG_VAUX(scan_index - 16);
617 	}
618 }
619 
620 static irqreturn_t xadc_trigger_handler(int irq, void *p)
621 {
622 	struct iio_poll_func *pf = p;
623 	struct iio_dev *indio_dev = pf->indio_dev;
624 	struct xadc *xadc = iio_priv(indio_dev);
625 	unsigned int chan;
626 	int i, j;
627 
628 	if (!xadc->data)
629 		goto out;
630 
631 	j = 0;
632 	for_each_set_bit(i, indio_dev->active_scan_mask,
633 		indio_dev->masklength) {
634 		chan = xadc_scan_index_to_channel(i);
635 		xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
636 		j++;
637 	}
638 
639 	iio_push_to_buffers(indio_dev, xadc->data);
640 
641 out:
642 	iio_trigger_notify_done(indio_dev->trig);
643 
644 	return IRQ_HANDLED;
645 }
646 
647 static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
648 {
649 	struct xadc *xadc = iio_trigger_get_drvdata(trigger);
650 	unsigned long flags;
651 	unsigned int convst;
652 	unsigned int val;
653 	int ret = 0;
654 
655 	mutex_lock(&xadc->mutex);
656 
657 	if (state) {
658 		/* Only one of the two triggers can be active at the a time. */
659 		if (xadc->trigger != NULL) {
660 			ret = -EBUSY;
661 			goto err_out;
662 		} else {
663 			xadc->trigger = trigger;
664 			if (trigger == xadc->convst_trigger)
665 				convst = XADC_CONF0_EC;
666 			else
667 				convst = 0;
668 		}
669 		ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
670 					convst);
671 		if (ret)
672 			goto err_out;
673 	} else {
674 		xadc->trigger = NULL;
675 	}
676 
677 	spin_lock_irqsave(&xadc->lock, flags);
678 	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
679 	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, val & XADC_AXI_INT_EOS);
680 	if (state)
681 		val |= XADC_AXI_INT_EOS;
682 	else
683 		val &= ~XADC_AXI_INT_EOS;
684 	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
685 	spin_unlock_irqrestore(&xadc->lock, flags);
686 
687 err_out:
688 	mutex_unlock(&xadc->mutex);
689 
690 	return ret;
691 }
692 
693 static const struct iio_trigger_ops xadc_trigger_ops = {
694 	.owner = THIS_MODULE,
695 	.set_trigger_state = &xadc_trigger_set_state,
696 };
697 
698 static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
699 	const char *name)
700 {
701 	struct iio_trigger *trig;
702 	int ret;
703 
704 	trig = iio_trigger_alloc("%s%d-%s", indio_dev->name,
705 				indio_dev->id, name);
706 	if (trig == NULL)
707 		return ERR_PTR(-ENOMEM);
708 
709 	trig->dev.parent = indio_dev->dev.parent;
710 	trig->ops = &xadc_trigger_ops;
711 	iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
712 
713 	ret = iio_trigger_register(trig);
714 	if (ret)
715 		goto error_free_trig;
716 
717 	return trig;
718 
719 error_free_trig:
720 	iio_trigger_free(trig);
721 	return ERR_PTR(ret);
722 }
723 
724 static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
725 {
726 	uint16_t val;
727 
728 	switch (seq_mode) {
729 	case XADC_CONF1_SEQ_SIMULTANEOUS:
730 	case XADC_CONF1_SEQ_INDEPENDENT:
731 		val = XADC_CONF2_PD_ADC_B;
732 		break;
733 	default:
734 		val = 0;
735 		break;
736 	}
737 
738 	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
739 		val);
740 }
741 
742 static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
743 {
744 	unsigned int aux_scan_mode = scan_mode >> 16;
745 
746 	if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
747 		return XADC_CONF1_SEQ_SIMULTANEOUS;
748 
749 	if ((aux_scan_mode & 0xff00) == 0 ||
750 		(aux_scan_mode & 0x00ff) == 0)
751 		return XADC_CONF1_SEQ_CONTINUOUS;
752 
753 	return XADC_CONF1_SEQ_SIMULTANEOUS;
754 }
755 
756 static int xadc_postdisable(struct iio_dev *indio_dev)
757 {
758 	struct xadc *xadc = iio_priv(indio_dev);
759 	unsigned long scan_mask;
760 	int ret;
761 	int i;
762 
763 	scan_mask = 1; /* Run calibration as part of the sequence */
764 	for (i = 0; i < indio_dev->num_channels; i++)
765 		scan_mask |= BIT(indio_dev->channels[i].scan_index);
766 
767 	/* Enable all channels and calibration */
768 	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
769 	if (ret)
770 		return ret;
771 
772 	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
773 	if (ret)
774 		return ret;
775 
776 	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
777 		XADC_CONF1_SEQ_CONTINUOUS);
778 	if (ret)
779 		return ret;
780 
781 	return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
782 }
783 
784 static int xadc_preenable(struct iio_dev *indio_dev)
785 {
786 	struct xadc *xadc = iio_priv(indio_dev);
787 	unsigned long scan_mask;
788 	int seq_mode;
789 	int ret;
790 
791 	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
792 		XADC_CONF1_SEQ_DEFAULT);
793 	if (ret)
794 		goto err;
795 
796 	scan_mask = *indio_dev->active_scan_mask;
797 	seq_mode = xadc_get_seq_mode(xadc, scan_mask);
798 
799 	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
800 	if (ret)
801 		goto err;
802 
803 	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
804 	if (ret)
805 		goto err;
806 
807 	ret = xadc_power_adc_b(xadc, seq_mode);
808 	if (ret)
809 		goto err;
810 
811 	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
812 		seq_mode);
813 	if (ret)
814 		goto err;
815 
816 	return 0;
817 err:
818 	xadc_postdisable(indio_dev);
819 	return ret;
820 }
821 
822 static struct iio_buffer_setup_ops xadc_buffer_ops = {
823 	.preenable = &xadc_preenable,
824 	.postenable = &iio_triggered_buffer_postenable,
825 	.predisable = &iio_triggered_buffer_predisable,
826 	.postdisable = &xadc_postdisable,
827 };
828 
829 static int xadc_read_raw(struct iio_dev *indio_dev,
830 	struct iio_chan_spec const *chan, int *val, int *val2, long info)
831 {
832 	struct xadc *xadc = iio_priv(indio_dev);
833 	unsigned int div;
834 	uint16_t val16;
835 	int ret;
836 
837 	switch (info) {
838 	case IIO_CHAN_INFO_RAW:
839 		if (iio_buffer_enabled(indio_dev))
840 			return -EBUSY;
841 		ret = xadc_read_adc_reg(xadc, chan->address, &val16);
842 		if (ret < 0)
843 			return ret;
844 
845 		val16 >>= 4;
846 		if (chan->scan_type.sign == 'u')
847 			*val = val16;
848 		else
849 			*val = sign_extend32(val16, 11);
850 
851 		return IIO_VAL_INT;
852 	case IIO_CHAN_INFO_SCALE:
853 		switch (chan->type) {
854 		case IIO_VOLTAGE:
855 			/* V = (val * 3.0) / 4096 */
856 			switch (chan->address) {
857 			case XADC_REG_VCCINT:
858 			case XADC_REG_VCCAUX:
859 			case XADC_REG_VREFP:
860 			case XADC_REG_VCCBRAM:
861 			case XADC_REG_VCCPINT:
862 			case XADC_REG_VCCPAUX:
863 			case XADC_REG_VCCO_DDR:
864 				*val = 3000;
865 				break;
866 			default:
867 				*val = 1000;
868 				break;
869 			}
870 			*val2 = 12;
871 			return IIO_VAL_FRACTIONAL_LOG2;
872 		case IIO_TEMP:
873 			/* Temp in C = (val * 503.975) / 4096 - 273.15 */
874 			*val = 503975;
875 			*val2 = 12;
876 			return IIO_VAL_FRACTIONAL_LOG2;
877 		default:
878 			return -EINVAL;
879 		}
880 	case IIO_CHAN_INFO_OFFSET:
881 		/* Only the temperature channel has an offset */
882 		*val = -((273150 << 12) / 503975);
883 		return IIO_VAL_INT;
884 	case IIO_CHAN_INFO_SAMP_FREQ:
885 		ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
886 		if (ret)
887 			return ret;
888 
889 		div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
890 		if (div < 2)
891 			div = 2;
892 
893 		*val = xadc_get_dclk_rate(xadc) / div / 26;
894 
895 		return IIO_VAL_INT;
896 	default:
897 		return -EINVAL;
898 	}
899 }
900 
901 static int xadc_write_raw(struct iio_dev *indio_dev,
902 	struct iio_chan_spec const *chan, int val, int val2, long info)
903 {
904 	struct xadc *xadc = iio_priv(indio_dev);
905 	unsigned long clk_rate = xadc_get_dclk_rate(xadc);
906 	unsigned int div;
907 
908 	if (info != IIO_CHAN_INFO_SAMP_FREQ)
909 		return -EINVAL;
910 
911 	if (val <= 0)
912 		return -EINVAL;
913 
914 	/* Max. 150 kSPS */
915 	if (val > 150000)
916 		val = 150000;
917 
918 	val *= 26;
919 
920 	/* Min 1MHz */
921 	if (val < 1000000)
922 		val = 1000000;
923 
924 	/*
925 	 * We want to round down, but only if we do not exceed the 150 kSPS
926 	 * limit.
927 	 */
928 	div = clk_rate / val;
929 	if (clk_rate / div / 26 > 150000)
930 		div++;
931 	if (div < 2)
932 		div = 2;
933 	else if (div > 0xff)
934 		div = 0xff;
935 
936 	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
937 		div << XADC_CONF2_DIV_OFFSET);
938 }
939 
940 static const struct iio_event_spec xadc_temp_events[] = {
941 	{
942 		.type = IIO_EV_TYPE_THRESH,
943 		.dir = IIO_EV_DIR_RISING,
944 		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
945 				BIT(IIO_EV_INFO_VALUE) |
946 				BIT(IIO_EV_INFO_HYSTERESIS),
947 	},
948 };
949 
950 /* Separate values for upper and lower thresholds, but only a shared enabled */
951 static const struct iio_event_spec xadc_voltage_events[] = {
952 	{
953 		.type = IIO_EV_TYPE_THRESH,
954 		.dir = IIO_EV_DIR_RISING,
955 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
956 	}, {
957 		.type = IIO_EV_TYPE_THRESH,
958 		.dir = IIO_EV_DIR_FALLING,
959 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
960 	}, {
961 		.type = IIO_EV_TYPE_THRESH,
962 		.dir = IIO_EV_DIR_EITHER,
963 		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
964 	},
965 };
966 
967 #define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \
968 	.type = IIO_TEMP, \
969 	.indexed = 1, \
970 	.channel = (_chan), \
971 	.address = (_addr), \
972 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
973 		BIT(IIO_CHAN_INFO_SCALE) | \
974 		BIT(IIO_CHAN_INFO_OFFSET), \
975 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
976 	.event_spec = xadc_temp_events, \
977 	.num_event_specs = ARRAY_SIZE(xadc_temp_events), \
978 	.scan_index = (_scan_index), \
979 	.scan_type = { \
980 		.sign = 'u', \
981 		.realbits = 12, \
982 		.storagebits = 16, \
983 		.shift = 4, \
984 		.endianness = IIO_CPU, \
985 	}, \
986 }
987 
988 #define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \
989 	.type = IIO_VOLTAGE, \
990 	.indexed = 1, \
991 	.channel = (_chan), \
992 	.address = (_addr), \
993 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
994 		BIT(IIO_CHAN_INFO_SCALE), \
995 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
996 	.event_spec = (_alarm) ? xadc_voltage_events : NULL, \
997 	.num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
998 	.scan_index = (_scan_index), \
999 	.scan_type = { \
1000 		.sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
1001 		.realbits = 12, \
1002 		.storagebits = 16, \
1003 		.shift = 4, \
1004 		.endianness = IIO_CPU, \
1005 	}, \
1006 	.extend_name = _ext, \
1007 }
1008 
1009 static const struct iio_chan_spec xadc_channels[] = {
1010 	XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1011 	XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1012 	XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1013 	XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1014 	XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
1015 	XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1016 	XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1017 	XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1018 	XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1019 	XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1020 	XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1021 	XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1022 	XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1023 	XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1024 	XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1025 	XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1026 	XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1027 	XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1028 	XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1029 	XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1030 	XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1031 	XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1032 	XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1033 	XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1034 	XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1035 	XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1036 };
1037 
1038 static const struct iio_info xadc_info = {
1039 	.read_raw = &xadc_read_raw,
1040 	.write_raw = &xadc_write_raw,
1041 	.read_event_config = &xadc_read_event_config,
1042 	.write_event_config = &xadc_write_event_config,
1043 	.read_event_value = &xadc_read_event_value,
1044 	.write_event_value = &xadc_write_event_value,
1045 	.update_scan_mode = &xadc_update_scan_mode,
1046 	.driver_module = THIS_MODULE,
1047 };
1048 
1049 static const struct of_device_id xadc_of_match_table[] = {
1050 	{ .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops },
1051 	{ .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops },
1052 	{ },
1053 };
1054 MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1055 
1056 static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
1057 	unsigned int *conf)
1058 {
1059 	struct xadc *xadc = iio_priv(indio_dev);
1060 	struct iio_chan_spec *channels, *chan;
1061 	struct device_node *chan_node, *child;
1062 	unsigned int num_channels;
1063 	const char *external_mux;
1064 	u32 ext_mux_chan;
1065 	int reg;
1066 	int ret;
1067 
1068 	*conf = 0;
1069 
1070 	ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
1071 	if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1072 		xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1073 	else if (strcasecmp(external_mux, "single") == 0)
1074 		xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1075 	else if (strcasecmp(external_mux, "dual") == 0)
1076 		xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1077 	else
1078 		return -EINVAL;
1079 
1080 	if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1081 		ret = of_property_read_u32(np, "xlnx,external-mux-channel",
1082 					&ext_mux_chan);
1083 		if (ret < 0)
1084 			return ret;
1085 
1086 		if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1087 			if (ext_mux_chan == 0)
1088 				ext_mux_chan = XADC_REG_VPVN;
1089 			else if (ext_mux_chan <= 16)
1090 				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1091 			else
1092 				return -EINVAL;
1093 		} else {
1094 			if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1095 				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1096 			else
1097 				return -EINVAL;
1098 		}
1099 
1100 		*conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1101 	}
1102 
1103 	channels = kmemdup(xadc_channels, sizeof(xadc_channels), GFP_KERNEL);
1104 	if (!channels)
1105 		return -ENOMEM;
1106 
1107 	num_channels = 9;
1108 	chan = &channels[9];
1109 
1110 	chan_node = of_get_child_by_name(np, "xlnx,channels");
1111 	if (chan_node) {
1112 		for_each_child_of_node(chan_node, child) {
1113 			if (num_channels >= ARRAY_SIZE(xadc_channels)) {
1114 				of_node_put(child);
1115 				break;
1116 			}
1117 
1118 			ret = of_property_read_u32(child, "reg", &reg);
1119 			if (ret || reg > 16)
1120 				continue;
1121 
1122 			if (of_property_read_bool(child, "xlnx,bipolar"))
1123 				chan->scan_type.sign = 's';
1124 
1125 			if (reg == 0) {
1126 				chan->scan_index = 11;
1127 				chan->address = XADC_REG_VPVN;
1128 			} else {
1129 				chan->scan_index = 15 + reg;
1130 				chan->address = XADC_REG_VAUX(reg - 1);
1131 			}
1132 			num_channels++;
1133 			chan++;
1134 		}
1135 	}
1136 	of_node_put(chan_node);
1137 
1138 	indio_dev->num_channels = num_channels;
1139 	indio_dev->channels = krealloc(channels, sizeof(*channels) *
1140 					num_channels, GFP_KERNEL);
1141 	/* If we can't resize the channels array, just use the original */
1142 	if (!indio_dev->channels)
1143 		indio_dev->channels = channels;
1144 
1145 	return 0;
1146 }
1147 
1148 static int xadc_probe(struct platform_device *pdev)
1149 {
1150 	const struct of_device_id *id;
1151 	struct iio_dev *indio_dev;
1152 	unsigned int bipolar_mask;
1153 	struct resource *mem;
1154 	unsigned int conf0;
1155 	struct xadc *xadc;
1156 	int ret;
1157 	int irq;
1158 	int i;
1159 
1160 	if (!pdev->dev.of_node)
1161 		return -ENODEV;
1162 
1163 	id = of_match_node(xadc_of_match_table, pdev->dev.of_node);
1164 	if (!id)
1165 		return -EINVAL;
1166 
1167 	irq = platform_get_irq(pdev, 0);
1168 	if (irq <= 0)
1169 		return -ENXIO;
1170 
1171 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*xadc));
1172 	if (!indio_dev)
1173 		return -ENOMEM;
1174 
1175 	xadc = iio_priv(indio_dev);
1176 	xadc->ops = id->data;
1177 	init_completion(&xadc->completion);
1178 	mutex_init(&xadc->mutex);
1179 	spin_lock_init(&xadc->lock);
1180 	INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1181 
1182 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1183 	xadc->base = devm_ioremap_resource(&pdev->dev, mem);
1184 	if (IS_ERR(xadc->base))
1185 		return PTR_ERR(xadc->base);
1186 
1187 	indio_dev->dev.parent = &pdev->dev;
1188 	indio_dev->dev.of_node = pdev->dev.of_node;
1189 	indio_dev->name = "xadc";
1190 	indio_dev->modes = INDIO_DIRECT_MODE;
1191 	indio_dev->info = &xadc_info;
1192 
1193 	ret = xadc_parse_dt(indio_dev, pdev->dev.of_node, &conf0);
1194 	if (ret)
1195 		goto err_device_free;
1196 
1197 	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1198 		ret = iio_triggered_buffer_setup(indio_dev,
1199 			&iio_pollfunc_store_time, &xadc_trigger_handler,
1200 			&xadc_buffer_ops);
1201 		if (ret)
1202 			goto err_device_free;
1203 
1204 		xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
1205 		if (IS_ERR(xadc->convst_trigger)) {
1206 			ret = PTR_ERR(xadc->convst_trigger);
1207 			goto err_triggered_buffer_cleanup;
1208 		}
1209 		xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1210 			"samplerate");
1211 		if (IS_ERR(xadc->samplerate_trigger)) {
1212 			ret = PTR_ERR(xadc->samplerate_trigger);
1213 			goto err_free_convst_trigger;
1214 		}
1215 	}
1216 
1217 	xadc->clk = devm_clk_get(&pdev->dev, NULL);
1218 	if (IS_ERR(xadc->clk)) {
1219 		ret = PTR_ERR(xadc->clk);
1220 		goto err_free_samplerate_trigger;
1221 	}
1222 	clk_prepare_enable(xadc->clk);
1223 
1224 	ret = xadc->ops->setup(pdev, indio_dev, irq);
1225 	if (ret)
1226 		goto err_free_samplerate_trigger;
1227 
1228 	ret = request_threaded_irq(irq, xadc->ops->interrupt_handler,
1229 				xadc->ops->threaded_interrupt_handler,
1230 				0, dev_name(&pdev->dev), indio_dev);
1231 	if (ret)
1232 		goto err_clk_disable_unprepare;
1233 
1234 	for (i = 0; i < 16; i++)
1235 		xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1236 			&xadc->threshold[i]);
1237 
1238 	ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1239 	if (ret)
1240 		goto err_free_irq;
1241 
1242 	bipolar_mask = 0;
1243 	for (i = 0; i < indio_dev->num_channels; i++) {
1244 		if (indio_dev->channels[i].scan_type.sign == 's')
1245 			bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1246 	}
1247 
1248 	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1249 	if (ret)
1250 		goto err_free_irq;
1251 	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1252 		bipolar_mask >> 16);
1253 	if (ret)
1254 		goto err_free_irq;
1255 
1256 	/* Disable all alarms */
1257 	xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
1258 		XADC_CONF1_ALARM_MASK);
1259 
1260 	/* Set thresholds to min/max */
1261 	for (i = 0; i < 16; i++) {
1262 		/*
1263 		 * Set max voltage threshold and both temperature thresholds to
1264 		 * 0xffff, min voltage threshold to 0.
1265 		 */
1266 		if (i % 8 < 4 || i == 7)
1267 			xadc->threshold[i] = 0xffff;
1268 		else
1269 			xadc->threshold[i] = 0;
1270 		xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1271 			xadc->threshold[i]);
1272 	}
1273 
1274 	/* Go to non-buffered mode */
1275 	xadc_postdisable(indio_dev);
1276 
1277 	ret = iio_device_register(indio_dev);
1278 	if (ret)
1279 		goto err_free_irq;
1280 
1281 	platform_set_drvdata(pdev, indio_dev);
1282 
1283 	return 0;
1284 
1285 err_free_irq:
1286 	free_irq(irq, indio_dev);
1287 err_free_samplerate_trigger:
1288 	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1289 		iio_trigger_free(xadc->samplerate_trigger);
1290 err_free_convst_trigger:
1291 	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1292 		iio_trigger_free(xadc->convst_trigger);
1293 err_triggered_buffer_cleanup:
1294 	if (xadc->ops->flags & XADC_FLAGS_BUFFERED)
1295 		iio_triggered_buffer_cleanup(indio_dev);
1296 err_clk_disable_unprepare:
1297 	clk_disable_unprepare(xadc->clk);
1298 err_device_free:
1299 	kfree(indio_dev->channels);
1300 
1301 	return ret;
1302 }
1303 
1304 static int xadc_remove(struct platform_device *pdev)
1305 {
1306 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1307 	struct xadc *xadc = iio_priv(indio_dev);
1308 	int irq = platform_get_irq(pdev, 0);
1309 
1310 	iio_device_unregister(indio_dev);
1311 	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1312 		iio_trigger_free(xadc->samplerate_trigger);
1313 		iio_trigger_free(xadc->convst_trigger);
1314 		iio_triggered_buffer_cleanup(indio_dev);
1315 	}
1316 	free_irq(irq, indio_dev);
1317 	clk_disable_unprepare(xadc->clk);
1318 	cancel_delayed_work(&xadc->zynq_unmask_work);
1319 	kfree(xadc->data);
1320 	kfree(indio_dev->channels);
1321 
1322 	return 0;
1323 }
1324 
1325 static struct platform_driver xadc_driver = {
1326 	.probe = xadc_probe,
1327 	.remove = xadc_remove,
1328 	.driver = {
1329 		.name = "xadc",
1330 		.of_match_table = xadc_of_match_table,
1331 	},
1332 };
1333 module_platform_driver(xadc_driver);
1334 
1335 MODULE_LICENSE("GPL v2");
1336 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1337 MODULE_DESCRIPTION("Xilinx XADC IIO driver");
1338