1 /* 2 * Xilinx XADC driver 3 * 4 * Copyright 2013-2014 Analog Devices Inc. 5 * Author: Lars-Peter Clauen <lars@metafoo.de> 6 * 7 * Licensed under the GPL-2. 8 * 9 * Documentation for the parts can be found at: 10 * - XADC hardmacro: Xilinx UG480 11 * - ZYNQ XADC interface: Xilinx UG585 12 * - AXI XADC interface: Xilinx PG019 13 */ 14 15 #include <linux/clk.h> 16 #include <linux/device.h> 17 #include <linux/err.h> 18 #include <linux/interrupt.h> 19 #include <linux/io.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/of.h> 23 #include <linux/platform_device.h> 24 #include <linux/slab.h> 25 #include <linux/sysfs.h> 26 27 #include <linux/iio/buffer.h> 28 #include <linux/iio/events.h> 29 #include <linux/iio/iio.h> 30 #include <linux/iio/sysfs.h> 31 #include <linux/iio/trigger.h> 32 #include <linux/iio/trigger_consumer.h> 33 #include <linux/iio/triggered_buffer.h> 34 35 #include "xilinx-xadc.h" 36 37 static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500; 38 39 /* ZYNQ register definitions */ 40 #define XADC_ZYNQ_REG_CFG 0x00 41 #define XADC_ZYNQ_REG_INTSTS 0x04 42 #define XADC_ZYNQ_REG_INTMSK 0x08 43 #define XADC_ZYNQ_REG_STATUS 0x0c 44 #define XADC_ZYNQ_REG_CFIFO 0x10 45 #define XADC_ZYNQ_REG_DFIFO 0x14 46 #define XADC_ZYNQ_REG_CTL 0x18 47 48 #define XADC_ZYNQ_CFG_ENABLE BIT(31) 49 #define XADC_ZYNQ_CFG_CFIFOTH_MASK (0xf << 20) 50 #define XADC_ZYNQ_CFG_CFIFOTH_OFFSET 20 51 #define XADC_ZYNQ_CFG_DFIFOTH_MASK (0xf << 16) 52 #define XADC_ZYNQ_CFG_DFIFOTH_OFFSET 16 53 #define XADC_ZYNQ_CFG_WEDGE BIT(13) 54 #define XADC_ZYNQ_CFG_REDGE BIT(12) 55 #define XADC_ZYNQ_CFG_TCKRATE_MASK (0x3 << 8) 56 #define XADC_ZYNQ_CFG_TCKRATE_DIV2 (0x0 << 8) 57 #define XADC_ZYNQ_CFG_TCKRATE_DIV4 (0x1 << 8) 58 #define XADC_ZYNQ_CFG_TCKRATE_DIV8 (0x2 << 8) 59 #define XADC_ZYNQ_CFG_TCKRATE_DIV16 (0x3 << 8) 60 #define XADC_ZYNQ_CFG_IGAP_MASK 0x1f 61 #define XADC_ZYNQ_CFG_IGAP(x) (x) 62 63 #define XADC_ZYNQ_INT_CFIFO_LTH BIT(9) 64 #define XADC_ZYNQ_INT_DFIFO_GTH BIT(8) 65 #define XADC_ZYNQ_INT_ALARM_MASK 0xff 66 #define XADC_ZYNQ_INT_ALARM_OFFSET 0 67 68 #define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK (0xf << 16) 69 #define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET 16 70 #define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK (0xf << 12) 71 #define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET 12 72 #define XADC_ZYNQ_STATUS_CFIFOF BIT(11) 73 #define XADC_ZYNQ_STATUS_CFIFOE BIT(10) 74 #define XADC_ZYNQ_STATUS_DFIFOF BIT(9) 75 #define XADC_ZYNQ_STATUS_DFIFOE BIT(8) 76 #define XADC_ZYNQ_STATUS_OT BIT(7) 77 #define XADC_ZYNQ_STATUS_ALM(x) BIT(x) 78 79 #define XADC_ZYNQ_CTL_RESET BIT(4) 80 81 #define XADC_ZYNQ_CMD_NOP 0x00 82 #define XADC_ZYNQ_CMD_READ 0x01 83 #define XADC_ZYNQ_CMD_WRITE 0x02 84 85 #define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data)) 86 87 /* AXI register definitions */ 88 #define XADC_AXI_REG_RESET 0x00 89 #define XADC_AXI_REG_STATUS 0x04 90 #define XADC_AXI_REG_ALARM_STATUS 0x08 91 #define XADC_AXI_REG_CONVST 0x0c 92 #define XADC_AXI_REG_XADC_RESET 0x10 93 #define XADC_AXI_REG_GIER 0x5c 94 #define XADC_AXI_REG_IPISR 0x60 95 #define XADC_AXI_REG_IPIER 0x68 96 #define XADC_AXI_ADC_REG_OFFSET 0x200 97 98 #define XADC_AXI_RESET_MAGIC 0xa 99 #define XADC_AXI_GIER_ENABLE BIT(31) 100 101 #define XADC_AXI_INT_EOS BIT(4) 102 #define XADC_AXI_INT_ALARM_MASK 0x3c0f 103 104 #define XADC_FLAGS_BUFFERED BIT(0) 105 106 static void xadc_write_reg(struct xadc *xadc, unsigned int reg, 107 uint32_t val) 108 { 109 writel(val, xadc->base + reg); 110 } 111 112 static void xadc_read_reg(struct xadc *xadc, unsigned int reg, 113 uint32_t *val) 114 { 115 *val = readl(xadc->base + reg); 116 } 117 118 /* 119 * The ZYNQ interface uses two asynchronous FIFOs for communication with the 120 * XADC. Reads and writes to the XADC register are performed by submitting a 121 * request to the command FIFO (CFIFO), once the request has been completed the 122 * result can be read from the data FIFO (DFIFO). The method currently used in 123 * this driver is to submit the request for a read/write operation, then go to 124 * sleep and wait for an interrupt that signals that a response is available in 125 * the data FIFO. 126 */ 127 128 static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd, 129 unsigned int n) 130 { 131 unsigned int i; 132 133 for (i = 0; i < n; i++) 134 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]); 135 } 136 137 static void xadc_zynq_drain_fifo(struct xadc *xadc) 138 { 139 uint32_t status, tmp; 140 141 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status); 142 143 while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) { 144 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp); 145 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status); 146 } 147 } 148 149 static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask, 150 unsigned int val) 151 { 152 xadc->zynq_intmask &= ~mask; 153 xadc->zynq_intmask |= val; 154 155 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, 156 xadc->zynq_intmask | xadc->zynq_masked_alarm); 157 } 158 159 static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg, 160 uint16_t val) 161 { 162 uint32_t cmd[1]; 163 uint32_t tmp; 164 int ret; 165 166 spin_lock_irq(&xadc->lock); 167 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 168 XADC_ZYNQ_INT_DFIFO_GTH); 169 170 reinit_completion(&xadc->completion); 171 172 cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val); 173 xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd)); 174 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp); 175 tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK; 176 tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET; 177 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp); 178 179 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0); 180 spin_unlock_irq(&xadc->lock); 181 182 ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ); 183 if (ret == 0) 184 ret = -EIO; 185 else 186 ret = 0; 187 188 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp); 189 190 return ret; 191 } 192 193 static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg, 194 uint16_t *val) 195 { 196 uint32_t cmd[2]; 197 uint32_t resp, tmp; 198 int ret; 199 200 cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0); 201 cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0); 202 203 spin_lock_irq(&xadc->lock); 204 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 205 XADC_ZYNQ_INT_DFIFO_GTH); 206 xadc_zynq_drain_fifo(xadc); 207 reinit_completion(&xadc->completion); 208 209 xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd)); 210 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp); 211 tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK; 212 tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET; 213 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp); 214 215 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0); 216 spin_unlock_irq(&xadc->lock); 217 ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ); 218 if (ret == 0) 219 ret = -EIO; 220 if (ret < 0) 221 return ret; 222 223 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp); 224 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp); 225 226 *val = resp & 0xffff; 227 228 return 0; 229 } 230 231 static unsigned int xadc_zynq_transform_alarm(unsigned int alarm) 232 { 233 return ((alarm & 0x80) >> 4) | 234 ((alarm & 0x78) << 1) | 235 (alarm & 0x07); 236 } 237 238 /* 239 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the 240 * threshold condition go way from within the interrupt handler, this means as 241 * soon as a threshold condition is present we would enter the interrupt handler 242 * again and again. To work around this we mask all active thresholds interrupts 243 * in the interrupt handler and start a timer. In this timer we poll the 244 * interrupt status and only if the interrupt is inactive we unmask it again. 245 */ 246 static void xadc_zynq_unmask_worker(struct work_struct *work) 247 { 248 struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work); 249 unsigned int misc_sts, unmask; 250 251 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts); 252 253 misc_sts &= XADC_ZYNQ_INT_ALARM_MASK; 254 255 spin_lock_irq(&xadc->lock); 256 257 /* Clear those bits which are not active anymore */ 258 unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm; 259 xadc->zynq_masked_alarm &= misc_sts; 260 261 /* Also clear those which are masked out anyway */ 262 xadc->zynq_masked_alarm &= ~xadc->zynq_intmask; 263 264 /* Clear the interrupts before we unmask them */ 265 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask); 266 267 xadc_zynq_update_intmsk(xadc, 0, 0); 268 269 spin_unlock_irq(&xadc->lock); 270 271 /* if still pending some alarm re-trigger the timer */ 272 if (xadc->zynq_masked_alarm) { 273 schedule_delayed_work(&xadc->zynq_unmask_work, 274 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT)); 275 } 276 277 } 278 279 static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid) 280 { 281 struct iio_dev *indio_dev = devid; 282 struct xadc *xadc = iio_priv(indio_dev); 283 uint32_t status; 284 285 xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status); 286 287 status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm); 288 289 if (!status) 290 return IRQ_NONE; 291 292 spin_lock(&xadc->lock); 293 294 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status); 295 296 if (status & XADC_ZYNQ_INT_DFIFO_GTH) { 297 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 298 XADC_ZYNQ_INT_DFIFO_GTH); 299 complete(&xadc->completion); 300 } 301 302 status &= XADC_ZYNQ_INT_ALARM_MASK; 303 if (status) { 304 xadc->zynq_masked_alarm |= status; 305 /* 306 * mask the current event interrupt, 307 * unmask it when the interrupt is no more active. 308 */ 309 xadc_zynq_update_intmsk(xadc, 0, 0); 310 311 xadc_handle_events(indio_dev, 312 xadc_zynq_transform_alarm(status)); 313 314 /* unmask the required interrupts in timer. */ 315 schedule_delayed_work(&xadc->zynq_unmask_work, 316 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT)); 317 } 318 spin_unlock(&xadc->lock); 319 320 return IRQ_HANDLED; 321 } 322 323 #define XADC_ZYNQ_TCK_RATE_MAX 50000000 324 #define XADC_ZYNQ_IGAP_DEFAULT 20 325 326 static int xadc_zynq_setup(struct platform_device *pdev, 327 struct iio_dev *indio_dev, int irq) 328 { 329 struct xadc *xadc = iio_priv(indio_dev); 330 unsigned long pcap_rate; 331 unsigned int tck_div; 332 unsigned int div; 333 unsigned int igap; 334 unsigned int tck_rate; 335 336 /* TODO: Figure out how to make igap and tck_rate configurable */ 337 igap = XADC_ZYNQ_IGAP_DEFAULT; 338 tck_rate = XADC_ZYNQ_TCK_RATE_MAX; 339 340 xadc->zynq_intmask = ~0; 341 342 pcap_rate = clk_get_rate(xadc->clk); 343 344 if (tck_rate > XADC_ZYNQ_TCK_RATE_MAX) 345 tck_rate = XADC_ZYNQ_TCK_RATE_MAX; 346 if (tck_rate > pcap_rate / 2) { 347 div = 2; 348 } else { 349 div = pcap_rate / tck_rate; 350 if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX) 351 div++; 352 } 353 354 if (div <= 3) 355 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2; 356 else if (div <= 7) 357 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4; 358 else if (div <= 15) 359 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8; 360 else 361 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16; 362 363 xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET); 364 xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0); 365 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0); 366 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask); 367 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE | 368 XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE | 369 tck_div | XADC_ZYNQ_CFG_IGAP(igap)); 370 371 return 0; 372 } 373 374 static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc) 375 { 376 unsigned int div; 377 uint32_t val; 378 379 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val); 380 381 switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) { 382 case XADC_ZYNQ_CFG_TCKRATE_DIV4: 383 div = 4; 384 break; 385 case XADC_ZYNQ_CFG_TCKRATE_DIV8: 386 div = 8; 387 break; 388 case XADC_ZYNQ_CFG_TCKRATE_DIV16: 389 div = 16; 390 break; 391 default: 392 div = 2; 393 break; 394 } 395 396 return clk_get_rate(xadc->clk) / div; 397 } 398 399 static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm) 400 { 401 unsigned long flags; 402 uint32_t status; 403 404 /* Move OT to bit 7 */ 405 alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07); 406 407 spin_lock_irqsave(&xadc->lock, flags); 408 409 /* Clear previous interrupts if any. */ 410 xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status); 411 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm); 412 413 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK, 414 ~alarm & XADC_ZYNQ_INT_ALARM_MASK); 415 416 spin_unlock_irqrestore(&xadc->lock, flags); 417 } 418 419 static const struct xadc_ops xadc_zynq_ops = { 420 .read = xadc_zynq_read_adc_reg, 421 .write = xadc_zynq_write_adc_reg, 422 .setup = xadc_zynq_setup, 423 .get_dclk_rate = xadc_zynq_get_dclk_rate, 424 .interrupt_handler = xadc_zynq_interrupt_handler, 425 .update_alarm = xadc_zynq_update_alarm, 426 }; 427 428 static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg, 429 uint16_t *val) 430 { 431 uint32_t val32; 432 433 xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32); 434 *val = val32 & 0xffff; 435 436 return 0; 437 } 438 439 static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg, 440 uint16_t val) 441 { 442 xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val); 443 444 return 0; 445 } 446 447 static int xadc_axi_setup(struct platform_device *pdev, 448 struct iio_dev *indio_dev, int irq) 449 { 450 struct xadc *xadc = iio_priv(indio_dev); 451 452 xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC); 453 xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE); 454 455 return 0; 456 } 457 458 static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid) 459 { 460 struct iio_dev *indio_dev = devid; 461 struct xadc *xadc = iio_priv(indio_dev); 462 uint32_t status, mask; 463 unsigned int events; 464 465 xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status); 466 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask); 467 status &= mask; 468 469 if (!status) 470 return IRQ_NONE; 471 472 if ((status & XADC_AXI_INT_EOS) && xadc->trigger) 473 iio_trigger_poll(xadc->trigger); 474 475 if (status & XADC_AXI_INT_ALARM_MASK) { 476 /* 477 * The order of the bits in the AXI-XADC status register does 478 * not match the order of the bits in the XADC alarm enable 479 * register. xadc_handle_events() expects the events to be in 480 * the same order as the XADC alarm enable register. 481 */ 482 events = (status & 0x000e) >> 1; 483 events |= (status & 0x0001) << 3; 484 events |= (status & 0x3c00) >> 6; 485 xadc_handle_events(indio_dev, events); 486 } 487 488 xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status); 489 490 return IRQ_HANDLED; 491 } 492 493 static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm) 494 { 495 uint32_t val; 496 unsigned long flags; 497 498 /* 499 * The order of the bits in the AXI-XADC status register does not match 500 * the order of the bits in the XADC alarm enable register. We get 501 * passed the alarm mask in the same order as in the XADC alarm enable 502 * register. 503 */ 504 alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) | 505 ((alarm & 0xf0) << 6); 506 507 spin_lock_irqsave(&xadc->lock, flags); 508 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val); 509 val &= ~XADC_AXI_INT_ALARM_MASK; 510 val |= alarm; 511 xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val); 512 spin_unlock_irqrestore(&xadc->lock, flags); 513 } 514 515 static unsigned long xadc_axi_get_dclk(struct xadc *xadc) 516 { 517 return clk_get_rate(xadc->clk); 518 } 519 520 static const struct xadc_ops xadc_axi_ops = { 521 .read = xadc_axi_read_adc_reg, 522 .write = xadc_axi_write_adc_reg, 523 .setup = xadc_axi_setup, 524 .get_dclk_rate = xadc_axi_get_dclk, 525 .update_alarm = xadc_axi_update_alarm, 526 .interrupt_handler = xadc_axi_interrupt_handler, 527 .flags = XADC_FLAGS_BUFFERED, 528 }; 529 530 static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg, 531 uint16_t mask, uint16_t val) 532 { 533 uint16_t tmp; 534 int ret; 535 536 ret = _xadc_read_adc_reg(xadc, reg, &tmp); 537 if (ret) 538 return ret; 539 540 return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val); 541 } 542 543 static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg, 544 uint16_t mask, uint16_t val) 545 { 546 int ret; 547 548 mutex_lock(&xadc->mutex); 549 ret = _xadc_update_adc_reg(xadc, reg, mask, val); 550 mutex_unlock(&xadc->mutex); 551 552 return ret; 553 } 554 555 static unsigned long xadc_get_dclk_rate(struct xadc *xadc) 556 { 557 return xadc->ops->get_dclk_rate(xadc); 558 } 559 560 static int xadc_update_scan_mode(struct iio_dev *indio_dev, 561 const unsigned long *mask) 562 { 563 struct xadc *xadc = iio_priv(indio_dev); 564 unsigned int n; 565 566 n = bitmap_weight(mask, indio_dev->masklength); 567 568 kfree(xadc->data); 569 xadc->data = kcalloc(n, sizeof(*xadc->data), GFP_KERNEL); 570 if (!xadc->data) 571 return -ENOMEM; 572 573 return 0; 574 } 575 576 static unsigned int xadc_scan_index_to_channel(unsigned int scan_index) 577 { 578 switch (scan_index) { 579 case 5: 580 return XADC_REG_VCCPINT; 581 case 6: 582 return XADC_REG_VCCPAUX; 583 case 7: 584 return XADC_REG_VCCO_DDR; 585 case 8: 586 return XADC_REG_TEMP; 587 case 9: 588 return XADC_REG_VCCINT; 589 case 10: 590 return XADC_REG_VCCAUX; 591 case 11: 592 return XADC_REG_VPVN; 593 case 12: 594 return XADC_REG_VREFP; 595 case 13: 596 return XADC_REG_VREFN; 597 case 14: 598 return XADC_REG_VCCBRAM; 599 default: 600 return XADC_REG_VAUX(scan_index - 16); 601 } 602 } 603 604 static irqreturn_t xadc_trigger_handler(int irq, void *p) 605 { 606 struct iio_poll_func *pf = p; 607 struct iio_dev *indio_dev = pf->indio_dev; 608 struct xadc *xadc = iio_priv(indio_dev); 609 unsigned int chan; 610 int i, j; 611 612 if (!xadc->data) 613 goto out; 614 615 j = 0; 616 for_each_set_bit(i, indio_dev->active_scan_mask, 617 indio_dev->masklength) { 618 chan = xadc_scan_index_to_channel(i); 619 xadc_read_adc_reg(xadc, chan, &xadc->data[j]); 620 j++; 621 } 622 623 iio_push_to_buffers(indio_dev, xadc->data); 624 625 out: 626 iio_trigger_notify_done(indio_dev->trig); 627 628 return IRQ_HANDLED; 629 } 630 631 static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state) 632 { 633 struct xadc *xadc = iio_trigger_get_drvdata(trigger); 634 unsigned long flags; 635 unsigned int convst; 636 unsigned int val; 637 int ret = 0; 638 639 mutex_lock(&xadc->mutex); 640 641 if (state) { 642 /* Only one of the two triggers can be active at the a time. */ 643 if (xadc->trigger != NULL) { 644 ret = -EBUSY; 645 goto err_out; 646 } else { 647 xadc->trigger = trigger; 648 if (trigger == xadc->convst_trigger) 649 convst = XADC_CONF0_EC; 650 else 651 convst = 0; 652 } 653 ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC, 654 convst); 655 if (ret) 656 goto err_out; 657 } else { 658 xadc->trigger = NULL; 659 } 660 661 spin_lock_irqsave(&xadc->lock, flags); 662 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val); 663 xadc_write_reg(xadc, XADC_AXI_REG_IPISR, val & XADC_AXI_INT_EOS); 664 if (state) 665 val |= XADC_AXI_INT_EOS; 666 else 667 val &= ~XADC_AXI_INT_EOS; 668 xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val); 669 spin_unlock_irqrestore(&xadc->lock, flags); 670 671 err_out: 672 mutex_unlock(&xadc->mutex); 673 674 return ret; 675 } 676 677 static const struct iio_trigger_ops xadc_trigger_ops = { 678 .owner = THIS_MODULE, 679 .set_trigger_state = &xadc_trigger_set_state, 680 }; 681 682 static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev, 683 const char *name) 684 { 685 struct iio_trigger *trig; 686 int ret; 687 688 trig = iio_trigger_alloc("%s%d-%s", indio_dev->name, 689 indio_dev->id, name); 690 if (trig == NULL) 691 return ERR_PTR(-ENOMEM); 692 693 trig->dev.parent = indio_dev->dev.parent; 694 trig->ops = &xadc_trigger_ops; 695 iio_trigger_set_drvdata(trig, iio_priv(indio_dev)); 696 697 ret = iio_trigger_register(trig); 698 if (ret) 699 goto error_free_trig; 700 701 return trig; 702 703 error_free_trig: 704 iio_trigger_free(trig); 705 return ERR_PTR(ret); 706 } 707 708 static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode) 709 { 710 uint16_t val; 711 712 switch (seq_mode) { 713 case XADC_CONF1_SEQ_SIMULTANEOUS: 714 case XADC_CONF1_SEQ_INDEPENDENT: 715 val = XADC_CONF2_PD_ADC_B; 716 break; 717 default: 718 val = 0; 719 break; 720 } 721 722 return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK, 723 val); 724 } 725 726 static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode) 727 { 728 unsigned int aux_scan_mode = scan_mode >> 16; 729 730 if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL) 731 return XADC_CONF1_SEQ_SIMULTANEOUS; 732 733 if ((aux_scan_mode & 0xff00) == 0 || 734 (aux_scan_mode & 0x00ff) == 0) 735 return XADC_CONF1_SEQ_CONTINUOUS; 736 737 return XADC_CONF1_SEQ_SIMULTANEOUS; 738 } 739 740 static int xadc_postdisable(struct iio_dev *indio_dev) 741 { 742 struct xadc *xadc = iio_priv(indio_dev); 743 unsigned long scan_mask; 744 int ret; 745 int i; 746 747 scan_mask = 1; /* Run calibration as part of the sequence */ 748 for (i = 0; i < indio_dev->num_channels; i++) 749 scan_mask |= BIT(indio_dev->channels[i].scan_index); 750 751 /* Enable all channels and calibration */ 752 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff); 753 if (ret) 754 return ret; 755 756 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16); 757 if (ret) 758 return ret; 759 760 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK, 761 XADC_CONF1_SEQ_CONTINUOUS); 762 if (ret) 763 return ret; 764 765 return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS); 766 } 767 768 static int xadc_preenable(struct iio_dev *indio_dev) 769 { 770 struct xadc *xadc = iio_priv(indio_dev); 771 unsigned long scan_mask; 772 int seq_mode; 773 int ret; 774 775 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK, 776 XADC_CONF1_SEQ_DEFAULT); 777 if (ret) 778 goto err; 779 780 scan_mask = *indio_dev->active_scan_mask; 781 seq_mode = xadc_get_seq_mode(xadc, scan_mask); 782 783 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff); 784 if (ret) 785 goto err; 786 787 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16); 788 if (ret) 789 goto err; 790 791 ret = xadc_power_adc_b(xadc, seq_mode); 792 if (ret) 793 goto err; 794 795 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK, 796 seq_mode); 797 if (ret) 798 goto err; 799 800 return 0; 801 err: 802 xadc_postdisable(indio_dev); 803 return ret; 804 } 805 806 static const struct iio_buffer_setup_ops xadc_buffer_ops = { 807 .preenable = &xadc_preenable, 808 .postenable = &iio_triggered_buffer_postenable, 809 .predisable = &iio_triggered_buffer_predisable, 810 .postdisable = &xadc_postdisable, 811 }; 812 813 static int xadc_read_raw(struct iio_dev *indio_dev, 814 struct iio_chan_spec const *chan, int *val, int *val2, long info) 815 { 816 struct xadc *xadc = iio_priv(indio_dev); 817 unsigned int div; 818 uint16_t val16; 819 int ret; 820 821 switch (info) { 822 case IIO_CHAN_INFO_RAW: 823 if (iio_buffer_enabled(indio_dev)) 824 return -EBUSY; 825 ret = xadc_read_adc_reg(xadc, chan->address, &val16); 826 if (ret < 0) 827 return ret; 828 829 val16 >>= 4; 830 if (chan->scan_type.sign == 'u') 831 *val = val16; 832 else 833 *val = sign_extend32(val16, 11); 834 835 return IIO_VAL_INT; 836 case IIO_CHAN_INFO_SCALE: 837 switch (chan->type) { 838 case IIO_VOLTAGE: 839 /* V = (val * 3.0) / 4096 */ 840 switch (chan->address) { 841 case XADC_REG_VCCINT: 842 case XADC_REG_VCCAUX: 843 case XADC_REG_VREFP: 844 case XADC_REG_VREFN: 845 case XADC_REG_VCCBRAM: 846 case XADC_REG_VCCPINT: 847 case XADC_REG_VCCPAUX: 848 case XADC_REG_VCCO_DDR: 849 *val = 3000; 850 break; 851 default: 852 *val = 1000; 853 break; 854 } 855 *val2 = 12; 856 return IIO_VAL_FRACTIONAL_LOG2; 857 case IIO_TEMP: 858 /* Temp in C = (val * 503.975) / 4096 - 273.15 */ 859 *val = 503975; 860 *val2 = 12; 861 return IIO_VAL_FRACTIONAL_LOG2; 862 default: 863 return -EINVAL; 864 } 865 case IIO_CHAN_INFO_OFFSET: 866 /* Only the temperature channel has an offset */ 867 *val = -((273150 << 12) / 503975); 868 return IIO_VAL_INT; 869 case IIO_CHAN_INFO_SAMP_FREQ: 870 ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16); 871 if (ret) 872 return ret; 873 874 div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET; 875 if (div < 2) 876 div = 2; 877 878 *val = xadc_get_dclk_rate(xadc) / div / 26; 879 880 return IIO_VAL_INT; 881 default: 882 return -EINVAL; 883 } 884 } 885 886 static int xadc_write_raw(struct iio_dev *indio_dev, 887 struct iio_chan_spec const *chan, int val, int val2, long info) 888 { 889 struct xadc *xadc = iio_priv(indio_dev); 890 unsigned long clk_rate = xadc_get_dclk_rate(xadc); 891 unsigned int div; 892 893 if (info != IIO_CHAN_INFO_SAMP_FREQ) 894 return -EINVAL; 895 896 if (val <= 0) 897 return -EINVAL; 898 899 /* Max. 150 kSPS */ 900 if (val > 150000) 901 val = 150000; 902 903 val *= 26; 904 905 /* Min 1MHz */ 906 if (val < 1000000) 907 val = 1000000; 908 909 /* 910 * We want to round down, but only if we do not exceed the 150 kSPS 911 * limit. 912 */ 913 div = clk_rate / val; 914 if (clk_rate / div / 26 > 150000) 915 div++; 916 if (div < 2) 917 div = 2; 918 else if (div > 0xff) 919 div = 0xff; 920 921 return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK, 922 div << XADC_CONF2_DIV_OFFSET); 923 } 924 925 static const struct iio_event_spec xadc_temp_events[] = { 926 { 927 .type = IIO_EV_TYPE_THRESH, 928 .dir = IIO_EV_DIR_RISING, 929 .mask_separate = BIT(IIO_EV_INFO_ENABLE) | 930 BIT(IIO_EV_INFO_VALUE) | 931 BIT(IIO_EV_INFO_HYSTERESIS), 932 }, 933 }; 934 935 /* Separate values for upper and lower thresholds, but only a shared enabled */ 936 static const struct iio_event_spec xadc_voltage_events[] = { 937 { 938 .type = IIO_EV_TYPE_THRESH, 939 .dir = IIO_EV_DIR_RISING, 940 .mask_separate = BIT(IIO_EV_INFO_VALUE), 941 }, { 942 .type = IIO_EV_TYPE_THRESH, 943 .dir = IIO_EV_DIR_FALLING, 944 .mask_separate = BIT(IIO_EV_INFO_VALUE), 945 }, { 946 .type = IIO_EV_TYPE_THRESH, 947 .dir = IIO_EV_DIR_EITHER, 948 .mask_separate = BIT(IIO_EV_INFO_ENABLE), 949 }, 950 }; 951 952 #define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \ 953 .type = IIO_TEMP, \ 954 .indexed = 1, \ 955 .channel = (_chan), \ 956 .address = (_addr), \ 957 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 958 BIT(IIO_CHAN_INFO_SCALE) | \ 959 BIT(IIO_CHAN_INFO_OFFSET), \ 960 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \ 961 .event_spec = xadc_temp_events, \ 962 .num_event_specs = ARRAY_SIZE(xadc_temp_events), \ 963 .scan_index = (_scan_index), \ 964 .scan_type = { \ 965 .sign = 'u', \ 966 .realbits = 12, \ 967 .storagebits = 16, \ 968 .shift = 4, \ 969 .endianness = IIO_CPU, \ 970 }, \ 971 } 972 973 #define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \ 974 .type = IIO_VOLTAGE, \ 975 .indexed = 1, \ 976 .channel = (_chan), \ 977 .address = (_addr), \ 978 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 979 BIT(IIO_CHAN_INFO_SCALE), \ 980 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \ 981 .event_spec = (_alarm) ? xadc_voltage_events : NULL, \ 982 .num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \ 983 .scan_index = (_scan_index), \ 984 .scan_type = { \ 985 .sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \ 986 .realbits = 12, \ 987 .storagebits = 16, \ 988 .shift = 4, \ 989 .endianness = IIO_CPU, \ 990 }, \ 991 .extend_name = _ext, \ 992 } 993 994 static const struct iio_chan_spec xadc_channels[] = { 995 XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP), 996 XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true), 997 XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true), 998 XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true), 999 XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true), 1000 XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true), 1001 XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true), 1002 XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false), 1003 XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false), 1004 XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false), 1005 XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false), 1006 XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false), 1007 XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false), 1008 XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false), 1009 XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false), 1010 XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false), 1011 XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false), 1012 XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false), 1013 XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false), 1014 XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false), 1015 XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false), 1016 XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false), 1017 XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false), 1018 XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false), 1019 XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false), 1020 XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false), 1021 }; 1022 1023 static const struct iio_info xadc_info = { 1024 .read_raw = &xadc_read_raw, 1025 .write_raw = &xadc_write_raw, 1026 .read_event_config = &xadc_read_event_config, 1027 .write_event_config = &xadc_write_event_config, 1028 .read_event_value = &xadc_read_event_value, 1029 .write_event_value = &xadc_write_event_value, 1030 .update_scan_mode = &xadc_update_scan_mode, 1031 .driver_module = THIS_MODULE, 1032 }; 1033 1034 static const struct of_device_id xadc_of_match_table[] = { 1035 { .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops }, 1036 { .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops }, 1037 { }, 1038 }; 1039 MODULE_DEVICE_TABLE(of, xadc_of_match_table); 1040 1041 static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np, 1042 unsigned int *conf) 1043 { 1044 struct xadc *xadc = iio_priv(indio_dev); 1045 struct iio_chan_spec *channels, *chan; 1046 struct device_node *chan_node, *child; 1047 unsigned int num_channels; 1048 const char *external_mux; 1049 u32 ext_mux_chan; 1050 int reg; 1051 int ret; 1052 1053 *conf = 0; 1054 1055 ret = of_property_read_string(np, "xlnx,external-mux", &external_mux); 1056 if (ret < 0 || strcasecmp(external_mux, "none") == 0) 1057 xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE; 1058 else if (strcasecmp(external_mux, "single") == 0) 1059 xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE; 1060 else if (strcasecmp(external_mux, "dual") == 0) 1061 xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL; 1062 else 1063 return -EINVAL; 1064 1065 if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) { 1066 ret = of_property_read_u32(np, "xlnx,external-mux-channel", 1067 &ext_mux_chan); 1068 if (ret < 0) 1069 return ret; 1070 1071 if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) { 1072 if (ext_mux_chan == 0) 1073 ext_mux_chan = XADC_REG_VPVN; 1074 else if (ext_mux_chan <= 16) 1075 ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1); 1076 else 1077 return -EINVAL; 1078 } else { 1079 if (ext_mux_chan > 0 && ext_mux_chan <= 8) 1080 ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1); 1081 else 1082 return -EINVAL; 1083 } 1084 1085 *conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan); 1086 } 1087 1088 channels = kmemdup(xadc_channels, sizeof(xadc_channels), GFP_KERNEL); 1089 if (!channels) 1090 return -ENOMEM; 1091 1092 num_channels = 9; 1093 chan = &channels[9]; 1094 1095 chan_node = of_get_child_by_name(np, "xlnx,channels"); 1096 if (chan_node) { 1097 for_each_child_of_node(chan_node, child) { 1098 if (num_channels >= ARRAY_SIZE(xadc_channels)) { 1099 of_node_put(child); 1100 break; 1101 } 1102 1103 ret = of_property_read_u32(child, "reg", ®); 1104 if (ret || reg > 16) 1105 continue; 1106 1107 if (of_property_read_bool(child, "xlnx,bipolar")) 1108 chan->scan_type.sign = 's'; 1109 1110 if (reg == 0) { 1111 chan->scan_index = 11; 1112 chan->address = XADC_REG_VPVN; 1113 } else { 1114 chan->scan_index = 15 + reg; 1115 chan->address = XADC_REG_VAUX(reg - 1); 1116 } 1117 num_channels++; 1118 chan++; 1119 } 1120 } 1121 of_node_put(chan_node); 1122 1123 indio_dev->num_channels = num_channels; 1124 indio_dev->channels = krealloc(channels, sizeof(*channels) * 1125 num_channels, GFP_KERNEL); 1126 /* If we can't resize the channels array, just use the original */ 1127 if (!indio_dev->channels) 1128 indio_dev->channels = channels; 1129 1130 return 0; 1131 } 1132 1133 static int xadc_probe(struct platform_device *pdev) 1134 { 1135 const struct of_device_id *id; 1136 struct iio_dev *indio_dev; 1137 unsigned int bipolar_mask; 1138 struct resource *mem; 1139 unsigned int conf0; 1140 struct xadc *xadc; 1141 int ret; 1142 int irq; 1143 int i; 1144 1145 if (!pdev->dev.of_node) 1146 return -ENODEV; 1147 1148 id = of_match_node(xadc_of_match_table, pdev->dev.of_node); 1149 if (!id) 1150 return -EINVAL; 1151 1152 irq = platform_get_irq(pdev, 0); 1153 if (irq <= 0) 1154 return -ENXIO; 1155 1156 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*xadc)); 1157 if (!indio_dev) 1158 return -ENOMEM; 1159 1160 xadc = iio_priv(indio_dev); 1161 xadc->ops = id->data; 1162 init_completion(&xadc->completion); 1163 mutex_init(&xadc->mutex); 1164 spin_lock_init(&xadc->lock); 1165 INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker); 1166 1167 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1168 xadc->base = devm_ioremap_resource(&pdev->dev, mem); 1169 if (IS_ERR(xadc->base)) 1170 return PTR_ERR(xadc->base); 1171 1172 indio_dev->dev.parent = &pdev->dev; 1173 indio_dev->dev.of_node = pdev->dev.of_node; 1174 indio_dev->name = "xadc"; 1175 indio_dev->modes = INDIO_DIRECT_MODE; 1176 indio_dev->info = &xadc_info; 1177 1178 ret = xadc_parse_dt(indio_dev, pdev->dev.of_node, &conf0); 1179 if (ret) 1180 goto err_device_free; 1181 1182 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) { 1183 ret = iio_triggered_buffer_setup(indio_dev, 1184 &iio_pollfunc_store_time, &xadc_trigger_handler, 1185 &xadc_buffer_ops); 1186 if (ret) 1187 goto err_device_free; 1188 1189 xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst"); 1190 if (IS_ERR(xadc->convst_trigger)) { 1191 ret = PTR_ERR(xadc->convst_trigger); 1192 goto err_triggered_buffer_cleanup; 1193 } 1194 xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev, 1195 "samplerate"); 1196 if (IS_ERR(xadc->samplerate_trigger)) { 1197 ret = PTR_ERR(xadc->samplerate_trigger); 1198 goto err_free_convst_trigger; 1199 } 1200 } 1201 1202 xadc->clk = devm_clk_get(&pdev->dev, NULL); 1203 if (IS_ERR(xadc->clk)) { 1204 ret = PTR_ERR(xadc->clk); 1205 goto err_free_samplerate_trigger; 1206 } 1207 1208 ret = clk_prepare_enable(xadc->clk); 1209 if (ret) 1210 goto err_free_samplerate_trigger; 1211 1212 ret = xadc->ops->setup(pdev, indio_dev, irq); 1213 if (ret) 1214 goto err_clk_disable_unprepare; 1215 1216 ret = request_irq(irq, xadc->ops->interrupt_handler, 0, 1217 dev_name(&pdev->dev), indio_dev); 1218 if (ret) 1219 goto err_clk_disable_unprepare; 1220 1221 for (i = 0; i < 16; i++) 1222 xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i), 1223 &xadc->threshold[i]); 1224 1225 ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0); 1226 if (ret) 1227 goto err_free_irq; 1228 1229 bipolar_mask = 0; 1230 for (i = 0; i < indio_dev->num_channels; i++) { 1231 if (indio_dev->channels[i].scan_type.sign == 's') 1232 bipolar_mask |= BIT(indio_dev->channels[i].scan_index); 1233 } 1234 1235 ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask); 1236 if (ret) 1237 goto err_free_irq; 1238 ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1), 1239 bipolar_mask >> 16); 1240 if (ret) 1241 goto err_free_irq; 1242 1243 /* Disable all alarms */ 1244 xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK, 1245 XADC_CONF1_ALARM_MASK); 1246 1247 /* Set thresholds to min/max */ 1248 for (i = 0; i < 16; i++) { 1249 /* 1250 * Set max voltage threshold and both temperature thresholds to 1251 * 0xffff, min voltage threshold to 0. 1252 */ 1253 if (i % 8 < 4 || i == 7) 1254 xadc->threshold[i] = 0xffff; 1255 else 1256 xadc->threshold[i] = 0; 1257 xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i), 1258 xadc->threshold[i]); 1259 } 1260 1261 /* Go to non-buffered mode */ 1262 xadc_postdisable(indio_dev); 1263 1264 ret = iio_device_register(indio_dev); 1265 if (ret) 1266 goto err_free_irq; 1267 1268 platform_set_drvdata(pdev, indio_dev); 1269 1270 return 0; 1271 1272 err_free_irq: 1273 free_irq(irq, indio_dev); 1274 err_clk_disable_unprepare: 1275 clk_disable_unprepare(xadc->clk); 1276 err_free_samplerate_trigger: 1277 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) 1278 iio_trigger_free(xadc->samplerate_trigger); 1279 err_free_convst_trigger: 1280 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) 1281 iio_trigger_free(xadc->convst_trigger); 1282 err_triggered_buffer_cleanup: 1283 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) 1284 iio_triggered_buffer_cleanup(indio_dev); 1285 err_device_free: 1286 kfree(indio_dev->channels); 1287 1288 return ret; 1289 } 1290 1291 static int xadc_remove(struct platform_device *pdev) 1292 { 1293 struct iio_dev *indio_dev = platform_get_drvdata(pdev); 1294 struct xadc *xadc = iio_priv(indio_dev); 1295 int irq = platform_get_irq(pdev, 0); 1296 1297 iio_device_unregister(indio_dev); 1298 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) { 1299 iio_trigger_free(xadc->samplerate_trigger); 1300 iio_trigger_free(xadc->convst_trigger); 1301 iio_triggered_buffer_cleanup(indio_dev); 1302 } 1303 free_irq(irq, indio_dev); 1304 clk_disable_unprepare(xadc->clk); 1305 cancel_delayed_work(&xadc->zynq_unmask_work); 1306 kfree(xadc->data); 1307 kfree(indio_dev->channels); 1308 1309 return 0; 1310 } 1311 1312 static struct platform_driver xadc_driver = { 1313 .probe = xadc_probe, 1314 .remove = xadc_remove, 1315 .driver = { 1316 .name = "xadc", 1317 .of_match_table = xadc_of_match_table, 1318 }, 1319 }; 1320 module_platform_driver(xadc_driver); 1321 1322 MODULE_LICENSE("GPL v2"); 1323 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>"); 1324 MODULE_DESCRIPTION("Xilinx XADC IIO driver"); 1325