1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Xilinx XADC driver
4  *
5  * Copyright 2013-2014 Analog Devices Inc.
6  *  Author: Lars-Peter Clausen <lars@metafoo.de>
7  *
8  * Documentation for the parts can be found at:
9  *  - XADC hardmacro: Xilinx UG480
10  *  - ZYNQ XADC interface: Xilinx UG585
11  *  - AXI XADC interface: Xilinx PG019
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/device.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/overflow.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 #include <linux/sysfs.h>
26 
27 #include <linux/iio/buffer.h>
28 #include <linux/iio/events.h>
29 #include <linux/iio/iio.h>
30 #include <linux/iio/sysfs.h>
31 #include <linux/iio/trigger.h>
32 #include <linux/iio/trigger_consumer.h>
33 #include <linux/iio/triggered_buffer.h>
34 
35 #include "xilinx-xadc.h"
36 
37 static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
38 
39 /* ZYNQ register definitions */
40 #define XADC_ZYNQ_REG_CFG	0x00
41 #define XADC_ZYNQ_REG_INTSTS	0x04
42 #define XADC_ZYNQ_REG_INTMSK	0x08
43 #define XADC_ZYNQ_REG_STATUS	0x0c
44 #define XADC_ZYNQ_REG_CFIFO	0x10
45 #define XADC_ZYNQ_REG_DFIFO	0x14
46 #define XADC_ZYNQ_REG_CTL		0x18
47 
48 #define XADC_ZYNQ_CFG_ENABLE		BIT(31)
49 #define XADC_ZYNQ_CFG_CFIFOTH_MASK	(0xf << 20)
50 #define XADC_ZYNQ_CFG_CFIFOTH_OFFSET	20
51 #define XADC_ZYNQ_CFG_DFIFOTH_MASK	(0xf << 16)
52 #define XADC_ZYNQ_CFG_DFIFOTH_OFFSET	16
53 #define XADC_ZYNQ_CFG_WEDGE		BIT(13)
54 #define XADC_ZYNQ_CFG_REDGE		BIT(12)
55 #define XADC_ZYNQ_CFG_TCKRATE_MASK	(0x3 << 8)
56 #define XADC_ZYNQ_CFG_TCKRATE_DIV2	(0x0 << 8)
57 #define XADC_ZYNQ_CFG_TCKRATE_DIV4	(0x1 << 8)
58 #define XADC_ZYNQ_CFG_TCKRATE_DIV8	(0x2 << 8)
59 #define XADC_ZYNQ_CFG_TCKRATE_DIV16	(0x3 << 8)
60 #define XADC_ZYNQ_CFG_IGAP_MASK		0x1f
61 #define XADC_ZYNQ_CFG_IGAP(x)		(x)
62 
63 #define XADC_ZYNQ_INT_CFIFO_LTH		BIT(9)
64 #define XADC_ZYNQ_INT_DFIFO_GTH		BIT(8)
65 #define XADC_ZYNQ_INT_ALARM_MASK	0xff
66 #define XADC_ZYNQ_INT_ALARM_OFFSET	0
67 
68 #define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK	(0xf << 16)
69 #define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET	16
70 #define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK	(0xf << 12)
71 #define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET	12
72 #define XADC_ZYNQ_STATUS_CFIFOF		BIT(11)
73 #define XADC_ZYNQ_STATUS_CFIFOE		BIT(10)
74 #define XADC_ZYNQ_STATUS_DFIFOF		BIT(9)
75 #define XADC_ZYNQ_STATUS_DFIFOE		BIT(8)
76 #define XADC_ZYNQ_STATUS_OT		BIT(7)
77 #define XADC_ZYNQ_STATUS_ALM(x)		BIT(x)
78 
79 #define XADC_ZYNQ_CTL_RESET		BIT(4)
80 
81 #define XADC_ZYNQ_CMD_NOP		0x00
82 #define XADC_ZYNQ_CMD_READ		0x01
83 #define XADC_ZYNQ_CMD_WRITE		0x02
84 
85 #define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
86 
87 /* AXI register definitions */
88 #define XADC_AXI_REG_RESET		0x00
89 #define XADC_AXI_REG_STATUS		0x04
90 #define XADC_AXI_REG_ALARM_STATUS	0x08
91 #define XADC_AXI_REG_CONVST		0x0c
92 #define XADC_AXI_REG_XADC_RESET		0x10
93 #define XADC_AXI_REG_GIER		0x5c
94 #define XADC_AXI_REG_IPISR		0x60
95 #define XADC_AXI_REG_IPIER		0x68
96 
97 /* 7 Series */
98 #define XADC_7S_AXI_ADC_REG_OFFSET	0x200
99 
100 /* UltraScale */
101 #define XADC_US_AXI_ADC_REG_OFFSET	0x400
102 
103 #define XADC_AXI_RESET_MAGIC		0xa
104 #define XADC_AXI_GIER_ENABLE		BIT(31)
105 
106 #define XADC_AXI_INT_EOS		BIT(4)
107 #define XADC_AXI_INT_ALARM_MASK		0x3c0f
108 
109 #define XADC_FLAGS_BUFFERED BIT(0)
110 
111 /*
112  * The XADC hardware supports a samplerate of up to 1MSPS. Unfortunately it does
113  * not have a hardware FIFO. Which means an interrupt is generated for each
114  * conversion sequence. At 1MSPS sample rate the CPU in ZYNQ7000 is completely
115  * overloaded by the interrupts that it soft-lockups. For this reason the driver
116  * limits the maximum samplerate 150kSPS. At this rate the CPU is fairly busy,
117  * but still responsive.
118  */
119 #define XADC_MAX_SAMPLERATE 150000
120 
121 static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
122 	uint32_t val)
123 {
124 	writel(val, xadc->base + reg);
125 }
126 
127 static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
128 	uint32_t *val)
129 {
130 	*val = readl(xadc->base + reg);
131 }
132 
133 /*
134  * The ZYNQ interface uses two asynchronous FIFOs for communication with the
135  * XADC. Reads and writes to the XADC register are performed by submitting a
136  * request to the command FIFO (CFIFO), once the request has been completed the
137  * result can be read from the data FIFO (DFIFO). The method currently used in
138  * this driver is to submit the request for a read/write operation, then go to
139  * sleep and wait for an interrupt that signals that a response is available in
140  * the data FIFO.
141  */
142 
143 static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
144 	unsigned int n)
145 {
146 	unsigned int i;
147 
148 	for (i = 0; i < n; i++)
149 		xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
150 }
151 
152 static void xadc_zynq_drain_fifo(struct xadc *xadc)
153 {
154 	uint32_t status, tmp;
155 
156 	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
157 
158 	while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
159 		xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
160 		xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
161 	}
162 }
163 
164 static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
165 	unsigned int val)
166 {
167 	xadc->zynq_intmask &= ~mask;
168 	xadc->zynq_intmask |= val;
169 
170 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
171 		xadc->zynq_intmask | xadc->zynq_masked_alarm);
172 }
173 
174 static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
175 	uint16_t val)
176 {
177 	uint32_t cmd[1];
178 	uint32_t tmp;
179 	int ret;
180 
181 	spin_lock_irq(&xadc->lock);
182 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
183 			XADC_ZYNQ_INT_DFIFO_GTH);
184 
185 	reinit_completion(&xadc->completion);
186 
187 	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
188 	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
189 	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
190 	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
191 	tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
192 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
193 
194 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
195 	spin_unlock_irq(&xadc->lock);
196 
197 	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
198 	if (ret == 0)
199 		ret = -EIO;
200 	else
201 		ret = 0;
202 
203 	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
204 
205 	return ret;
206 }
207 
208 static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
209 	uint16_t *val)
210 {
211 	uint32_t cmd[2];
212 	uint32_t resp, tmp;
213 	int ret;
214 
215 	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
216 	cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
217 
218 	spin_lock_irq(&xadc->lock);
219 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
220 			XADC_ZYNQ_INT_DFIFO_GTH);
221 	xadc_zynq_drain_fifo(xadc);
222 	reinit_completion(&xadc->completion);
223 
224 	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
225 	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
226 	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
227 	tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
228 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
229 
230 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
231 	spin_unlock_irq(&xadc->lock);
232 	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
233 	if (ret == 0)
234 		ret = -EIO;
235 	if (ret < 0)
236 		return ret;
237 
238 	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
239 	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
240 
241 	*val = resp & 0xffff;
242 
243 	return 0;
244 }
245 
246 static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
247 {
248 	return ((alarm & 0x80) >> 4) |
249 		((alarm & 0x78) << 1) |
250 		(alarm & 0x07);
251 }
252 
253 /*
254  * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
255  * threshold condition go way from within the interrupt handler, this means as
256  * soon as a threshold condition is present we would enter the interrupt handler
257  * again and again. To work around this we mask all active thresholds interrupts
258  * in the interrupt handler and start a timer. In this timer we poll the
259  * interrupt status and only if the interrupt is inactive we unmask it again.
260  */
261 static void xadc_zynq_unmask_worker(struct work_struct *work)
262 {
263 	struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
264 	unsigned int misc_sts, unmask;
265 
266 	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
267 
268 	misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
269 
270 	spin_lock_irq(&xadc->lock);
271 
272 	/* Clear those bits which are not active anymore */
273 	unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
274 	xadc->zynq_masked_alarm &= misc_sts;
275 
276 	/* Also clear those which are masked out anyway */
277 	xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
278 
279 	/* Clear the interrupts before we unmask them */
280 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
281 
282 	xadc_zynq_update_intmsk(xadc, 0, 0);
283 
284 	spin_unlock_irq(&xadc->lock);
285 
286 	/* if still pending some alarm re-trigger the timer */
287 	if (xadc->zynq_masked_alarm) {
288 		schedule_delayed_work(&xadc->zynq_unmask_work,
289 				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
290 	}
291 
292 }
293 
294 static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
295 {
296 	struct iio_dev *indio_dev = devid;
297 	struct xadc *xadc = iio_priv(indio_dev);
298 	uint32_t status;
299 
300 	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
301 
302 	status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
303 
304 	if (!status)
305 		return IRQ_NONE;
306 
307 	spin_lock(&xadc->lock);
308 
309 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
310 
311 	if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
312 		xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
313 			XADC_ZYNQ_INT_DFIFO_GTH);
314 		complete(&xadc->completion);
315 	}
316 
317 	status &= XADC_ZYNQ_INT_ALARM_MASK;
318 	if (status) {
319 		xadc->zynq_masked_alarm |= status;
320 		/*
321 		 * mask the current event interrupt,
322 		 * unmask it when the interrupt is no more active.
323 		 */
324 		xadc_zynq_update_intmsk(xadc, 0, 0);
325 
326 		xadc_handle_events(indio_dev,
327 				xadc_zynq_transform_alarm(status));
328 
329 		/* unmask the required interrupts in timer. */
330 		schedule_delayed_work(&xadc->zynq_unmask_work,
331 				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
332 	}
333 	spin_unlock(&xadc->lock);
334 
335 	return IRQ_HANDLED;
336 }
337 
338 #define XADC_ZYNQ_TCK_RATE_MAX 50000000
339 #define XADC_ZYNQ_IGAP_DEFAULT 20
340 #define XADC_ZYNQ_PCAP_RATE_MAX 200000000
341 
342 static int xadc_zynq_setup(struct platform_device *pdev,
343 	struct iio_dev *indio_dev, int irq)
344 {
345 	struct xadc *xadc = iio_priv(indio_dev);
346 	unsigned long pcap_rate;
347 	unsigned int tck_div;
348 	unsigned int div;
349 	unsigned int igap;
350 	unsigned int tck_rate;
351 	int ret;
352 
353 	/* TODO: Figure out how to make igap and tck_rate configurable */
354 	igap = XADC_ZYNQ_IGAP_DEFAULT;
355 	tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
356 
357 	xadc->zynq_intmask = ~0;
358 
359 	pcap_rate = clk_get_rate(xadc->clk);
360 	if (!pcap_rate)
361 		return -EINVAL;
362 
363 	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
364 		ret = clk_set_rate(xadc->clk,
365 				   (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX);
366 		if (ret)
367 			return ret;
368 	}
369 
370 	if (tck_rate > pcap_rate / 2) {
371 		div = 2;
372 	} else {
373 		div = pcap_rate / tck_rate;
374 		if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
375 			div++;
376 	}
377 
378 	if (div <= 3)
379 		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
380 	else if (div <= 7)
381 		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
382 	else if (div <= 15)
383 		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
384 	else
385 		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
386 
387 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
388 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
389 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
390 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
391 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
392 			XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
393 			tck_div | XADC_ZYNQ_CFG_IGAP(igap));
394 
395 	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
396 		ret = clk_set_rate(xadc->clk, pcap_rate);
397 		if (ret)
398 			return ret;
399 	}
400 
401 	return 0;
402 }
403 
404 static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
405 {
406 	unsigned int div;
407 	uint32_t val;
408 
409 	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
410 
411 	switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
412 	case XADC_ZYNQ_CFG_TCKRATE_DIV4:
413 		div = 4;
414 		break;
415 	case XADC_ZYNQ_CFG_TCKRATE_DIV8:
416 		div = 8;
417 		break;
418 	case XADC_ZYNQ_CFG_TCKRATE_DIV16:
419 		div = 16;
420 		break;
421 	default:
422 		div = 2;
423 		break;
424 	}
425 
426 	return clk_get_rate(xadc->clk) / div;
427 }
428 
429 static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
430 {
431 	unsigned long flags;
432 	uint32_t status;
433 
434 	/* Move OT to bit 7 */
435 	alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
436 
437 	spin_lock_irqsave(&xadc->lock, flags);
438 
439 	/* Clear previous interrupts if any. */
440 	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
441 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
442 
443 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
444 		~alarm & XADC_ZYNQ_INT_ALARM_MASK);
445 
446 	spin_unlock_irqrestore(&xadc->lock, flags);
447 }
448 
449 static const struct xadc_ops xadc_zynq_ops = {
450 	.read = xadc_zynq_read_adc_reg,
451 	.write = xadc_zynq_write_adc_reg,
452 	.setup = xadc_zynq_setup,
453 	.get_dclk_rate = xadc_zynq_get_dclk_rate,
454 	.interrupt_handler = xadc_zynq_interrupt_handler,
455 	.update_alarm = xadc_zynq_update_alarm,
456 	.type = XADC_TYPE_S7,
457 };
458 
459 static const unsigned int xadc_axi_reg_offsets[] = {
460 	[XADC_TYPE_S7] = XADC_7S_AXI_ADC_REG_OFFSET,
461 	[XADC_TYPE_US] = XADC_US_AXI_ADC_REG_OFFSET,
462 };
463 
464 static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
465 	uint16_t *val)
466 {
467 	uint32_t val32;
468 
469 	xadc_read_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4,
470 		&val32);
471 	*val = val32 & 0xffff;
472 
473 	return 0;
474 }
475 
476 static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
477 	uint16_t val)
478 {
479 	xadc_write_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4,
480 		val);
481 
482 	return 0;
483 }
484 
485 static int xadc_axi_setup(struct platform_device *pdev,
486 	struct iio_dev *indio_dev, int irq)
487 {
488 	struct xadc *xadc = iio_priv(indio_dev);
489 
490 	xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
491 	xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
492 
493 	return 0;
494 }
495 
496 static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
497 {
498 	struct iio_dev *indio_dev = devid;
499 	struct xadc *xadc = iio_priv(indio_dev);
500 	uint32_t status, mask;
501 	unsigned int events;
502 
503 	xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
504 	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
505 	status &= mask;
506 
507 	if (!status)
508 		return IRQ_NONE;
509 
510 	if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
511 		iio_trigger_poll(xadc->trigger);
512 
513 	if (status & XADC_AXI_INT_ALARM_MASK) {
514 		/*
515 		 * The order of the bits in the AXI-XADC status register does
516 		 * not match the order of the bits in the XADC alarm enable
517 		 * register. xadc_handle_events() expects the events to be in
518 		 * the same order as the XADC alarm enable register.
519 		 */
520 		events = (status & 0x000e) >> 1;
521 		events |= (status & 0x0001) << 3;
522 		events |= (status & 0x3c00) >> 6;
523 		xadc_handle_events(indio_dev, events);
524 	}
525 
526 	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
527 
528 	return IRQ_HANDLED;
529 }
530 
531 static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
532 {
533 	uint32_t val;
534 	unsigned long flags;
535 
536 	/*
537 	 * The order of the bits in the AXI-XADC status register does not match
538 	 * the order of the bits in the XADC alarm enable register. We get
539 	 * passed the alarm mask in the same order as in the XADC alarm enable
540 	 * register.
541 	 */
542 	alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
543 			((alarm & 0xf0) << 6);
544 
545 	spin_lock_irqsave(&xadc->lock, flags);
546 	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
547 	val &= ~XADC_AXI_INT_ALARM_MASK;
548 	val |= alarm;
549 	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
550 	spin_unlock_irqrestore(&xadc->lock, flags);
551 }
552 
553 static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
554 {
555 	return clk_get_rate(xadc->clk);
556 }
557 
558 static const struct xadc_ops xadc_7s_axi_ops = {
559 	.read = xadc_axi_read_adc_reg,
560 	.write = xadc_axi_write_adc_reg,
561 	.setup = xadc_axi_setup,
562 	.get_dclk_rate = xadc_axi_get_dclk,
563 	.update_alarm = xadc_axi_update_alarm,
564 	.interrupt_handler = xadc_axi_interrupt_handler,
565 	.flags = XADC_FLAGS_BUFFERED,
566 	.type = XADC_TYPE_S7,
567 };
568 
569 static const struct xadc_ops xadc_us_axi_ops = {
570 	.read = xadc_axi_read_adc_reg,
571 	.write = xadc_axi_write_adc_reg,
572 	.setup = xadc_axi_setup,
573 	.get_dclk_rate = xadc_axi_get_dclk,
574 	.update_alarm = xadc_axi_update_alarm,
575 	.interrupt_handler = xadc_axi_interrupt_handler,
576 	.flags = XADC_FLAGS_BUFFERED,
577 	.type = XADC_TYPE_US,
578 };
579 
580 static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
581 	uint16_t mask, uint16_t val)
582 {
583 	uint16_t tmp;
584 	int ret;
585 
586 	ret = _xadc_read_adc_reg(xadc, reg, &tmp);
587 	if (ret)
588 		return ret;
589 
590 	return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
591 }
592 
593 static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
594 	uint16_t mask, uint16_t val)
595 {
596 	int ret;
597 
598 	mutex_lock(&xadc->mutex);
599 	ret = _xadc_update_adc_reg(xadc, reg, mask, val);
600 	mutex_unlock(&xadc->mutex);
601 
602 	return ret;
603 }
604 
605 static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
606 {
607 	return xadc->ops->get_dclk_rate(xadc);
608 }
609 
610 static int xadc_update_scan_mode(struct iio_dev *indio_dev,
611 	const unsigned long *mask)
612 {
613 	struct xadc *xadc = iio_priv(indio_dev);
614 	size_t new_size, n;
615 	void *data;
616 
617 	n = bitmap_weight(mask, indio_dev->masklength);
618 
619 	if (check_mul_overflow(n, sizeof(*xadc->data), &new_size))
620 		return -ENOMEM;
621 
622 	data = devm_krealloc(indio_dev->dev.parent, xadc->data,
623 			     new_size, GFP_KERNEL);
624 	if (!data)
625 		return -ENOMEM;
626 
627 	memset(data, 0, new_size);
628 	xadc->data = data;
629 
630 	return 0;
631 }
632 
633 static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
634 {
635 	switch (scan_index) {
636 	case 5:
637 		return XADC_REG_VCCPINT;
638 	case 6:
639 		return XADC_REG_VCCPAUX;
640 	case 7:
641 		return XADC_REG_VCCO_DDR;
642 	case 8:
643 		return XADC_REG_TEMP;
644 	case 9:
645 		return XADC_REG_VCCINT;
646 	case 10:
647 		return XADC_REG_VCCAUX;
648 	case 11:
649 		return XADC_REG_VPVN;
650 	case 12:
651 		return XADC_REG_VREFP;
652 	case 13:
653 		return XADC_REG_VREFN;
654 	case 14:
655 		return XADC_REG_VCCBRAM;
656 	default:
657 		return XADC_REG_VAUX(scan_index - 16);
658 	}
659 }
660 
661 static irqreturn_t xadc_trigger_handler(int irq, void *p)
662 {
663 	struct iio_poll_func *pf = p;
664 	struct iio_dev *indio_dev = pf->indio_dev;
665 	struct xadc *xadc = iio_priv(indio_dev);
666 	unsigned int chan;
667 	int i, j;
668 
669 	if (!xadc->data)
670 		goto out;
671 
672 	j = 0;
673 	for_each_set_bit(i, indio_dev->active_scan_mask,
674 		indio_dev->masklength) {
675 		chan = xadc_scan_index_to_channel(i);
676 		xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
677 		j++;
678 	}
679 
680 	iio_push_to_buffers(indio_dev, xadc->data);
681 
682 out:
683 	iio_trigger_notify_done(indio_dev->trig);
684 
685 	return IRQ_HANDLED;
686 }
687 
688 static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
689 {
690 	struct xadc *xadc = iio_trigger_get_drvdata(trigger);
691 	unsigned long flags;
692 	unsigned int convst;
693 	unsigned int val;
694 	int ret = 0;
695 
696 	mutex_lock(&xadc->mutex);
697 
698 	if (state) {
699 		/* Only one of the two triggers can be active at a time. */
700 		if (xadc->trigger != NULL) {
701 			ret = -EBUSY;
702 			goto err_out;
703 		} else {
704 			xadc->trigger = trigger;
705 			if (trigger == xadc->convst_trigger)
706 				convst = XADC_CONF0_EC;
707 			else
708 				convst = 0;
709 		}
710 		ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
711 					convst);
712 		if (ret)
713 			goto err_out;
714 	} else {
715 		xadc->trigger = NULL;
716 	}
717 
718 	spin_lock_irqsave(&xadc->lock, flags);
719 	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
720 	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, XADC_AXI_INT_EOS);
721 	if (state)
722 		val |= XADC_AXI_INT_EOS;
723 	else
724 		val &= ~XADC_AXI_INT_EOS;
725 	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
726 	spin_unlock_irqrestore(&xadc->lock, flags);
727 
728 err_out:
729 	mutex_unlock(&xadc->mutex);
730 
731 	return ret;
732 }
733 
734 static const struct iio_trigger_ops xadc_trigger_ops = {
735 	.set_trigger_state = &xadc_trigger_set_state,
736 };
737 
738 static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
739 	const char *name)
740 {
741 	struct device *dev = indio_dev->dev.parent;
742 	struct iio_trigger *trig;
743 	int ret;
744 
745 	trig = devm_iio_trigger_alloc(dev, "%s%d-%s", indio_dev->name,
746 				      indio_dev->id, name);
747 	if (trig == NULL)
748 		return ERR_PTR(-ENOMEM);
749 
750 	trig->dev.parent = indio_dev->dev.parent;
751 	trig->ops = &xadc_trigger_ops;
752 	iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
753 
754 	ret = devm_iio_trigger_register(dev, trig);
755 	if (ret)
756 		return ERR_PTR(ret);
757 
758 	return trig;
759 }
760 
761 static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
762 {
763 	uint16_t val;
764 
765 	/*
766 	 * As per datasheet the power-down bits are don't care in the
767 	 * UltraScale, but as per reality setting the power-down bit for the
768 	 * non-existing ADC-B powers down the main ADC, so just return and don't
769 	 * do anything.
770 	 */
771 	if (xadc->ops->type == XADC_TYPE_US)
772 		return 0;
773 
774 	/* Powerdown the ADC-B when it is not needed. */
775 	switch (seq_mode) {
776 	case XADC_CONF1_SEQ_SIMULTANEOUS:
777 	case XADC_CONF1_SEQ_INDEPENDENT:
778 		val = 0;
779 		break;
780 	default:
781 		val = XADC_CONF2_PD_ADC_B;
782 		break;
783 	}
784 
785 	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
786 		val);
787 }
788 
789 static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
790 {
791 	unsigned int aux_scan_mode = scan_mode >> 16;
792 
793 	/* UltraScale has only one ADC and supports only continuous mode */
794 	if (xadc->ops->type == XADC_TYPE_US)
795 		return XADC_CONF1_SEQ_CONTINUOUS;
796 
797 	if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
798 		return XADC_CONF1_SEQ_SIMULTANEOUS;
799 
800 	if ((aux_scan_mode & 0xff00) == 0 ||
801 		(aux_scan_mode & 0x00ff) == 0)
802 		return XADC_CONF1_SEQ_CONTINUOUS;
803 
804 	return XADC_CONF1_SEQ_SIMULTANEOUS;
805 }
806 
807 static int xadc_postdisable(struct iio_dev *indio_dev)
808 {
809 	struct xadc *xadc = iio_priv(indio_dev);
810 	unsigned long scan_mask;
811 	int ret;
812 	int i;
813 
814 	scan_mask = 1; /* Run calibration as part of the sequence */
815 	for (i = 0; i < indio_dev->num_channels; i++)
816 		scan_mask |= BIT(indio_dev->channels[i].scan_index);
817 
818 	/* Enable all channels and calibration */
819 	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
820 	if (ret)
821 		return ret;
822 
823 	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
824 	if (ret)
825 		return ret;
826 
827 	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
828 		XADC_CONF1_SEQ_CONTINUOUS);
829 	if (ret)
830 		return ret;
831 
832 	return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
833 }
834 
835 static int xadc_preenable(struct iio_dev *indio_dev)
836 {
837 	struct xadc *xadc = iio_priv(indio_dev);
838 	unsigned long scan_mask;
839 	int seq_mode;
840 	int ret;
841 
842 	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
843 		XADC_CONF1_SEQ_DEFAULT);
844 	if (ret)
845 		goto err;
846 
847 	scan_mask = *indio_dev->active_scan_mask;
848 	seq_mode = xadc_get_seq_mode(xadc, scan_mask);
849 
850 	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
851 	if (ret)
852 		goto err;
853 
854 	/*
855 	 * In simultaneous mode the upper and lower aux channels are samples at
856 	 * the same time. In this mode the upper 8 bits in the sequencer
857 	 * register are don't care and the lower 8 bits control two channels
858 	 * each. As such we must set the bit if either the channel in the lower
859 	 * group or the upper group is enabled.
860 	 */
861 	if (seq_mode == XADC_CONF1_SEQ_SIMULTANEOUS)
862 		scan_mask = ((scan_mask >> 8) | scan_mask) & 0xff0000;
863 
864 	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
865 	if (ret)
866 		goto err;
867 
868 	ret = xadc_power_adc_b(xadc, seq_mode);
869 	if (ret)
870 		goto err;
871 
872 	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
873 		seq_mode);
874 	if (ret)
875 		goto err;
876 
877 	return 0;
878 err:
879 	xadc_postdisable(indio_dev);
880 	return ret;
881 }
882 
883 static const struct iio_buffer_setup_ops xadc_buffer_ops = {
884 	.preenable = &xadc_preenable,
885 	.postdisable = &xadc_postdisable,
886 };
887 
888 static int xadc_read_samplerate(struct xadc *xadc)
889 {
890 	unsigned int div;
891 	uint16_t val16;
892 	int ret;
893 
894 	ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
895 	if (ret)
896 		return ret;
897 
898 	div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
899 	if (div < 2)
900 		div = 2;
901 
902 	return xadc_get_dclk_rate(xadc) / div / 26;
903 }
904 
905 static int xadc_read_raw(struct iio_dev *indio_dev,
906 	struct iio_chan_spec const *chan, int *val, int *val2, long info)
907 {
908 	struct xadc *xadc = iio_priv(indio_dev);
909 	unsigned int bits = chan->scan_type.realbits;
910 	uint16_t val16;
911 	int ret;
912 
913 	switch (info) {
914 	case IIO_CHAN_INFO_RAW:
915 		if (iio_buffer_enabled(indio_dev))
916 			return -EBUSY;
917 		ret = xadc_read_adc_reg(xadc, chan->address, &val16);
918 		if (ret < 0)
919 			return ret;
920 
921 		val16 >>= chan->scan_type.shift;
922 		if (chan->scan_type.sign == 'u')
923 			*val = val16;
924 		else
925 			*val = sign_extend32(val16, bits - 1);
926 
927 		return IIO_VAL_INT;
928 	case IIO_CHAN_INFO_SCALE:
929 		switch (chan->type) {
930 		case IIO_VOLTAGE:
931 			/* V = (val * 3.0) / 2**bits */
932 			switch (chan->address) {
933 			case XADC_REG_VCCINT:
934 			case XADC_REG_VCCAUX:
935 			case XADC_REG_VREFP:
936 			case XADC_REG_VREFN:
937 			case XADC_REG_VCCBRAM:
938 			case XADC_REG_VCCPINT:
939 			case XADC_REG_VCCPAUX:
940 			case XADC_REG_VCCO_DDR:
941 				*val = 3000;
942 				break;
943 			default:
944 				*val = 1000;
945 				break;
946 			}
947 			*val2 = chan->scan_type.realbits;
948 			return IIO_VAL_FRACTIONAL_LOG2;
949 		case IIO_TEMP:
950 			/* Temp in C = (val * 503.975) / 2**bits - 273.15 */
951 			*val = 503975;
952 			*val2 = bits;
953 			return IIO_VAL_FRACTIONAL_LOG2;
954 		default:
955 			return -EINVAL;
956 		}
957 	case IIO_CHAN_INFO_OFFSET:
958 		/* Only the temperature channel has an offset */
959 		*val = -((273150 << bits) / 503975);
960 		return IIO_VAL_INT;
961 	case IIO_CHAN_INFO_SAMP_FREQ:
962 		ret = xadc_read_samplerate(xadc);
963 		if (ret < 0)
964 			return ret;
965 
966 		*val = ret;
967 		return IIO_VAL_INT;
968 	default:
969 		return -EINVAL;
970 	}
971 }
972 
973 static int xadc_write_samplerate(struct xadc *xadc, int val)
974 {
975 	unsigned long clk_rate = xadc_get_dclk_rate(xadc);
976 	unsigned int div;
977 
978 	if (!clk_rate)
979 		return -EINVAL;
980 
981 	if (val <= 0)
982 		return -EINVAL;
983 
984 	/* Max. 150 kSPS */
985 	if (val > XADC_MAX_SAMPLERATE)
986 		val = XADC_MAX_SAMPLERATE;
987 
988 	val *= 26;
989 
990 	/* Min 1MHz */
991 	if (val < 1000000)
992 		val = 1000000;
993 
994 	/*
995 	 * We want to round down, but only if we do not exceed the 150 kSPS
996 	 * limit.
997 	 */
998 	div = clk_rate / val;
999 	if (clk_rate / div / 26 > XADC_MAX_SAMPLERATE)
1000 		div++;
1001 	if (div < 2)
1002 		div = 2;
1003 	else if (div > 0xff)
1004 		div = 0xff;
1005 
1006 	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
1007 		div << XADC_CONF2_DIV_OFFSET);
1008 }
1009 
1010 static int xadc_write_raw(struct iio_dev *indio_dev,
1011 	struct iio_chan_spec const *chan, int val, int val2, long info)
1012 {
1013 	struct xadc *xadc = iio_priv(indio_dev);
1014 
1015 	if (info != IIO_CHAN_INFO_SAMP_FREQ)
1016 		return -EINVAL;
1017 
1018 	return xadc_write_samplerate(xadc, val);
1019 }
1020 
1021 static const struct iio_event_spec xadc_temp_events[] = {
1022 	{
1023 		.type = IIO_EV_TYPE_THRESH,
1024 		.dir = IIO_EV_DIR_RISING,
1025 		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
1026 				BIT(IIO_EV_INFO_VALUE) |
1027 				BIT(IIO_EV_INFO_HYSTERESIS),
1028 	},
1029 };
1030 
1031 /* Separate values for upper and lower thresholds, but only a shared enabled */
1032 static const struct iio_event_spec xadc_voltage_events[] = {
1033 	{
1034 		.type = IIO_EV_TYPE_THRESH,
1035 		.dir = IIO_EV_DIR_RISING,
1036 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1037 	}, {
1038 		.type = IIO_EV_TYPE_THRESH,
1039 		.dir = IIO_EV_DIR_FALLING,
1040 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1041 	}, {
1042 		.type = IIO_EV_TYPE_THRESH,
1043 		.dir = IIO_EV_DIR_EITHER,
1044 		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
1045 	},
1046 };
1047 
1048 #define XADC_CHAN_TEMP(_chan, _scan_index, _addr, _bits) { \
1049 	.type = IIO_TEMP, \
1050 	.indexed = 1, \
1051 	.channel = (_chan), \
1052 	.address = (_addr), \
1053 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1054 		BIT(IIO_CHAN_INFO_SCALE) | \
1055 		BIT(IIO_CHAN_INFO_OFFSET), \
1056 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1057 	.event_spec = xadc_temp_events, \
1058 	.num_event_specs = ARRAY_SIZE(xadc_temp_events), \
1059 	.scan_index = (_scan_index), \
1060 	.scan_type = { \
1061 		.sign = 'u', \
1062 		.realbits = (_bits), \
1063 		.storagebits = 16, \
1064 		.shift = 16 - (_bits), \
1065 		.endianness = IIO_CPU, \
1066 	}, \
1067 }
1068 
1069 #define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _bits, _ext, _alarm) { \
1070 	.type = IIO_VOLTAGE, \
1071 	.indexed = 1, \
1072 	.channel = (_chan), \
1073 	.address = (_addr), \
1074 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1075 		BIT(IIO_CHAN_INFO_SCALE), \
1076 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1077 	.event_spec = (_alarm) ? xadc_voltage_events : NULL, \
1078 	.num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
1079 	.scan_index = (_scan_index), \
1080 	.scan_type = { \
1081 		.sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
1082 		.realbits = (_bits), \
1083 		.storagebits = 16, \
1084 		.shift = 16 - (_bits), \
1085 		.endianness = IIO_CPU, \
1086 	}, \
1087 	.extend_name = _ext, \
1088 }
1089 
1090 /* 7 Series */
1091 #define XADC_7S_CHAN_TEMP(_chan, _scan_index, _addr) \
1092 	XADC_CHAN_TEMP(_chan, _scan_index, _addr, 12)
1093 #define XADC_7S_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \
1094 	XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 12, _ext, _alarm)
1095 
1096 static const struct iio_chan_spec xadc_7s_channels[] = {
1097 	XADC_7S_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1098 	XADC_7S_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1099 	XADC_7S_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1100 	XADC_7S_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1101 	XADC_7S_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
1102 	XADC_7S_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1103 	XADC_7S_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1104 	XADC_7S_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1105 	XADC_7S_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1106 	XADC_7S_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1107 	XADC_7S_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1108 	XADC_7S_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1109 	XADC_7S_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1110 	XADC_7S_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1111 	XADC_7S_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1112 	XADC_7S_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1113 	XADC_7S_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1114 	XADC_7S_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1115 	XADC_7S_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1116 	XADC_7S_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1117 	XADC_7S_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1118 	XADC_7S_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1119 	XADC_7S_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1120 	XADC_7S_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1121 	XADC_7S_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1122 	XADC_7S_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1123 };
1124 
1125 /* UltraScale */
1126 #define XADC_US_CHAN_TEMP(_chan, _scan_index, _addr) \
1127 	XADC_CHAN_TEMP(_chan, _scan_index, _addr, 10)
1128 #define XADC_US_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \
1129 	XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 10, _ext, _alarm)
1130 
1131 static const struct iio_chan_spec xadc_us_channels[] = {
1132 	XADC_US_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1133 	XADC_US_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1134 	XADC_US_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1135 	XADC_US_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1136 	XADC_US_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpsintlp", true),
1137 	XADC_US_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpsintfp", true),
1138 	XADC_US_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccpsaux", true),
1139 	XADC_US_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1140 	XADC_US_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1141 	XADC_US_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1142 	XADC_US_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1143 	XADC_US_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1144 	XADC_US_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1145 	XADC_US_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1146 	XADC_US_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1147 	XADC_US_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1148 	XADC_US_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1149 	XADC_US_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1150 	XADC_US_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1151 	XADC_US_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1152 	XADC_US_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1153 	XADC_US_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1154 	XADC_US_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1155 	XADC_US_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1156 	XADC_US_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1157 	XADC_US_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1158 };
1159 
1160 static const struct iio_info xadc_info = {
1161 	.read_raw = &xadc_read_raw,
1162 	.write_raw = &xadc_write_raw,
1163 	.read_event_config = &xadc_read_event_config,
1164 	.write_event_config = &xadc_write_event_config,
1165 	.read_event_value = &xadc_read_event_value,
1166 	.write_event_value = &xadc_write_event_value,
1167 	.update_scan_mode = &xadc_update_scan_mode,
1168 };
1169 
1170 static const struct of_device_id xadc_of_match_table[] = {
1171 	{
1172 		.compatible = "xlnx,zynq-xadc-1.00.a",
1173 		.data = &xadc_zynq_ops
1174 	}, {
1175 		.compatible = "xlnx,axi-xadc-1.00.a",
1176 		.data = &xadc_7s_axi_ops
1177 	}, {
1178 		.compatible = "xlnx,system-management-wiz-1.3",
1179 		.data = &xadc_us_axi_ops
1180 	},
1181 	{ },
1182 };
1183 MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1184 
1185 static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
1186 	unsigned int *conf)
1187 {
1188 	struct device *dev = indio_dev->dev.parent;
1189 	struct xadc *xadc = iio_priv(indio_dev);
1190 	const struct iio_chan_spec *channel_templates;
1191 	struct iio_chan_spec *channels, *chan;
1192 	struct device_node *chan_node, *child;
1193 	unsigned int max_channels;
1194 	unsigned int num_channels;
1195 	const char *external_mux;
1196 	u32 ext_mux_chan;
1197 	u32 reg;
1198 	int ret;
1199 
1200 	*conf = 0;
1201 
1202 	ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
1203 	if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1204 		xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1205 	else if (strcasecmp(external_mux, "single") == 0)
1206 		xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1207 	else if (strcasecmp(external_mux, "dual") == 0)
1208 		xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1209 	else
1210 		return -EINVAL;
1211 
1212 	if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1213 		ret = of_property_read_u32(np, "xlnx,external-mux-channel",
1214 					&ext_mux_chan);
1215 		if (ret < 0)
1216 			return ret;
1217 
1218 		if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1219 			if (ext_mux_chan == 0)
1220 				ext_mux_chan = XADC_REG_VPVN;
1221 			else if (ext_mux_chan <= 16)
1222 				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1223 			else
1224 				return -EINVAL;
1225 		} else {
1226 			if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1227 				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1228 			else
1229 				return -EINVAL;
1230 		}
1231 
1232 		*conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1233 	}
1234 	if (xadc->ops->type == XADC_TYPE_S7) {
1235 		channel_templates = xadc_7s_channels;
1236 		max_channels = ARRAY_SIZE(xadc_7s_channels);
1237 	} else {
1238 		channel_templates = xadc_us_channels;
1239 		max_channels = ARRAY_SIZE(xadc_us_channels);
1240 	}
1241 	channels = devm_kmemdup(dev, channel_templates,
1242 				sizeof(channels[0]) * max_channels, GFP_KERNEL);
1243 	if (!channels)
1244 		return -ENOMEM;
1245 
1246 	num_channels = 9;
1247 	chan = &channels[9];
1248 
1249 	chan_node = of_get_child_by_name(np, "xlnx,channels");
1250 	if (chan_node) {
1251 		for_each_child_of_node(chan_node, child) {
1252 			if (num_channels >= max_channels) {
1253 				of_node_put(child);
1254 				break;
1255 			}
1256 
1257 			ret = of_property_read_u32(child, "reg", &reg);
1258 			if (ret || reg > 16)
1259 				continue;
1260 
1261 			if (of_property_read_bool(child, "xlnx,bipolar"))
1262 				chan->scan_type.sign = 's';
1263 
1264 			if (reg == 0) {
1265 				chan->scan_index = 11;
1266 				chan->address = XADC_REG_VPVN;
1267 			} else {
1268 				chan->scan_index = 15 + reg;
1269 				chan->address = XADC_REG_VAUX(reg - 1);
1270 			}
1271 			num_channels++;
1272 			chan++;
1273 		}
1274 	}
1275 	of_node_put(chan_node);
1276 
1277 	indio_dev->num_channels = num_channels;
1278 	indio_dev->channels = devm_krealloc(dev, channels,
1279 					    sizeof(*channels) * num_channels,
1280 					    GFP_KERNEL);
1281 	/* If we can't resize the channels array, just use the original */
1282 	if (!indio_dev->channels)
1283 		indio_dev->channels = channels;
1284 
1285 	return 0;
1286 }
1287 
1288 static const char * const xadc_type_names[] = {
1289 	[XADC_TYPE_S7] = "xadc",
1290 	[XADC_TYPE_US] = "xilinx-system-monitor",
1291 };
1292 
1293 static void xadc_clk_disable_unprepare(void *data)
1294 {
1295 	struct clk *clk = data;
1296 
1297 	clk_disable_unprepare(clk);
1298 }
1299 
1300 static void xadc_cancel_delayed_work(void *data)
1301 {
1302 	struct delayed_work *work = data;
1303 
1304 	cancel_delayed_work_sync(work);
1305 }
1306 
1307 static int xadc_probe(struct platform_device *pdev)
1308 {
1309 	struct device *dev = &pdev->dev;
1310 	const struct of_device_id *id;
1311 	struct iio_dev *indio_dev;
1312 	unsigned int bipolar_mask;
1313 	unsigned int conf0;
1314 	struct xadc *xadc;
1315 	int ret;
1316 	int irq;
1317 	int i;
1318 
1319 	if (!dev->of_node)
1320 		return -ENODEV;
1321 
1322 	id = of_match_node(xadc_of_match_table, dev->of_node);
1323 	if (!id)
1324 		return -EINVAL;
1325 
1326 	irq = platform_get_irq(pdev, 0);
1327 	if (irq <= 0)
1328 		return -ENXIO;
1329 
1330 	indio_dev = devm_iio_device_alloc(dev, sizeof(*xadc));
1331 	if (!indio_dev)
1332 		return -ENOMEM;
1333 
1334 	xadc = iio_priv(indio_dev);
1335 	xadc->ops = id->data;
1336 	xadc->irq = irq;
1337 	init_completion(&xadc->completion);
1338 	mutex_init(&xadc->mutex);
1339 	spin_lock_init(&xadc->lock);
1340 	INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1341 
1342 	xadc->base = devm_platform_ioremap_resource(pdev, 0);
1343 	if (IS_ERR(xadc->base))
1344 		return PTR_ERR(xadc->base);
1345 
1346 	indio_dev->name = xadc_type_names[xadc->ops->type];
1347 	indio_dev->modes = INDIO_DIRECT_MODE;
1348 	indio_dev->info = &xadc_info;
1349 
1350 	ret = xadc_parse_dt(indio_dev, dev->of_node, &conf0);
1351 	if (ret)
1352 		return ret;
1353 
1354 	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1355 		ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
1356 						      &iio_pollfunc_store_time,
1357 						      &xadc_trigger_handler,
1358 						      &xadc_buffer_ops);
1359 		if (ret)
1360 			return ret;
1361 
1362 		xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
1363 		if (IS_ERR(xadc->convst_trigger))
1364 			return PTR_ERR(xadc->convst_trigger);
1365 
1366 		xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1367 			"samplerate");
1368 		if (IS_ERR(xadc->samplerate_trigger))
1369 			return PTR_ERR(xadc->samplerate_trigger);
1370 	}
1371 
1372 	xadc->clk = devm_clk_get(dev, NULL);
1373 	if (IS_ERR(xadc->clk))
1374 		return PTR_ERR(xadc->clk);
1375 
1376 	ret = clk_prepare_enable(xadc->clk);
1377 	if (ret)
1378 		return ret;
1379 
1380 	ret = devm_add_action_or_reset(dev,
1381 				       xadc_clk_disable_unprepare, xadc->clk);
1382 	if (ret)
1383 		return ret;
1384 
1385 	/*
1386 	 * Make sure not to exceed the maximum samplerate since otherwise the
1387 	 * resulting interrupt storm will soft-lock the system.
1388 	 */
1389 	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1390 		ret = xadc_read_samplerate(xadc);
1391 		if (ret < 0)
1392 			return ret;
1393 
1394 		if (ret > XADC_MAX_SAMPLERATE) {
1395 			ret = xadc_write_samplerate(xadc, XADC_MAX_SAMPLERATE);
1396 			if (ret < 0)
1397 				return ret;
1398 		}
1399 	}
1400 
1401 	ret = devm_request_irq(dev, xadc->irq, xadc->ops->interrupt_handler, 0,
1402 			       dev_name(dev), indio_dev);
1403 	if (ret)
1404 		return ret;
1405 
1406 	ret = devm_add_action_or_reset(dev, xadc_cancel_delayed_work,
1407 				       &xadc->zynq_unmask_work);
1408 	if (ret)
1409 		return ret;
1410 
1411 	ret = xadc->ops->setup(pdev, indio_dev, xadc->irq);
1412 	if (ret)
1413 		return ret;
1414 
1415 	for (i = 0; i < 16; i++)
1416 		xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1417 			&xadc->threshold[i]);
1418 
1419 	ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1420 	if (ret)
1421 		return ret;
1422 
1423 	bipolar_mask = 0;
1424 	for (i = 0; i < indio_dev->num_channels; i++) {
1425 		if (indio_dev->channels[i].scan_type.sign == 's')
1426 			bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1427 	}
1428 
1429 	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1430 	if (ret)
1431 		return ret;
1432 
1433 	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1434 		bipolar_mask >> 16);
1435 	if (ret)
1436 		return ret;
1437 
1438 	/* Disable all alarms */
1439 	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK,
1440 				  XADC_CONF1_ALARM_MASK);
1441 	if (ret)
1442 		return ret;
1443 
1444 	/* Set thresholds to min/max */
1445 	for (i = 0; i < 16; i++) {
1446 		/*
1447 		 * Set max voltage threshold and both temperature thresholds to
1448 		 * 0xffff, min voltage threshold to 0.
1449 		 */
1450 		if (i % 8 < 4 || i == 7)
1451 			xadc->threshold[i] = 0xffff;
1452 		else
1453 			xadc->threshold[i] = 0;
1454 		ret = xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1455 			xadc->threshold[i]);
1456 		if (ret)
1457 			return ret;
1458 	}
1459 
1460 	/* Go to non-buffered mode */
1461 	xadc_postdisable(indio_dev);
1462 
1463 	return devm_iio_device_register(dev, indio_dev);
1464 }
1465 
1466 static struct platform_driver xadc_driver = {
1467 	.probe = xadc_probe,
1468 	.driver = {
1469 		.name = "xadc",
1470 		.of_match_table = xadc_of_match_table,
1471 	},
1472 };
1473 module_platform_driver(xadc_driver);
1474 
1475 MODULE_LICENSE("GPL v2");
1476 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1477 MODULE_DESCRIPTION("Xilinx XADC IIO driver");
1478