1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Xilinx XADC driver 4 * 5 * Copyright 2013-2014 Analog Devices Inc. 6 * Author: Lars-Peter Clausen <lars@metafoo.de> 7 * 8 * Documentation for the parts can be found at: 9 * - XADC hardmacro: Xilinx UG480 10 * - ZYNQ XADC interface: Xilinx UG585 11 * - AXI XADC interface: Xilinx PG019 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/device.h> 16 #include <linux/err.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/of.h> 22 #include <linux/overflow.h> 23 #include <linux/platform_device.h> 24 #include <linux/slab.h> 25 #include <linux/sysfs.h> 26 27 #include <linux/iio/buffer.h> 28 #include <linux/iio/events.h> 29 #include <linux/iio/iio.h> 30 #include <linux/iio/sysfs.h> 31 #include <linux/iio/trigger.h> 32 #include <linux/iio/trigger_consumer.h> 33 #include <linux/iio/triggered_buffer.h> 34 35 #include "xilinx-xadc.h" 36 37 static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500; 38 39 /* ZYNQ register definitions */ 40 #define XADC_ZYNQ_REG_CFG 0x00 41 #define XADC_ZYNQ_REG_INTSTS 0x04 42 #define XADC_ZYNQ_REG_INTMSK 0x08 43 #define XADC_ZYNQ_REG_STATUS 0x0c 44 #define XADC_ZYNQ_REG_CFIFO 0x10 45 #define XADC_ZYNQ_REG_DFIFO 0x14 46 #define XADC_ZYNQ_REG_CTL 0x18 47 48 #define XADC_ZYNQ_CFG_ENABLE BIT(31) 49 #define XADC_ZYNQ_CFG_CFIFOTH_MASK (0xf << 20) 50 #define XADC_ZYNQ_CFG_CFIFOTH_OFFSET 20 51 #define XADC_ZYNQ_CFG_DFIFOTH_MASK (0xf << 16) 52 #define XADC_ZYNQ_CFG_DFIFOTH_OFFSET 16 53 #define XADC_ZYNQ_CFG_WEDGE BIT(13) 54 #define XADC_ZYNQ_CFG_REDGE BIT(12) 55 #define XADC_ZYNQ_CFG_TCKRATE_MASK (0x3 << 8) 56 #define XADC_ZYNQ_CFG_TCKRATE_DIV2 (0x0 << 8) 57 #define XADC_ZYNQ_CFG_TCKRATE_DIV4 (0x1 << 8) 58 #define XADC_ZYNQ_CFG_TCKRATE_DIV8 (0x2 << 8) 59 #define XADC_ZYNQ_CFG_TCKRATE_DIV16 (0x3 << 8) 60 #define XADC_ZYNQ_CFG_IGAP_MASK 0x1f 61 #define XADC_ZYNQ_CFG_IGAP(x) (x) 62 63 #define XADC_ZYNQ_INT_CFIFO_LTH BIT(9) 64 #define XADC_ZYNQ_INT_DFIFO_GTH BIT(8) 65 #define XADC_ZYNQ_INT_ALARM_MASK 0xff 66 #define XADC_ZYNQ_INT_ALARM_OFFSET 0 67 68 #define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK (0xf << 16) 69 #define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET 16 70 #define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK (0xf << 12) 71 #define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET 12 72 #define XADC_ZYNQ_STATUS_CFIFOF BIT(11) 73 #define XADC_ZYNQ_STATUS_CFIFOE BIT(10) 74 #define XADC_ZYNQ_STATUS_DFIFOF BIT(9) 75 #define XADC_ZYNQ_STATUS_DFIFOE BIT(8) 76 #define XADC_ZYNQ_STATUS_OT BIT(7) 77 #define XADC_ZYNQ_STATUS_ALM(x) BIT(x) 78 79 #define XADC_ZYNQ_CTL_RESET BIT(4) 80 81 #define XADC_ZYNQ_CMD_NOP 0x00 82 #define XADC_ZYNQ_CMD_READ 0x01 83 #define XADC_ZYNQ_CMD_WRITE 0x02 84 85 #define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data)) 86 87 /* AXI register definitions */ 88 #define XADC_AXI_REG_RESET 0x00 89 #define XADC_AXI_REG_STATUS 0x04 90 #define XADC_AXI_REG_ALARM_STATUS 0x08 91 #define XADC_AXI_REG_CONVST 0x0c 92 #define XADC_AXI_REG_XADC_RESET 0x10 93 #define XADC_AXI_REG_GIER 0x5c 94 #define XADC_AXI_REG_IPISR 0x60 95 #define XADC_AXI_REG_IPIER 0x68 96 97 /* 7 Series */ 98 #define XADC_7S_AXI_ADC_REG_OFFSET 0x200 99 100 /* UltraScale */ 101 #define XADC_US_AXI_ADC_REG_OFFSET 0x400 102 103 #define XADC_AXI_RESET_MAGIC 0xa 104 #define XADC_AXI_GIER_ENABLE BIT(31) 105 106 #define XADC_AXI_INT_EOS BIT(4) 107 #define XADC_AXI_INT_ALARM_MASK 0x3c0f 108 109 #define XADC_FLAGS_BUFFERED BIT(0) 110 111 /* 112 * The XADC hardware supports a samplerate of up to 1MSPS. Unfortunately it does 113 * not have a hardware FIFO. Which means an interrupt is generated for each 114 * conversion sequence. At 1MSPS sample rate the CPU in ZYNQ7000 is completely 115 * overloaded by the interrupts that it soft-lockups. For this reason the driver 116 * limits the maximum samplerate 150kSPS. At this rate the CPU is fairly busy, 117 * but still responsive. 118 */ 119 #define XADC_MAX_SAMPLERATE 150000 120 121 static void xadc_write_reg(struct xadc *xadc, unsigned int reg, 122 uint32_t val) 123 { 124 writel(val, xadc->base + reg); 125 } 126 127 static void xadc_read_reg(struct xadc *xadc, unsigned int reg, 128 uint32_t *val) 129 { 130 *val = readl(xadc->base + reg); 131 } 132 133 /* 134 * The ZYNQ interface uses two asynchronous FIFOs for communication with the 135 * XADC. Reads and writes to the XADC register are performed by submitting a 136 * request to the command FIFO (CFIFO), once the request has been completed the 137 * result can be read from the data FIFO (DFIFO). The method currently used in 138 * this driver is to submit the request for a read/write operation, then go to 139 * sleep and wait for an interrupt that signals that a response is available in 140 * the data FIFO. 141 */ 142 143 static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd, 144 unsigned int n) 145 { 146 unsigned int i; 147 148 for (i = 0; i < n; i++) 149 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]); 150 } 151 152 static void xadc_zynq_drain_fifo(struct xadc *xadc) 153 { 154 uint32_t status, tmp; 155 156 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status); 157 158 while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) { 159 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp); 160 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status); 161 } 162 } 163 164 static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask, 165 unsigned int val) 166 { 167 xadc->zynq_intmask &= ~mask; 168 xadc->zynq_intmask |= val; 169 170 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, 171 xadc->zynq_intmask | xadc->zynq_masked_alarm); 172 } 173 174 static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg, 175 uint16_t val) 176 { 177 uint32_t cmd[1]; 178 uint32_t tmp; 179 int ret; 180 181 spin_lock_irq(&xadc->lock); 182 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 183 XADC_ZYNQ_INT_DFIFO_GTH); 184 185 reinit_completion(&xadc->completion); 186 187 cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val); 188 xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd)); 189 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp); 190 tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK; 191 tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET; 192 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp); 193 194 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0); 195 spin_unlock_irq(&xadc->lock); 196 197 ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ); 198 if (ret == 0) 199 ret = -EIO; 200 else 201 ret = 0; 202 203 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp); 204 205 return ret; 206 } 207 208 static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg, 209 uint16_t *val) 210 { 211 uint32_t cmd[2]; 212 uint32_t resp, tmp; 213 int ret; 214 215 cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0); 216 cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0); 217 218 spin_lock_irq(&xadc->lock); 219 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 220 XADC_ZYNQ_INT_DFIFO_GTH); 221 xadc_zynq_drain_fifo(xadc); 222 reinit_completion(&xadc->completion); 223 224 xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd)); 225 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp); 226 tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK; 227 tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET; 228 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp); 229 230 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0); 231 spin_unlock_irq(&xadc->lock); 232 ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ); 233 if (ret == 0) 234 ret = -EIO; 235 if (ret < 0) 236 return ret; 237 238 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp); 239 xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp); 240 241 *val = resp & 0xffff; 242 243 return 0; 244 } 245 246 static unsigned int xadc_zynq_transform_alarm(unsigned int alarm) 247 { 248 return ((alarm & 0x80) >> 4) | 249 ((alarm & 0x78) << 1) | 250 (alarm & 0x07); 251 } 252 253 /* 254 * The ZYNQ threshold interrupts are level sensitive. Since we can't make the 255 * threshold condition go way from within the interrupt handler, this means as 256 * soon as a threshold condition is present we would enter the interrupt handler 257 * again and again. To work around this we mask all active thresholds interrupts 258 * in the interrupt handler and start a timer. In this timer we poll the 259 * interrupt status and only if the interrupt is inactive we unmask it again. 260 */ 261 static void xadc_zynq_unmask_worker(struct work_struct *work) 262 { 263 struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work); 264 unsigned int misc_sts, unmask; 265 266 xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts); 267 268 misc_sts &= XADC_ZYNQ_INT_ALARM_MASK; 269 270 spin_lock_irq(&xadc->lock); 271 272 /* Clear those bits which are not active anymore */ 273 unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm; 274 xadc->zynq_masked_alarm &= misc_sts; 275 276 /* Also clear those which are masked out anyway */ 277 xadc->zynq_masked_alarm &= ~xadc->zynq_intmask; 278 279 /* Clear the interrupts before we unmask them */ 280 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask); 281 282 xadc_zynq_update_intmsk(xadc, 0, 0); 283 284 spin_unlock_irq(&xadc->lock); 285 286 /* if still pending some alarm re-trigger the timer */ 287 if (xadc->zynq_masked_alarm) { 288 schedule_delayed_work(&xadc->zynq_unmask_work, 289 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT)); 290 } 291 292 } 293 294 static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid) 295 { 296 struct iio_dev *indio_dev = devid; 297 struct xadc *xadc = iio_priv(indio_dev); 298 uint32_t status; 299 300 xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status); 301 302 status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm); 303 304 if (!status) 305 return IRQ_NONE; 306 307 spin_lock(&xadc->lock); 308 309 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status); 310 311 if (status & XADC_ZYNQ_INT_DFIFO_GTH) { 312 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 313 XADC_ZYNQ_INT_DFIFO_GTH); 314 complete(&xadc->completion); 315 } 316 317 status &= XADC_ZYNQ_INT_ALARM_MASK; 318 if (status) { 319 xadc->zynq_masked_alarm |= status; 320 /* 321 * mask the current event interrupt, 322 * unmask it when the interrupt is no more active. 323 */ 324 xadc_zynq_update_intmsk(xadc, 0, 0); 325 326 xadc_handle_events(indio_dev, 327 xadc_zynq_transform_alarm(status)); 328 329 /* unmask the required interrupts in timer. */ 330 schedule_delayed_work(&xadc->zynq_unmask_work, 331 msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT)); 332 } 333 spin_unlock(&xadc->lock); 334 335 return IRQ_HANDLED; 336 } 337 338 #define XADC_ZYNQ_TCK_RATE_MAX 50000000 339 #define XADC_ZYNQ_IGAP_DEFAULT 20 340 #define XADC_ZYNQ_PCAP_RATE_MAX 200000000 341 342 static int xadc_zynq_setup(struct platform_device *pdev, 343 struct iio_dev *indio_dev, int irq) 344 { 345 struct xadc *xadc = iio_priv(indio_dev); 346 unsigned long pcap_rate; 347 unsigned int tck_div; 348 unsigned int div; 349 unsigned int igap; 350 unsigned int tck_rate; 351 int ret; 352 353 /* TODO: Figure out how to make igap and tck_rate configurable */ 354 igap = XADC_ZYNQ_IGAP_DEFAULT; 355 tck_rate = XADC_ZYNQ_TCK_RATE_MAX; 356 357 xadc->zynq_intmask = ~0; 358 359 pcap_rate = clk_get_rate(xadc->clk); 360 if (!pcap_rate) 361 return -EINVAL; 362 363 if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) { 364 ret = clk_set_rate(xadc->clk, 365 (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX); 366 if (ret) 367 return ret; 368 } 369 370 if (tck_rate > pcap_rate / 2) { 371 div = 2; 372 } else { 373 div = pcap_rate / tck_rate; 374 if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX) 375 div++; 376 } 377 378 if (div <= 3) 379 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2; 380 else if (div <= 7) 381 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4; 382 else if (div <= 15) 383 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8; 384 else 385 tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16; 386 387 xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET); 388 xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0); 389 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0); 390 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask); 391 xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE | 392 XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE | 393 tck_div | XADC_ZYNQ_CFG_IGAP(igap)); 394 395 if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) { 396 ret = clk_set_rate(xadc->clk, pcap_rate); 397 if (ret) 398 return ret; 399 } 400 401 return 0; 402 } 403 404 static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc) 405 { 406 unsigned int div; 407 uint32_t val; 408 409 xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val); 410 411 switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) { 412 case XADC_ZYNQ_CFG_TCKRATE_DIV4: 413 div = 4; 414 break; 415 case XADC_ZYNQ_CFG_TCKRATE_DIV8: 416 div = 8; 417 break; 418 case XADC_ZYNQ_CFG_TCKRATE_DIV16: 419 div = 16; 420 break; 421 default: 422 div = 2; 423 break; 424 } 425 426 return clk_get_rate(xadc->clk) / div; 427 } 428 429 static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm) 430 { 431 unsigned long flags; 432 uint32_t status; 433 434 /* Move OT to bit 7 */ 435 alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07); 436 437 spin_lock_irqsave(&xadc->lock, flags); 438 439 /* Clear previous interrupts if any. */ 440 xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status); 441 xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm); 442 443 xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK, 444 ~alarm & XADC_ZYNQ_INT_ALARM_MASK); 445 446 spin_unlock_irqrestore(&xadc->lock, flags); 447 } 448 449 static const struct xadc_ops xadc_zynq_ops = { 450 .read = xadc_zynq_read_adc_reg, 451 .write = xadc_zynq_write_adc_reg, 452 .setup = xadc_zynq_setup, 453 .get_dclk_rate = xadc_zynq_get_dclk_rate, 454 .interrupt_handler = xadc_zynq_interrupt_handler, 455 .update_alarm = xadc_zynq_update_alarm, 456 .type = XADC_TYPE_S7, 457 }; 458 459 static const unsigned int xadc_axi_reg_offsets[] = { 460 [XADC_TYPE_S7] = XADC_7S_AXI_ADC_REG_OFFSET, 461 [XADC_TYPE_US] = XADC_US_AXI_ADC_REG_OFFSET, 462 }; 463 464 static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg, 465 uint16_t *val) 466 { 467 uint32_t val32; 468 469 xadc_read_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4, 470 &val32); 471 *val = val32 & 0xffff; 472 473 return 0; 474 } 475 476 static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg, 477 uint16_t val) 478 { 479 xadc_write_reg(xadc, xadc_axi_reg_offsets[xadc->ops->type] + reg * 4, 480 val); 481 482 return 0; 483 } 484 485 static int xadc_axi_setup(struct platform_device *pdev, 486 struct iio_dev *indio_dev, int irq) 487 { 488 struct xadc *xadc = iio_priv(indio_dev); 489 490 xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC); 491 xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE); 492 493 return 0; 494 } 495 496 static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid) 497 { 498 struct iio_dev *indio_dev = devid; 499 struct xadc *xadc = iio_priv(indio_dev); 500 uint32_t status, mask; 501 unsigned int events; 502 503 xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status); 504 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask); 505 status &= mask; 506 507 if (!status) 508 return IRQ_NONE; 509 510 if ((status & XADC_AXI_INT_EOS) && xadc->trigger) 511 iio_trigger_poll(xadc->trigger); 512 513 if (status & XADC_AXI_INT_ALARM_MASK) { 514 /* 515 * The order of the bits in the AXI-XADC status register does 516 * not match the order of the bits in the XADC alarm enable 517 * register. xadc_handle_events() expects the events to be in 518 * the same order as the XADC alarm enable register. 519 */ 520 events = (status & 0x000e) >> 1; 521 events |= (status & 0x0001) << 3; 522 events |= (status & 0x3c00) >> 6; 523 xadc_handle_events(indio_dev, events); 524 } 525 526 xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status); 527 528 return IRQ_HANDLED; 529 } 530 531 static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm) 532 { 533 uint32_t val; 534 unsigned long flags; 535 536 /* 537 * The order of the bits in the AXI-XADC status register does not match 538 * the order of the bits in the XADC alarm enable register. We get 539 * passed the alarm mask in the same order as in the XADC alarm enable 540 * register. 541 */ 542 alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) | 543 ((alarm & 0xf0) << 6); 544 545 spin_lock_irqsave(&xadc->lock, flags); 546 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val); 547 val &= ~XADC_AXI_INT_ALARM_MASK; 548 val |= alarm; 549 xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val); 550 spin_unlock_irqrestore(&xadc->lock, flags); 551 } 552 553 static unsigned long xadc_axi_get_dclk(struct xadc *xadc) 554 { 555 return clk_get_rate(xadc->clk); 556 } 557 558 static const struct xadc_ops xadc_7s_axi_ops = { 559 .read = xadc_axi_read_adc_reg, 560 .write = xadc_axi_write_adc_reg, 561 .setup = xadc_axi_setup, 562 .get_dclk_rate = xadc_axi_get_dclk, 563 .update_alarm = xadc_axi_update_alarm, 564 .interrupt_handler = xadc_axi_interrupt_handler, 565 .flags = XADC_FLAGS_BUFFERED, 566 .type = XADC_TYPE_S7, 567 }; 568 569 static const struct xadc_ops xadc_us_axi_ops = { 570 .read = xadc_axi_read_adc_reg, 571 .write = xadc_axi_write_adc_reg, 572 .setup = xadc_axi_setup, 573 .get_dclk_rate = xadc_axi_get_dclk, 574 .update_alarm = xadc_axi_update_alarm, 575 .interrupt_handler = xadc_axi_interrupt_handler, 576 .flags = XADC_FLAGS_BUFFERED, 577 .type = XADC_TYPE_US, 578 }; 579 580 static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg, 581 uint16_t mask, uint16_t val) 582 { 583 uint16_t tmp; 584 int ret; 585 586 ret = _xadc_read_adc_reg(xadc, reg, &tmp); 587 if (ret) 588 return ret; 589 590 return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val); 591 } 592 593 static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg, 594 uint16_t mask, uint16_t val) 595 { 596 int ret; 597 598 mutex_lock(&xadc->mutex); 599 ret = _xadc_update_adc_reg(xadc, reg, mask, val); 600 mutex_unlock(&xadc->mutex); 601 602 return ret; 603 } 604 605 static unsigned long xadc_get_dclk_rate(struct xadc *xadc) 606 { 607 return xadc->ops->get_dclk_rate(xadc); 608 } 609 610 static int xadc_update_scan_mode(struct iio_dev *indio_dev, 611 const unsigned long *mask) 612 { 613 struct xadc *xadc = iio_priv(indio_dev); 614 size_t new_size, n; 615 void *data; 616 617 n = bitmap_weight(mask, indio_dev->masklength); 618 619 if (check_mul_overflow(n, sizeof(*xadc->data), &new_size)) 620 return -ENOMEM; 621 622 data = devm_krealloc(indio_dev->dev.parent, xadc->data, 623 new_size, GFP_KERNEL); 624 if (!data) 625 return -ENOMEM; 626 627 memset(data, 0, new_size); 628 xadc->data = data; 629 630 return 0; 631 } 632 633 static unsigned int xadc_scan_index_to_channel(unsigned int scan_index) 634 { 635 switch (scan_index) { 636 case 5: 637 return XADC_REG_VCCPINT; 638 case 6: 639 return XADC_REG_VCCPAUX; 640 case 7: 641 return XADC_REG_VCCO_DDR; 642 case 8: 643 return XADC_REG_TEMP; 644 case 9: 645 return XADC_REG_VCCINT; 646 case 10: 647 return XADC_REG_VCCAUX; 648 case 11: 649 return XADC_REG_VPVN; 650 case 12: 651 return XADC_REG_VREFP; 652 case 13: 653 return XADC_REG_VREFN; 654 case 14: 655 return XADC_REG_VCCBRAM; 656 default: 657 return XADC_REG_VAUX(scan_index - 16); 658 } 659 } 660 661 static irqreturn_t xadc_trigger_handler(int irq, void *p) 662 { 663 struct iio_poll_func *pf = p; 664 struct iio_dev *indio_dev = pf->indio_dev; 665 struct xadc *xadc = iio_priv(indio_dev); 666 unsigned int chan; 667 int i, j; 668 669 if (!xadc->data) 670 goto out; 671 672 j = 0; 673 for_each_set_bit(i, indio_dev->active_scan_mask, 674 indio_dev->masklength) { 675 chan = xadc_scan_index_to_channel(i); 676 xadc_read_adc_reg(xadc, chan, &xadc->data[j]); 677 j++; 678 } 679 680 iio_push_to_buffers(indio_dev, xadc->data); 681 682 out: 683 iio_trigger_notify_done(indio_dev->trig); 684 685 return IRQ_HANDLED; 686 } 687 688 static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state) 689 { 690 struct xadc *xadc = iio_trigger_get_drvdata(trigger); 691 unsigned long flags; 692 unsigned int convst; 693 unsigned int val; 694 int ret = 0; 695 696 mutex_lock(&xadc->mutex); 697 698 if (state) { 699 /* Only one of the two triggers can be active at a time. */ 700 if (xadc->trigger != NULL) { 701 ret = -EBUSY; 702 goto err_out; 703 } else { 704 xadc->trigger = trigger; 705 if (trigger == xadc->convst_trigger) 706 convst = XADC_CONF0_EC; 707 else 708 convst = 0; 709 } 710 ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC, 711 convst); 712 if (ret) 713 goto err_out; 714 } else { 715 xadc->trigger = NULL; 716 } 717 718 spin_lock_irqsave(&xadc->lock, flags); 719 xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val); 720 xadc_write_reg(xadc, XADC_AXI_REG_IPISR, XADC_AXI_INT_EOS); 721 if (state) 722 val |= XADC_AXI_INT_EOS; 723 else 724 val &= ~XADC_AXI_INT_EOS; 725 xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val); 726 spin_unlock_irqrestore(&xadc->lock, flags); 727 728 err_out: 729 mutex_unlock(&xadc->mutex); 730 731 return ret; 732 } 733 734 static const struct iio_trigger_ops xadc_trigger_ops = { 735 .set_trigger_state = &xadc_trigger_set_state, 736 }; 737 738 static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev, 739 const char *name) 740 { 741 struct device *dev = indio_dev->dev.parent; 742 struct iio_trigger *trig; 743 int ret; 744 745 trig = devm_iio_trigger_alloc(dev, "%s%d-%s", indio_dev->name, 746 iio_device_id(indio_dev), name); 747 if (trig == NULL) 748 return ERR_PTR(-ENOMEM); 749 750 trig->ops = &xadc_trigger_ops; 751 iio_trigger_set_drvdata(trig, iio_priv(indio_dev)); 752 753 ret = devm_iio_trigger_register(dev, trig); 754 if (ret) 755 return ERR_PTR(ret); 756 757 return trig; 758 } 759 760 static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode) 761 { 762 uint16_t val; 763 764 /* 765 * As per datasheet the power-down bits are don't care in the 766 * UltraScale, but as per reality setting the power-down bit for the 767 * non-existing ADC-B powers down the main ADC, so just return and don't 768 * do anything. 769 */ 770 if (xadc->ops->type == XADC_TYPE_US) 771 return 0; 772 773 /* Powerdown the ADC-B when it is not needed. */ 774 switch (seq_mode) { 775 case XADC_CONF1_SEQ_SIMULTANEOUS: 776 case XADC_CONF1_SEQ_INDEPENDENT: 777 val = 0; 778 break; 779 default: 780 val = XADC_CONF2_PD_ADC_B; 781 break; 782 } 783 784 return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK, 785 val); 786 } 787 788 static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode) 789 { 790 unsigned int aux_scan_mode = scan_mode >> 16; 791 792 /* UltraScale has only one ADC and supports only continuous mode */ 793 if (xadc->ops->type == XADC_TYPE_US) 794 return XADC_CONF1_SEQ_CONTINUOUS; 795 796 if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL) 797 return XADC_CONF1_SEQ_SIMULTANEOUS; 798 799 if ((aux_scan_mode & 0xff00) == 0 || 800 (aux_scan_mode & 0x00ff) == 0) 801 return XADC_CONF1_SEQ_CONTINUOUS; 802 803 return XADC_CONF1_SEQ_SIMULTANEOUS; 804 } 805 806 static int xadc_postdisable(struct iio_dev *indio_dev) 807 { 808 struct xadc *xadc = iio_priv(indio_dev); 809 unsigned long scan_mask; 810 int ret; 811 int i; 812 813 scan_mask = 1; /* Run calibration as part of the sequence */ 814 for (i = 0; i < indio_dev->num_channels; i++) 815 scan_mask |= BIT(indio_dev->channels[i].scan_index); 816 817 /* Enable all channels and calibration */ 818 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff); 819 if (ret) 820 return ret; 821 822 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16); 823 if (ret) 824 return ret; 825 826 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK, 827 XADC_CONF1_SEQ_CONTINUOUS); 828 if (ret) 829 return ret; 830 831 return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS); 832 } 833 834 static int xadc_preenable(struct iio_dev *indio_dev) 835 { 836 struct xadc *xadc = iio_priv(indio_dev); 837 unsigned long scan_mask; 838 int seq_mode; 839 int ret; 840 841 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK, 842 XADC_CONF1_SEQ_DEFAULT); 843 if (ret) 844 goto err; 845 846 scan_mask = *indio_dev->active_scan_mask; 847 seq_mode = xadc_get_seq_mode(xadc, scan_mask); 848 849 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff); 850 if (ret) 851 goto err; 852 853 /* 854 * In simultaneous mode the upper and lower aux channels are samples at 855 * the same time. In this mode the upper 8 bits in the sequencer 856 * register are don't care and the lower 8 bits control two channels 857 * each. As such we must set the bit if either the channel in the lower 858 * group or the upper group is enabled. 859 */ 860 if (seq_mode == XADC_CONF1_SEQ_SIMULTANEOUS) 861 scan_mask = ((scan_mask >> 8) | scan_mask) & 0xff0000; 862 863 ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16); 864 if (ret) 865 goto err; 866 867 ret = xadc_power_adc_b(xadc, seq_mode); 868 if (ret) 869 goto err; 870 871 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK, 872 seq_mode); 873 if (ret) 874 goto err; 875 876 return 0; 877 err: 878 xadc_postdisable(indio_dev); 879 return ret; 880 } 881 882 static const struct iio_buffer_setup_ops xadc_buffer_ops = { 883 .preenable = &xadc_preenable, 884 .postdisable = &xadc_postdisable, 885 }; 886 887 static int xadc_read_samplerate(struct xadc *xadc) 888 { 889 unsigned int div; 890 uint16_t val16; 891 int ret; 892 893 ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16); 894 if (ret) 895 return ret; 896 897 div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET; 898 if (div < 2) 899 div = 2; 900 901 return xadc_get_dclk_rate(xadc) / div / 26; 902 } 903 904 static int xadc_read_raw(struct iio_dev *indio_dev, 905 struct iio_chan_spec const *chan, int *val, int *val2, long info) 906 { 907 struct xadc *xadc = iio_priv(indio_dev); 908 unsigned int bits = chan->scan_type.realbits; 909 uint16_t val16; 910 int ret; 911 912 switch (info) { 913 case IIO_CHAN_INFO_RAW: 914 if (iio_buffer_enabled(indio_dev)) 915 return -EBUSY; 916 ret = xadc_read_adc_reg(xadc, chan->address, &val16); 917 if (ret < 0) 918 return ret; 919 920 val16 >>= chan->scan_type.shift; 921 if (chan->scan_type.sign == 'u') 922 *val = val16; 923 else 924 *val = sign_extend32(val16, bits - 1); 925 926 return IIO_VAL_INT; 927 case IIO_CHAN_INFO_SCALE: 928 switch (chan->type) { 929 case IIO_VOLTAGE: 930 /* V = (val * 3.0) / 2**bits */ 931 switch (chan->address) { 932 case XADC_REG_VCCINT: 933 case XADC_REG_VCCAUX: 934 case XADC_REG_VREFP: 935 case XADC_REG_VREFN: 936 case XADC_REG_VCCBRAM: 937 case XADC_REG_VCCPINT: 938 case XADC_REG_VCCPAUX: 939 case XADC_REG_VCCO_DDR: 940 *val = 3000; 941 break; 942 default: 943 *val = 1000; 944 break; 945 } 946 *val2 = chan->scan_type.realbits; 947 return IIO_VAL_FRACTIONAL_LOG2; 948 case IIO_TEMP: 949 /* Temp in C = (val * 503.975) / 2**bits - 273.15 */ 950 *val = 503975; 951 *val2 = bits; 952 return IIO_VAL_FRACTIONAL_LOG2; 953 default: 954 return -EINVAL; 955 } 956 case IIO_CHAN_INFO_OFFSET: 957 /* Only the temperature channel has an offset */ 958 *val = -((273150 << bits) / 503975); 959 return IIO_VAL_INT; 960 case IIO_CHAN_INFO_SAMP_FREQ: 961 ret = xadc_read_samplerate(xadc); 962 if (ret < 0) 963 return ret; 964 965 *val = ret; 966 return IIO_VAL_INT; 967 default: 968 return -EINVAL; 969 } 970 } 971 972 static int xadc_write_samplerate(struct xadc *xadc, int val) 973 { 974 unsigned long clk_rate = xadc_get_dclk_rate(xadc); 975 unsigned int div; 976 977 if (!clk_rate) 978 return -EINVAL; 979 980 if (val <= 0) 981 return -EINVAL; 982 983 /* Max. 150 kSPS */ 984 if (val > XADC_MAX_SAMPLERATE) 985 val = XADC_MAX_SAMPLERATE; 986 987 val *= 26; 988 989 /* Min 1MHz */ 990 if (val < 1000000) 991 val = 1000000; 992 993 /* 994 * We want to round down, but only if we do not exceed the 150 kSPS 995 * limit. 996 */ 997 div = clk_rate / val; 998 if (clk_rate / div / 26 > XADC_MAX_SAMPLERATE) 999 div++; 1000 if (div < 2) 1001 div = 2; 1002 else if (div > 0xff) 1003 div = 0xff; 1004 1005 return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK, 1006 div << XADC_CONF2_DIV_OFFSET); 1007 } 1008 1009 static int xadc_write_raw(struct iio_dev *indio_dev, 1010 struct iio_chan_spec const *chan, int val, int val2, long info) 1011 { 1012 struct xadc *xadc = iio_priv(indio_dev); 1013 1014 if (info != IIO_CHAN_INFO_SAMP_FREQ) 1015 return -EINVAL; 1016 1017 return xadc_write_samplerate(xadc, val); 1018 } 1019 1020 static const struct iio_event_spec xadc_temp_events[] = { 1021 { 1022 .type = IIO_EV_TYPE_THRESH, 1023 .dir = IIO_EV_DIR_RISING, 1024 .mask_separate = BIT(IIO_EV_INFO_ENABLE) | 1025 BIT(IIO_EV_INFO_VALUE) | 1026 BIT(IIO_EV_INFO_HYSTERESIS), 1027 }, 1028 }; 1029 1030 /* Separate values for upper and lower thresholds, but only a shared enabled */ 1031 static const struct iio_event_spec xadc_voltage_events[] = { 1032 { 1033 .type = IIO_EV_TYPE_THRESH, 1034 .dir = IIO_EV_DIR_RISING, 1035 .mask_separate = BIT(IIO_EV_INFO_VALUE), 1036 }, { 1037 .type = IIO_EV_TYPE_THRESH, 1038 .dir = IIO_EV_DIR_FALLING, 1039 .mask_separate = BIT(IIO_EV_INFO_VALUE), 1040 }, { 1041 .type = IIO_EV_TYPE_THRESH, 1042 .dir = IIO_EV_DIR_EITHER, 1043 .mask_separate = BIT(IIO_EV_INFO_ENABLE), 1044 }, 1045 }; 1046 1047 #define XADC_CHAN_TEMP(_chan, _scan_index, _addr, _bits) { \ 1048 .type = IIO_TEMP, \ 1049 .indexed = 1, \ 1050 .channel = (_chan), \ 1051 .address = (_addr), \ 1052 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 1053 BIT(IIO_CHAN_INFO_SCALE) | \ 1054 BIT(IIO_CHAN_INFO_OFFSET), \ 1055 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \ 1056 .event_spec = xadc_temp_events, \ 1057 .num_event_specs = ARRAY_SIZE(xadc_temp_events), \ 1058 .scan_index = (_scan_index), \ 1059 .scan_type = { \ 1060 .sign = 'u', \ 1061 .realbits = (_bits), \ 1062 .storagebits = 16, \ 1063 .shift = 16 - (_bits), \ 1064 .endianness = IIO_CPU, \ 1065 }, \ 1066 } 1067 1068 #define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _bits, _ext, _alarm) { \ 1069 .type = IIO_VOLTAGE, \ 1070 .indexed = 1, \ 1071 .channel = (_chan), \ 1072 .address = (_addr), \ 1073 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 1074 BIT(IIO_CHAN_INFO_SCALE), \ 1075 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \ 1076 .event_spec = (_alarm) ? xadc_voltage_events : NULL, \ 1077 .num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \ 1078 .scan_index = (_scan_index), \ 1079 .scan_type = { \ 1080 .sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \ 1081 .realbits = (_bits), \ 1082 .storagebits = 16, \ 1083 .shift = 16 - (_bits), \ 1084 .endianness = IIO_CPU, \ 1085 }, \ 1086 .extend_name = _ext, \ 1087 } 1088 1089 /* 7 Series */ 1090 #define XADC_7S_CHAN_TEMP(_chan, _scan_index, _addr) \ 1091 XADC_CHAN_TEMP(_chan, _scan_index, _addr, 12) 1092 #define XADC_7S_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \ 1093 XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 12, _ext, _alarm) 1094 1095 static const struct iio_chan_spec xadc_7s_channels[] = { 1096 XADC_7S_CHAN_TEMP(0, 8, XADC_REG_TEMP), 1097 XADC_7S_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true), 1098 XADC_7S_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true), 1099 XADC_7S_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true), 1100 XADC_7S_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true), 1101 XADC_7S_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true), 1102 XADC_7S_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true), 1103 XADC_7S_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false), 1104 XADC_7S_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false), 1105 XADC_7S_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false), 1106 XADC_7S_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false), 1107 XADC_7S_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false), 1108 XADC_7S_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false), 1109 XADC_7S_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false), 1110 XADC_7S_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false), 1111 XADC_7S_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false), 1112 XADC_7S_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false), 1113 XADC_7S_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false), 1114 XADC_7S_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false), 1115 XADC_7S_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false), 1116 XADC_7S_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false), 1117 XADC_7S_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false), 1118 XADC_7S_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false), 1119 XADC_7S_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false), 1120 XADC_7S_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false), 1121 XADC_7S_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false), 1122 }; 1123 1124 /* UltraScale */ 1125 #define XADC_US_CHAN_TEMP(_chan, _scan_index, _addr) \ 1126 XADC_CHAN_TEMP(_chan, _scan_index, _addr, 10) 1127 #define XADC_US_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) \ 1128 XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, 10, _ext, _alarm) 1129 1130 static const struct iio_chan_spec xadc_us_channels[] = { 1131 XADC_US_CHAN_TEMP(0, 8, XADC_REG_TEMP), 1132 XADC_US_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true), 1133 XADC_US_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true), 1134 XADC_US_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true), 1135 XADC_US_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpsintlp", true), 1136 XADC_US_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpsintfp", true), 1137 XADC_US_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccpsaux", true), 1138 XADC_US_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false), 1139 XADC_US_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false), 1140 XADC_US_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false), 1141 XADC_US_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false), 1142 XADC_US_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false), 1143 XADC_US_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false), 1144 XADC_US_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false), 1145 XADC_US_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false), 1146 XADC_US_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false), 1147 XADC_US_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false), 1148 XADC_US_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false), 1149 XADC_US_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false), 1150 XADC_US_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false), 1151 XADC_US_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false), 1152 XADC_US_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false), 1153 XADC_US_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false), 1154 XADC_US_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false), 1155 XADC_US_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false), 1156 XADC_US_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false), 1157 }; 1158 1159 static const struct iio_info xadc_info = { 1160 .read_raw = &xadc_read_raw, 1161 .write_raw = &xadc_write_raw, 1162 .read_event_config = &xadc_read_event_config, 1163 .write_event_config = &xadc_write_event_config, 1164 .read_event_value = &xadc_read_event_value, 1165 .write_event_value = &xadc_write_event_value, 1166 .update_scan_mode = &xadc_update_scan_mode, 1167 }; 1168 1169 static const struct of_device_id xadc_of_match_table[] = { 1170 { 1171 .compatible = "xlnx,zynq-xadc-1.00.a", 1172 .data = &xadc_zynq_ops 1173 }, { 1174 .compatible = "xlnx,axi-xadc-1.00.a", 1175 .data = &xadc_7s_axi_ops 1176 }, { 1177 .compatible = "xlnx,system-management-wiz-1.3", 1178 .data = &xadc_us_axi_ops 1179 }, 1180 { }, 1181 }; 1182 MODULE_DEVICE_TABLE(of, xadc_of_match_table); 1183 1184 static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np, 1185 unsigned int *conf) 1186 { 1187 struct device *dev = indio_dev->dev.parent; 1188 struct xadc *xadc = iio_priv(indio_dev); 1189 const struct iio_chan_spec *channel_templates; 1190 struct iio_chan_spec *channels, *chan; 1191 struct device_node *chan_node, *child; 1192 unsigned int max_channels; 1193 unsigned int num_channels; 1194 const char *external_mux; 1195 u32 ext_mux_chan; 1196 u32 reg; 1197 int ret; 1198 1199 *conf = 0; 1200 1201 ret = of_property_read_string(np, "xlnx,external-mux", &external_mux); 1202 if (ret < 0 || strcasecmp(external_mux, "none") == 0) 1203 xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE; 1204 else if (strcasecmp(external_mux, "single") == 0) 1205 xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE; 1206 else if (strcasecmp(external_mux, "dual") == 0) 1207 xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL; 1208 else 1209 return -EINVAL; 1210 1211 if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) { 1212 ret = of_property_read_u32(np, "xlnx,external-mux-channel", 1213 &ext_mux_chan); 1214 if (ret < 0) 1215 return ret; 1216 1217 if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) { 1218 if (ext_mux_chan == 0) 1219 ext_mux_chan = XADC_REG_VPVN; 1220 else if (ext_mux_chan <= 16) 1221 ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1); 1222 else 1223 return -EINVAL; 1224 } else { 1225 if (ext_mux_chan > 0 && ext_mux_chan <= 8) 1226 ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1); 1227 else 1228 return -EINVAL; 1229 } 1230 1231 *conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan); 1232 } 1233 if (xadc->ops->type == XADC_TYPE_S7) { 1234 channel_templates = xadc_7s_channels; 1235 max_channels = ARRAY_SIZE(xadc_7s_channels); 1236 } else { 1237 channel_templates = xadc_us_channels; 1238 max_channels = ARRAY_SIZE(xadc_us_channels); 1239 } 1240 channels = devm_kmemdup(dev, channel_templates, 1241 sizeof(channels[0]) * max_channels, GFP_KERNEL); 1242 if (!channels) 1243 return -ENOMEM; 1244 1245 num_channels = 9; 1246 chan = &channels[9]; 1247 1248 chan_node = of_get_child_by_name(np, "xlnx,channels"); 1249 if (chan_node) { 1250 for_each_child_of_node(chan_node, child) { 1251 if (num_channels >= max_channels) { 1252 of_node_put(child); 1253 break; 1254 } 1255 1256 ret = of_property_read_u32(child, "reg", ®); 1257 if (ret || reg > 16) 1258 continue; 1259 1260 if (of_property_read_bool(child, "xlnx,bipolar")) 1261 chan->scan_type.sign = 's'; 1262 1263 if (reg == 0) { 1264 chan->scan_index = 11; 1265 chan->address = XADC_REG_VPVN; 1266 } else { 1267 chan->scan_index = 15 + reg; 1268 chan->address = XADC_REG_VAUX(reg - 1); 1269 } 1270 num_channels++; 1271 chan++; 1272 } 1273 } 1274 of_node_put(chan_node); 1275 1276 indio_dev->num_channels = num_channels; 1277 indio_dev->channels = devm_krealloc(dev, channels, 1278 sizeof(*channels) * num_channels, 1279 GFP_KERNEL); 1280 /* If we can't resize the channels array, just use the original */ 1281 if (!indio_dev->channels) 1282 indio_dev->channels = channels; 1283 1284 return 0; 1285 } 1286 1287 static const char * const xadc_type_names[] = { 1288 [XADC_TYPE_S7] = "xadc", 1289 [XADC_TYPE_US] = "xilinx-system-monitor", 1290 }; 1291 1292 static void xadc_clk_disable_unprepare(void *data) 1293 { 1294 struct clk *clk = data; 1295 1296 clk_disable_unprepare(clk); 1297 } 1298 1299 static void xadc_cancel_delayed_work(void *data) 1300 { 1301 struct delayed_work *work = data; 1302 1303 cancel_delayed_work_sync(work); 1304 } 1305 1306 static int xadc_probe(struct platform_device *pdev) 1307 { 1308 struct device *dev = &pdev->dev; 1309 const struct of_device_id *id; 1310 struct iio_dev *indio_dev; 1311 unsigned int bipolar_mask; 1312 unsigned int conf0; 1313 struct xadc *xadc; 1314 int ret; 1315 int irq; 1316 int i; 1317 1318 if (!dev->of_node) 1319 return -ENODEV; 1320 1321 id = of_match_node(xadc_of_match_table, dev->of_node); 1322 if (!id) 1323 return -EINVAL; 1324 1325 irq = platform_get_irq(pdev, 0); 1326 if (irq <= 0) 1327 return -ENXIO; 1328 1329 indio_dev = devm_iio_device_alloc(dev, sizeof(*xadc)); 1330 if (!indio_dev) 1331 return -ENOMEM; 1332 1333 xadc = iio_priv(indio_dev); 1334 xadc->ops = id->data; 1335 init_completion(&xadc->completion); 1336 mutex_init(&xadc->mutex); 1337 spin_lock_init(&xadc->lock); 1338 INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker); 1339 1340 xadc->base = devm_platform_ioremap_resource(pdev, 0); 1341 if (IS_ERR(xadc->base)) 1342 return PTR_ERR(xadc->base); 1343 1344 indio_dev->name = xadc_type_names[xadc->ops->type]; 1345 indio_dev->modes = INDIO_DIRECT_MODE; 1346 indio_dev->info = &xadc_info; 1347 1348 ret = xadc_parse_dt(indio_dev, dev->of_node, &conf0); 1349 if (ret) 1350 return ret; 1351 1352 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) { 1353 ret = devm_iio_triggered_buffer_setup(dev, indio_dev, 1354 &iio_pollfunc_store_time, 1355 &xadc_trigger_handler, 1356 &xadc_buffer_ops); 1357 if (ret) 1358 return ret; 1359 1360 xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst"); 1361 if (IS_ERR(xadc->convst_trigger)) 1362 return PTR_ERR(xadc->convst_trigger); 1363 1364 xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev, 1365 "samplerate"); 1366 if (IS_ERR(xadc->samplerate_trigger)) 1367 return PTR_ERR(xadc->samplerate_trigger); 1368 } 1369 1370 xadc->clk = devm_clk_get(dev, NULL); 1371 if (IS_ERR(xadc->clk)) 1372 return PTR_ERR(xadc->clk); 1373 1374 ret = clk_prepare_enable(xadc->clk); 1375 if (ret) 1376 return ret; 1377 1378 ret = devm_add_action_or_reset(dev, 1379 xadc_clk_disable_unprepare, xadc->clk); 1380 if (ret) 1381 return ret; 1382 1383 /* 1384 * Make sure not to exceed the maximum samplerate since otherwise the 1385 * resulting interrupt storm will soft-lock the system. 1386 */ 1387 if (xadc->ops->flags & XADC_FLAGS_BUFFERED) { 1388 ret = xadc_read_samplerate(xadc); 1389 if (ret < 0) 1390 return ret; 1391 1392 if (ret > XADC_MAX_SAMPLERATE) { 1393 ret = xadc_write_samplerate(xadc, XADC_MAX_SAMPLERATE); 1394 if (ret < 0) 1395 return ret; 1396 } 1397 } 1398 1399 ret = devm_request_irq(dev, irq, xadc->ops->interrupt_handler, 0, 1400 dev_name(dev), indio_dev); 1401 if (ret) 1402 return ret; 1403 1404 ret = devm_add_action_or_reset(dev, xadc_cancel_delayed_work, 1405 &xadc->zynq_unmask_work); 1406 if (ret) 1407 return ret; 1408 1409 ret = xadc->ops->setup(pdev, indio_dev, irq); 1410 if (ret) 1411 return ret; 1412 1413 for (i = 0; i < 16; i++) 1414 xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i), 1415 &xadc->threshold[i]); 1416 1417 ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0); 1418 if (ret) 1419 return ret; 1420 1421 bipolar_mask = 0; 1422 for (i = 0; i < indio_dev->num_channels; i++) { 1423 if (indio_dev->channels[i].scan_type.sign == 's') 1424 bipolar_mask |= BIT(indio_dev->channels[i].scan_index); 1425 } 1426 1427 ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask); 1428 if (ret) 1429 return ret; 1430 1431 ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1), 1432 bipolar_mask >> 16); 1433 if (ret) 1434 return ret; 1435 1436 /* Disable all alarms */ 1437 ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_ALARM_MASK, 1438 XADC_CONF1_ALARM_MASK); 1439 if (ret) 1440 return ret; 1441 1442 /* Set thresholds to min/max */ 1443 for (i = 0; i < 16; i++) { 1444 /* 1445 * Set max voltage threshold and both temperature thresholds to 1446 * 0xffff, min voltage threshold to 0. 1447 */ 1448 if (i % 8 < 4 || i == 7) 1449 xadc->threshold[i] = 0xffff; 1450 else 1451 xadc->threshold[i] = 0; 1452 ret = xadc_write_adc_reg(xadc, XADC_REG_THRESHOLD(i), 1453 xadc->threshold[i]); 1454 if (ret) 1455 return ret; 1456 } 1457 1458 /* Go to non-buffered mode */ 1459 xadc_postdisable(indio_dev); 1460 1461 return devm_iio_device_register(dev, indio_dev); 1462 } 1463 1464 static struct platform_driver xadc_driver = { 1465 .probe = xadc_probe, 1466 .driver = { 1467 .name = "xadc", 1468 .of_match_table = xadc_of_match_table, 1469 }, 1470 }; 1471 module_platform_driver(xadc_driver); 1472 1473 MODULE_LICENSE("GPL v2"); 1474 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>"); 1475 MODULE_DESCRIPTION("Xilinx XADC IIO driver"); 1476