xref: /openbmc/linux/drivers/iio/adc/xilinx-ams.c (revision 8cfa7186)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Xilinx AMS driver
4  *
5  *  Copyright (C) 2021 Xilinx, Inc.
6  *
7  *  Manish Narani <mnarani@xilinx.com>
8  *  Rajnikant Bhojani <rajnikant.bhojani@xilinx.com>
9  */
10 
11 #include <linux/bits.h>
12 #include <linux/bitfield.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/devm-helpers.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/iopoll.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/overflow.h>
23 #include <linux/platform_device.h>
24 #include <linux/property.h>
25 #include <linux/slab.h>
26 
27 #include <linux/iio/events.h>
28 #include <linux/iio/iio.h>
29 
30 /* AMS registers definitions */
31 #define AMS_ISR_0			0x010
32 #define AMS_ISR_1			0x014
33 #define AMS_IER_0			0x020
34 #define AMS_IER_1			0x024
35 #define AMS_IDR_0			0x028
36 #define AMS_IDR_1			0x02C
37 #define AMS_PS_CSTS			0x040
38 #define AMS_PL_CSTS			0x044
39 
40 #define AMS_VCC_PSPLL0			0x060
41 #define AMS_VCC_PSPLL3			0x06C
42 #define AMS_VCCINT			0x078
43 #define AMS_VCCBRAM			0x07C
44 #define AMS_VCCAUX			0x080
45 #define AMS_PSDDRPLL			0x084
46 #define AMS_PSINTFPDDR			0x09C
47 
48 #define AMS_VCC_PSPLL0_CH		48
49 #define AMS_VCC_PSPLL3_CH		51
50 #define AMS_VCCINT_CH			54
51 #define AMS_VCCBRAM_CH			55
52 #define AMS_VCCAUX_CH			56
53 #define AMS_PSDDRPLL_CH			57
54 #define AMS_PSINTFPDDR_CH		63
55 
56 #define AMS_REG_CONFIG0			0x100
57 #define AMS_REG_CONFIG1			0x104
58 #define AMS_REG_CONFIG3			0x10C
59 #define AMS_REG_CONFIG4			0x110
60 #define AMS_REG_SEQ_CH0			0x120
61 #define AMS_REG_SEQ_CH1			0x124
62 #define AMS_REG_SEQ_CH2			0x118
63 
64 #define AMS_VUSER0_MASK			BIT(0)
65 #define AMS_VUSER1_MASK			BIT(1)
66 #define AMS_VUSER2_MASK			BIT(2)
67 #define AMS_VUSER3_MASK			BIT(3)
68 
69 #define AMS_TEMP			0x000
70 #define AMS_SUPPLY1			0x004
71 #define AMS_SUPPLY2			0x008
72 #define AMS_VP_VN			0x00C
73 #define AMS_VREFP			0x010
74 #define AMS_VREFN			0x014
75 #define AMS_SUPPLY3			0x018
76 #define AMS_SUPPLY4			0x034
77 #define AMS_SUPPLY5			0x038
78 #define AMS_SUPPLY6			0x03C
79 #define AMS_SUPPLY7			0x200
80 #define AMS_SUPPLY8			0x204
81 #define AMS_SUPPLY9			0x208
82 #define AMS_SUPPLY10			0x20C
83 #define AMS_VCCAMS			0x210
84 #define AMS_TEMP_REMOTE			0x214
85 
86 #define AMS_REG_VAUX(x)			(0x40 + 4 * (x))
87 
88 #define AMS_PS_RESET_VALUE		0xFFFF
89 #define AMS_PL_RESET_VALUE		0xFFFF
90 
91 #define AMS_CONF0_CHANNEL_NUM_MASK	GENMASK(6, 0)
92 
93 #define AMS_CONF1_SEQ_MASK		GENMASK(15, 12)
94 #define AMS_CONF1_SEQ_DEFAULT		FIELD_PREP(AMS_CONF1_SEQ_MASK, 0)
95 #define AMS_CONF1_SEQ_CONTINUOUS	FIELD_PREP(AMS_CONF1_SEQ_MASK, 2)
96 #define AMS_CONF1_SEQ_SINGLE_CHANNEL	FIELD_PREP(AMS_CONF1_SEQ_MASK, 3)
97 
98 #define AMS_REG_SEQ0_MASK		GENMASK(15, 0)
99 #define AMS_REG_SEQ2_MASK		GENMASK(21, 16)
100 #define AMS_REG_SEQ1_MASK		GENMASK_ULL(37, 22)
101 
102 #define AMS_PS_SEQ_MASK			GENMASK(21, 0)
103 #define AMS_PL_SEQ_MASK			GENMASK_ULL(59, 22)
104 
105 #define AMS_ALARM_TEMP			0x140
106 #define AMS_ALARM_SUPPLY1		0x144
107 #define AMS_ALARM_SUPPLY2		0x148
108 #define AMS_ALARM_SUPPLY3		0x160
109 #define AMS_ALARM_SUPPLY4		0x164
110 #define AMS_ALARM_SUPPLY5		0x168
111 #define AMS_ALARM_SUPPLY6		0x16C
112 #define AMS_ALARM_SUPPLY7		0x180
113 #define AMS_ALARM_SUPPLY8		0x184
114 #define AMS_ALARM_SUPPLY9		0x188
115 #define AMS_ALARM_SUPPLY10		0x18C
116 #define AMS_ALARM_VCCAMS		0x190
117 #define AMS_ALARM_TEMP_REMOTE		0x194
118 #define AMS_ALARM_THRESHOLD_OFF_10	0x10
119 #define AMS_ALARM_THRESHOLD_OFF_20	0x20
120 
121 #define AMS_ALARM_THR_DIRECT_MASK	BIT(1)
122 #define AMS_ALARM_THR_MIN		0x0000
123 #define AMS_ALARM_THR_MAX		(BIT(16) - 1)
124 
125 #define AMS_ALARM_MASK			GENMASK_ULL(63, 0)
126 #define AMS_NO_OF_ALARMS		32
127 #define AMS_PL_ALARM_START		16
128 #define AMS_PL_ALARM_MASK		GENMASK(31, 16)
129 #define AMS_ISR0_ALARM_MASK		GENMASK(31, 0)
130 #define AMS_ISR1_ALARM_MASK		(GENMASK(31, 29) | GENMASK(4, 0))
131 #define AMS_ISR1_EOC_MASK		BIT(3)
132 #define AMS_ISR1_INTR_MASK		GENMASK_ULL(63, 32)
133 #define AMS_ISR0_ALARM_2_TO_0_MASK	GENMASK(2, 0)
134 #define AMS_ISR0_ALARM_6_TO_3_MASK	GENMASK(6, 3)
135 #define AMS_ISR0_ALARM_12_TO_7_MASK	GENMASK(13, 8)
136 #define AMS_CONF1_ALARM_2_TO_0_MASK	GENMASK(3, 1)
137 #define AMS_CONF1_ALARM_6_TO_3_MASK	GENMASK(11, 8)
138 #define AMS_CONF1_ALARM_12_TO_7_MASK	GENMASK(5, 0)
139 #define AMS_REGCFG1_ALARM_MASK  \
140 	(AMS_CONF1_ALARM_2_TO_0_MASK | AMS_CONF1_ALARM_6_TO_3_MASK | BIT(0))
141 #define AMS_REGCFG3_ALARM_MASK		AMS_CONF1_ALARM_12_TO_7_MASK
142 
143 #define AMS_PS_CSTS_PS_READY		(BIT(27) | BIT(16))
144 #define AMS_PL_CSTS_ACCESS_MASK		BIT(1)
145 
146 #define AMS_PL_MAX_FIXED_CHANNEL	10
147 #define AMS_PL_MAX_EXT_CHANNEL		20
148 
149 #define AMS_INIT_POLL_TIME_US		200
150 #define AMS_INIT_TIMEOUT_US		10000
151 #define AMS_UNMASK_TIMEOUT_MS		500
152 
153 /*
154  * Following scale and offset value is derived from
155  * UG580 (v1.7) December 20, 2016
156  */
157 #define AMS_SUPPLY_SCALE_1VOLT_mV		1000
158 #define AMS_SUPPLY_SCALE_3VOLT_mV		3000
159 #define AMS_SUPPLY_SCALE_6VOLT_mV		6000
160 #define AMS_SUPPLY_SCALE_DIV_BIT	16
161 
162 #define AMS_TEMP_SCALE			509314
163 #define AMS_TEMP_SCALE_DIV_BIT		16
164 #define AMS_TEMP_OFFSET			-((280230LL << 16) / 509314)
165 
166 enum ams_alarm_bit {
167 	AMS_ALARM_BIT_TEMP = 0,
168 	AMS_ALARM_BIT_SUPPLY1 = 1,
169 	AMS_ALARM_BIT_SUPPLY2 = 2,
170 	AMS_ALARM_BIT_SUPPLY3 = 3,
171 	AMS_ALARM_BIT_SUPPLY4 = 4,
172 	AMS_ALARM_BIT_SUPPLY5 = 5,
173 	AMS_ALARM_BIT_SUPPLY6 = 6,
174 	AMS_ALARM_BIT_RESERVED = 7,
175 	AMS_ALARM_BIT_SUPPLY7 = 8,
176 	AMS_ALARM_BIT_SUPPLY8 = 9,
177 	AMS_ALARM_BIT_SUPPLY9 = 10,
178 	AMS_ALARM_BIT_SUPPLY10 = 11,
179 	AMS_ALARM_BIT_VCCAMS = 12,
180 	AMS_ALARM_BIT_TEMP_REMOTE = 13,
181 };
182 
183 enum ams_seq {
184 	AMS_SEQ_VCC_PSPLL = 0,
185 	AMS_SEQ_VCC_PSBATT = 1,
186 	AMS_SEQ_VCCINT = 2,
187 	AMS_SEQ_VCCBRAM = 3,
188 	AMS_SEQ_VCCAUX = 4,
189 	AMS_SEQ_PSDDRPLL = 5,
190 	AMS_SEQ_INTDDR = 6,
191 };
192 
193 enum ams_ps_pl_seq {
194 	AMS_SEQ_CALIB = 0,
195 	AMS_SEQ_RSVD_1 = 1,
196 	AMS_SEQ_RSVD_2 = 2,
197 	AMS_SEQ_TEST = 3,
198 	AMS_SEQ_RSVD_4 = 4,
199 	AMS_SEQ_SUPPLY4 = 5,
200 	AMS_SEQ_SUPPLY5 = 6,
201 	AMS_SEQ_SUPPLY6 = 7,
202 	AMS_SEQ_TEMP = 8,
203 	AMS_SEQ_SUPPLY2 = 9,
204 	AMS_SEQ_SUPPLY1 = 10,
205 	AMS_SEQ_VP_VN = 11,
206 	AMS_SEQ_VREFP = 12,
207 	AMS_SEQ_VREFN = 13,
208 	AMS_SEQ_SUPPLY3 = 14,
209 	AMS_SEQ_CURRENT_MON = 15,
210 	AMS_SEQ_SUPPLY7 = 16,
211 	AMS_SEQ_SUPPLY8 = 17,
212 	AMS_SEQ_SUPPLY9 = 18,
213 	AMS_SEQ_SUPPLY10 = 19,
214 	AMS_SEQ_VCCAMS = 20,
215 	AMS_SEQ_TEMP_REMOTE = 21,
216 	AMS_SEQ_MAX = 22
217 };
218 
219 #define AMS_PS_SEQ_MAX		AMS_SEQ_MAX
220 #define AMS_SEQ(x)		(AMS_SEQ_MAX + (x))
221 #define PS_SEQ(x)		(x)
222 #define PL_SEQ(x)		(AMS_PS_SEQ_MAX + (x))
223 #define AMS_CTRL_SEQ_BASE	(AMS_PS_SEQ_MAX * 3)
224 
225 #define AMS_CHAN_TEMP(_scan_index, _addr) { \
226 	.type = IIO_TEMP, \
227 	.indexed = 1, \
228 	.address = (_addr), \
229 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
230 		BIT(IIO_CHAN_INFO_SCALE) | \
231 		BIT(IIO_CHAN_INFO_OFFSET), \
232 	.event_spec = ams_temp_events, \
233 	.scan_index = _scan_index, \
234 	.num_event_specs = ARRAY_SIZE(ams_temp_events), \
235 }
236 
237 #define AMS_CHAN_VOLTAGE(_scan_index, _addr, _alarm) { \
238 	.type = IIO_VOLTAGE, \
239 	.indexed = 1, \
240 	.address = (_addr), \
241 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
242 		BIT(IIO_CHAN_INFO_SCALE), \
243 	.event_spec = (_alarm) ? ams_voltage_events : NULL, \
244 	.scan_index = _scan_index, \
245 	.num_event_specs = (_alarm) ? ARRAY_SIZE(ams_voltage_events) : 0, \
246 }
247 
248 #define AMS_PS_CHAN_TEMP(_scan_index, _addr) \
249 	AMS_CHAN_TEMP(PS_SEQ(_scan_index), _addr)
250 #define AMS_PS_CHAN_VOLTAGE(_scan_index, _addr) \
251 	AMS_CHAN_VOLTAGE(PS_SEQ(_scan_index), _addr, true)
252 
253 #define AMS_PL_CHAN_TEMP(_scan_index, _addr) \
254 	AMS_CHAN_TEMP(PL_SEQ(_scan_index), _addr)
255 #define AMS_PL_CHAN_VOLTAGE(_scan_index, _addr, _alarm) \
256 	AMS_CHAN_VOLTAGE(PL_SEQ(_scan_index), _addr, _alarm)
257 #define AMS_PL_AUX_CHAN_VOLTAGE(_auxno) \
258 	AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(_auxno)), AMS_REG_VAUX(_auxno), false)
259 #define AMS_CTRL_CHAN_VOLTAGE(_scan_index, _addr) \
260 	AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(AMS_SEQ(_scan_index))), _addr, false)
261 
262 /**
263  * struct ams - This structure contains necessary state for xilinx-ams to operate
264  * @base: physical base address of device
265  * @ps_base: physical base address of PS device
266  * @pl_base: physical base address of PL device
267  * @clk: clocks associated with the device
268  * @dev: pointer to device struct
269  * @lock: to handle multiple user interaction
270  * @intr_lock: to protect interrupt mask values
271  * @alarm_mask: alarm configuration
272  * @current_masked_alarm: currently masked due to alarm
273  * @intr_mask: interrupt configuration
274  * @ams_unmask_work: re-enables event once the event condition disappears
275  *
276  */
277 struct ams {
278 	void __iomem *base;
279 	void __iomem *ps_base;
280 	void __iomem *pl_base;
281 	struct clk *clk;
282 	struct device *dev;
283 	struct mutex lock;
284 	spinlock_t intr_lock;
285 	unsigned int alarm_mask;
286 	unsigned int current_masked_alarm;
287 	u64 intr_mask;
288 	struct delayed_work ams_unmask_work;
289 };
290 
291 static inline void ams_ps_update_reg(struct ams *ams, unsigned int offset,
292 				     u32 mask, u32 data)
293 {
294 	u32 val, regval;
295 
296 	val = readl(ams->ps_base + offset);
297 	regval = (val & ~mask) | (data & mask);
298 	writel(regval, ams->ps_base + offset);
299 }
300 
301 static inline void ams_pl_update_reg(struct ams *ams, unsigned int offset,
302 				     u32 mask, u32 data)
303 {
304 	u32 val, regval;
305 
306 	val = readl(ams->pl_base + offset);
307 	regval = (val & ~mask) | (data & mask);
308 	writel(regval, ams->pl_base + offset);
309 }
310 
311 static void ams_update_intrmask(struct ams *ams, u64 mask, u64 val)
312 {
313 	u32 regval;
314 
315 	ams->intr_mask = (ams->intr_mask & ~mask) | (val & mask);
316 
317 	regval = ~(ams->intr_mask | ams->current_masked_alarm);
318 	writel(regval, ams->base + AMS_IER_0);
319 
320 	regval = ~(FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask));
321 	writel(regval, ams->base + AMS_IER_1);
322 
323 	regval = ams->intr_mask | ams->current_masked_alarm;
324 	writel(regval, ams->base + AMS_IDR_0);
325 
326 	regval = FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask);
327 	writel(regval, ams->base + AMS_IDR_1);
328 }
329 
330 static void ams_disable_all_alarms(struct ams *ams)
331 {
332 	/* disable PS module alarm */
333 	if (ams->ps_base) {
334 		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
335 				  AMS_REGCFG1_ALARM_MASK);
336 		ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
337 				  AMS_REGCFG3_ALARM_MASK);
338 	}
339 
340 	/* disable PL module alarm */
341 	if (ams->pl_base) {
342 		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
343 				  AMS_REGCFG1_ALARM_MASK);
344 		ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
345 				  AMS_REGCFG3_ALARM_MASK);
346 	}
347 }
348 
349 static void ams_update_ps_alarm(struct ams *ams, unsigned long alarm_mask)
350 {
351 	u32 cfg;
352 	u32 val;
353 
354 	val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, alarm_mask);
355 	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
356 
357 	val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, alarm_mask);
358 	cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
359 
360 	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
361 
362 	val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, alarm_mask);
363 	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
364 	ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
365 }
366 
367 static void ams_update_pl_alarm(struct ams *ams, unsigned long alarm_mask)
368 {
369 	unsigned long pl_alarm_mask;
370 	u32 cfg;
371 	u32 val;
372 
373 	pl_alarm_mask = FIELD_GET(AMS_PL_ALARM_MASK, alarm_mask);
374 
375 	val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, pl_alarm_mask);
376 	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
377 
378 	val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, pl_alarm_mask);
379 	cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
380 
381 	ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
382 
383 	val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, pl_alarm_mask);
384 	cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
385 	ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
386 }
387 
388 static void ams_update_alarm(struct ams *ams, unsigned long alarm_mask)
389 {
390 	unsigned long flags;
391 
392 	if (ams->ps_base)
393 		ams_update_ps_alarm(ams, alarm_mask);
394 
395 	if (ams->pl_base)
396 		ams_update_pl_alarm(ams, alarm_mask);
397 
398 	spin_lock_irqsave(&ams->intr_lock, flags);
399 	ams_update_intrmask(ams, AMS_ISR0_ALARM_MASK, ~alarm_mask);
400 	spin_unlock_irqrestore(&ams->intr_lock, flags);
401 }
402 
403 static void ams_enable_channel_sequence(struct iio_dev *indio_dev)
404 {
405 	struct ams *ams = iio_priv(indio_dev);
406 	unsigned long long scan_mask;
407 	int i;
408 	u32 regval;
409 
410 	/*
411 	 * Enable channel sequence. First 22 bits of scan_mask represent
412 	 * PS channels, and next remaining bits represent PL channels.
413 	 */
414 
415 	/* Run calibration of PS & PL as part of the sequence */
416 	scan_mask = BIT(0) | BIT(AMS_PS_SEQ_MAX);
417 	for (i = 0; i < indio_dev->num_channels; i++)
418 		scan_mask |= BIT_ULL(indio_dev->channels[i].scan_index);
419 
420 	if (ams->ps_base) {
421 		/* put sysmon in a soft reset to change the sequence */
422 		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
423 				  AMS_CONF1_SEQ_DEFAULT);
424 
425 		/* configure basic channels */
426 		regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
427 		writel(regval, ams->ps_base + AMS_REG_SEQ_CH0);
428 
429 		regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
430 		writel(regval, ams->ps_base + AMS_REG_SEQ_CH2);
431 
432 		/* set continuous sequence mode */
433 		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
434 				  AMS_CONF1_SEQ_CONTINUOUS);
435 	}
436 
437 	if (ams->pl_base) {
438 		/* put sysmon in a soft reset to change the sequence */
439 		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
440 				  AMS_CONF1_SEQ_DEFAULT);
441 
442 		/* configure basic channels */
443 		scan_mask = FIELD_GET(AMS_PL_SEQ_MASK, scan_mask);
444 
445 		regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
446 		writel(regval, ams->pl_base + AMS_REG_SEQ_CH0);
447 
448 		regval = FIELD_GET(AMS_REG_SEQ1_MASK, scan_mask);
449 		writel(regval, ams->pl_base + AMS_REG_SEQ_CH1);
450 
451 		regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
452 		writel(regval, ams->pl_base + AMS_REG_SEQ_CH2);
453 
454 		/* set continuous sequence mode */
455 		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
456 				  AMS_CONF1_SEQ_CONTINUOUS);
457 	}
458 }
459 
460 static int ams_init_device(struct ams *ams)
461 {
462 	u32 expect = AMS_PS_CSTS_PS_READY;
463 	u32 reg, value;
464 	int ret;
465 
466 	/* reset AMS */
467 	if (ams->ps_base) {
468 		writel(AMS_PS_RESET_VALUE, ams->ps_base + AMS_VP_VN);
469 
470 		ret = readl_poll_timeout(ams->base + AMS_PS_CSTS, reg, (reg & expect),
471 					 AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
472 		if (ret)
473 			return ret;
474 
475 		/* put sysmon in a default state */
476 		ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
477 				  AMS_CONF1_SEQ_DEFAULT);
478 	}
479 
480 	if (ams->pl_base) {
481 		value = readl(ams->base + AMS_PL_CSTS);
482 		if (value == 0)
483 			return 0;
484 
485 		writel(AMS_PL_RESET_VALUE, ams->pl_base + AMS_VP_VN);
486 
487 		/* put sysmon in a default state */
488 		ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
489 				  AMS_CONF1_SEQ_DEFAULT);
490 	}
491 
492 	ams_disable_all_alarms(ams);
493 
494 	/* Disable interrupt */
495 	ams_update_intrmask(ams, AMS_ALARM_MASK, AMS_ALARM_MASK);
496 
497 	/* Clear any pending interrupt */
498 	writel(AMS_ISR0_ALARM_MASK, ams->base + AMS_ISR_0);
499 	writel(AMS_ISR1_ALARM_MASK, ams->base + AMS_ISR_1);
500 
501 	return 0;
502 }
503 
504 static int ams_enable_single_channel(struct ams *ams, unsigned int offset)
505 {
506 	u8 channel_num;
507 
508 	switch (offset) {
509 	case AMS_VCC_PSPLL0:
510 		channel_num = AMS_VCC_PSPLL0_CH;
511 		break;
512 	case AMS_VCC_PSPLL3:
513 		channel_num = AMS_VCC_PSPLL3_CH;
514 		break;
515 	case AMS_VCCINT:
516 		channel_num = AMS_VCCINT_CH;
517 		break;
518 	case AMS_VCCBRAM:
519 		channel_num = AMS_VCCBRAM_CH;
520 		break;
521 	case AMS_VCCAUX:
522 		channel_num = AMS_VCCAUX_CH;
523 		break;
524 	case AMS_PSDDRPLL:
525 		channel_num = AMS_PSDDRPLL_CH;
526 		break;
527 	case AMS_PSINTFPDDR:
528 		channel_num = AMS_PSINTFPDDR_CH;
529 		break;
530 	default:
531 		return -EINVAL;
532 	}
533 
534 	/* put sysmon in a soft reset to change the sequence */
535 	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
536 			  AMS_CONF1_SEQ_DEFAULT);
537 
538 	/* write the channel number */
539 	ams_ps_update_reg(ams, AMS_REG_CONFIG0, AMS_CONF0_CHANNEL_NUM_MASK,
540 			  channel_num);
541 
542 	/* set single channel, sequencer off mode */
543 	ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
544 			  AMS_CONF1_SEQ_SINGLE_CHANNEL);
545 
546 	return 0;
547 }
548 
549 static int ams_read_vcc_reg(struct ams *ams, unsigned int offset, u32 *data)
550 {
551 	u32 expect = AMS_ISR1_EOC_MASK;
552 	u32 reg;
553 	int ret;
554 
555 	ret = ams_enable_single_channel(ams, offset);
556 	if (ret)
557 		return ret;
558 
559 	/* clear end-of-conversion flag, wait for next conversion to complete */
560 	writel(expect, ams->base + AMS_ISR_1);
561 	ret = readl_poll_timeout(ams->base + AMS_ISR_1, reg, (reg & expect),
562 				 AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
563 	if (ret)
564 		return ret;
565 
566 	*data = readl(ams->base + offset);
567 
568 	return 0;
569 }
570 
571 static int ams_get_ps_scale(int address)
572 {
573 	int val;
574 
575 	switch (address) {
576 	case AMS_SUPPLY1:
577 	case AMS_SUPPLY2:
578 	case AMS_SUPPLY3:
579 	case AMS_SUPPLY4:
580 	case AMS_SUPPLY9:
581 	case AMS_SUPPLY10:
582 	case AMS_VCCAMS:
583 		val = AMS_SUPPLY_SCALE_3VOLT_mV;
584 		break;
585 	case AMS_SUPPLY5:
586 	case AMS_SUPPLY6:
587 	case AMS_SUPPLY7:
588 	case AMS_SUPPLY8:
589 		val = AMS_SUPPLY_SCALE_6VOLT_mV;
590 		break;
591 	default:
592 		val = AMS_SUPPLY_SCALE_1VOLT_mV;
593 		break;
594 	}
595 
596 	return val;
597 }
598 
599 static int ams_get_pl_scale(struct ams *ams, int address)
600 {
601 	int val, regval;
602 
603 	switch (address) {
604 	case AMS_SUPPLY1:
605 	case AMS_SUPPLY2:
606 	case AMS_SUPPLY3:
607 	case AMS_SUPPLY4:
608 	case AMS_SUPPLY5:
609 	case AMS_SUPPLY6:
610 	case AMS_VCCAMS:
611 	case AMS_VREFP:
612 	case AMS_VREFN:
613 		val = AMS_SUPPLY_SCALE_3VOLT_mV;
614 		break;
615 	case AMS_SUPPLY7:
616 		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
617 		if (FIELD_GET(AMS_VUSER0_MASK, regval))
618 			val = AMS_SUPPLY_SCALE_6VOLT_mV;
619 		else
620 			val = AMS_SUPPLY_SCALE_3VOLT_mV;
621 		break;
622 	case AMS_SUPPLY8:
623 		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
624 		if (FIELD_GET(AMS_VUSER1_MASK, regval))
625 			val = AMS_SUPPLY_SCALE_6VOLT_mV;
626 		else
627 			val = AMS_SUPPLY_SCALE_3VOLT_mV;
628 		break;
629 	case AMS_SUPPLY9:
630 		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
631 		if (FIELD_GET(AMS_VUSER2_MASK, regval))
632 			val = AMS_SUPPLY_SCALE_6VOLT_mV;
633 		else
634 			val = AMS_SUPPLY_SCALE_3VOLT_mV;
635 		break;
636 	case AMS_SUPPLY10:
637 		regval = readl(ams->pl_base + AMS_REG_CONFIG4);
638 		if (FIELD_GET(AMS_VUSER3_MASK, regval))
639 			val = AMS_SUPPLY_SCALE_6VOLT_mV;
640 		else
641 			val = AMS_SUPPLY_SCALE_3VOLT_mV;
642 		break;
643 	case AMS_VP_VN:
644 	case AMS_REG_VAUX(0) ... AMS_REG_VAUX(15):
645 		val = AMS_SUPPLY_SCALE_1VOLT_mV;
646 		break;
647 	default:
648 		val = AMS_SUPPLY_SCALE_1VOLT_mV;
649 		break;
650 	}
651 
652 	return val;
653 }
654 
655 static int ams_get_ctrl_scale(int address)
656 {
657 	int val;
658 
659 	switch (address) {
660 	case AMS_VCC_PSPLL0:
661 	case AMS_VCC_PSPLL3:
662 	case AMS_VCCINT:
663 	case AMS_VCCBRAM:
664 	case AMS_VCCAUX:
665 	case AMS_PSDDRPLL:
666 	case AMS_PSINTFPDDR:
667 		val = AMS_SUPPLY_SCALE_3VOLT_mV;
668 		break;
669 	default:
670 		val = AMS_SUPPLY_SCALE_1VOLT_mV;
671 		break;
672 	}
673 
674 	return val;
675 }
676 
677 static int ams_read_raw(struct iio_dev *indio_dev,
678 			struct iio_chan_spec const *chan,
679 			int *val, int *val2, long mask)
680 {
681 	struct ams *ams = iio_priv(indio_dev);
682 	int ret;
683 
684 	switch (mask) {
685 	case IIO_CHAN_INFO_RAW:
686 		mutex_lock(&ams->lock);
687 		if (chan->scan_index >= AMS_CTRL_SEQ_BASE) {
688 			ret = ams_read_vcc_reg(ams, chan->address, val);
689 			if (ret)
690 				goto unlock_mutex;
691 			ams_enable_channel_sequence(indio_dev);
692 		} else if (chan->scan_index >= AMS_PS_SEQ_MAX)
693 			*val = readl(ams->pl_base + chan->address);
694 		else
695 			*val = readl(ams->ps_base + chan->address);
696 
697 		ret = IIO_VAL_INT;
698 unlock_mutex:
699 		mutex_unlock(&ams->lock);
700 		return ret;
701 	case IIO_CHAN_INFO_SCALE:
702 		switch (chan->type) {
703 		case IIO_VOLTAGE:
704 			if (chan->scan_index < AMS_PS_SEQ_MAX)
705 				*val = ams_get_ps_scale(chan->address);
706 			else if (chan->scan_index >= AMS_PS_SEQ_MAX &&
707 				 chan->scan_index < AMS_CTRL_SEQ_BASE)
708 				*val = ams_get_pl_scale(ams, chan->address);
709 			else
710 				*val = ams_get_ctrl_scale(chan->address);
711 
712 			*val2 = AMS_SUPPLY_SCALE_DIV_BIT;
713 			return IIO_VAL_FRACTIONAL_LOG2;
714 		case IIO_TEMP:
715 			*val = AMS_TEMP_SCALE;
716 			*val2 = AMS_TEMP_SCALE_DIV_BIT;
717 			return IIO_VAL_FRACTIONAL_LOG2;
718 		default:
719 			return -EINVAL;
720 		}
721 	case IIO_CHAN_INFO_OFFSET:
722 		/* Only the temperature channel has an offset */
723 		*val = AMS_TEMP_OFFSET;
724 		return IIO_VAL_INT;
725 	default:
726 		return -EINVAL;
727 	}
728 }
729 
730 static int ams_get_alarm_offset(int scan_index, enum iio_event_direction dir)
731 {
732 	int offset;
733 
734 	if (scan_index >= AMS_PS_SEQ_MAX)
735 		scan_index -= AMS_PS_SEQ_MAX;
736 
737 	if (dir == IIO_EV_DIR_FALLING) {
738 		if (scan_index < AMS_SEQ_SUPPLY7)
739 			offset = AMS_ALARM_THRESHOLD_OFF_10;
740 		else
741 			offset = AMS_ALARM_THRESHOLD_OFF_20;
742 	} else {
743 		offset = 0;
744 	}
745 
746 	switch (scan_index) {
747 	case AMS_SEQ_TEMP:
748 		return AMS_ALARM_TEMP + offset;
749 	case AMS_SEQ_SUPPLY1:
750 		return AMS_ALARM_SUPPLY1 + offset;
751 	case AMS_SEQ_SUPPLY2:
752 		return AMS_ALARM_SUPPLY2 + offset;
753 	case AMS_SEQ_SUPPLY3:
754 		return AMS_ALARM_SUPPLY3 + offset;
755 	case AMS_SEQ_SUPPLY4:
756 		return AMS_ALARM_SUPPLY4 + offset;
757 	case AMS_SEQ_SUPPLY5:
758 		return AMS_ALARM_SUPPLY5 + offset;
759 	case AMS_SEQ_SUPPLY6:
760 		return AMS_ALARM_SUPPLY6 + offset;
761 	case AMS_SEQ_SUPPLY7:
762 		return AMS_ALARM_SUPPLY7 + offset;
763 	case AMS_SEQ_SUPPLY8:
764 		return AMS_ALARM_SUPPLY8 + offset;
765 	case AMS_SEQ_SUPPLY9:
766 		return AMS_ALARM_SUPPLY9 + offset;
767 	case AMS_SEQ_SUPPLY10:
768 		return AMS_ALARM_SUPPLY10 + offset;
769 	case AMS_SEQ_VCCAMS:
770 		return AMS_ALARM_VCCAMS + offset;
771 	case AMS_SEQ_TEMP_REMOTE:
772 		return AMS_ALARM_TEMP_REMOTE + offset;
773 	default:
774 		return 0;
775 	}
776 }
777 
778 static const struct iio_chan_spec *ams_event_to_channel(struct iio_dev *dev,
779 							u32 event)
780 {
781 	int scan_index = 0, i;
782 
783 	if (event >= AMS_PL_ALARM_START) {
784 		event -= AMS_PL_ALARM_START;
785 		scan_index = AMS_PS_SEQ_MAX;
786 	}
787 
788 	switch (event) {
789 	case AMS_ALARM_BIT_TEMP:
790 		scan_index += AMS_SEQ_TEMP;
791 		break;
792 	case AMS_ALARM_BIT_SUPPLY1:
793 		scan_index += AMS_SEQ_SUPPLY1;
794 		break;
795 	case AMS_ALARM_BIT_SUPPLY2:
796 		scan_index += AMS_SEQ_SUPPLY2;
797 		break;
798 	case AMS_ALARM_BIT_SUPPLY3:
799 		scan_index += AMS_SEQ_SUPPLY3;
800 		break;
801 	case AMS_ALARM_BIT_SUPPLY4:
802 		scan_index += AMS_SEQ_SUPPLY4;
803 		break;
804 	case AMS_ALARM_BIT_SUPPLY5:
805 		scan_index += AMS_SEQ_SUPPLY5;
806 		break;
807 	case AMS_ALARM_BIT_SUPPLY6:
808 		scan_index += AMS_SEQ_SUPPLY6;
809 		break;
810 	case AMS_ALARM_BIT_SUPPLY7:
811 		scan_index += AMS_SEQ_SUPPLY7;
812 		break;
813 	case AMS_ALARM_BIT_SUPPLY8:
814 		scan_index += AMS_SEQ_SUPPLY8;
815 		break;
816 	case AMS_ALARM_BIT_SUPPLY9:
817 		scan_index += AMS_SEQ_SUPPLY9;
818 		break;
819 	case AMS_ALARM_BIT_SUPPLY10:
820 		scan_index += AMS_SEQ_SUPPLY10;
821 		break;
822 	case AMS_ALARM_BIT_VCCAMS:
823 		scan_index += AMS_SEQ_VCCAMS;
824 		break;
825 	case AMS_ALARM_BIT_TEMP_REMOTE:
826 		scan_index += AMS_SEQ_TEMP_REMOTE;
827 		break;
828 	default:
829 		break;
830 	}
831 
832 	for (i = 0; i < dev->num_channels; i++)
833 		if (dev->channels[i].scan_index == scan_index)
834 			break;
835 
836 	return &dev->channels[i];
837 }
838 
839 static int ams_get_alarm_mask(int scan_index)
840 {
841 	int bit = 0;
842 
843 	if (scan_index >= AMS_PS_SEQ_MAX) {
844 		bit = AMS_PL_ALARM_START;
845 		scan_index -= AMS_PS_SEQ_MAX;
846 	}
847 
848 	switch (scan_index) {
849 	case AMS_SEQ_TEMP:
850 		return BIT(AMS_ALARM_BIT_TEMP + bit);
851 	case AMS_SEQ_SUPPLY1:
852 		return BIT(AMS_ALARM_BIT_SUPPLY1 + bit);
853 	case AMS_SEQ_SUPPLY2:
854 		return BIT(AMS_ALARM_BIT_SUPPLY2 + bit);
855 	case AMS_SEQ_SUPPLY3:
856 		return BIT(AMS_ALARM_BIT_SUPPLY3 + bit);
857 	case AMS_SEQ_SUPPLY4:
858 		return BIT(AMS_ALARM_BIT_SUPPLY4 + bit);
859 	case AMS_SEQ_SUPPLY5:
860 		return BIT(AMS_ALARM_BIT_SUPPLY5 + bit);
861 	case AMS_SEQ_SUPPLY6:
862 		return BIT(AMS_ALARM_BIT_SUPPLY6 + bit);
863 	case AMS_SEQ_SUPPLY7:
864 		return BIT(AMS_ALARM_BIT_SUPPLY7 + bit);
865 	case AMS_SEQ_SUPPLY8:
866 		return BIT(AMS_ALARM_BIT_SUPPLY8 + bit);
867 	case AMS_SEQ_SUPPLY9:
868 		return BIT(AMS_ALARM_BIT_SUPPLY9 + bit);
869 	case AMS_SEQ_SUPPLY10:
870 		return BIT(AMS_ALARM_BIT_SUPPLY10 + bit);
871 	case AMS_SEQ_VCCAMS:
872 		return BIT(AMS_ALARM_BIT_VCCAMS + bit);
873 	case AMS_SEQ_TEMP_REMOTE:
874 		return BIT(AMS_ALARM_BIT_TEMP_REMOTE + bit);
875 	default:
876 		return 0;
877 	}
878 }
879 
880 static int ams_read_event_config(struct iio_dev *indio_dev,
881 				 const struct iio_chan_spec *chan,
882 				 enum iio_event_type type,
883 				 enum iio_event_direction dir)
884 {
885 	struct ams *ams = iio_priv(indio_dev);
886 
887 	return !!(ams->alarm_mask & ams_get_alarm_mask(chan->scan_index));
888 }
889 
890 static int ams_write_event_config(struct iio_dev *indio_dev,
891 				  const struct iio_chan_spec *chan,
892 				  enum iio_event_type type,
893 				  enum iio_event_direction dir,
894 				  int state)
895 {
896 	struct ams *ams = iio_priv(indio_dev);
897 	unsigned int alarm;
898 
899 	alarm = ams_get_alarm_mask(chan->scan_index);
900 
901 	mutex_lock(&ams->lock);
902 
903 	if (state)
904 		ams->alarm_mask |= alarm;
905 	else
906 		ams->alarm_mask &= ~alarm;
907 
908 	ams_update_alarm(ams, ams->alarm_mask);
909 
910 	mutex_unlock(&ams->lock);
911 
912 	return 0;
913 }
914 
915 static int ams_read_event_value(struct iio_dev *indio_dev,
916 				const struct iio_chan_spec *chan,
917 				enum iio_event_type type,
918 				enum iio_event_direction dir,
919 				enum iio_event_info info, int *val, int *val2)
920 {
921 	struct ams *ams = iio_priv(indio_dev);
922 	unsigned int offset = ams_get_alarm_offset(chan->scan_index, dir);
923 
924 	mutex_lock(&ams->lock);
925 
926 	if (chan->scan_index >= AMS_PS_SEQ_MAX)
927 		*val = readl(ams->pl_base + offset);
928 	else
929 		*val = readl(ams->ps_base + offset);
930 
931 	mutex_unlock(&ams->lock);
932 
933 	return IIO_VAL_INT;
934 }
935 
936 static int ams_write_event_value(struct iio_dev *indio_dev,
937 				 const struct iio_chan_spec *chan,
938 				 enum iio_event_type type,
939 				 enum iio_event_direction dir,
940 				 enum iio_event_info info, int val, int val2)
941 {
942 	struct ams *ams = iio_priv(indio_dev);
943 	unsigned int offset;
944 
945 	mutex_lock(&ams->lock);
946 
947 	/* Set temperature channel threshold to direct threshold */
948 	if (chan->type == IIO_TEMP) {
949 		offset = ams_get_alarm_offset(chan->scan_index, IIO_EV_DIR_FALLING);
950 
951 		if (chan->scan_index >= AMS_PS_SEQ_MAX)
952 			ams_pl_update_reg(ams, offset,
953 					  AMS_ALARM_THR_DIRECT_MASK,
954 					  AMS_ALARM_THR_DIRECT_MASK);
955 		else
956 			ams_ps_update_reg(ams, offset,
957 					  AMS_ALARM_THR_DIRECT_MASK,
958 					  AMS_ALARM_THR_DIRECT_MASK);
959 	}
960 
961 	offset = ams_get_alarm_offset(chan->scan_index, dir);
962 	if (chan->scan_index >= AMS_PS_SEQ_MAX)
963 		writel(val, ams->pl_base + offset);
964 	else
965 		writel(val, ams->ps_base + offset);
966 
967 	mutex_unlock(&ams->lock);
968 
969 	return 0;
970 }
971 
972 static void ams_handle_event(struct iio_dev *indio_dev, u32 event)
973 {
974 	const struct iio_chan_spec *chan;
975 
976 	chan = ams_event_to_channel(indio_dev, event);
977 
978 	if (chan->type == IIO_TEMP) {
979 		/*
980 		 * The temperature channel only supports over-temperature
981 		 * events.
982 		 */
983 		iio_push_event(indio_dev,
984 			       IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
985 						    IIO_EV_TYPE_THRESH,
986 						    IIO_EV_DIR_RISING),
987 			       iio_get_time_ns(indio_dev));
988 	} else {
989 		/*
990 		 * For other channels we don't know whether it is a upper or
991 		 * lower threshold event. Userspace will have to check the
992 		 * channel value if it wants to know.
993 		 */
994 		iio_push_event(indio_dev,
995 			       IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
996 						    IIO_EV_TYPE_THRESH,
997 						    IIO_EV_DIR_EITHER),
998 			       iio_get_time_ns(indio_dev));
999 	}
1000 }
1001 
1002 static void ams_handle_events(struct iio_dev *indio_dev, unsigned long events)
1003 {
1004 	unsigned int bit;
1005 
1006 	for_each_set_bit(bit, &events, AMS_NO_OF_ALARMS)
1007 		ams_handle_event(indio_dev, bit);
1008 }
1009 
1010 /**
1011  * ams_unmask_worker - ams alarm interrupt unmask worker
1012  * @work: work to be done
1013  *
1014  * The ZynqMP threshold interrupts are level sensitive. Since we can't make the
1015  * threshold condition go way from within the interrupt handler, this means as
1016  * soon as a threshold condition is present we would enter the interrupt handler
1017  * again and again. To work around this we mask all active threshold interrupts
1018  * in the interrupt handler and start a timer. In this timer we poll the
1019  * interrupt status and only if the interrupt is inactive we unmask it again.
1020  */
1021 static void ams_unmask_worker(struct work_struct *work)
1022 {
1023 	struct ams *ams = container_of(work, struct ams, ams_unmask_work.work);
1024 	unsigned int status, unmask;
1025 
1026 	spin_lock_irq(&ams->intr_lock);
1027 
1028 	status = readl(ams->base + AMS_ISR_0);
1029 
1030 	/* Clear those bits which are not active anymore */
1031 	unmask = (ams->current_masked_alarm ^ status) & ams->current_masked_alarm;
1032 
1033 	/* Clear status of disabled alarm */
1034 	unmask |= ams->intr_mask;
1035 
1036 	ams->current_masked_alarm &= status;
1037 
1038 	/* Also clear those which are masked out anyway */
1039 	ams->current_masked_alarm &= ~ams->intr_mask;
1040 
1041 	/* Clear the interrupts before we unmask them */
1042 	writel(unmask, ams->base + AMS_ISR_0);
1043 
1044 	ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
1045 
1046 	spin_unlock_irq(&ams->intr_lock);
1047 
1048 	/* If still pending some alarm re-trigger the timer */
1049 	if (ams->current_masked_alarm)
1050 		schedule_delayed_work(&ams->ams_unmask_work,
1051 				      msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
1052 }
1053 
1054 static irqreturn_t ams_irq(int irq, void *data)
1055 {
1056 	struct iio_dev *indio_dev = data;
1057 	struct ams *ams = iio_priv(indio_dev);
1058 	u32 isr0;
1059 
1060 	spin_lock(&ams->intr_lock);
1061 
1062 	isr0 = readl(ams->base + AMS_ISR_0);
1063 
1064 	/* Only process alarms that are not masked */
1065 	isr0 &= ~((ams->intr_mask & AMS_ISR0_ALARM_MASK) | ams->current_masked_alarm);
1066 	if (!isr0) {
1067 		spin_unlock(&ams->intr_lock);
1068 		return IRQ_NONE;
1069 	}
1070 
1071 	/* Clear interrupt */
1072 	writel(isr0, ams->base + AMS_ISR_0);
1073 
1074 	/* Mask the alarm interrupts until cleared */
1075 	ams->current_masked_alarm |= isr0;
1076 	ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
1077 
1078 	ams_handle_events(indio_dev, isr0);
1079 
1080 	schedule_delayed_work(&ams->ams_unmask_work,
1081 			      msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
1082 
1083 	spin_unlock(&ams->intr_lock);
1084 
1085 	return IRQ_HANDLED;
1086 }
1087 
1088 static const struct iio_event_spec ams_temp_events[] = {
1089 	{
1090 		.type = IIO_EV_TYPE_THRESH,
1091 		.dir = IIO_EV_DIR_RISING,
1092 		.mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE),
1093 	},
1094 };
1095 
1096 static const struct iio_event_spec ams_voltage_events[] = {
1097 	{
1098 		.type = IIO_EV_TYPE_THRESH,
1099 		.dir = IIO_EV_DIR_RISING,
1100 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1101 	},
1102 	{
1103 		.type = IIO_EV_TYPE_THRESH,
1104 		.dir = IIO_EV_DIR_FALLING,
1105 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1106 	},
1107 	{
1108 		.type = IIO_EV_TYPE_THRESH,
1109 		.dir = IIO_EV_DIR_EITHER,
1110 		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
1111 	},
1112 };
1113 
1114 static const struct iio_chan_spec ams_ps_channels[] = {
1115 	AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP),
1116 	AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP_REMOTE, AMS_TEMP_REMOTE),
1117 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1),
1118 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2),
1119 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3),
1120 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4),
1121 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5),
1122 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6),
1123 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7),
1124 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8),
1125 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9),
1126 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10),
1127 	AMS_PS_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS),
1128 };
1129 
1130 static const struct iio_chan_spec ams_pl_channels[] = {
1131 	AMS_PL_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP),
1132 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1, true),
1133 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2, true),
1134 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFP, AMS_VREFP, false),
1135 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFN, AMS_VREFN, false),
1136 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3, true),
1137 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4, true),
1138 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5, true),
1139 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6, true),
1140 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS, true),
1141 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VP_VN, AMS_VP_VN, false),
1142 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7, true),
1143 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8, true),
1144 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9, true),
1145 	AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10, true),
1146 	AMS_PL_AUX_CHAN_VOLTAGE(0),
1147 	AMS_PL_AUX_CHAN_VOLTAGE(1),
1148 	AMS_PL_AUX_CHAN_VOLTAGE(2),
1149 	AMS_PL_AUX_CHAN_VOLTAGE(3),
1150 	AMS_PL_AUX_CHAN_VOLTAGE(4),
1151 	AMS_PL_AUX_CHAN_VOLTAGE(5),
1152 	AMS_PL_AUX_CHAN_VOLTAGE(6),
1153 	AMS_PL_AUX_CHAN_VOLTAGE(7),
1154 	AMS_PL_AUX_CHAN_VOLTAGE(8),
1155 	AMS_PL_AUX_CHAN_VOLTAGE(9),
1156 	AMS_PL_AUX_CHAN_VOLTAGE(10),
1157 	AMS_PL_AUX_CHAN_VOLTAGE(11),
1158 	AMS_PL_AUX_CHAN_VOLTAGE(12),
1159 	AMS_PL_AUX_CHAN_VOLTAGE(13),
1160 	AMS_PL_AUX_CHAN_VOLTAGE(14),
1161 	AMS_PL_AUX_CHAN_VOLTAGE(15),
1162 };
1163 
1164 static const struct iio_chan_spec ams_ctrl_channels[] = {
1165 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSPLL, AMS_VCC_PSPLL0),
1166 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSBATT, AMS_VCC_PSPLL3),
1167 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCINT, AMS_VCCINT),
1168 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCBRAM, AMS_VCCBRAM),
1169 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCAUX, AMS_VCCAUX),
1170 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_PSDDRPLL, AMS_PSDDRPLL),
1171 	AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_INTDDR, AMS_PSINTFPDDR),
1172 };
1173 
1174 static int ams_get_ext_chan(struct fwnode_handle *chan_node,
1175 			    struct iio_chan_spec *channels, int num_channels)
1176 {
1177 	struct iio_chan_spec *chan;
1178 	struct fwnode_handle *child;
1179 	unsigned int reg, ext_chan;
1180 	int ret;
1181 
1182 	fwnode_for_each_child_node(chan_node, child) {
1183 		ret = fwnode_property_read_u32(child, "reg", &reg);
1184 		if (ret || reg > AMS_PL_MAX_EXT_CHANNEL + 30)
1185 			continue;
1186 
1187 		chan = &channels[num_channels];
1188 		ext_chan = reg + AMS_PL_MAX_FIXED_CHANNEL - 30;
1189 		memcpy(chan, &ams_pl_channels[ext_chan], sizeof(*channels));
1190 
1191 		if (fwnode_property_read_bool(child, "xlnx,bipolar"))
1192 			chan->scan_type.sign = 's';
1193 
1194 		num_channels++;
1195 	}
1196 
1197 	return num_channels;
1198 }
1199 
1200 static void ams_iounmap_ps(void *data)
1201 {
1202 	struct ams *ams = data;
1203 
1204 	iounmap(ams->ps_base);
1205 }
1206 
1207 static void ams_iounmap_pl(void *data)
1208 {
1209 	struct ams *ams = data;
1210 
1211 	iounmap(ams->pl_base);
1212 }
1213 
1214 static int ams_init_module(struct iio_dev *indio_dev,
1215 			   struct fwnode_handle *fwnode,
1216 			   struct iio_chan_spec *channels)
1217 {
1218 	struct device *dev = indio_dev->dev.parent;
1219 	struct ams *ams = iio_priv(indio_dev);
1220 	int num_channels = 0;
1221 	int ret;
1222 
1223 	if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams-ps")) {
1224 		ams->ps_base = fwnode_iomap(fwnode, 0);
1225 		if (!ams->ps_base)
1226 			return -ENXIO;
1227 		ret = devm_add_action_or_reset(dev, ams_iounmap_ps, ams);
1228 		if (ret < 0)
1229 			return ret;
1230 
1231 		/* add PS channels to iio device channels */
1232 		memcpy(channels, ams_ps_channels, sizeof(ams_ps_channels));
1233 		num_channels = ARRAY_SIZE(ams_ps_channels);
1234 	} else if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams-pl")) {
1235 		ams->pl_base = fwnode_iomap(fwnode, 0);
1236 		if (!ams->pl_base)
1237 			return -ENXIO;
1238 
1239 		ret = devm_add_action_or_reset(dev, ams_iounmap_pl, ams);
1240 		if (ret < 0)
1241 			return ret;
1242 
1243 		/* Copy only first 10 fix channels */
1244 		memcpy(channels, ams_pl_channels, AMS_PL_MAX_FIXED_CHANNEL * sizeof(*channels));
1245 		num_channels += AMS_PL_MAX_FIXED_CHANNEL;
1246 		num_channels = ams_get_ext_chan(fwnode, channels,
1247 						num_channels);
1248 	} else if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams")) {
1249 		/* add AMS channels to iio device channels */
1250 		memcpy(channels, ams_ctrl_channels, sizeof(ams_ctrl_channels));
1251 		num_channels += ARRAY_SIZE(ams_ctrl_channels);
1252 	} else {
1253 		return -EINVAL;
1254 	}
1255 
1256 	return num_channels;
1257 }
1258 
1259 static int ams_parse_firmware(struct iio_dev *indio_dev)
1260 {
1261 	struct ams *ams = iio_priv(indio_dev);
1262 	struct iio_chan_spec *ams_channels, *dev_channels;
1263 	struct device *dev = indio_dev->dev.parent;
1264 	struct fwnode_handle *child = NULL;
1265 	struct fwnode_handle *fwnode = dev_fwnode(dev);
1266 	size_t ams_size;
1267 	int ret, ch_cnt = 0, i, rising_off, falling_off;
1268 	unsigned int num_channels = 0;
1269 
1270 	ams_size = ARRAY_SIZE(ams_ps_channels) + ARRAY_SIZE(ams_pl_channels) +
1271 		ARRAY_SIZE(ams_ctrl_channels);
1272 
1273 	/* Initialize buffer for channel specification */
1274 	ams_channels = devm_kcalloc(dev, ams_size, sizeof(*ams_channels), GFP_KERNEL);
1275 	if (!ams_channels)
1276 		return -ENOMEM;
1277 
1278 	if (fwnode_device_is_available(fwnode)) {
1279 		ret = ams_init_module(indio_dev, fwnode, ams_channels);
1280 		if (ret < 0)
1281 			return ret;
1282 
1283 		num_channels += ret;
1284 	}
1285 
1286 	fwnode_for_each_child_node(fwnode, child) {
1287 		if (fwnode_device_is_available(child)) {
1288 			ret = ams_init_module(indio_dev, child, ams_channels + num_channels);
1289 			if (ret < 0) {
1290 				fwnode_handle_put(child);
1291 				return ret;
1292 			}
1293 
1294 			num_channels += ret;
1295 		}
1296 	}
1297 
1298 	for (i = 0; i < num_channels; i++) {
1299 		ams_channels[i].channel = ch_cnt++;
1300 
1301 		if (ams_channels[i].scan_index < AMS_CTRL_SEQ_BASE) {
1302 			/* set threshold to max and min for each channel */
1303 			falling_off =
1304 				ams_get_alarm_offset(ams_channels[i].scan_index,
1305 						     IIO_EV_DIR_FALLING);
1306 			rising_off =
1307 				ams_get_alarm_offset(ams_channels[i].scan_index,
1308 						     IIO_EV_DIR_RISING);
1309 			if (ams_channels[i].scan_index >= AMS_PS_SEQ_MAX) {
1310 				writel(AMS_ALARM_THR_MIN,
1311 				       ams->pl_base + falling_off);
1312 				writel(AMS_ALARM_THR_MAX,
1313 				       ams->pl_base + rising_off);
1314 			} else {
1315 				writel(AMS_ALARM_THR_MIN,
1316 				       ams->ps_base + falling_off);
1317 				writel(AMS_ALARM_THR_MAX,
1318 				       ams->ps_base + rising_off);
1319 			}
1320 		}
1321 	}
1322 
1323 	dev_channels = devm_krealloc_array(dev, ams_channels, num_channels,
1324 					   sizeof(*dev_channels), GFP_KERNEL);
1325 	if (!dev_channels)
1326 		return -ENOMEM;
1327 
1328 	indio_dev->channels = dev_channels;
1329 	indio_dev->num_channels = num_channels;
1330 
1331 	return 0;
1332 }
1333 
1334 static const struct iio_info iio_ams_info = {
1335 	.read_raw = &ams_read_raw,
1336 	.read_event_config = &ams_read_event_config,
1337 	.write_event_config = &ams_write_event_config,
1338 	.read_event_value = &ams_read_event_value,
1339 	.write_event_value = &ams_write_event_value,
1340 };
1341 
1342 static const struct of_device_id ams_of_match_table[] = {
1343 	{ .compatible = "xlnx,zynqmp-ams" },
1344 	{ }
1345 };
1346 MODULE_DEVICE_TABLE(of, ams_of_match_table);
1347 
1348 static int ams_probe(struct platform_device *pdev)
1349 {
1350 	struct iio_dev *indio_dev;
1351 	struct ams *ams;
1352 	int ret;
1353 	int irq;
1354 
1355 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ams));
1356 	if (!indio_dev)
1357 		return -ENOMEM;
1358 
1359 	ams = iio_priv(indio_dev);
1360 	mutex_init(&ams->lock);
1361 	spin_lock_init(&ams->intr_lock);
1362 
1363 	indio_dev->name = "xilinx-ams";
1364 
1365 	indio_dev->info = &iio_ams_info;
1366 	indio_dev->modes = INDIO_DIRECT_MODE;
1367 
1368 	ams->base = devm_platform_ioremap_resource(pdev, 0);
1369 	if (IS_ERR(ams->base))
1370 		return PTR_ERR(ams->base);
1371 
1372 	ams->clk = devm_clk_get_enabled(&pdev->dev, NULL);
1373 	if (IS_ERR(ams->clk))
1374 		return PTR_ERR(ams->clk);
1375 
1376 	ret = devm_delayed_work_autocancel(&pdev->dev, &ams->ams_unmask_work,
1377 					   ams_unmask_worker);
1378 	if (ret < 0)
1379 		return ret;
1380 
1381 	ret = ams_parse_firmware(indio_dev);
1382 	if (ret)
1383 		return dev_err_probe(&pdev->dev, ret, "failure in parsing DT\n");
1384 
1385 	ret = ams_init_device(ams);
1386 	if (ret)
1387 		return dev_err_probe(&pdev->dev, ret, "failed to initialize AMS\n");
1388 
1389 	ams_enable_channel_sequence(indio_dev);
1390 
1391 	irq = platform_get_irq(pdev, 0);
1392 	if (irq < 0)
1393 		return irq;
1394 
1395 	ret = devm_request_irq(&pdev->dev, irq, &ams_irq, 0, "ams-irq",
1396 			       indio_dev);
1397 	if (ret < 0)
1398 		return dev_err_probe(&pdev->dev, ret, "failed to register interrupt\n");
1399 
1400 	platform_set_drvdata(pdev, indio_dev);
1401 
1402 	return devm_iio_device_register(&pdev->dev, indio_dev);
1403 }
1404 
1405 static int ams_suspend(struct device *dev)
1406 {
1407 	struct ams *ams = iio_priv(dev_get_drvdata(dev));
1408 
1409 	clk_disable_unprepare(ams->clk);
1410 
1411 	return 0;
1412 }
1413 
1414 static int ams_resume(struct device *dev)
1415 {
1416 	struct ams *ams = iio_priv(dev_get_drvdata(dev));
1417 
1418 	return clk_prepare_enable(ams->clk);
1419 }
1420 
1421 static DEFINE_SIMPLE_DEV_PM_OPS(ams_pm_ops, ams_suspend, ams_resume);
1422 
1423 static struct platform_driver ams_driver = {
1424 	.probe = ams_probe,
1425 	.driver = {
1426 		.name = "xilinx-ams",
1427 		.pm = pm_sleep_ptr(&ams_pm_ops),
1428 		.of_match_table = ams_of_match_table,
1429 	},
1430 };
1431 module_platform_driver(ams_driver);
1432 
1433 MODULE_LICENSE("GPL v2");
1434 MODULE_AUTHOR("Xilinx, Inc.");
1435