1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Texas Instruments ADS131E0x 4-, 6- and 8-Channel ADCs 4 * 5 * Copyright (c) 2020 AVL DiTEST GmbH 6 * Tomislav Denis <tomislav.denis@avl.com> 7 * 8 * Datasheet: https://www.ti.com/lit/ds/symlink/ads131e08.pdf 9 */ 10 11 #include <linux/bitfield.h> 12 #include <linux/clk.h> 13 #include <linux/delay.h> 14 #include <linux/module.h> 15 16 #include <linux/iio/buffer.h> 17 #include <linux/iio/iio.h> 18 #include <linux/iio/sysfs.h> 19 #include <linux/iio/trigger.h> 20 #include <linux/iio/trigger_consumer.h> 21 #include <linux/iio/triggered_buffer.h> 22 23 #include <linux/regulator/consumer.h> 24 #include <linux/spi/spi.h> 25 26 #include <asm/unaligned.h> 27 28 /* Commands */ 29 #define ADS131E08_CMD_RESET 0x06 30 #define ADS131E08_CMD_START 0x08 31 #define ADS131E08_CMD_STOP 0x0A 32 #define ADS131E08_CMD_OFFSETCAL 0x1A 33 #define ADS131E08_CMD_SDATAC 0x11 34 #define ADS131E08_CMD_RDATA 0x12 35 #define ADS131E08_CMD_RREG(r) (BIT(5) | (r & GENMASK(4, 0))) 36 #define ADS131E08_CMD_WREG(r) (BIT(6) | (r & GENMASK(4, 0))) 37 38 /* Registers */ 39 #define ADS131E08_ADR_CFG1R 0x01 40 #define ADS131E08_ADR_CFG3R 0x03 41 #define ADS131E08_ADR_CH0R 0x05 42 43 /* Configuration register 1 */ 44 #define ADS131E08_CFG1R_DR_MASK GENMASK(2, 0) 45 46 /* Configuration register 3 */ 47 #define ADS131E08_CFG3R_PDB_REFBUF_MASK BIT(7) 48 #define ADS131E08_CFG3R_VREF_4V_MASK BIT(5) 49 50 /* Channel settings register */ 51 #define ADS131E08_CHR_GAIN_MASK GENMASK(6, 4) 52 #define ADS131E08_CHR_MUX_MASK GENMASK(2, 0) 53 #define ADS131E08_CHR_PWD_MASK BIT(7) 54 55 /* ADC misc */ 56 #define ADS131E08_DEFAULT_DATA_RATE 1 57 #define ADS131E08_DEFAULT_PGA_GAIN 1 58 #define ADS131E08_DEFAULT_MUX 0 59 60 #define ADS131E08_VREF_2V4_mV 2400 61 #define ADS131E08_VREF_4V_mV 4000 62 63 #define ADS131E08_WAIT_RESET_CYCLES 18 64 #define ADS131E08_WAIT_SDECODE_CYCLES 4 65 #define ADS131E08_WAIT_OFFSETCAL_MS 153 66 #define ADS131E08_MAX_SETTLING_TIME_MS 6 67 68 #define ADS131E08_NUM_STATUS_BYTES 3 69 #define ADS131E08_NUM_DATA_BYTES_MAX 24 70 #define ADS131E08_NUM_DATA_BYTES(dr) (((dr) >= 32) ? 2 : 3) 71 #define ADS131E08_NUM_DATA_BITS(dr) (ADS131E08_NUM_DATA_BYTES(dr) * 8) 72 #define ADS131E08_NUM_STORAGE_BYTES 4 73 74 enum ads131e08_ids { 75 ads131e04, 76 ads131e06, 77 ads131e08, 78 }; 79 80 struct ads131e08_info { 81 unsigned int max_channels; 82 const char *name; 83 }; 84 85 struct ads131e08_channel_config { 86 unsigned int pga_gain; 87 unsigned int mux; 88 }; 89 90 struct ads131e08_state { 91 const struct ads131e08_info *info; 92 struct spi_device *spi; 93 struct iio_trigger *trig; 94 struct clk *adc_clk; 95 struct regulator *vref_reg; 96 struct ads131e08_channel_config *channel_config; 97 unsigned int data_rate; 98 unsigned int vref_mv; 99 unsigned int sdecode_delay_us; 100 unsigned int reset_delay_us; 101 unsigned int readback_len; 102 struct completion completion; 103 struct { 104 u8 data[ADS131E08_NUM_DATA_BYTES_MAX]; 105 s64 ts __aligned(8); 106 } tmp_buf; 107 108 u8 tx_buf[3] __aligned(IIO_DMA_MINALIGN); 109 /* 110 * Add extra one padding byte to be able to access the last channel 111 * value using u32 pointer 112 */ 113 u8 rx_buf[ADS131E08_NUM_STATUS_BYTES + 114 ADS131E08_NUM_DATA_BYTES_MAX + 1]; 115 }; 116 117 static const struct ads131e08_info ads131e08_info_tbl[] = { 118 [ads131e04] = { 119 .max_channels = 4, 120 .name = "ads131e04", 121 }, 122 [ads131e06] = { 123 .max_channels = 6, 124 .name = "ads131e06", 125 }, 126 [ads131e08] = { 127 .max_channels = 8, 128 .name = "ads131e08", 129 }, 130 }; 131 132 struct ads131e08_data_rate_desc { 133 unsigned int rate; /* data rate in kSPS */ 134 u8 reg; /* reg value */ 135 }; 136 137 static const struct ads131e08_data_rate_desc ads131e08_data_rate_tbl[] = { 138 { .rate = 64, .reg = 0x00 }, 139 { .rate = 32, .reg = 0x01 }, 140 { .rate = 16, .reg = 0x02 }, 141 { .rate = 8, .reg = 0x03 }, 142 { .rate = 4, .reg = 0x04 }, 143 { .rate = 2, .reg = 0x05 }, 144 { .rate = 1, .reg = 0x06 }, 145 }; 146 147 struct ads131e08_pga_gain_desc { 148 unsigned int gain; /* PGA gain value */ 149 u8 reg; /* field value */ 150 }; 151 152 static const struct ads131e08_pga_gain_desc ads131e08_pga_gain_tbl[] = { 153 { .gain = 1, .reg = 0x01 }, 154 { .gain = 2, .reg = 0x02 }, 155 { .gain = 4, .reg = 0x04 }, 156 { .gain = 8, .reg = 0x05 }, 157 { .gain = 12, .reg = 0x06 }, 158 }; 159 160 static const u8 ads131e08_valid_channel_mux_values[] = { 0, 1, 3, 4 }; 161 162 static int ads131e08_exec_cmd(struct ads131e08_state *st, u8 cmd) 163 { 164 int ret; 165 166 ret = spi_write_then_read(st->spi, &cmd, 1, NULL, 0); 167 if (ret) 168 dev_err(&st->spi->dev, "Exec cmd(%02x) failed\n", cmd); 169 170 return ret; 171 } 172 173 static int ads131e08_read_reg(struct ads131e08_state *st, u8 reg) 174 { 175 int ret; 176 struct spi_transfer transfer[] = { 177 { 178 .tx_buf = &st->tx_buf, 179 .len = 2, 180 .delay = { 181 .value = st->sdecode_delay_us, 182 .unit = SPI_DELAY_UNIT_USECS, 183 }, 184 }, { 185 .rx_buf = &st->rx_buf, 186 .len = 1, 187 }, 188 }; 189 190 st->tx_buf[0] = ADS131E08_CMD_RREG(reg); 191 st->tx_buf[1] = 0; 192 193 ret = spi_sync_transfer(st->spi, transfer, ARRAY_SIZE(transfer)); 194 if (ret) { 195 dev_err(&st->spi->dev, "Read register failed\n"); 196 return ret; 197 } 198 199 return st->rx_buf[0]; 200 } 201 202 static int ads131e08_write_reg(struct ads131e08_state *st, u8 reg, u8 value) 203 { 204 int ret; 205 struct spi_transfer transfer[] = { 206 { 207 .tx_buf = &st->tx_buf, 208 .len = 3, 209 .delay = { 210 .value = st->sdecode_delay_us, 211 .unit = SPI_DELAY_UNIT_USECS, 212 }, 213 } 214 }; 215 216 st->tx_buf[0] = ADS131E08_CMD_WREG(reg); 217 st->tx_buf[1] = 0; 218 st->tx_buf[2] = value; 219 220 ret = spi_sync_transfer(st->spi, transfer, ARRAY_SIZE(transfer)); 221 if (ret) 222 dev_err(&st->spi->dev, "Write register failed\n"); 223 224 return ret; 225 } 226 227 static int ads131e08_read_data(struct ads131e08_state *st, int rx_len) 228 { 229 int ret; 230 struct spi_transfer transfer[] = { 231 { 232 .tx_buf = &st->tx_buf, 233 .len = 1, 234 }, { 235 .rx_buf = &st->rx_buf, 236 .len = rx_len, 237 }, 238 }; 239 240 st->tx_buf[0] = ADS131E08_CMD_RDATA; 241 242 ret = spi_sync_transfer(st->spi, transfer, ARRAY_SIZE(transfer)); 243 if (ret) 244 dev_err(&st->spi->dev, "Read data failed\n"); 245 246 return ret; 247 } 248 249 static int ads131e08_set_data_rate(struct ads131e08_state *st, int data_rate) 250 { 251 int i, reg, ret; 252 253 for (i = 0; i < ARRAY_SIZE(ads131e08_data_rate_tbl); i++) { 254 if (ads131e08_data_rate_tbl[i].rate == data_rate) 255 break; 256 } 257 258 if (i == ARRAY_SIZE(ads131e08_data_rate_tbl)) { 259 dev_err(&st->spi->dev, "invalid data rate value\n"); 260 return -EINVAL; 261 } 262 263 reg = ads131e08_read_reg(st, ADS131E08_ADR_CFG1R); 264 if (reg < 0) 265 return reg; 266 267 reg &= ~ADS131E08_CFG1R_DR_MASK; 268 reg |= FIELD_PREP(ADS131E08_CFG1R_DR_MASK, 269 ads131e08_data_rate_tbl[i].reg); 270 271 ret = ads131e08_write_reg(st, ADS131E08_ADR_CFG1R, reg); 272 if (ret) 273 return ret; 274 275 st->data_rate = data_rate; 276 st->readback_len = ADS131E08_NUM_STATUS_BYTES + 277 ADS131E08_NUM_DATA_BYTES(st->data_rate) * 278 st->info->max_channels; 279 280 return 0; 281 } 282 283 static int ads131e08_pga_gain_to_field_value(struct ads131e08_state *st, 284 unsigned int pga_gain) 285 { 286 int i; 287 288 for (i = 0; i < ARRAY_SIZE(ads131e08_pga_gain_tbl); i++) { 289 if (ads131e08_pga_gain_tbl[i].gain == pga_gain) 290 break; 291 } 292 293 if (i == ARRAY_SIZE(ads131e08_pga_gain_tbl)) { 294 dev_err(&st->spi->dev, "invalid PGA gain value\n"); 295 return -EINVAL; 296 } 297 298 return ads131e08_pga_gain_tbl[i].reg; 299 } 300 301 static int ads131e08_set_pga_gain(struct ads131e08_state *st, 302 unsigned int channel, unsigned int pga_gain) 303 { 304 int field_value, reg; 305 306 field_value = ads131e08_pga_gain_to_field_value(st, pga_gain); 307 if (field_value < 0) 308 return field_value; 309 310 reg = ads131e08_read_reg(st, ADS131E08_ADR_CH0R + channel); 311 if (reg < 0) 312 return reg; 313 314 reg &= ~ADS131E08_CHR_GAIN_MASK; 315 reg |= FIELD_PREP(ADS131E08_CHR_GAIN_MASK, field_value); 316 317 return ads131e08_write_reg(st, ADS131E08_ADR_CH0R + channel, reg); 318 } 319 320 static int ads131e08_validate_channel_mux(struct ads131e08_state *st, 321 unsigned int mux) 322 { 323 int i; 324 325 for (i = 0; i < ARRAY_SIZE(ads131e08_valid_channel_mux_values); i++) { 326 if (ads131e08_valid_channel_mux_values[i] == mux) 327 break; 328 } 329 330 if (i == ARRAY_SIZE(ads131e08_valid_channel_mux_values)) { 331 dev_err(&st->spi->dev, "invalid channel mux value\n"); 332 return -EINVAL; 333 } 334 335 return 0; 336 } 337 338 static int ads131e08_set_channel_mux(struct ads131e08_state *st, 339 unsigned int channel, unsigned int mux) 340 { 341 int reg; 342 343 reg = ads131e08_read_reg(st, ADS131E08_ADR_CH0R + channel); 344 if (reg < 0) 345 return reg; 346 347 reg &= ~ADS131E08_CHR_MUX_MASK; 348 reg |= FIELD_PREP(ADS131E08_CHR_MUX_MASK, mux); 349 350 return ads131e08_write_reg(st, ADS131E08_ADR_CH0R + channel, reg); 351 } 352 353 static int ads131e08_power_down_channel(struct ads131e08_state *st, 354 unsigned int channel, bool value) 355 { 356 int reg; 357 358 reg = ads131e08_read_reg(st, ADS131E08_ADR_CH0R + channel); 359 if (reg < 0) 360 return reg; 361 362 reg &= ~ADS131E08_CHR_PWD_MASK; 363 reg |= FIELD_PREP(ADS131E08_CHR_PWD_MASK, value); 364 365 return ads131e08_write_reg(st, ADS131E08_ADR_CH0R + channel, reg); 366 } 367 368 static int ads131e08_config_reference_voltage(struct ads131e08_state *st) 369 { 370 int reg; 371 372 reg = ads131e08_read_reg(st, ADS131E08_ADR_CFG3R); 373 if (reg < 0) 374 return reg; 375 376 reg &= ~ADS131E08_CFG3R_PDB_REFBUF_MASK; 377 if (!st->vref_reg) { 378 reg |= FIELD_PREP(ADS131E08_CFG3R_PDB_REFBUF_MASK, 1); 379 reg &= ~ADS131E08_CFG3R_VREF_4V_MASK; 380 reg |= FIELD_PREP(ADS131E08_CFG3R_VREF_4V_MASK, 381 st->vref_mv == ADS131E08_VREF_4V_mV); 382 } 383 384 return ads131e08_write_reg(st, ADS131E08_ADR_CFG3R, reg); 385 } 386 387 static int ads131e08_initial_config(struct iio_dev *indio_dev) 388 { 389 const struct iio_chan_spec *channel = indio_dev->channels; 390 struct ads131e08_state *st = iio_priv(indio_dev); 391 unsigned long active_channels = 0; 392 int ret, i; 393 394 ret = ads131e08_exec_cmd(st, ADS131E08_CMD_RESET); 395 if (ret) 396 return ret; 397 398 udelay(st->reset_delay_us); 399 400 /* Disable read data in continuous mode (enabled by default) */ 401 ret = ads131e08_exec_cmd(st, ADS131E08_CMD_SDATAC); 402 if (ret) 403 return ret; 404 405 ret = ads131e08_set_data_rate(st, ADS131E08_DEFAULT_DATA_RATE); 406 if (ret) 407 return ret; 408 409 ret = ads131e08_config_reference_voltage(st); 410 if (ret) 411 return ret; 412 413 for (i = 0; i < indio_dev->num_channels; i++) { 414 ret = ads131e08_set_pga_gain(st, channel->channel, 415 st->channel_config[i].pga_gain); 416 if (ret) 417 return ret; 418 419 ret = ads131e08_set_channel_mux(st, channel->channel, 420 st->channel_config[i].mux); 421 if (ret) 422 return ret; 423 424 active_channels |= BIT(channel->channel); 425 channel++; 426 } 427 428 /* Power down unused channels */ 429 for_each_clear_bit(i, &active_channels, st->info->max_channels) { 430 ret = ads131e08_power_down_channel(st, i, true); 431 if (ret) 432 return ret; 433 } 434 435 /* Request channel offset calibration */ 436 ret = ads131e08_exec_cmd(st, ADS131E08_CMD_OFFSETCAL); 437 if (ret) 438 return ret; 439 440 /* 441 * Channel offset calibration is triggered with the first START 442 * command. Since calibration takes more time than settling operation, 443 * this causes timeout error when command START is sent first 444 * time (e.g. first call of the ads131e08_read_direct method). 445 * To avoid this problem offset calibration is triggered here. 446 */ 447 ret = ads131e08_exec_cmd(st, ADS131E08_CMD_START); 448 if (ret) 449 return ret; 450 451 msleep(ADS131E08_WAIT_OFFSETCAL_MS); 452 453 return ads131e08_exec_cmd(st, ADS131E08_CMD_STOP); 454 } 455 456 static int ads131e08_pool_data(struct ads131e08_state *st) 457 { 458 unsigned long timeout; 459 int ret; 460 461 reinit_completion(&st->completion); 462 463 ret = ads131e08_exec_cmd(st, ADS131E08_CMD_START); 464 if (ret) 465 return ret; 466 467 timeout = msecs_to_jiffies(ADS131E08_MAX_SETTLING_TIME_MS); 468 ret = wait_for_completion_timeout(&st->completion, timeout); 469 if (!ret) 470 return -ETIMEDOUT; 471 472 ret = ads131e08_read_data(st, st->readback_len); 473 if (ret) 474 return ret; 475 476 return ads131e08_exec_cmd(st, ADS131E08_CMD_STOP); 477 } 478 479 static int ads131e08_read_direct(struct iio_dev *indio_dev, 480 struct iio_chan_spec const *channel, int *value) 481 { 482 struct ads131e08_state *st = iio_priv(indio_dev); 483 u8 num_bits, *src; 484 int ret; 485 486 ret = ads131e08_pool_data(st); 487 if (ret) 488 return ret; 489 490 src = st->rx_buf + ADS131E08_NUM_STATUS_BYTES + 491 channel->channel * ADS131E08_NUM_DATA_BYTES(st->data_rate); 492 493 num_bits = ADS131E08_NUM_DATA_BITS(st->data_rate); 494 *value = sign_extend32(get_unaligned_be32(src) >> (32 - num_bits), num_bits - 1); 495 496 return 0; 497 } 498 499 static int ads131e08_read_raw(struct iio_dev *indio_dev, 500 struct iio_chan_spec const *channel, int *value, 501 int *value2, long mask) 502 { 503 struct ads131e08_state *st = iio_priv(indio_dev); 504 int ret; 505 506 switch (mask) { 507 case IIO_CHAN_INFO_RAW: 508 ret = iio_device_claim_direct_mode(indio_dev); 509 if (ret) 510 return ret; 511 512 ret = ads131e08_read_direct(indio_dev, channel, value); 513 iio_device_release_direct_mode(indio_dev); 514 if (ret) 515 return ret; 516 517 return IIO_VAL_INT; 518 519 case IIO_CHAN_INFO_SCALE: 520 if (st->vref_reg) { 521 ret = regulator_get_voltage(st->vref_reg); 522 if (ret < 0) 523 return ret; 524 525 *value = ret / 1000; 526 } else { 527 *value = st->vref_mv; 528 } 529 530 *value /= st->channel_config[channel->address].pga_gain; 531 *value2 = ADS131E08_NUM_DATA_BITS(st->data_rate) - 1; 532 533 return IIO_VAL_FRACTIONAL_LOG2; 534 535 case IIO_CHAN_INFO_SAMP_FREQ: 536 *value = st->data_rate; 537 538 return IIO_VAL_INT; 539 540 default: 541 return -EINVAL; 542 } 543 } 544 545 static int ads131e08_write_raw(struct iio_dev *indio_dev, 546 struct iio_chan_spec const *channel, int value, 547 int value2, long mask) 548 { 549 struct ads131e08_state *st = iio_priv(indio_dev); 550 int ret; 551 552 switch (mask) { 553 case IIO_CHAN_INFO_SAMP_FREQ: 554 ret = iio_device_claim_direct_mode(indio_dev); 555 if (ret) 556 return ret; 557 558 ret = ads131e08_set_data_rate(st, value); 559 iio_device_release_direct_mode(indio_dev); 560 return ret; 561 562 default: 563 return -EINVAL; 564 } 565 } 566 567 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("1 2 4 8 16 32 64"); 568 569 static struct attribute *ads131e08_attributes[] = { 570 &iio_const_attr_sampling_frequency_available.dev_attr.attr, 571 NULL 572 }; 573 574 static const struct attribute_group ads131e08_attribute_group = { 575 .attrs = ads131e08_attributes, 576 }; 577 578 static int ads131e08_debugfs_reg_access(struct iio_dev *indio_dev, 579 unsigned int reg, unsigned int writeval, unsigned int *readval) 580 { 581 struct ads131e08_state *st = iio_priv(indio_dev); 582 583 if (readval) { 584 int ret = ads131e08_read_reg(st, reg); 585 *readval = ret; 586 return ret; 587 } 588 589 return ads131e08_write_reg(st, reg, writeval); 590 } 591 592 static const struct iio_info ads131e08_iio_info = { 593 .read_raw = ads131e08_read_raw, 594 .write_raw = ads131e08_write_raw, 595 .attrs = &ads131e08_attribute_group, 596 .debugfs_reg_access = &ads131e08_debugfs_reg_access, 597 }; 598 599 static int ads131e08_set_trigger_state(struct iio_trigger *trig, bool state) 600 { 601 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); 602 struct ads131e08_state *st = iio_priv(indio_dev); 603 u8 cmd = state ? ADS131E08_CMD_START : ADS131E08_CMD_STOP; 604 605 return ads131e08_exec_cmd(st, cmd); 606 } 607 608 static const struct iio_trigger_ops ads131e08_trigger_ops = { 609 .set_trigger_state = &ads131e08_set_trigger_state, 610 .validate_device = &iio_trigger_validate_own_device, 611 }; 612 613 static irqreturn_t ads131e08_trigger_handler(int irq, void *private) 614 { 615 struct iio_poll_func *pf = private; 616 struct iio_dev *indio_dev = pf->indio_dev; 617 struct ads131e08_state *st = iio_priv(indio_dev); 618 unsigned int chn, i = 0; 619 u8 *src, *dest; 620 int ret; 621 622 /* 623 * The number of data bits per channel depends on the data rate. 624 * For 32 and 64 ksps data rates, number of data bits per channel 625 * is 16. This case is not compliant with used (fixed) scan element 626 * type (be:s24/32>>8). So we use a little tweak to pack properly 627 * 16 bits of data into the buffer. 628 */ 629 unsigned int num_bytes = ADS131E08_NUM_DATA_BYTES(st->data_rate); 630 u8 tweek_offset = num_bytes == 2 ? 1 : 0; 631 632 if (iio_trigger_using_own(indio_dev)) 633 ret = ads131e08_read_data(st, st->readback_len); 634 else 635 ret = ads131e08_pool_data(st); 636 637 if (ret) 638 goto out; 639 640 for_each_set_bit(chn, indio_dev->active_scan_mask, indio_dev->masklength) { 641 src = st->rx_buf + ADS131E08_NUM_STATUS_BYTES + chn * num_bytes; 642 dest = st->tmp_buf.data + i * ADS131E08_NUM_STORAGE_BYTES; 643 644 /* 645 * Tweek offset is 0: 646 * +---+---+---+---+ 647 * |D0 |D1 |D2 | X | (3 data bytes) 648 * +---+---+---+---+ 649 * a+0 a+1 a+2 a+3 650 * 651 * Tweek offset is 1: 652 * +---+---+---+---+ 653 * |P0 |D0 |D1 | X | (one padding byte and 2 data bytes) 654 * +---+---+---+---+ 655 * a+0 a+1 a+2 a+3 656 */ 657 memcpy(dest + tweek_offset, src, num_bytes); 658 659 /* 660 * Data conversion from 16 bits of data to 24 bits of data 661 * is done by sign extension (properly filling padding byte). 662 */ 663 if (tweek_offset) 664 *dest = *src & BIT(7) ? 0xff : 0x00; 665 666 i++; 667 } 668 669 iio_push_to_buffers_with_timestamp(indio_dev, st->tmp_buf.data, 670 iio_get_time_ns(indio_dev)); 671 672 out: 673 iio_trigger_notify_done(indio_dev->trig); 674 675 return IRQ_HANDLED; 676 } 677 678 static irqreturn_t ads131e08_interrupt(int irq, void *private) 679 { 680 struct iio_dev *indio_dev = private; 681 struct ads131e08_state *st = iio_priv(indio_dev); 682 683 if (iio_buffer_enabled(indio_dev) && iio_trigger_using_own(indio_dev)) 684 iio_trigger_poll(st->trig); 685 else 686 complete(&st->completion); 687 688 return IRQ_HANDLED; 689 } 690 691 static int ads131e08_alloc_channels(struct iio_dev *indio_dev) 692 { 693 struct ads131e08_state *st = iio_priv(indio_dev); 694 struct ads131e08_channel_config *channel_config; 695 struct device *dev = &st->spi->dev; 696 struct iio_chan_spec *channels; 697 struct fwnode_handle *node; 698 unsigned int channel, tmp; 699 int num_channels, i, ret; 700 701 ret = device_property_read_u32(dev, "ti,vref-internal", &tmp); 702 if (ret) 703 tmp = 0; 704 705 switch (tmp) { 706 case 0: 707 st->vref_mv = ADS131E08_VREF_2V4_mV; 708 break; 709 case 1: 710 st->vref_mv = ADS131E08_VREF_4V_mV; 711 break; 712 default: 713 dev_err(&st->spi->dev, "invalid internal voltage reference\n"); 714 return -EINVAL; 715 } 716 717 num_channels = device_get_child_node_count(dev); 718 if (num_channels == 0) { 719 dev_err(&st->spi->dev, "no channel children\n"); 720 return -ENODEV; 721 } 722 723 if (num_channels > st->info->max_channels) { 724 dev_err(&st->spi->dev, "num of channel children out of range\n"); 725 return -EINVAL; 726 } 727 728 channels = devm_kcalloc(&st->spi->dev, num_channels, 729 sizeof(*channels), GFP_KERNEL); 730 if (!channels) 731 return -ENOMEM; 732 733 channel_config = devm_kcalloc(&st->spi->dev, num_channels, 734 sizeof(*channel_config), GFP_KERNEL); 735 if (!channel_config) 736 return -ENOMEM; 737 738 i = 0; 739 device_for_each_child_node(dev, node) { 740 ret = fwnode_property_read_u32(node, "reg", &channel); 741 if (ret) 742 goto err_child_out; 743 744 ret = fwnode_property_read_u32(node, "ti,gain", &tmp); 745 if (ret) { 746 channel_config[i].pga_gain = ADS131E08_DEFAULT_PGA_GAIN; 747 } else { 748 ret = ads131e08_pga_gain_to_field_value(st, tmp); 749 if (ret < 0) 750 goto err_child_out; 751 752 channel_config[i].pga_gain = tmp; 753 } 754 755 ret = fwnode_property_read_u32(node, "ti,mux", &tmp); 756 if (ret) { 757 channel_config[i].mux = ADS131E08_DEFAULT_MUX; 758 } else { 759 ret = ads131e08_validate_channel_mux(st, tmp); 760 if (ret) 761 goto err_child_out; 762 763 channel_config[i].mux = tmp; 764 } 765 766 channels[i].type = IIO_VOLTAGE; 767 channels[i].indexed = 1; 768 channels[i].channel = channel; 769 channels[i].address = i; 770 channels[i].info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | 771 BIT(IIO_CHAN_INFO_SCALE); 772 channels[i].info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ); 773 channels[i].scan_index = channel; 774 channels[i].scan_type.sign = 's'; 775 channels[i].scan_type.realbits = 24; 776 channels[i].scan_type.storagebits = 32; 777 channels[i].scan_type.shift = 8; 778 channels[i].scan_type.endianness = IIO_BE; 779 i++; 780 } 781 782 indio_dev->channels = channels; 783 indio_dev->num_channels = num_channels; 784 st->channel_config = channel_config; 785 786 return 0; 787 788 err_child_out: 789 fwnode_handle_put(node); 790 return ret; 791 } 792 793 static void ads131e08_regulator_disable(void *data) 794 { 795 struct ads131e08_state *st = data; 796 797 regulator_disable(st->vref_reg); 798 } 799 800 static void ads131e08_clk_disable(void *data) 801 { 802 struct ads131e08_state *st = data; 803 804 clk_disable_unprepare(st->adc_clk); 805 } 806 807 static int ads131e08_probe(struct spi_device *spi) 808 { 809 const struct ads131e08_info *info; 810 struct ads131e08_state *st; 811 struct iio_dev *indio_dev; 812 unsigned long adc_clk_hz; 813 unsigned long adc_clk_ns; 814 int ret; 815 816 info = device_get_match_data(&spi->dev); 817 if (!info) { 818 dev_err(&spi->dev, "failed to get match data\n"); 819 return -ENODEV; 820 } 821 822 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); 823 if (!indio_dev) { 824 dev_err(&spi->dev, "failed to allocate IIO device\n"); 825 return -ENOMEM; 826 } 827 828 st = iio_priv(indio_dev); 829 st->info = info; 830 st->spi = spi; 831 832 ret = ads131e08_alloc_channels(indio_dev); 833 if (ret) 834 return ret; 835 836 indio_dev->name = st->info->name; 837 indio_dev->info = &ads131e08_iio_info; 838 indio_dev->modes = INDIO_DIRECT_MODE; 839 840 init_completion(&st->completion); 841 842 if (spi->irq) { 843 ret = devm_request_irq(&spi->dev, spi->irq, 844 ads131e08_interrupt, 845 IRQF_TRIGGER_FALLING | IRQF_ONESHOT, 846 spi->dev.driver->name, indio_dev); 847 if (ret) 848 return dev_err_probe(&spi->dev, ret, 849 "request irq failed\n"); 850 } else { 851 dev_err(&spi->dev, "data ready IRQ missing\n"); 852 return -ENODEV; 853 } 854 855 st->trig = devm_iio_trigger_alloc(&spi->dev, "%s-dev%d", 856 indio_dev->name, iio_device_id(indio_dev)); 857 if (!st->trig) { 858 dev_err(&spi->dev, "failed to allocate IIO trigger\n"); 859 return -ENOMEM; 860 } 861 862 st->trig->ops = &ads131e08_trigger_ops; 863 st->trig->dev.parent = &spi->dev; 864 iio_trigger_set_drvdata(st->trig, indio_dev); 865 ret = devm_iio_trigger_register(&spi->dev, st->trig); 866 if (ret) { 867 dev_err(&spi->dev, "failed to register IIO trigger\n"); 868 return -ENOMEM; 869 } 870 871 indio_dev->trig = iio_trigger_get(st->trig); 872 873 ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev, 874 NULL, &ads131e08_trigger_handler, NULL); 875 if (ret) { 876 dev_err(&spi->dev, "failed to setup IIO buffer\n"); 877 return ret; 878 } 879 880 st->vref_reg = devm_regulator_get_optional(&spi->dev, "vref"); 881 if (!IS_ERR(st->vref_reg)) { 882 ret = regulator_enable(st->vref_reg); 883 if (ret) { 884 dev_err(&spi->dev, 885 "failed to enable external vref supply\n"); 886 return ret; 887 } 888 889 ret = devm_add_action_or_reset(&spi->dev, ads131e08_regulator_disable, st); 890 if (ret) 891 return ret; 892 } else { 893 if (PTR_ERR(st->vref_reg) != -ENODEV) 894 return PTR_ERR(st->vref_reg); 895 896 st->vref_reg = NULL; 897 } 898 899 st->adc_clk = devm_clk_get(&spi->dev, "adc-clk"); 900 if (IS_ERR(st->adc_clk)) 901 return dev_err_probe(&spi->dev, PTR_ERR(st->adc_clk), 902 "failed to get the ADC clock\n"); 903 904 ret = clk_prepare_enable(st->adc_clk); 905 if (ret) { 906 dev_err(&spi->dev, "failed to prepare/enable the ADC clock\n"); 907 return ret; 908 } 909 910 ret = devm_add_action_or_reset(&spi->dev, ads131e08_clk_disable, st); 911 if (ret) 912 return ret; 913 914 adc_clk_hz = clk_get_rate(st->adc_clk); 915 if (!adc_clk_hz) { 916 dev_err(&spi->dev, "failed to get the ADC clock rate\n"); 917 return -EINVAL; 918 } 919 920 adc_clk_ns = NSEC_PER_SEC / adc_clk_hz; 921 st->sdecode_delay_us = DIV_ROUND_UP( 922 ADS131E08_WAIT_SDECODE_CYCLES * adc_clk_ns, NSEC_PER_USEC); 923 st->reset_delay_us = DIV_ROUND_UP( 924 ADS131E08_WAIT_RESET_CYCLES * adc_clk_ns, NSEC_PER_USEC); 925 926 ret = ads131e08_initial_config(indio_dev); 927 if (ret) { 928 dev_err(&spi->dev, "initial configuration failed\n"); 929 return ret; 930 } 931 932 return devm_iio_device_register(&spi->dev, indio_dev); 933 } 934 935 static const struct of_device_id ads131e08_of_match[] = { 936 { .compatible = "ti,ads131e04", 937 .data = &ads131e08_info_tbl[ads131e04], }, 938 { .compatible = "ti,ads131e06", 939 .data = &ads131e08_info_tbl[ads131e06], }, 940 { .compatible = "ti,ads131e08", 941 .data = &ads131e08_info_tbl[ads131e08], }, 942 {} 943 }; 944 MODULE_DEVICE_TABLE(of, ads131e08_of_match); 945 946 static struct spi_driver ads131e08_driver = { 947 .driver = { 948 .name = "ads131e08", 949 .of_match_table = ads131e08_of_match, 950 }, 951 .probe = ads131e08_probe, 952 }; 953 module_spi_driver(ads131e08_driver); 954 955 MODULE_AUTHOR("Tomislav Denis <tomislav.denis@avl.com>"); 956 MODULE_DESCRIPTION("Driver for ADS131E0x ADC family"); 957 MODULE_LICENSE("GPL v2"); 958