xref: /openbmc/linux/drivers/iio/adc/stm32-dfsdm-adc.c (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is the ADC part of the STM32 DFSDM driver
4  *
5  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6  * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
7  */
8 
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/iio/buffer.h>
13 #include <linux/iio/hw-consumer.h>
14 #include <linux/iio/iio.h>
15 #include <linux/iio/sysfs.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/regmap.h>
20 #include <linux/slab.h>
21 
22 #include "stm32-dfsdm.h"
23 
24 #define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
25 
26 /* Conversion timeout */
27 #define DFSDM_TIMEOUT_US 100000
28 #define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
29 
30 /* Oversampling attribute default */
31 #define DFSDM_DEFAULT_OVERSAMPLING  100
32 
33 /* Oversampling max values */
34 #define DFSDM_MAX_INT_OVERSAMPLING 256
35 #define DFSDM_MAX_FL_OVERSAMPLING 1024
36 
37 /* Max sample resolutions */
38 #define DFSDM_MAX_RES BIT(31)
39 #define DFSDM_DATA_RES BIT(23)
40 
41 enum sd_converter_type {
42 	DFSDM_AUDIO,
43 	DFSDM_IIO,
44 };
45 
46 struct stm32_dfsdm_dev_data {
47 	int type;
48 	int (*init)(struct iio_dev *indio_dev);
49 	unsigned int num_channels;
50 	const struct regmap_config *regmap_cfg;
51 };
52 
53 struct stm32_dfsdm_adc {
54 	struct stm32_dfsdm *dfsdm;
55 	const struct stm32_dfsdm_dev_data *dev_data;
56 	unsigned int fl_id;
57 
58 	/* ADC specific */
59 	unsigned int oversamp;
60 	struct iio_hw_consumer *hwc;
61 	struct completion completion;
62 	u32 *buffer;
63 
64 	/* Audio specific */
65 	unsigned int spi_freq;  /* SPI bus clock frequency */
66 	unsigned int sample_freq; /* Sample frequency after filter decimation */
67 	int (*cb)(const void *data, size_t size, void *cb_priv);
68 	void *cb_priv;
69 
70 	/* DMA */
71 	u8 *rx_buf;
72 	unsigned int bufi; /* Buffer current position */
73 	unsigned int buf_sz; /* Buffer size */
74 	struct dma_chan	*dma_chan;
75 	dma_addr_t dma_buf;
76 };
77 
78 struct stm32_dfsdm_str2field {
79 	const char	*name;
80 	unsigned int	val;
81 };
82 
83 /* DFSDM channel serial interface type */
84 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
85 	{ "SPI_R", 0 }, /* SPI with data on rising edge */
86 	{ "SPI_F", 1 }, /* SPI with data on falling edge */
87 	{ "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
88 	{ "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
89 	{},
90 };
91 
92 /* DFSDM channel clock source */
93 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
94 	/* External SPI clock (CLKIN x) */
95 	{ "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
96 	/* Internal SPI clock (CLKOUT) */
97 	{ "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
98 	/* Internal SPI clock divided by 2 (falling edge) */
99 	{ "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
100 	/* Internal SPI clock divided by 2 (falling edge) */
101 	{ "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
102 	{},
103 };
104 
105 static int stm32_dfsdm_str2val(const char *str,
106 			       const struct stm32_dfsdm_str2field *list)
107 {
108 	const struct stm32_dfsdm_str2field *p = list;
109 
110 	for (p = list; p && p->name; p++)
111 		if (!strcmp(p->name, str))
112 			return p->val;
113 
114 	return -EINVAL;
115 }
116 
117 static int stm32_dfsdm_set_osrs(struct stm32_dfsdm_filter *fl,
118 				unsigned int fast, unsigned int oversamp)
119 {
120 	unsigned int i, d, fosr, iosr;
121 	u64 res;
122 	s64 delta;
123 	unsigned int m = 1;	/* multiplication factor */
124 	unsigned int p = fl->ford;	/* filter order (ford) */
125 
126 	pr_debug("%s: Requested oversampling: %d\n",  __func__, oversamp);
127 	/*
128 	 * This function tries to compute filter oversampling and integrator
129 	 * oversampling, base on oversampling ratio requested by user.
130 	 *
131 	 * Decimation d depends on the filter order and the oversampling ratios.
132 	 * ford: filter order
133 	 * fosr: filter over sampling ratio
134 	 * iosr: integrator over sampling ratio
135 	 */
136 	if (fl->ford == DFSDM_FASTSINC_ORDER) {
137 		m = 2;
138 		p = 2;
139 	}
140 
141 	/*
142 	 * Look for filter and integrator oversampling ratios which allows
143 	 * to reach 24 bits data output resolution.
144 	 * Leave as soon as if exact resolution if reached.
145 	 * Otherwise the higher resolution below 32 bits is kept.
146 	 */
147 	for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
148 		for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
149 			if (fast)
150 				d = fosr * iosr;
151 			else if (fl->ford == DFSDM_FASTSINC_ORDER)
152 				d = fosr * (iosr + 3) + 2;
153 			else
154 				d = fosr * (iosr - 1 + p) + p;
155 
156 			if (d > oversamp)
157 				break;
158 			else if (d != oversamp)
159 				continue;
160 			/*
161 			 * Check resolution (limited to signed 32 bits)
162 			 *   res <= 2^31
163 			 * Sincx filters:
164 			 *   res = m * fosr^p x iosr (with m=1, p=ford)
165 			 * FastSinc filter
166 			 *   res = m * fosr^p x iosr (with m=2, p=2)
167 			 */
168 			res = fosr;
169 			for (i = p - 1; i > 0; i--) {
170 				res = res * (u64)fosr;
171 				if (res > DFSDM_MAX_RES)
172 					break;
173 			}
174 			if (res > DFSDM_MAX_RES)
175 				continue;
176 			res = res * (u64)m * (u64)iosr;
177 			if (res > DFSDM_MAX_RES)
178 				continue;
179 
180 			delta = res - DFSDM_DATA_RES;
181 
182 			if (res >= fl->res) {
183 				fl->res = res;
184 				fl->fosr = fosr;
185 				fl->iosr = iosr;
186 				fl->fast = fast;
187 				pr_debug("%s: fosr = %d, iosr = %d\n",
188 					 __func__, fl->fosr, fl->iosr);
189 			}
190 
191 			if (!delta)
192 				return 0;
193 		}
194 	}
195 
196 	if (!fl->fosr)
197 		return -EINVAL;
198 
199 	return 0;
200 }
201 
202 static int stm32_dfsdm_start_channel(struct stm32_dfsdm *dfsdm,
203 				     unsigned int ch_id)
204 {
205 	return regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(ch_id),
206 				  DFSDM_CHCFGR1_CHEN_MASK,
207 				  DFSDM_CHCFGR1_CHEN(1));
208 }
209 
210 static void stm32_dfsdm_stop_channel(struct stm32_dfsdm *dfsdm,
211 				     unsigned int ch_id)
212 {
213 	regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(ch_id),
214 			   DFSDM_CHCFGR1_CHEN_MASK, DFSDM_CHCFGR1_CHEN(0));
215 }
216 
217 static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
218 				      struct stm32_dfsdm_channel *ch)
219 {
220 	unsigned int id = ch->id;
221 	struct regmap *regmap = dfsdm->regmap;
222 	int ret;
223 
224 	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
225 				 DFSDM_CHCFGR1_SITP_MASK,
226 				 DFSDM_CHCFGR1_SITP(ch->type));
227 	if (ret < 0)
228 		return ret;
229 	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
230 				 DFSDM_CHCFGR1_SPICKSEL_MASK,
231 				 DFSDM_CHCFGR1_SPICKSEL(ch->src));
232 	if (ret < 0)
233 		return ret;
234 	return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
235 				  DFSDM_CHCFGR1_CHINSEL_MASK,
236 				  DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
237 }
238 
239 static int stm32_dfsdm_start_filter(struct stm32_dfsdm *dfsdm,
240 				    unsigned int fl_id)
241 {
242 	int ret;
243 
244 	/* Enable filter */
245 	ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
246 				 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
247 	if (ret < 0)
248 		return ret;
249 
250 	/* Start conversion */
251 	return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
252 				  DFSDM_CR1_RSWSTART_MASK,
253 				  DFSDM_CR1_RSWSTART(1));
254 }
255 
256 static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm, unsigned int fl_id)
257 {
258 	/* Disable conversion */
259 	regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
260 			   DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
261 }
262 
263 static int stm32_dfsdm_filter_configure(struct stm32_dfsdm *dfsdm,
264 					unsigned int fl_id, unsigned int ch_id)
265 {
266 	struct regmap *regmap = dfsdm->regmap;
267 	struct stm32_dfsdm_filter *fl = &dfsdm->fl_list[fl_id];
268 	int ret;
269 
270 	/* Average integrator oversampling */
271 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
272 				 DFSDM_FCR_IOSR(fl->iosr - 1));
273 	if (ret)
274 		return ret;
275 
276 	/* Filter order and Oversampling */
277 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
278 				 DFSDM_FCR_FOSR(fl->fosr - 1));
279 	if (ret)
280 		return ret;
281 
282 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
283 				 DFSDM_FCR_FORD(fl->ford));
284 	if (ret)
285 		return ret;
286 
287 	/* No scan mode supported for the moment */
288 	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_RCH_MASK,
289 				 DFSDM_CR1_RCH(ch_id));
290 	if (ret)
291 		return ret;
292 
293 	return regmap_update_bits(regmap, DFSDM_CR1(fl_id),
294 				  DFSDM_CR1_RSYNC_MASK,
295 				  DFSDM_CR1_RSYNC(fl->sync_mode));
296 }
297 
298 static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
299 					struct iio_dev *indio_dev,
300 					struct iio_chan_spec *ch)
301 {
302 	struct stm32_dfsdm_channel *df_ch;
303 	const char *of_str;
304 	int chan_idx = ch->scan_index;
305 	int ret, val;
306 
307 	ret = of_property_read_u32_index(indio_dev->dev.of_node,
308 					 "st,adc-channels", chan_idx,
309 					 &ch->channel);
310 	if (ret < 0) {
311 		dev_err(&indio_dev->dev,
312 			" Error parsing 'st,adc-channels' for idx %d\n",
313 			chan_idx);
314 		return ret;
315 	}
316 	if (ch->channel >= dfsdm->num_chs) {
317 		dev_err(&indio_dev->dev,
318 			" Error bad channel number %d (max = %d)\n",
319 			ch->channel, dfsdm->num_chs);
320 		return -EINVAL;
321 	}
322 
323 	ret = of_property_read_string_index(indio_dev->dev.of_node,
324 					    "st,adc-channel-names", chan_idx,
325 					    &ch->datasheet_name);
326 	if (ret < 0) {
327 		dev_err(&indio_dev->dev,
328 			" Error parsing 'st,adc-channel-names' for idx %d\n",
329 			chan_idx);
330 		return ret;
331 	}
332 
333 	df_ch =  &dfsdm->ch_list[ch->channel];
334 	df_ch->id = ch->channel;
335 
336 	ret = of_property_read_string_index(indio_dev->dev.of_node,
337 					    "st,adc-channel-types", chan_idx,
338 					    &of_str);
339 	if (!ret) {
340 		val  = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
341 		if (val < 0)
342 			return val;
343 	} else {
344 		val = 0;
345 	}
346 	df_ch->type = val;
347 
348 	ret = of_property_read_string_index(indio_dev->dev.of_node,
349 					    "st,adc-channel-clk-src", chan_idx,
350 					    &of_str);
351 	if (!ret) {
352 		val  = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
353 		if (val < 0)
354 			return val;
355 	} else {
356 		val = 0;
357 	}
358 	df_ch->src = val;
359 
360 	ret = of_property_read_u32_index(indio_dev->dev.of_node,
361 					 "st,adc-alt-channel", chan_idx,
362 					 &df_ch->alt_si);
363 	if (ret < 0)
364 		df_ch->alt_si = 0;
365 
366 	return 0;
367 }
368 
369 static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
370 					  uintptr_t priv,
371 					  const struct iio_chan_spec *chan,
372 					  char *buf)
373 {
374 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
375 
376 	return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
377 }
378 
379 static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
380 					  uintptr_t priv,
381 					  const struct iio_chan_spec *chan,
382 					  const char *buf, size_t len)
383 {
384 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
385 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
386 	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
387 	unsigned int sample_freq = adc->sample_freq;
388 	unsigned int spi_freq;
389 	int ret;
390 
391 	dev_err(&indio_dev->dev, "enter %s\n", __func__);
392 	/* If DFSDM is master on SPI, SPI freq can not be updated */
393 	if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
394 		return -EPERM;
395 
396 	ret = kstrtoint(buf, 0, &spi_freq);
397 	if (ret)
398 		return ret;
399 
400 	if (!spi_freq)
401 		return -EINVAL;
402 
403 	if (sample_freq) {
404 		if (spi_freq % sample_freq)
405 			dev_warn(&indio_dev->dev,
406 				 "Sampling rate not accurate (%d)\n",
407 				 spi_freq / (spi_freq / sample_freq));
408 
409 		ret = stm32_dfsdm_set_osrs(fl, 0, (spi_freq / sample_freq));
410 		if (ret < 0) {
411 			dev_err(&indio_dev->dev,
412 				"No filter parameters that match!\n");
413 			return ret;
414 		}
415 	}
416 	adc->spi_freq = spi_freq;
417 
418 	return len;
419 }
420 
421 static int stm32_dfsdm_start_conv(struct stm32_dfsdm_adc *adc,
422 				  const struct iio_chan_spec *chan,
423 				  bool dma)
424 {
425 	struct regmap *regmap = adc->dfsdm->regmap;
426 	int ret;
427 	unsigned int dma_en = 0, cont_en = 0;
428 
429 	ret = stm32_dfsdm_start_channel(adc->dfsdm, chan->channel);
430 	if (ret < 0)
431 		return ret;
432 
433 	ret = stm32_dfsdm_filter_configure(adc->dfsdm, adc->fl_id,
434 					   chan->channel);
435 	if (ret < 0)
436 		goto stop_channels;
437 
438 	if (dma) {
439 		/* Enable DMA transfer*/
440 		dma_en =  DFSDM_CR1_RDMAEN(1);
441 		/* Enable conversion triggered by SPI clock*/
442 		cont_en = DFSDM_CR1_RCONT(1);
443 	}
444 	/* Enable DMA transfer*/
445 	ret = regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
446 				 DFSDM_CR1_RDMAEN_MASK, dma_en);
447 	if (ret < 0)
448 		goto stop_channels;
449 
450 	/* Enable conversion triggered by SPI clock*/
451 	ret = regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
452 				 DFSDM_CR1_RCONT_MASK, cont_en);
453 	if (ret < 0)
454 		goto stop_channels;
455 
456 	ret = stm32_dfsdm_start_filter(adc->dfsdm, adc->fl_id);
457 	if (ret < 0)
458 		goto stop_channels;
459 
460 	return 0;
461 
462 stop_channels:
463 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
464 			   DFSDM_CR1_RDMAEN_MASK, 0);
465 
466 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
467 			   DFSDM_CR1_RCONT_MASK, 0);
468 	stm32_dfsdm_stop_channel(adc->dfsdm, chan->channel);
469 
470 	return ret;
471 }
472 
473 static void stm32_dfsdm_stop_conv(struct stm32_dfsdm_adc *adc,
474 				  const struct iio_chan_spec *chan)
475 {
476 	struct regmap *regmap = adc->dfsdm->regmap;
477 
478 	stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
479 
480 	/* Clean conversion options */
481 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
482 			   DFSDM_CR1_RDMAEN_MASK, 0);
483 
484 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
485 			   DFSDM_CR1_RCONT_MASK, 0);
486 
487 	stm32_dfsdm_stop_channel(adc->dfsdm, chan->channel);
488 }
489 
490 static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
491 				     unsigned int val)
492 {
493 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
494 	unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
495 
496 	/*
497 	 * DMA cyclic transfers are used, buffer is split into two periods.
498 	 * There should be :
499 	 * - always one buffer (period) DMA is working on
500 	 * - one buffer (period) driver pushed to ASoC side.
501 	 */
502 	watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
503 	adc->buf_sz = watermark * 2;
504 
505 	return 0;
506 }
507 
508 static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
509 {
510 	struct dma_tx_state state;
511 	enum dma_status status;
512 
513 	status = dmaengine_tx_status(adc->dma_chan,
514 				     adc->dma_chan->cookie,
515 				     &state);
516 	if (status == DMA_IN_PROGRESS) {
517 		/* Residue is size in bytes from end of buffer */
518 		unsigned int i = adc->buf_sz - state.residue;
519 		unsigned int size;
520 
521 		/* Return available bytes */
522 		if (i >= adc->bufi)
523 			size = i - adc->bufi;
524 		else
525 			size = adc->buf_sz + i - adc->bufi;
526 
527 		return size;
528 	}
529 
530 	return 0;
531 }
532 
533 static void stm32_dfsdm_audio_dma_buffer_done(void *data)
534 {
535 	struct iio_dev *indio_dev = data;
536 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
537 	int available = stm32_dfsdm_adc_dma_residue(adc);
538 	size_t old_pos;
539 
540 	/*
541 	 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
542 	 * offers only an interface to push data samples per samples.
543 	 * For this reason IIO buffer interface is not used and interface is
544 	 * bypassed using a private callback registered by ASoC.
545 	 * This should be a temporary solution waiting a cyclic DMA engine
546 	 * support in IIO.
547 	 */
548 
549 	dev_dbg(&indio_dev->dev, "%s: pos = %d, available = %d\n", __func__,
550 		adc->bufi, available);
551 	old_pos = adc->bufi;
552 
553 	while (available >= indio_dev->scan_bytes) {
554 		u32 *buffer = (u32 *)&adc->rx_buf[adc->bufi];
555 
556 		/* Mask 8 LSB that contains the channel ID */
557 		*buffer = (*buffer & 0xFFFFFF00) << 8;
558 		available -= indio_dev->scan_bytes;
559 		adc->bufi += indio_dev->scan_bytes;
560 		if (adc->bufi >= adc->buf_sz) {
561 			if (adc->cb)
562 				adc->cb(&adc->rx_buf[old_pos],
563 					 adc->buf_sz - old_pos, adc->cb_priv);
564 			adc->bufi = 0;
565 			old_pos = 0;
566 		}
567 	}
568 	if (adc->cb)
569 		adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
570 			adc->cb_priv);
571 }
572 
573 static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
574 {
575 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
576 	struct dma_async_tx_descriptor *desc;
577 	dma_cookie_t cookie;
578 	int ret;
579 
580 	if (!adc->dma_chan)
581 		return -EINVAL;
582 
583 	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
584 		adc->buf_sz, adc->buf_sz / 2);
585 
586 	/* Prepare a DMA cyclic transaction */
587 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
588 					 adc->dma_buf,
589 					 adc->buf_sz, adc->buf_sz / 2,
590 					 DMA_DEV_TO_MEM,
591 					 DMA_PREP_INTERRUPT);
592 	if (!desc)
593 		return -EBUSY;
594 
595 	desc->callback = stm32_dfsdm_audio_dma_buffer_done;
596 	desc->callback_param = indio_dev;
597 
598 	cookie = dmaengine_submit(desc);
599 	ret = dma_submit_error(cookie);
600 	if (ret) {
601 		dmaengine_terminate_all(adc->dma_chan);
602 		return ret;
603 	}
604 
605 	/* Issue pending DMA requests */
606 	dma_async_issue_pending(adc->dma_chan);
607 
608 	return 0;
609 }
610 
611 static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
612 {
613 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
614 	const struct iio_chan_spec *chan = &indio_dev->channels[0];
615 	int ret;
616 
617 	/* Reset adc buffer index */
618 	adc->bufi = 0;
619 
620 	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
621 	if (ret < 0)
622 		return ret;
623 
624 	ret = stm32_dfsdm_start_conv(adc, chan, true);
625 	if (ret) {
626 		dev_err(&indio_dev->dev, "Can't start conversion\n");
627 		goto stop_dfsdm;
628 	}
629 
630 	if (adc->dma_chan) {
631 		ret = stm32_dfsdm_adc_dma_start(indio_dev);
632 		if (ret) {
633 			dev_err(&indio_dev->dev, "Can't start DMA\n");
634 			goto err_stop_conv;
635 		}
636 	}
637 
638 	return 0;
639 
640 err_stop_conv:
641 	stm32_dfsdm_stop_conv(adc, chan);
642 stop_dfsdm:
643 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
644 
645 	return ret;
646 }
647 
648 static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
649 {
650 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
651 	const struct iio_chan_spec *chan = &indio_dev->channels[0];
652 
653 	if (adc->dma_chan)
654 		dmaengine_terminate_all(adc->dma_chan);
655 
656 	stm32_dfsdm_stop_conv(adc, chan);
657 
658 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
659 
660 	return 0;
661 }
662 
663 static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
664 	.postenable = &stm32_dfsdm_postenable,
665 	.predisable = &stm32_dfsdm_predisable,
666 };
667 
668 /**
669  * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
670  *                             DMA transfer period is achieved.
671  *
672  * @iio_dev: Handle to IIO device.
673  * @cb: Pointer to callback function:
674  *      - data: pointer to data buffer
675  *      - size: size in byte of the data buffer
676  *      - private: pointer to consumer private structure.
677  * @private: Pointer to consumer private structure.
678  */
679 int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
680 			    int (*cb)(const void *data, size_t size,
681 				      void *private),
682 			    void *private)
683 {
684 	struct stm32_dfsdm_adc *adc;
685 
686 	if (!iio_dev)
687 		return -EINVAL;
688 	adc = iio_priv(iio_dev);
689 
690 	adc->cb = cb;
691 	adc->cb_priv = private;
692 
693 	return 0;
694 }
695 EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
696 
697 /**
698  * stm32_dfsdm_release_buff_cb - unregister buffer callback
699  *
700  * @iio_dev: Handle to IIO device.
701  */
702 int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
703 {
704 	struct stm32_dfsdm_adc *adc;
705 
706 	if (!iio_dev)
707 		return -EINVAL;
708 	adc = iio_priv(iio_dev);
709 
710 	adc->cb = NULL;
711 	adc->cb_priv = NULL;
712 
713 	return 0;
714 }
715 EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
716 
717 static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
718 				   const struct iio_chan_spec *chan, int *res)
719 {
720 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
721 	long timeout;
722 	int ret;
723 
724 	reinit_completion(&adc->completion);
725 
726 	adc->buffer = res;
727 
728 	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
729 	if (ret < 0)
730 		return ret;
731 
732 	ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
733 				 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
734 	if (ret < 0)
735 		goto stop_dfsdm;
736 
737 	ret = stm32_dfsdm_start_conv(adc, chan, false);
738 	if (ret < 0) {
739 		regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
740 				   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
741 		goto stop_dfsdm;
742 	}
743 
744 	timeout = wait_for_completion_interruptible_timeout(&adc->completion,
745 							    DFSDM_TIMEOUT);
746 
747 	/* Mask IRQ for regular conversion achievement*/
748 	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
749 			   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
750 
751 	if (timeout == 0)
752 		ret = -ETIMEDOUT;
753 	else if (timeout < 0)
754 		ret = timeout;
755 	else
756 		ret = IIO_VAL_INT;
757 
758 	stm32_dfsdm_stop_conv(adc, chan);
759 
760 stop_dfsdm:
761 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
762 
763 	return ret;
764 }
765 
766 static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
767 				 struct iio_chan_spec const *chan,
768 				 int val, int val2, long mask)
769 {
770 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
771 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
772 	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
773 	unsigned int spi_freq = adc->spi_freq;
774 	int ret = -EINVAL;
775 
776 	switch (mask) {
777 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
778 		ret = stm32_dfsdm_set_osrs(fl, 0, val);
779 		if (!ret)
780 			adc->oversamp = val;
781 
782 		return ret;
783 
784 	case IIO_CHAN_INFO_SAMP_FREQ:
785 		if (!val)
786 			return -EINVAL;
787 		if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
788 			spi_freq = adc->dfsdm->spi_master_freq;
789 
790 		if (spi_freq % val)
791 			dev_warn(&indio_dev->dev,
792 				 "Sampling rate not accurate (%d)\n",
793 				 spi_freq / (spi_freq / val));
794 
795 		ret = stm32_dfsdm_set_osrs(fl, 0, (spi_freq / val));
796 		if (ret < 0) {
797 			dev_err(&indio_dev->dev,
798 				"Not able to find parameter that match!\n");
799 			return ret;
800 		}
801 		adc->sample_freq = val;
802 
803 		return 0;
804 	}
805 
806 	return -EINVAL;
807 }
808 
809 static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
810 				struct iio_chan_spec const *chan, int *val,
811 				int *val2, long mask)
812 {
813 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
814 	int ret;
815 
816 	switch (mask) {
817 	case IIO_CHAN_INFO_RAW:
818 		ret = iio_hw_consumer_enable(adc->hwc);
819 		if (ret < 0) {
820 			dev_err(&indio_dev->dev,
821 				"%s: IIO enable failed (channel %d)\n",
822 				__func__, chan->channel);
823 			return ret;
824 		}
825 		ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
826 		iio_hw_consumer_disable(adc->hwc);
827 		if (ret < 0) {
828 			dev_err(&indio_dev->dev,
829 				"%s: Conversion failed (channel %d)\n",
830 				__func__, chan->channel);
831 			return ret;
832 		}
833 		return IIO_VAL_INT;
834 
835 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
836 		*val = adc->oversamp;
837 
838 		return IIO_VAL_INT;
839 
840 	case IIO_CHAN_INFO_SAMP_FREQ:
841 		*val = adc->sample_freq;
842 
843 		return IIO_VAL_INT;
844 	}
845 
846 	return -EINVAL;
847 }
848 
849 static const struct iio_info stm32_dfsdm_info_audio = {
850 	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
851 	.read_raw = stm32_dfsdm_read_raw,
852 	.write_raw = stm32_dfsdm_write_raw,
853 };
854 
855 static const struct iio_info stm32_dfsdm_info_adc = {
856 	.read_raw = stm32_dfsdm_read_raw,
857 	.write_raw = stm32_dfsdm_write_raw,
858 };
859 
860 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
861 {
862 	struct stm32_dfsdm_adc *adc = arg;
863 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
864 	struct regmap *regmap = adc->dfsdm->regmap;
865 	unsigned int status, int_en;
866 
867 	regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
868 	regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
869 
870 	if (status & DFSDM_ISR_REOCF_MASK) {
871 		/* Read the data register clean the IRQ status */
872 		regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
873 		complete(&adc->completion);
874 	}
875 
876 	if (status & DFSDM_ISR_ROVRF_MASK) {
877 		if (int_en & DFSDM_CR2_ROVRIE_MASK)
878 			dev_warn(&indio_dev->dev, "Overrun detected\n");
879 		regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
880 				   DFSDM_ICR_CLRROVRF_MASK,
881 				   DFSDM_ICR_CLRROVRF_MASK);
882 	}
883 
884 	return IRQ_HANDLED;
885 }
886 
887 /*
888  * Define external info for SPI Frequency and audio sampling rate that can be
889  * configured by ASoC driver through consumer.h API
890  */
891 static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
892 	/* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
893 	{
894 		.name = "spi_clk_freq",
895 		.shared = IIO_SHARED_BY_TYPE,
896 		.read = dfsdm_adc_audio_get_spiclk,
897 		.write = dfsdm_adc_audio_set_spiclk,
898 	},
899 	{},
900 };
901 
902 static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
903 {
904 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
905 
906 	if (adc->dma_chan) {
907 		dma_free_coherent(adc->dma_chan->device->dev,
908 				  DFSDM_DMA_BUFFER_SIZE,
909 				  adc->rx_buf, adc->dma_buf);
910 		dma_release_channel(adc->dma_chan);
911 	}
912 }
913 
914 static int stm32_dfsdm_dma_request(struct iio_dev *indio_dev)
915 {
916 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
917 	struct dma_slave_config config = {
918 		.src_addr = (dma_addr_t)adc->dfsdm->phys_base +
919 			DFSDM_RDATAR(adc->fl_id),
920 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
921 	};
922 	int ret;
923 
924 	adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
925 	if (!adc->dma_chan)
926 		return -EINVAL;
927 
928 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
929 					 DFSDM_DMA_BUFFER_SIZE,
930 					 &adc->dma_buf, GFP_KERNEL);
931 	if (!adc->rx_buf) {
932 		ret = -ENOMEM;
933 		goto err_release;
934 	}
935 
936 	ret = dmaengine_slave_config(adc->dma_chan, &config);
937 	if (ret)
938 		goto err_free;
939 
940 	return 0;
941 
942 err_free:
943 	dma_free_coherent(adc->dma_chan->device->dev, DFSDM_DMA_BUFFER_SIZE,
944 			  adc->rx_buf, adc->dma_buf);
945 err_release:
946 	dma_release_channel(adc->dma_chan);
947 
948 	return ret;
949 }
950 
951 static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
952 					 struct iio_chan_spec *ch)
953 {
954 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
955 	int ret;
956 
957 	ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
958 	if (ret < 0)
959 		return ret;
960 
961 	ch->type = IIO_VOLTAGE;
962 	ch->indexed = 1;
963 
964 	/*
965 	 * IIO_CHAN_INFO_RAW: used to compute regular conversion
966 	 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
967 	 */
968 	ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
969 	ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO);
970 
971 	if (adc->dev_data->type == DFSDM_AUDIO) {
972 		ch->scan_type.sign = 's';
973 		ch->ext_info = dfsdm_adc_audio_ext_info;
974 	} else {
975 		ch->scan_type.sign = 'u';
976 	}
977 	ch->scan_type.realbits = 24;
978 	ch->scan_type.storagebits = 32;
979 
980 	return stm32_dfsdm_chan_configure(adc->dfsdm,
981 					  &adc->dfsdm->ch_list[ch->channel]);
982 }
983 
984 static int stm32_dfsdm_audio_init(struct iio_dev *indio_dev)
985 {
986 	struct iio_chan_spec *ch;
987 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
988 	struct stm32_dfsdm_channel *d_ch;
989 	int ret;
990 
991 	indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
992 	indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
993 
994 	ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
995 	if (!ch)
996 		return -ENOMEM;
997 
998 	ch->scan_index = 0;
999 
1000 	ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
1001 	if (ret < 0) {
1002 		dev_err(&indio_dev->dev, "Channels init failed\n");
1003 		return ret;
1004 	}
1005 	ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1006 
1007 	d_ch = &adc->dfsdm->ch_list[ch->channel];
1008 	if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1009 		adc->spi_freq = adc->dfsdm->spi_master_freq;
1010 
1011 	indio_dev->num_channels = 1;
1012 	indio_dev->channels = ch;
1013 
1014 	return stm32_dfsdm_dma_request(indio_dev);
1015 }
1016 
1017 static int stm32_dfsdm_adc_init(struct iio_dev *indio_dev)
1018 {
1019 	struct iio_chan_spec *ch;
1020 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1021 	int num_ch;
1022 	int ret, chan_idx;
1023 
1024 	adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1025 	ret = stm32_dfsdm_set_osrs(&adc->dfsdm->fl_list[adc->fl_id], 0,
1026 				   adc->oversamp);
1027 	if (ret < 0)
1028 		return ret;
1029 
1030 	num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
1031 					     "st,adc-channels");
1032 	if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
1033 		dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1034 		return num_ch < 0 ? num_ch : -EINVAL;
1035 	}
1036 
1037 	/* Bind to SD modulator IIO device */
1038 	adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1039 	if (IS_ERR(adc->hwc))
1040 		return -EPROBE_DEFER;
1041 
1042 	ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
1043 			  GFP_KERNEL);
1044 	if (!ch)
1045 		return -ENOMEM;
1046 
1047 	for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1048 		ch[chan_idx].scan_index = chan_idx;
1049 		ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
1050 		if (ret < 0) {
1051 			dev_err(&indio_dev->dev, "Channels init failed\n");
1052 			return ret;
1053 		}
1054 	}
1055 
1056 	indio_dev->num_channels = num_ch;
1057 	indio_dev->channels = ch;
1058 
1059 	init_completion(&adc->completion);
1060 
1061 	return 0;
1062 }
1063 
1064 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1065 	.type = DFSDM_IIO,
1066 	.init = stm32_dfsdm_adc_init,
1067 };
1068 
1069 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1070 	.type = DFSDM_AUDIO,
1071 	.init = stm32_dfsdm_audio_init,
1072 };
1073 
1074 static const struct of_device_id stm32_dfsdm_adc_match[] = {
1075 	{
1076 		.compatible = "st,stm32-dfsdm-adc",
1077 		.data = &stm32h7_dfsdm_adc_data,
1078 	},
1079 	{
1080 		.compatible = "st,stm32-dfsdm-dmic",
1081 		.data = &stm32h7_dfsdm_audio_data,
1082 	},
1083 	{}
1084 };
1085 
1086 static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1087 {
1088 	struct device *dev = &pdev->dev;
1089 	struct stm32_dfsdm_adc *adc;
1090 	struct device_node *np = dev->of_node;
1091 	const struct stm32_dfsdm_dev_data *dev_data;
1092 	struct iio_dev *iio;
1093 	char *name;
1094 	int ret, irq, val;
1095 
1096 
1097 	dev_data = of_device_get_match_data(dev);
1098 	iio = devm_iio_device_alloc(dev, sizeof(*adc));
1099 	if (!iio) {
1100 		dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1101 		return -ENOMEM;
1102 	}
1103 
1104 	adc = iio_priv(iio);
1105 	adc->dfsdm = dev_get_drvdata(dev->parent);
1106 
1107 	iio->dev.parent = dev;
1108 	iio->dev.of_node = np;
1109 	iio->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
1110 
1111 	platform_set_drvdata(pdev, adc);
1112 
1113 	ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1114 	if (ret != 0) {
1115 		dev_err(dev, "Missing reg property\n");
1116 		return -EINVAL;
1117 	}
1118 
1119 	name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1120 	if (!name)
1121 		return -ENOMEM;
1122 	if (dev_data->type == DFSDM_AUDIO) {
1123 		iio->info = &stm32_dfsdm_info_audio;
1124 		snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1125 	} else {
1126 		iio->info = &stm32_dfsdm_info_adc;
1127 		snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1128 	}
1129 	iio->name = name;
1130 
1131 	/*
1132 	 * In a first step IRQs generated for channels are not treated.
1133 	 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1134 	 */
1135 	irq = platform_get_irq(pdev, 0);
1136 	ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1137 			       0, pdev->name, adc);
1138 	if (ret < 0) {
1139 		dev_err(dev, "Failed to request IRQ\n");
1140 		return ret;
1141 	}
1142 
1143 	ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1144 	if (ret < 0) {
1145 		dev_err(dev, "Failed to set filter order\n");
1146 		return ret;
1147 	}
1148 
1149 	adc->dfsdm->fl_list[adc->fl_id].ford = val;
1150 
1151 	ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1152 	if (!ret)
1153 		adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1154 
1155 	adc->dev_data = dev_data;
1156 	ret = dev_data->init(iio);
1157 	if (ret < 0)
1158 		return ret;
1159 
1160 	ret = iio_device_register(iio);
1161 	if (ret < 0)
1162 		goto err_cleanup;
1163 
1164 	dev_err(dev, "of_platform_populate\n");
1165 	if (dev_data->type == DFSDM_AUDIO) {
1166 		ret = of_platform_populate(np, NULL, NULL, dev);
1167 		if (ret < 0) {
1168 			dev_err(dev, "Failed to find an audio DAI\n");
1169 			goto err_unregister;
1170 		}
1171 	}
1172 
1173 	return 0;
1174 
1175 err_unregister:
1176 	iio_device_unregister(iio);
1177 err_cleanup:
1178 	stm32_dfsdm_dma_release(iio);
1179 
1180 	return ret;
1181 }
1182 
1183 static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
1184 {
1185 	struct stm32_dfsdm_adc *adc = platform_get_drvdata(pdev);
1186 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1187 
1188 	if (adc->dev_data->type == DFSDM_AUDIO)
1189 		of_platform_depopulate(&pdev->dev);
1190 	iio_device_unregister(indio_dev);
1191 	stm32_dfsdm_dma_release(indio_dev);
1192 
1193 	return 0;
1194 }
1195 
1196 static struct platform_driver stm32_dfsdm_adc_driver = {
1197 	.driver = {
1198 		.name = "stm32-dfsdm-adc",
1199 		.of_match_table = stm32_dfsdm_adc_match,
1200 	},
1201 	.probe = stm32_dfsdm_adc_probe,
1202 	.remove = stm32_dfsdm_adc_remove,
1203 };
1204 module_platform_driver(stm32_dfsdm_adc_driver);
1205 
1206 MODULE_DESCRIPTION("STM32 sigma delta ADC");
1207 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1208 MODULE_LICENSE("GPL v2");
1209