1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is the ADC part of the STM32 DFSDM driver
4  *
5  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6  * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
7  */
8 
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iio/adc/stm32-dfsdm-adc.h>
12 #include <linux/iio/buffer.h>
13 #include <linux/iio/hw-consumer.h>
14 #include <linux/iio/sysfs.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/of_device.h>
23 #include <linux/platform_device.h>
24 #include <linux/regmap.h>
25 #include <linux/slab.h>
26 
27 #include "stm32-dfsdm.h"
28 
29 #define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
30 
31 /* Conversion timeout */
32 #define DFSDM_TIMEOUT_US 100000
33 #define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
34 
35 /* Oversampling attribute default */
36 #define DFSDM_DEFAULT_OVERSAMPLING  100
37 
38 /* Oversampling max values */
39 #define DFSDM_MAX_INT_OVERSAMPLING 256
40 #define DFSDM_MAX_FL_OVERSAMPLING 1024
41 
42 /* Limit filter output resolution to 31 bits. (i.e. sample range is +/-2^30) */
43 #define DFSDM_DATA_MAX BIT(30)
44 /*
45  * Data are output as two's complement data in a 24 bit field.
46  * Data from filters are in the range +/-2^(n-1)
47  * 2^(n-1) maximum positive value cannot be coded in 2's complement n bits
48  * An extra bit is required to avoid wrap-around of the binary code for 2^(n-1)
49  * So, the resolution of samples from filter is actually limited to 23 bits
50  */
51 #define DFSDM_DATA_RES 24
52 
53 /* Filter configuration */
54 #define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
55 			    DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
56 			    DFSDM_CR1_JSCAN_MASK)
57 
58 enum sd_converter_type {
59 	DFSDM_AUDIO,
60 	DFSDM_IIO,
61 };
62 
63 struct stm32_dfsdm_dev_data {
64 	int type;
65 	int (*init)(struct device *dev, struct iio_dev *indio_dev);
66 	unsigned int num_channels;
67 	const struct regmap_config *regmap_cfg;
68 };
69 
70 struct stm32_dfsdm_adc {
71 	struct stm32_dfsdm *dfsdm;
72 	const struct stm32_dfsdm_dev_data *dev_data;
73 	unsigned int fl_id;
74 	unsigned int nconv;
75 	unsigned long smask;
76 
77 	/* ADC specific */
78 	unsigned int oversamp;
79 	struct iio_hw_consumer *hwc;
80 	struct completion completion;
81 	u32 *buffer;
82 
83 	/* Audio specific */
84 	unsigned int spi_freq;  /* SPI bus clock frequency */
85 	unsigned int sample_freq; /* Sample frequency after filter decimation */
86 	int (*cb)(const void *data, size_t size, void *cb_priv);
87 	void *cb_priv;
88 
89 	/* DMA */
90 	u8 *rx_buf;
91 	unsigned int bufi; /* Buffer current position */
92 	unsigned int buf_sz; /* Buffer size */
93 	struct dma_chan	*dma_chan;
94 	dma_addr_t dma_buf;
95 };
96 
97 struct stm32_dfsdm_str2field {
98 	const char	*name;
99 	unsigned int	val;
100 };
101 
102 /* DFSDM channel serial interface type */
103 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
104 	{ "SPI_R", 0 }, /* SPI with data on rising edge */
105 	{ "SPI_F", 1 }, /* SPI with data on falling edge */
106 	{ "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
107 	{ "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
108 	{},
109 };
110 
111 /* DFSDM channel clock source */
112 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
113 	/* External SPI clock (CLKIN x) */
114 	{ "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
115 	/* Internal SPI clock (CLKOUT) */
116 	{ "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
117 	/* Internal SPI clock divided by 2 (falling edge) */
118 	{ "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
119 	/* Internal SPI clock divided by 2 (falling edge) */
120 	{ "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
121 	{},
122 };
123 
124 static int stm32_dfsdm_str2val(const char *str,
125 			       const struct stm32_dfsdm_str2field *list)
126 {
127 	const struct stm32_dfsdm_str2field *p = list;
128 
129 	for (p = list; p && p->name; p++)
130 		if (!strcmp(p->name, str))
131 			return p->val;
132 
133 	return -EINVAL;
134 }
135 
136 /**
137  * struct stm32_dfsdm_trig_info - DFSDM trigger info
138  * @name:		name of the trigger, corresponding to its source
139  * @jextsel:		trigger signal selection
140  */
141 struct stm32_dfsdm_trig_info {
142 	const char *name;
143 	unsigned int jextsel;
144 };
145 
146 /* hardware injected trigger enable, edge selection */
147 enum stm32_dfsdm_jexten {
148 	STM32_DFSDM_JEXTEN_DISABLED,
149 	STM32_DFSDM_JEXTEN_RISING_EDGE,
150 	STM32_DFSDM_JEXTEN_FALLING_EDGE,
151 	STM32_DFSDM_EXTEN_BOTH_EDGES,
152 };
153 
154 static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
155 	{ TIM1_TRGO, 0 },
156 	{ TIM1_TRGO2, 1 },
157 	{ TIM8_TRGO, 2 },
158 	{ TIM8_TRGO2, 3 },
159 	{ TIM3_TRGO, 4 },
160 	{ TIM4_TRGO, 5 },
161 	{ TIM16_OC1, 6 },
162 	{ TIM6_TRGO, 7 },
163 	{ TIM7_TRGO, 8 },
164 	{ LPTIM1_OUT, 26 },
165 	{ LPTIM2_OUT, 27 },
166 	{ LPTIM3_OUT, 28 },
167 	{},
168 };
169 
170 static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
171 				   struct iio_trigger *trig)
172 {
173 	int i;
174 
175 	/* lookup triggers registered by stm32 timer trigger driver */
176 	for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
177 		/**
178 		 * Checking both stm32 timer trigger type and trig name
179 		 * should be safe against arbitrary trigger names.
180 		 */
181 		if ((is_stm32_timer_trigger(trig) ||
182 		     is_stm32_lptim_trigger(trig)) &&
183 		    !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
184 			return stm32_dfsdm_trigs[i].jextsel;
185 		}
186 	}
187 
188 	return -EINVAL;
189 }
190 
191 static int stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter *fl,
192 				    unsigned int fast, unsigned int oversamp)
193 {
194 	unsigned int i, d, fosr, iosr;
195 	u64 res, max;
196 	int bits, shift;
197 	unsigned int m = 1;	/* multiplication factor */
198 	unsigned int p = fl->ford;	/* filter order (ford) */
199 	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fast];
200 
201 	pr_debug("%s: Requested oversampling: %d\n",  __func__, oversamp);
202 	/*
203 	 * This function tries to compute filter oversampling and integrator
204 	 * oversampling, base on oversampling ratio requested by user.
205 	 *
206 	 * Decimation d depends on the filter order and the oversampling ratios.
207 	 * ford: filter order
208 	 * fosr: filter over sampling ratio
209 	 * iosr: integrator over sampling ratio
210 	 */
211 	if (fl->ford == DFSDM_FASTSINC_ORDER) {
212 		m = 2;
213 		p = 2;
214 	}
215 
216 	/*
217 	 * Look for filter and integrator oversampling ratios which allows
218 	 * to maximize data output resolution.
219 	 */
220 	for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
221 		for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
222 			if (fast)
223 				d = fosr * iosr;
224 			else if (fl->ford == DFSDM_FASTSINC_ORDER)
225 				d = fosr * (iosr + 3) + 2;
226 			else
227 				d = fosr * (iosr - 1 + p) + p;
228 
229 			if (d > oversamp)
230 				break;
231 			else if (d != oversamp)
232 				continue;
233 			/*
234 			 * Check resolution (limited to signed 32 bits)
235 			 *   res <= 2^31
236 			 * Sincx filters:
237 			 *   res = m * fosr^p x iosr (with m=1, p=ford)
238 			 * FastSinc filter
239 			 *   res = m * fosr^p x iosr (with m=2, p=2)
240 			 */
241 			res = fosr;
242 			for (i = p - 1; i > 0; i--) {
243 				res = res * (u64)fosr;
244 				if (res > DFSDM_DATA_MAX)
245 					break;
246 			}
247 			if (res > DFSDM_DATA_MAX)
248 				continue;
249 
250 			res = res * (u64)m * (u64)iosr;
251 			if (res > DFSDM_DATA_MAX)
252 				continue;
253 
254 			if (res >= flo->res) {
255 				flo->res = res;
256 				flo->fosr = fosr;
257 				flo->iosr = iosr;
258 
259 				bits = fls(flo->res);
260 				/* 8 LBSs in data register contain chan info */
261 				max = flo->res << 8;
262 
263 				/* if resolution is not a power of two */
264 				if (flo->res > BIT(bits - 1))
265 					bits++;
266 				else
267 					max--;
268 
269 				shift = DFSDM_DATA_RES - bits;
270 				/*
271 				 * Compute right/left shift
272 				 * Right shift is performed by hardware
273 				 * when transferring samples to data register.
274 				 * Left shift is done by software on buffer
275 				 */
276 				if (shift > 0) {
277 					/* Resolution is lower than 24 bits */
278 					flo->rshift = 0;
279 					flo->lshift = shift;
280 				} else {
281 					/*
282 					 * If resolution is 24 bits or more,
283 					 * max positive value may be ambiguous
284 					 * (equal to max negative value as sign
285 					 * bit is dropped).
286 					 * Reduce resolution to 23 bits (rshift)
287 					 * to keep the sign on bit 23 and treat
288 					 * saturation before rescaling on 24
289 					 * bits (lshift).
290 					 */
291 					flo->rshift = 1 - shift;
292 					flo->lshift = 1;
293 					max >>= flo->rshift;
294 				}
295 				flo->max = (s32)max;
296 
297 				pr_debug("%s: fast %d, fosr %d, iosr %d, res 0x%llx/%d bits, rshift %d, lshift %d\n",
298 					 __func__, fast, flo->fosr, flo->iosr,
299 					 flo->res, bits, flo->rshift,
300 					 flo->lshift);
301 			}
302 		}
303 	}
304 
305 	if (!flo->res)
306 		return -EINVAL;
307 
308 	return 0;
309 }
310 
311 static int stm32_dfsdm_compute_all_osrs(struct iio_dev *indio_dev,
312 					unsigned int oversamp)
313 {
314 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
315 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
316 	int ret0, ret1;
317 
318 	memset(&fl->flo[0], 0, sizeof(fl->flo[0]));
319 	memset(&fl->flo[1], 0, sizeof(fl->flo[1]));
320 
321 	ret0 = stm32_dfsdm_compute_osrs(fl, 0, oversamp);
322 	ret1 = stm32_dfsdm_compute_osrs(fl, 1, oversamp);
323 	if (ret0 < 0 && ret1 < 0) {
324 		dev_err(&indio_dev->dev,
325 			"Filter parameters not found: errors %d/%d\n",
326 			ret0, ret1);
327 		return -EINVAL;
328 	}
329 
330 	return 0;
331 }
332 
333 static int stm32_dfsdm_start_channel(struct iio_dev *indio_dev)
334 {
335 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
336 	struct regmap *regmap = adc->dfsdm->regmap;
337 	const struct iio_chan_spec *chan;
338 	unsigned int bit;
339 	int ret;
340 
341 	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
342 		chan = indio_dev->channels + bit;
343 		ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
344 					 DFSDM_CHCFGR1_CHEN_MASK,
345 					 DFSDM_CHCFGR1_CHEN(1));
346 		if (ret < 0)
347 			return ret;
348 	}
349 
350 	return 0;
351 }
352 
353 static void stm32_dfsdm_stop_channel(struct iio_dev *indio_dev)
354 {
355 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
356 	struct regmap *regmap = adc->dfsdm->regmap;
357 	const struct iio_chan_spec *chan;
358 	unsigned int bit;
359 
360 	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
361 		chan = indio_dev->channels + bit;
362 		regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
363 				   DFSDM_CHCFGR1_CHEN_MASK,
364 				   DFSDM_CHCFGR1_CHEN(0));
365 	}
366 }
367 
368 static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
369 				      struct stm32_dfsdm_channel *ch)
370 {
371 	unsigned int id = ch->id;
372 	struct regmap *regmap = dfsdm->regmap;
373 	int ret;
374 
375 	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
376 				 DFSDM_CHCFGR1_SITP_MASK,
377 				 DFSDM_CHCFGR1_SITP(ch->type));
378 	if (ret < 0)
379 		return ret;
380 	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
381 				 DFSDM_CHCFGR1_SPICKSEL_MASK,
382 				 DFSDM_CHCFGR1_SPICKSEL(ch->src));
383 	if (ret < 0)
384 		return ret;
385 	return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
386 				  DFSDM_CHCFGR1_CHINSEL_MASK,
387 				  DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
388 }
389 
390 static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
391 				    unsigned int fl_id,
392 				    struct iio_trigger *trig)
393 {
394 	struct stm32_dfsdm *dfsdm = adc->dfsdm;
395 	int ret;
396 
397 	/* Enable filter */
398 	ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
399 				 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
400 	if (ret < 0)
401 		return ret;
402 
403 	/* Nothing more to do for injected (scan mode/triggered) conversions */
404 	if (adc->nconv > 1 || trig)
405 		return 0;
406 
407 	/* Software start (single or continuous) regular conversion */
408 	return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
409 				  DFSDM_CR1_RSWSTART_MASK,
410 				  DFSDM_CR1_RSWSTART(1));
411 }
412 
413 static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
414 				    unsigned int fl_id)
415 {
416 	/* Disable conversion */
417 	regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
418 			   DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
419 }
420 
421 static int stm32_dfsdm_filter_set_trig(struct iio_dev *indio_dev,
422 				       unsigned int fl_id,
423 				       struct iio_trigger *trig)
424 {
425 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
426 	struct regmap *regmap = adc->dfsdm->regmap;
427 	u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
428 	int ret;
429 
430 	if (trig) {
431 		ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
432 		if (ret < 0)
433 			return ret;
434 
435 		/* set trigger source and polarity (default to rising edge) */
436 		jextsel = ret;
437 		jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
438 	}
439 
440 	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
441 				 DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
442 				 DFSDM_CR1_JEXTSEL(jextsel) |
443 				 DFSDM_CR1_JEXTEN(jexten));
444 	if (ret < 0)
445 		return ret;
446 
447 	return 0;
448 }
449 
450 static int stm32_dfsdm_channels_configure(struct iio_dev *indio_dev,
451 					  unsigned int fl_id,
452 					  struct iio_trigger *trig)
453 {
454 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
455 	struct regmap *regmap = adc->dfsdm->regmap;
456 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
457 	struct stm32_dfsdm_filter_osr *flo = &fl->flo[0];
458 	const struct iio_chan_spec *chan;
459 	unsigned int bit;
460 	int ret;
461 
462 	fl->fast = 0;
463 
464 	/*
465 	 * In continuous mode, use fast mode configuration,
466 	 * if it provides a better resolution.
467 	 */
468 	if (adc->nconv == 1 && !trig &&
469 	    (indio_dev->currentmode & INDIO_BUFFER_SOFTWARE)) {
470 		if (fl->flo[1].res >= fl->flo[0].res) {
471 			fl->fast = 1;
472 			flo = &fl->flo[1];
473 		}
474 	}
475 
476 	if (!flo->res)
477 		return -EINVAL;
478 
479 	for_each_set_bit(bit, &adc->smask,
480 			 sizeof(adc->smask) * BITS_PER_BYTE) {
481 		chan = indio_dev->channels + bit;
482 
483 		ret = regmap_update_bits(regmap,
484 					 DFSDM_CHCFGR2(chan->channel),
485 					 DFSDM_CHCFGR2_DTRBS_MASK,
486 					 DFSDM_CHCFGR2_DTRBS(flo->rshift));
487 		if (ret)
488 			return ret;
489 	}
490 
491 	return 0;
492 }
493 
494 static int stm32_dfsdm_filter_configure(struct iio_dev *indio_dev,
495 					unsigned int fl_id,
496 					struct iio_trigger *trig)
497 {
498 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
499 	struct regmap *regmap = adc->dfsdm->regmap;
500 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
501 	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
502 	u32 cr1;
503 	const struct iio_chan_spec *chan;
504 	unsigned int bit, jchg = 0;
505 	int ret;
506 
507 	/* Average integrator oversampling */
508 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
509 				 DFSDM_FCR_IOSR(flo->iosr - 1));
510 	if (ret)
511 		return ret;
512 
513 	/* Filter order and Oversampling */
514 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
515 				 DFSDM_FCR_FOSR(flo->fosr - 1));
516 	if (ret)
517 		return ret;
518 
519 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
520 				 DFSDM_FCR_FORD(fl->ford));
521 	if (ret)
522 		return ret;
523 
524 	ret = stm32_dfsdm_filter_set_trig(indio_dev, fl_id, trig);
525 	if (ret)
526 		return ret;
527 
528 	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
529 				 DFSDM_CR1_FAST_MASK,
530 				 DFSDM_CR1_FAST(fl->fast));
531 	if (ret)
532 		return ret;
533 
534 	/*
535 	 * DFSDM modes configuration W.R.T audio/iio type modes
536 	 * ----------------------------------------------------------------
537 	 * Modes         | regular |  regular     | injected | injected   |
538 	 *               |         |  continuous  |          | + scan     |
539 	 * --------------|---------|--------------|----------|------------|
540 	 * single conv   |    x    |              |          |            |
541 	 * (1 chan)      |         |              |          |            |
542 	 * --------------|---------|--------------|----------|------------|
543 	 * 1 Audio chan	 |         | sample freq  |          |            |
544 	 *               |         | or sync_mode |          |            |
545 	 * --------------|---------|--------------|----------|------------|
546 	 * 1 IIO chan	 |         | sample freq  | trigger  |            |
547 	 *               |         | or sync_mode |          |            |
548 	 * --------------|---------|--------------|----------|------------|
549 	 * 2+ IIO chans  |         |              |          | trigger or |
550 	 *               |         |              |          | sync_mode  |
551 	 * ----------------------------------------------------------------
552 	 */
553 	if (adc->nconv == 1 && !trig) {
554 		bit = __ffs(adc->smask);
555 		chan = indio_dev->channels + bit;
556 
557 		/* Use regular conversion for single channel without trigger */
558 		cr1 = DFSDM_CR1_RCH(chan->channel);
559 
560 		/* Continuous conversions triggered by SPI clk in buffer mode */
561 		if (indio_dev->currentmode & INDIO_BUFFER_SOFTWARE)
562 			cr1 |= DFSDM_CR1_RCONT(1);
563 
564 		cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
565 	} else {
566 		/* Use injected conversion for multiple channels */
567 		for_each_set_bit(bit, &adc->smask,
568 				 sizeof(adc->smask) * BITS_PER_BYTE) {
569 			chan = indio_dev->channels + bit;
570 			jchg |= BIT(chan->channel);
571 		}
572 		ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
573 		if (ret < 0)
574 			return ret;
575 
576 		/* Use scan mode for multiple channels */
577 		cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
578 
579 		/*
580 		 * Continuous conversions not supported in injected mode,
581 		 * either use:
582 		 * - conversions in sync with filter 0
583 		 * - triggered conversions
584 		 */
585 		if (!fl->sync_mode && !trig)
586 			return -EINVAL;
587 		cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
588 	}
589 
590 	return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
591 				  cr1);
592 }
593 
594 static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
595 					struct iio_dev *indio_dev,
596 					struct iio_chan_spec *ch)
597 {
598 	struct stm32_dfsdm_channel *df_ch;
599 	const char *of_str;
600 	int chan_idx = ch->scan_index;
601 	int ret, val;
602 
603 	ret = of_property_read_u32_index(indio_dev->dev.of_node,
604 					 "st,adc-channels", chan_idx,
605 					 &ch->channel);
606 	if (ret < 0) {
607 		dev_err(&indio_dev->dev,
608 			" Error parsing 'st,adc-channels' for idx %d\n",
609 			chan_idx);
610 		return ret;
611 	}
612 	if (ch->channel >= dfsdm->num_chs) {
613 		dev_err(&indio_dev->dev,
614 			" Error bad channel number %d (max = %d)\n",
615 			ch->channel, dfsdm->num_chs);
616 		return -EINVAL;
617 	}
618 
619 	ret = of_property_read_string_index(indio_dev->dev.of_node,
620 					    "st,adc-channel-names", chan_idx,
621 					    &ch->datasheet_name);
622 	if (ret < 0) {
623 		dev_err(&indio_dev->dev,
624 			" Error parsing 'st,adc-channel-names' for idx %d\n",
625 			chan_idx);
626 		return ret;
627 	}
628 
629 	df_ch =  &dfsdm->ch_list[ch->channel];
630 	df_ch->id = ch->channel;
631 
632 	ret = of_property_read_string_index(indio_dev->dev.of_node,
633 					    "st,adc-channel-types", chan_idx,
634 					    &of_str);
635 	if (!ret) {
636 		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
637 		if (val < 0)
638 			return val;
639 	} else {
640 		val = 0;
641 	}
642 	df_ch->type = val;
643 
644 	ret = of_property_read_string_index(indio_dev->dev.of_node,
645 					    "st,adc-channel-clk-src", chan_idx,
646 					    &of_str);
647 	if (!ret) {
648 		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
649 		if (val < 0)
650 			return val;
651 	} else {
652 		val = 0;
653 	}
654 	df_ch->src = val;
655 
656 	ret = of_property_read_u32_index(indio_dev->dev.of_node,
657 					 "st,adc-alt-channel", chan_idx,
658 					 &df_ch->alt_si);
659 	if (ret < 0)
660 		df_ch->alt_si = 0;
661 
662 	return 0;
663 }
664 
665 static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
666 					  uintptr_t priv,
667 					  const struct iio_chan_spec *chan,
668 					  char *buf)
669 {
670 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
671 
672 	return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
673 }
674 
675 static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
676 				   unsigned int sample_freq,
677 				   unsigned int spi_freq)
678 {
679 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
680 	unsigned int oversamp;
681 	int ret;
682 
683 	oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
684 	if (spi_freq % sample_freq)
685 		dev_dbg(&indio_dev->dev,
686 			"Rate not accurate. requested (%u), actual (%u)\n",
687 			sample_freq, spi_freq / oversamp);
688 
689 	ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp);
690 	if (ret < 0)
691 		return ret;
692 
693 	adc->sample_freq = spi_freq / oversamp;
694 	adc->oversamp = oversamp;
695 
696 	return 0;
697 }
698 
699 static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
700 					  uintptr_t priv,
701 					  const struct iio_chan_spec *chan,
702 					  const char *buf, size_t len)
703 {
704 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
705 	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
706 	unsigned int sample_freq = adc->sample_freq;
707 	unsigned int spi_freq;
708 	int ret;
709 
710 	dev_err(&indio_dev->dev, "enter %s\n", __func__);
711 	/* If DFSDM is master on SPI, SPI freq can not be updated */
712 	if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
713 		return -EPERM;
714 
715 	ret = kstrtoint(buf, 0, &spi_freq);
716 	if (ret)
717 		return ret;
718 
719 	if (!spi_freq)
720 		return -EINVAL;
721 
722 	if (sample_freq) {
723 		ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
724 		if (ret < 0)
725 			return ret;
726 	}
727 	adc->spi_freq = spi_freq;
728 
729 	return len;
730 }
731 
732 static int stm32_dfsdm_start_conv(struct iio_dev *indio_dev,
733 				  struct iio_trigger *trig)
734 {
735 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
736 	struct regmap *regmap = adc->dfsdm->regmap;
737 	int ret;
738 
739 	ret = stm32_dfsdm_channels_configure(indio_dev, adc->fl_id, trig);
740 	if (ret < 0)
741 		return ret;
742 
743 	ret = stm32_dfsdm_start_channel(indio_dev);
744 	if (ret < 0)
745 		return ret;
746 
747 	ret = stm32_dfsdm_filter_configure(indio_dev, adc->fl_id, trig);
748 	if (ret < 0)
749 		goto stop_channels;
750 
751 	ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
752 	if (ret < 0)
753 		goto filter_unconfigure;
754 
755 	return 0;
756 
757 filter_unconfigure:
758 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
759 			   DFSDM_CR1_CFG_MASK, 0);
760 stop_channels:
761 	stm32_dfsdm_stop_channel(indio_dev);
762 
763 	return ret;
764 }
765 
766 static void stm32_dfsdm_stop_conv(struct iio_dev *indio_dev)
767 {
768 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
769 	struct regmap *regmap = adc->dfsdm->regmap;
770 
771 	stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
772 
773 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
774 			   DFSDM_CR1_CFG_MASK, 0);
775 
776 	stm32_dfsdm_stop_channel(indio_dev);
777 }
778 
779 static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
780 				     unsigned int val)
781 {
782 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
783 	unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
784 	unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
785 
786 	/*
787 	 * DMA cyclic transfers are used, buffer is split into two periods.
788 	 * There should be :
789 	 * - always one buffer (period) DMA is working on
790 	 * - one buffer (period) driver pushed to ASoC side.
791 	 */
792 	watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
793 	adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
794 
795 	return 0;
796 }
797 
798 static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
799 {
800 	struct dma_tx_state state;
801 	enum dma_status status;
802 
803 	status = dmaengine_tx_status(adc->dma_chan,
804 				     adc->dma_chan->cookie,
805 				     &state);
806 	if (status == DMA_IN_PROGRESS) {
807 		/* Residue is size in bytes from end of buffer */
808 		unsigned int i = adc->buf_sz - state.residue;
809 		unsigned int size;
810 
811 		/* Return available bytes */
812 		if (i >= adc->bufi)
813 			size = i - adc->bufi;
814 		else
815 			size = adc->buf_sz + i - adc->bufi;
816 
817 		return size;
818 	}
819 
820 	return 0;
821 }
822 
823 static inline void stm32_dfsdm_process_data(struct stm32_dfsdm_adc *adc,
824 					    s32 *buffer)
825 {
826 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
827 	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
828 	unsigned int i = adc->nconv;
829 	s32 *ptr = buffer;
830 
831 	while (i--) {
832 		/* Mask 8 LSB that contains the channel ID */
833 		*ptr &= 0xFFFFFF00;
834 		/* Convert 2^(n-1) sample to 2^(n-1)-1 to avoid wrap-around */
835 		if (*ptr > flo->max)
836 			*ptr -= 1;
837 		/*
838 		 * Samples from filter are retrieved with 23 bits resolution
839 		 * or less. Shift left to align MSB on 24 bits.
840 		 */
841 		*ptr <<= flo->lshift;
842 
843 		ptr++;
844 	}
845 }
846 
847 static void stm32_dfsdm_dma_buffer_done(void *data)
848 {
849 	struct iio_dev *indio_dev = data;
850 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
851 	int available = stm32_dfsdm_adc_dma_residue(adc);
852 	size_t old_pos;
853 
854 	/*
855 	 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
856 	 * offers only an interface to push data samples per samples.
857 	 * For this reason IIO buffer interface is not used and interface is
858 	 * bypassed using a private callback registered by ASoC.
859 	 * This should be a temporary solution waiting a cyclic DMA engine
860 	 * support in IIO.
861 	 */
862 
863 	dev_dbg(&indio_dev->dev, "%s: pos = %d, available = %d\n", __func__,
864 		adc->bufi, available);
865 	old_pos = adc->bufi;
866 
867 	while (available >= indio_dev->scan_bytes) {
868 		s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
869 
870 		stm32_dfsdm_process_data(adc, buffer);
871 
872 		available -= indio_dev->scan_bytes;
873 		adc->bufi += indio_dev->scan_bytes;
874 		if (adc->bufi >= adc->buf_sz) {
875 			if (adc->cb)
876 				adc->cb(&adc->rx_buf[old_pos],
877 					 adc->buf_sz - old_pos, adc->cb_priv);
878 			adc->bufi = 0;
879 			old_pos = 0;
880 		}
881 		/*
882 		 * In DMA mode the trigger services of IIO are not used
883 		 * (e.g. no call to iio_trigger_poll).
884 		 * Calling irq handler associated to the hardware trigger is not
885 		 * relevant as the conversions have already been done. Data
886 		 * transfers are performed directly in DMA callback instead.
887 		 * This implementation avoids to call trigger irq handler that
888 		 * may sleep, in an atomic context (DMA irq handler context).
889 		 */
890 		if (adc->dev_data->type == DFSDM_IIO)
891 			iio_push_to_buffers(indio_dev, buffer);
892 	}
893 	if (adc->cb)
894 		adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
895 			adc->cb_priv);
896 }
897 
898 static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
899 {
900 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
901 	/*
902 	 * The DFSDM supports half-word transfers. However, for 16 bits record,
903 	 * 4 bytes buswidth is kept, to avoid losing samples LSBs when left
904 	 * shift is required.
905 	 */
906 	struct dma_slave_config config = {
907 		.src_addr = (dma_addr_t)adc->dfsdm->phys_base,
908 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
909 	};
910 	struct dma_async_tx_descriptor *desc;
911 	dma_cookie_t cookie;
912 	int ret;
913 
914 	if (!adc->dma_chan)
915 		return -EINVAL;
916 
917 	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
918 		adc->buf_sz, adc->buf_sz / 2);
919 
920 	if (adc->nconv == 1 && !indio_dev->trig)
921 		config.src_addr += DFSDM_RDATAR(adc->fl_id);
922 	else
923 		config.src_addr += DFSDM_JDATAR(adc->fl_id);
924 	ret = dmaengine_slave_config(adc->dma_chan, &config);
925 	if (ret)
926 		return ret;
927 
928 	/* Prepare a DMA cyclic transaction */
929 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
930 					 adc->dma_buf,
931 					 adc->buf_sz, adc->buf_sz / 2,
932 					 DMA_DEV_TO_MEM,
933 					 DMA_PREP_INTERRUPT);
934 	if (!desc)
935 		return -EBUSY;
936 
937 	desc->callback = stm32_dfsdm_dma_buffer_done;
938 	desc->callback_param = indio_dev;
939 
940 	cookie = dmaengine_submit(desc);
941 	ret = dma_submit_error(cookie);
942 	if (ret)
943 		goto err_stop_dma;
944 
945 	/* Issue pending DMA requests */
946 	dma_async_issue_pending(adc->dma_chan);
947 
948 	if (adc->nconv == 1 && !indio_dev->trig) {
949 		/* Enable regular DMA transfer*/
950 		ret = regmap_update_bits(adc->dfsdm->regmap,
951 					 DFSDM_CR1(adc->fl_id),
952 					 DFSDM_CR1_RDMAEN_MASK,
953 					 DFSDM_CR1_RDMAEN_MASK);
954 	} else {
955 		/* Enable injected DMA transfer*/
956 		ret = regmap_update_bits(adc->dfsdm->regmap,
957 					 DFSDM_CR1(adc->fl_id),
958 					 DFSDM_CR1_JDMAEN_MASK,
959 					 DFSDM_CR1_JDMAEN_MASK);
960 	}
961 
962 	if (ret < 0)
963 		goto err_stop_dma;
964 
965 	return 0;
966 
967 err_stop_dma:
968 	dmaengine_terminate_all(adc->dma_chan);
969 
970 	return ret;
971 }
972 
973 static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
974 {
975 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
976 
977 	if (!adc->dma_chan)
978 		return;
979 
980 	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
981 			   DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK, 0);
982 	dmaengine_terminate_all(adc->dma_chan);
983 }
984 
985 static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
986 					const unsigned long *scan_mask)
987 {
988 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
989 
990 	adc->nconv = bitmap_weight(scan_mask, indio_dev->masklength);
991 	adc->smask = *scan_mask;
992 
993 	dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
994 
995 	return 0;
996 }
997 
998 static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
999 {
1000 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1001 	int ret;
1002 
1003 	/* Reset adc buffer index */
1004 	adc->bufi = 0;
1005 
1006 	if (adc->hwc) {
1007 		ret = iio_hw_consumer_enable(adc->hwc);
1008 		if (ret < 0)
1009 			return ret;
1010 	}
1011 
1012 	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1013 	if (ret < 0)
1014 		goto err_stop_hwc;
1015 
1016 	ret = stm32_dfsdm_adc_dma_start(indio_dev);
1017 	if (ret) {
1018 		dev_err(&indio_dev->dev, "Can't start DMA\n");
1019 		goto stop_dfsdm;
1020 	}
1021 
1022 	ret = stm32_dfsdm_start_conv(indio_dev, indio_dev->trig);
1023 	if (ret) {
1024 		dev_err(&indio_dev->dev, "Can't start conversion\n");
1025 		goto err_stop_dma;
1026 	}
1027 
1028 	return 0;
1029 
1030 err_stop_dma:
1031 	stm32_dfsdm_adc_dma_stop(indio_dev);
1032 stop_dfsdm:
1033 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1034 err_stop_hwc:
1035 	if (adc->hwc)
1036 		iio_hw_consumer_disable(adc->hwc);
1037 
1038 	return ret;
1039 }
1040 
1041 static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1042 {
1043 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1044 
1045 	stm32_dfsdm_stop_conv(indio_dev);
1046 
1047 	stm32_dfsdm_adc_dma_stop(indio_dev);
1048 
1049 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1050 
1051 	if (adc->hwc)
1052 		iio_hw_consumer_disable(adc->hwc);
1053 
1054 	return 0;
1055 }
1056 
1057 static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
1058 	.postenable = &stm32_dfsdm_postenable,
1059 	.predisable = &stm32_dfsdm_predisable,
1060 };
1061 
1062 /**
1063  * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
1064  *                             DMA transfer period is achieved.
1065  *
1066  * @iio_dev: Handle to IIO device.
1067  * @cb: Pointer to callback function:
1068  *      - data: pointer to data buffer
1069  *      - size: size in byte of the data buffer
1070  *      - private: pointer to consumer private structure.
1071  * @private: Pointer to consumer private structure.
1072  */
1073 int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
1074 			    int (*cb)(const void *data, size_t size,
1075 				      void *private),
1076 			    void *private)
1077 {
1078 	struct stm32_dfsdm_adc *adc;
1079 
1080 	if (!iio_dev)
1081 		return -EINVAL;
1082 	adc = iio_priv(iio_dev);
1083 
1084 	adc->cb = cb;
1085 	adc->cb_priv = private;
1086 
1087 	return 0;
1088 }
1089 EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
1090 
1091 /**
1092  * stm32_dfsdm_release_buff_cb - unregister buffer callback
1093  *
1094  * @iio_dev: Handle to IIO device.
1095  */
1096 int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
1097 {
1098 	struct stm32_dfsdm_adc *adc;
1099 
1100 	if (!iio_dev)
1101 		return -EINVAL;
1102 	adc = iio_priv(iio_dev);
1103 
1104 	adc->cb = NULL;
1105 	adc->cb_priv = NULL;
1106 
1107 	return 0;
1108 }
1109 EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
1110 
1111 static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
1112 				   const struct iio_chan_spec *chan, int *res)
1113 {
1114 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1115 	long timeout;
1116 	int ret;
1117 
1118 	reinit_completion(&adc->completion);
1119 
1120 	adc->buffer = res;
1121 
1122 	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1123 	if (ret < 0)
1124 		return ret;
1125 
1126 	ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1127 				 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
1128 	if (ret < 0)
1129 		goto stop_dfsdm;
1130 
1131 	adc->nconv = 1;
1132 	adc->smask = BIT(chan->scan_index);
1133 	ret = stm32_dfsdm_start_conv(indio_dev, NULL);
1134 	if (ret < 0) {
1135 		regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1136 				   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1137 		goto stop_dfsdm;
1138 	}
1139 
1140 	timeout = wait_for_completion_interruptible_timeout(&adc->completion,
1141 							    DFSDM_TIMEOUT);
1142 
1143 	/* Mask IRQ for regular conversion achievement*/
1144 	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1145 			   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1146 
1147 	if (timeout == 0)
1148 		ret = -ETIMEDOUT;
1149 	else if (timeout < 0)
1150 		ret = timeout;
1151 	else
1152 		ret = IIO_VAL_INT;
1153 
1154 	stm32_dfsdm_stop_conv(indio_dev);
1155 
1156 	stm32_dfsdm_process_data(adc, res);
1157 
1158 stop_dfsdm:
1159 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1160 
1161 	return ret;
1162 }
1163 
1164 static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
1165 				 struct iio_chan_spec const *chan,
1166 				 int val, int val2, long mask)
1167 {
1168 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1169 	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
1170 	unsigned int spi_freq;
1171 	int ret = -EINVAL;
1172 
1173 	switch (ch->src) {
1174 	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
1175 		spi_freq = adc->dfsdm->spi_master_freq;
1176 		break;
1177 	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
1178 	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
1179 		spi_freq = adc->dfsdm->spi_master_freq / 2;
1180 		break;
1181 	default:
1182 		spi_freq = adc->spi_freq;
1183 	}
1184 
1185 	switch (mask) {
1186 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1187 		ret = iio_device_claim_direct_mode(indio_dev);
1188 		if (ret)
1189 			return ret;
1190 
1191 		ret = stm32_dfsdm_compute_all_osrs(indio_dev, val);
1192 		if (!ret) {
1193 			dev_dbg(&indio_dev->dev,
1194 				"Sampling rate changed from (%u) to (%u)\n",
1195 				adc->sample_freq, spi_freq / val);
1196 			adc->oversamp = val;
1197 			adc->sample_freq = spi_freq / val;
1198 		}
1199 		iio_device_release_direct_mode(indio_dev);
1200 		return ret;
1201 
1202 	case IIO_CHAN_INFO_SAMP_FREQ:
1203 		if (!val)
1204 			return -EINVAL;
1205 
1206 		ret = iio_device_claim_direct_mode(indio_dev);
1207 		if (ret)
1208 			return ret;
1209 
1210 		ret = dfsdm_adc_set_samp_freq(indio_dev, val, spi_freq);
1211 		iio_device_release_direct_mode(indio_dev);
1212 		return ret;
1213 	}
1214 
1215 	return -EINVAL;
1216 }
1217 
1218 static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
1219 				struct iio_chan_spec const *chan, int *val,
1220 				int *val2, long mask)
1221 {
1222 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1223 	int ret;
1224 
1225 	switch (mask) {
1226 	case IIO_CHAN_INFO_RAW:
1227 		ret = iio_device_claim_direct_mode(indio_dev);
1228 		if (ret)
1229 			return ret;
1230 		ret = iio_hw_consumer_enable(adc->hwc);
1231 		if (ret < 0) {
1232 			dev_err(&indio_dev->dev,
1233 				"%s: IIO enable failed (channel %d)\n",
1234 				__func__, chan->channel);
1235 			iio_device_release_direct_mode(indio_dev);
1236 			return ret;
1237 		}
1238 		ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
1239 		iio_hw_consumer_disable(adc->hwc);
1240 		if (ret < 0) {
1241 			dev_err(&indio_dev->dev,
1242 				"%s: Conversion failed (channel %d)\n",
1243 				__func__, chan->channel);
1244 			iio_device_release_direct_mode(indio_dev);
1245 			return ret;
1246 		}
1247 		iio_device_release_direct_mode(indio_dev);
1248 		return IIO_VAL_INT;
1249 
1250 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1251 		*val = adc->oversamp;
1252 
1253 		return IIO_VAL_INT;
1254 
1255 	case IIO_CHAN_INFO_SAMP_FREQ:
1256 		*val = adc->sample_freq;
1257 
1258 		return IIO_VAL_INT;
1259 	}
1260 
1261 	return -EINVAL;
1262 }
1263 
1264 static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
1265 					struct iio_trigger *trig)
1266 {
1267 	return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1268 }
1269 
1270 static const struct iio_info stm32_dfsdm_info_audio = {
1271 	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1272 	.read_raw = stm32_dfsdm_read_raw,
1273 	.write_raw = stm32_dfsdm_write_raw,
1274 	.update_scan_mode = stm32_dfsdm_update_scan_mode,
1275 };
1276 
1277 static const struct iio_info stm32_dfsdm_info_adc = {
1278 	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1279 	.read_raw = stm32_dfsdm_read_raw,
1280 	.write_raw = stm32_dfsdm_write_raw,
1281 	.update_scan_mode = stm32_dfsdm_update_scan_mode,
1282 	.validate_trigger = stm32_dfsdm_validate_trigger,
1283 };
1284 
1285 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
1286 {
1287 	struct iio_dev *indio_dev = arg;
1288 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1289 	struct regmap *regmap = adc->dfsdm->regmap;
1290 	unsigned int status, int_en;
1291 
1292 	regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
1293 	regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
1294 
1295 	if (status & DFSDM_ISR_REOCF_MASK) {
1296 		/* Read the data register clean the IRQ status */
1297 		regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
1298 		complete(&adc->completion);
1299 	}
1300 
1301 	if (status & DFSDM_ISR_ROVRF_MASK) {
1302 		if (int_en & DFSDM_CR2_ROVRIE_MASK)
1303 			dev_warn(&indio_dev->dev, "Overrun detected\n");
1304 		regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
1305 				   DFSDM_ICR_CLRROVRF_MASK,
1306 				   DFSDM_ICR_CLRROVRF_MASK);
1307 	}
1308 
1309 	return IRQ_HANDLED;
1310 }
1311 
1312 /*
1313  * Define external info for SPI Frequency and audio sampling rate that can be
1314  * configured by ASoC driver through consumer.h API
1315  */
1316 static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
1317 	/* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
1318 	{
1319 		.name = "spi_clk_freq",
1320 		.shared = IIO_SHARED_BY_TYPE,
1321 		.read = dfsdm_adc_audio_get_spiclk,
1322 		.write = dfsdm_adc_audio_set_spiclk,
1323 	},
1324 	{},
1325 };
1326 
1327 static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
1328 {
1329 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1330 
1331 	if (adc->dma_chan) {
1332 		dma_free_coherent(adc->dma_chan->device->dev,
1333 				  DFSDM_DMA_BUFFER_SIZE,
1334 				  adc->rx_buf, adc->dma_buf);
1335 		dma_release_channel(adc->dma_chan);
1336 	}
1337 }
1338 
1339 static int stm32_dfsdm_dma_request(struct device *dev,
1340 				   struct iio_dev *indio_dev)
1341 {
1342 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1343 
1344 	adc->dma_chan = dma_request_chan(dev, "rx");
1345 	if (IS_ERR(adc->dma_chan)) {
1346 		int ret = PTR_ERR(adc->dma_chan);
1347 
1348 		adc->dma_chan = NULL;
1349 		return ret;
1350 	}
1351 
1352 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1353 					 DFSDM_DMA_BUFFER_SIZE,
1354 					 &adc->dma_buf, GFP_KERNEL);
1355 	if (!adc->rx_buf) {
1356 		dma_release_channel(adc->dma_chan);
1357 		return -ENOMEM;
1358 	}
1359 
1360 	indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1361 	indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1362 
1363 	return 0;
1364 }
1365 
1366 static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
1367 					 struct iio_chan_spec *ch)
1368 {
1369 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1370 	int ret;
1371 
1372 	ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
1373 	if (ret < 0)
1374 		return ret;
1375 
1376 	ch->type = IIO_VOLTAGE;
1377 	ch->indexed = 1;
1378 
1379 	/*
1380 	 * IIO_CHAN_INFO_RAW: used to compute regular conversion
1381 	 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
1382 	 */
1383 	ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1384 	ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
1385 					BIT(IIO_CHAN_INFO_SAMP_FREQ);
1386 
1387 	if (adc->dev_data->type == DFSDM_AUDIO) {
1388 		ch->ext_info = dfsdm_adc_audio_ext_info;
1389 	} else {
1390 		ch->scan_type.shift = 8;
1391 	}
1392 	ch->scan_type.sign = 's';
1393 	ch->scan_type.realbits = 24;
1394 	ch->scan_type.storagebits = 32;
1395 
1396 	return stm32_dfsdm_chan_configure(adc->dfsdm,
1397 					  &adc->dfsdm->ch_list[ch->channel]);
1398 }
1399 
1400 static int stm32_dfsdm_audio_init(struct device *dev, struct iio_dev *indio_dev)
1401 {
1402 	struct iio_chan_spec *ch;
1403 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1404 	struct stm32_dfsdm_channel *d_ch;
1405 	int ret;
1406 
1407 	ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1408 	if (!ch)
1409 		return -ENOMEM;
1410 
1411 	ch->scan_index = 0;
1412 
1413 	ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
1414 	if (ret < 0) {
1415 		dev_err(&indio_dev->dev, "Channels init failed\n");
1416 		return ret;
1417 	}
1418 	ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1419 
1420 	d_ch = &adc->dfsdm->ch_list[ch->channel];
1421 	if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1422 		adc->spi_freq = adc->dfsdm->spi_master_freq;
1423 
1424 	indio_dev->num_channels = 1;
1425 	indio_dev->channels = ch;
1426 
1427 	return stm32_dfsdm_dma_request(dev, indio_dev);
1428 }
1429 
1430 static int stm32_dfsdm_adc_init(struct device *dev, struct iio_dev *indio_dev)
1431 {
1432 	struct iio_chan_spec *ch;
1433 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1434 	int num_ch;
1435 	int ret, chan_idx;
1436 
1437 	adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1438 	ret = stm32_dfsdm_compute_all_osrs(indio_dev, adc->oversamp);
1439 	if (ret < 0)
1440 		return ret;
1441 
1442 	num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
1443 					     "st,adc-channels");
1444 	if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
1445 		dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1446 		return num_ch < 0 ? num_ch : -EINVAL;
1447 	}
1448 
1449 	/* Bind to SD modulator IIO device */
1450 	adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1451 	if (IS_ERR(adc->hwc))
1452 		return -EPROBE_DEFER;
1453 
1454 	ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
1455 			  GFP_KERNEL);
1456 	if (!ch)
1457 		return -ENOMEM;
1458 
1459 	for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1460 		ch[chan_idx].scan_index = chan_idx;
1461 		ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
1462 		if (ret < 0) {
1463 			dev_err(&indio_dev->dev, "Channels init failed\n");
1464 			return ret;
1465 		}
1466 	}
1467 
1468 	indio_dev->num_channels = num_ch;
1469 	indio_dev->channels = ch;
1470 
1471 	init_completion(&adc->completion);
1472 
1473 	/* Optionally request DMA */
1474 	ret = stm32_dfsdm_dma_request(dev, indio_dev);
1475 	if (ret) {
1476 		if (ret != -ENODEV) {
1477 			if (ret != -EPROBE_DEFER)
1478 				dev_err(dev,
1479 					"DMA channel request failed with %d\n",
1480 					ret);
1481 			return ret;
1482 		}
1483 
1484 		dev_dbg(dev, "No DMA support\n");
1485 		return 0;
1486 	}
1487 
1488 	ret = iio_triggered_buffer_setup(indio_dev,
1489 					 &iio_pollfunc_store_time, NULL,
1490 					 &stm32_dfsdm_buffer_setup_ops);
1491 	if (ret) {
1492 		stm32_dfsdm_dma_release(indio_dev);
1493 		dev_err(&indio_dev->dev, "buffer setup failed\n");
1494 		return ret;
1495 	}
1496 
1497 	/* lptimer/timer hardware triggers */
1498 	indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
1499 
1500 	return 0;
1501 }
1502 
1503 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1504 	.type = DFSDM_IIO,
1505 	.init = stm32_dfsdm_adc_init,
1506 };
1507 
1508 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1509 	.type = DFSDM_AUDIO,
1510 	.init = stm32_dfsdm_audio_init,
1511 };
1512 
1513 static const struct of_device_id stm32_dfsdm_adc_match[] = {
1514 	{
1515 		.compatible = "st,stm32-dfsdm-adc",
1516 		.data = &stm32h7_dfsdm_adc_data,
1517 	},
1518 	{
1519 		.compatible = "st,stm32-dfsdm-dmic",
1520 		.data = &stm32h7_dfsdm_audio_data,
1521 	},
1522 	{}
1523 };
1524 
1525 static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1526 {
1527 	struct device *dev = &pdev->dev;
1528 	struct stm32_dfsdm_adc *adc;
1529 	struct device_node *np = dev->of_node;
1530 	const struct stm32_dfsdm_dev_data *dev_data;
1531 	struct iio_dev *iio;
1532 	char *name;
1533 	int ret, irq, val;
1534 
1535 	dev_data = of_device_get_match_data(dev);
1536 	iio = devm_iio_device_alloc(dev, sizeof(*adc));
1537 	if (!iio) {
1538 		dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1539 		return -ENOMEM;
1540 	}
1541 
1542 	adc = iio_priv(iio);
1543 	adc->dfsdm = dev_get_drvdata(dev->parent);
1544 
1545 	iio->dev.of_node = np;
1546 	iio->modes = INDIO_DIRECT_MODE;
1547 
1548 	platform_set_drvdata(pdev, iio);
1549 
1550 	ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1551 	if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1552 		dev_err(dev, "Missing or bad reg property\n");
1553 		return -EINVAL;
1554 	}
1555 
1556 	name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1557 	if (!name)
1558 		return -ENOMEM;
1559 	if (dev_data->type == DFSDM_AUDIO) {
1560 		iio->info = &stm32_dfsdm_info_audio;
1561 		snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1562 	} else {
1563 		iio->info = &stm32_dfsdm_info_adc;
1564 		snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1565 	}
1566 	iio->name = name;
1567 
1568 	/*
1569 	 * In a first step IRQs generated for channels are not treated.
1570 	 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1571 	 */
1572 	irq = platform_get_irq(pdev, 0);
1573 	if (irq < 0)
1574 		return irq;
1575 
1576 	ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1577 			       0, pdev->name, iio);
1578 	if (ret < 0) {
1579 		dev_err(dev, "Failed to request IRQ\n");
1580 		return ret;
1581 	}
1582 
1583 	ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1584 	if (ret < 0) {
1585 		dev_err(dev, "Failed to set filter order\n");
1586 		return ret;
1587 	}
1588 
1589 	adc->dfsdm->fl_list[adc->fl_id].ford = val;
1590 
1591 	ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1592 	if (!ret)
1593 		adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1594 
1595 	adc->dev_data = dev_data;
1596 	ret = dev_data->init(dev, iio);
1597 	if (ret < 0)
1598 		return ret;
1599 
1600 	ret = iio_device_register(iio);
1601 	if (ret < 0)
1602 		goto err_cleanup;
1603 
1604 	if (dev_data->type == DFSDM_AUDIO) {
1605 		ret = of_platform_populate(np, NULL, NULL, dev);
1606 		if (ret < 0) {
1607 			dev_err(dev, "Failed to find an audio DAI\n");
1608 			goto err_unregister;
1609 		}
1610 	}
1611 
1612 	return 0;
1613 
1614 err_unregister:
1615 	iio_device_unregister(iio);
1616 err_cleanup:
1617 	stm32_dfsdm_dma_release(iio);
1618 
1619 	return ret;
1620 }
1621 
1622 static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
1623 {
1624 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1625 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1626 
1627 	if (adc->dev_data->type == DFSDM_AUDIO)
1628 		of_platform_depopulate(&pdev->dev);
1629 	iio_device_unregister(indio_dev);
1630 	stm32_dfsdm_dma_release(indio_dev);
1631 
1632 	return 0;
1633 }
1634 
1635 static int __maybe_unused stm32_dfsdm_adc_suspend(struct device *dev)
1636 {
1637 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1638 
1639 	if (iio_buffer_enabled(indio_dev))
1640 		stm32_dfsdm_predisable(indio_dev);
1641 
1642 	return 0;
1643 }
1644 
1645 static int __maybe_unused stm32_dfsdm_adc_resume(struct device *dev)
1646 {
1647 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1648 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1649 	const struct iio_chan_spec *chan;
1650 	struct stm32_dfsdm_channel *ch;
1651 	int i, ret;
1652 
1653 	/* restore channels configuration */
1654 	for (i = 0; i < indio_dev->num_channels; i++) {
1655 		chan = indio_dev->channels + i;
1656 		ch = &adc->dfsdm->ch_list[chan->channel];
1657 		ret = stm32_dfsdm_chan_configure(adc->dfsdm, ch);
1658 		if (ret)
1659 			return ret;
1660 	}
1661 
1662 	if (iio_buffer_enabled(indio_dev))
1663 		stm32_dfsdm_postenable(indio_dev);
1664 
1665 	return 0;
1666 }
1667 
1668 static SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
1669 			 stm32_dfsdm_adc_suspend, stm32_dfsdm_adc_resume);
1670 
1671 static struct platform_driver stm32_dfsdm_adc_driver = {
1672 	.driver = {
1673 		.name = "stm32-dfsdm-adc",
1674 		.of_match_table = stm32_dfsdm_adc_match,
1675 		.pm = &stm32_dfsdm_adc_pm_ops,
1676 	},
1677 	.probe = stm32_dfsdm_adc_probe,
1678 	.remove = stm32_dfsdm_adc_remove,
1679 };
1680 module_platform_driver(stm32_dfsdm_adc_driver);
1681 
1682 MODULE_DESCRIPTION("STM32 sigma delta ADC");
1683 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1684 MODULE_LICENSE("GPL v2");
1685