1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is the ADC part of the STM32 DFSDM driver
4  *
5  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6  * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
7  */
8 
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iio/adc/stm32-dfsdm-adc.h>
12 #include <linux/iio/buffer.h>
13 #include <linux/iio/hw-consumer.h>
14 #include <linux/iio/sysfs.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/regmap.h>
20 #include <linux/slab.h>
21 
22 #include "stm32-dfsdm.h"
23 
24 #define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
25 
26 /* Conversion timeout */
27 #define DFSDM_TIMEOUT_US 100000
28 #define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
29 
30 /* Oversampling attribute default */
31 #define DFSDM_DEFAULT_OVERSAMPLING  100
32 
33 /* Oversampling max values */
34 #define DFSDM_MAX_INT_OVERSAMPLING 256
35 #define DFSDM_MAX_FL_OVERSAMPLING 1024
36 
37 /* Max sample resolutions */
38 #define DFSDM_MAX_RES BIT(31)
39 #define DFSDM_DATA_RES BIT(23)
40 
41 enum sd_converter_type {
42 	DFSDM_AUDIO,
43 	DFSDM_IIO,
44 };
45 
46 struct stm32_dfsdm_dev_data {
47 	int type;
48 	int (*init)(struct iio_dev *indio_dev);
49 	unsigned int num_channels;
50 	const struct regmap_config *regmap_cfg;
51 };
52 
53 struct stm32_dfsdm_adc {
54 	struct stm32_dfsdm *dfsdm;
55 	const struct stm32_dfsdm_dev_data *dev_data;
56 	unsigned int fl_id;
57 
58 	/* ADC specific */
59 	unsigned int oversamp;
60 	struct iio_hw_consumer *hwc;
61 	struct completion completion;
62 	u32 *buffer;
63 
64 	/* Audio specific */
65 	unsigned int spi_freq;  /* SPI bus clock frequency */
66 	unsigned int sample_freq; /* Sample frequency after filter decimation */
67 	int (*cb)(const void *data, size_t size, void *cb_priv);
68 	void *cb_priv;
69 
70 	/* DMA */
71 	u8 *rx_buf;
72 	unsigned int bufi; /* Buffer current position */
73 	unsigned int buf_sz; /* Buffer size */
74 	struct dma_chan	*dma_chan;
75 	dma_addr_t dma_buf;
76 };
77 
78 struct stm32_dfsdm_str2field {
79 	const char	*name;
80 	unsigned int	val;
81 };
82 
83 /* DFSDM channel serial interface type */
84 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
85 	{ "SPI_R", 0 }, /* SPI with data on rising edge */
86 	{ "SPI_F", 1 }, /* SPI with data on falling edge */
87 	{ "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
88 	{ "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
89 	{},
90 };
91 
92 /* DFSDM channel clock source */
93 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
94 	/* External SPI clock (CLKIN x) */
95 	{ "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
96 	/* Internal SPI clock (CLKOUT) */
97 	{ "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
98 	/* Internal SPI clock divided by 2 (falling edge) */
99 	{ "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
100 	/* Internal SPI clock divided by 2 (falling edge) */
101 	{ "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
102 	{},
103 };
104 
105 static int stm32_dfsdm_str2val(const char *str,
106 			       const struct stm32_dfsdm_str2field *list)
107 {
108 	const struct stm32_dfsdm_str2field *p = list;
109 
110 	for (p = list; p && p->name; p++)
111 		if (!strcmp(p->name, str))
112 			return p->val;
113 
114 	return -EINVAL;
115 }
116 
117 static int stm32_dfsdm_set_osrs(struct stm32_dfsdm_filter *fl,
118 				unsigned int fast, unsigned int oversamp)
119 {
120 	unsigned int i, d, fosr, iosr;
121 	u64 res;
122 	s64 delta;
123 	unsigned int m = 1;	/* multiplication factor */
124 	unsigned int p = fl->ford;	/* filter order (ford) */
125 
126 	pr_debug("%s: Requested oversampling: %d\n",  __func__, oversamp);
127 	/*
128 	 * This function tries to compute filter oversampling and integrator
129 	 * oversampling, base on oversampling ratio requested by user.
130 	 *
131 	 * Decimation d depends on the filter order and the oversampling ratios.
132 	 * ford: filter order
133 	 * fosr: filter over sampling ratio
134 	 * iosr: integrator over sampling ratio
135 	 */
136 	if (fl->ford == DFSDM_FASTSINC_ORDER) {
137 		m = 2;
138 		p = 2;
139 	}
140 
141 	/*
142 	 * Look for filter and integrator oversampling ratios which allows
143 	 * to reach 24 bits data output resolution.
144 	 * Leave as soon as if exact resolution if reached.
145 	 * Otherwise the higher resolution below 32 bits is kept.
146 	 */
147 	fl->res = 0;
148 	for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
149 		for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
150 			if (fast)
151 				d = fosr * iosr;
152 			else if (fl->ford == DFSDM_FASTSINC_ORDER)
153 				d = fosr * (iosr + 3) + 2;
154 			else
155 				d = fosr * (iosr - 1 + p) + p;
156 
157 			if (d > oversamp)
158 				break;
159 			else if (d != oversamp)
160 				continue;
161 			/*
162 			 * Check resolution (limited to signed 32 bits)
163 			 *   res <= 2^31
164 			 * Sincx filters:
165 			 *   res = m * fosr^p x iosr (with m=1, p=ford)
166 			 * FastSinc filter
167 			 *   res = m * fosr^p x iosr (with m=2, p=2)
168 			 */
169 			res = fosr;
170 			for (i = p - 1; i > 0; i--) {
171 				res = res * (u64)fosr;
172 				if (res > DFSDM_MAX_RES)
173 					break;
174 			}
175 			if (res > DFSDM_MAX_RES)
176 				continue;
177 			res = res * (u64)m * (u64)iosr;
178 			if (res > DFSDM_MAX_RES)
179 				continue;
180 
181 			delta = res - DFSDM_DATA_RES;
182 
183 			if (res >= fl->res) {
184 				fl->res = res;
185 				fl->fosr = fosr;
186 				fl->iosr = iosr;
187 				fl->fast = fast;
188 				pr_debug("%s: fosr = %d, iosr = %d\n",
189 					 __func__, fl->fosr, fl->iosr);
190 			}
191 
192 			if (!delta)
193 				return 0;
194 		}
195 	}
196 
197 	if (!fl->res)
198 		return -EINVAL;
199 
200 	return 0;
201 }
202 
203 static int stm32_dfsdm_start_channel(struct stm32_dfsdm *dfsdm,
204 				     unsigned int ch_id)
205 {
206 	return regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(ch_id),
207 				  DFSDM_CHCFGR1_CHEN_MASK,
208 				  DFSDM_CHCFGR1_CHEN(1));
209 }
210 
211 static void stm32_dfsdm_stop_channel(struct stm32_dfsdm *dfsdm,
212 				     unsigned int ch_id)
213 {
214 	regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(ch_id),
215 			   DFSDM_CHCFGR1_CHEN_MASK, DFSDM_CHCFGR1_CHEN(0));
216 }
217 
218 static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
219 				      struct stm32_dfsdm_channel *ch)
220 {
221 	unsigned int id = ch->id;
222 	struct regmap *regmap = dfsdm->regmap;
223 	int ret;
224 
225 	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
226 				 DFSDM_CHCFGR1_SITP_MASK,
227 				 DFSDM_CHCFGR1_SITP(ch->type));
228 	if (ret < 0)
229 		return ret;
230 	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
231 				 DFSDM_CHCFGR1_SPICKSEL_MASK,
232 				 DFSDM_CHCFGR1_SPICKSEL(ch->src));
233 	if (ret < 0)
234 		return ret;
235 	return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
236 				  DFSDM_CHCFGR1_CHINSEL_MASK,
237 				  DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
238 }
239 
240 static int stm32_dfsdm_start_filter(struct stm32_dfsdm *dfsdm,
241 				    unsigned int fl_id)
242 {
243 	int ret;
244 
245 	/* Enable filter */
246 	ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
247 				 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
248 	if (ret < 0)
249 		return ret;
250 
251 	/* Start conversion */
252 	return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
253 				  DFSDM_CR1_RSWSTART_MASK,
254 				  DFSDM_CR1_RSWSTART(1));
255 }
256 
257 static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
258 				    unsigned int fl_id)
259 {
260 	/* Disable conversion */
261 	regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
262 			   DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
263 }
264 
265 static int stm32_dfsdm_filter_configure(struct stm32_dfsdm *dfsdm,
266 					unsigned int fl_id, unsigned int ch_id)
267 {
268 	struct regmap *regmap = dfsdm->regmap;
269 	struct stm32_dfsdm_filter *fl = &dfsdm->fl_list[fl_id];
270 	int ret;
271 
272 	/* Average integrator oversampling */
273 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
274 				 DFSDM_FCR_IOSR(fl->iosr - 1));
275 	if (ret)
276 		return ret;
277 
278 	/* Filter order and Oversampling */
279 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
280 				 DFSDM_FCR_FOSR(fl->fosr - 1));
281 	if (ret)
282 		return ret;
283 
284 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
285 				 DFSDM_FCR_FORD(fl->ford));
286 	if (ret)
287 		return ret;
288 
289 	/* No scan mode supported for the moment */
290 	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_RCH_MASK,
291 				 DFSDM_CR1_RCH(ch_id));
292 	if (ret)
293 		return ret;
294 
295 	return regmap_update_bits(regmap, DFSDM_CR1(fl_id),
296 				  DFSDM_CR1_RSYNC_MASK,
297 				  DFSDM_CR1_RSYNC(fl->sync_mode));
298 }
299 
300 static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
301 					struct iio_dev *indio_dev,
302 					struct iio_chan_spec *ch)
303 {
304 	struct stm32_dfsdm_channel *df_ch;
305 	const char *of_str;
306 	int chan_idx = ch->scan_index;
307 	int ret, val;
308 
309 	ret = of_property_read_u32_index(indio_dev->dev.of_node,
310 					 "st,adc-channels", chan_idx,
311 					 &ch->channel);
312 	if (ret < 0) {
313 		dev_err(&indio_dev->dev,
314 			" Error parsing 'st,adc-channels' for idx %d\n",
315 			chan_idx);
316 		return ret;
317 	}
318 	if (ch->channel >= dfsdm->num_chs) {
319 		dev_err(&indio_dev->dev,
320 			" Error bad channel number %d (max = %d)\n",
321 			ch->channel, dfsdm->num_chs);
322 		return -EINVAL;
323 	}
324 
325 	ret = of_property_read_string_index(indio_dev->dev.of_node,
326 					    "st,adc-channel-names", chan_idx,
327 					    &ch->datasheet_name);
328 	if (ret < 0) {
329 		dev_err(&indio_dev->dev,
330 			" Error parsing 'st,adc-channel-names' for idx %d\n",
331 			chan_idx);
332 		return ret;
333 	}
334 
335 	df_ch =  &dfsdm->ch_list[ch->channel];
336 	df_ch->id = ch->channel;
337 
338 	ret = of_property_read_string_index(indio_dev->dev.of_node,
339 					    "st,adc-channel-types", chan_idx,
340 					    &of_str);
341 	if (!ret) {
342 		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
343 		if (val < 0)
344 			return val;
345 	} else {
346 		val = 0;
347 	}
348 	df_ch->type = val;
349 
350 	ret = of_property_read_string_index(indio_dev->dev.of_node,
351 					    "st,adc-channel-clk-src", chan_idx,
352 					    &of_str);
353 	if (!ret) {
354 		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
355 		if (val < 0)
356 			return val;
357 	} else {
358 		val = 0;
359 	}
360 	df_ch->src = val;
361 
362 	ret = of_property_read_u32_index(indio_dev->dev.of_node,
363 					 "st,adc-alt-channel", chan_idx,
364 					 &df_ch->alt_si);
365 	if (ret < 0)
366 		df_ch->alt_si = 0;
367 
368 	return 0;
369 }
370 
371 static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
372 					  uintptr_t priv,
373 					  const struct iio_chan_spec *chan,
374 					  char *buf)
375 {
376 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
377 
378 	return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
379 }
380 
381 static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
382 					  uintptr_t priv,
383 					  const struct iio_chan_spec *chan,
384 					  const char *buf, size_t len)
385 {
386 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
387 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
388 	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
389 	unsigned int sample_freq = adc->sample_freq;
390 	unsigned int spi_freq;
391 	int ret;
392 
393 	dev_err(&indio_dev->dev, "enter %s\n", __func__);
394 	/* If DFSDM is master on SPI, SPI freq can not be updated */
395 	if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
396 		return -EPERM;
397 
398 	ret = kstrtoint(buf, 0, &spi_freq);
399 	if (ret)
400 		return ret;
401 
402 	if (!spi_freq)
403 		return -EINVAL;
404 
405 	if (sample_freq) {
406 		if (spi_freq % sample_freq)
407 			dev_warn(&indio_dev->dev,
408 				 "Sampling rate not accurate (%d)\n",
409 				 spi_freq / (spi_freq / sample_freq));
410 
411 		ret = stm32_dfsdm_set_osrs(fl, 0, (spi_freq / sample_freq));
412 		if (ret < 0) {
413 			dev_err(&indio_dev->dev,
414 				"No filter parameters that match!\n");
415 			return ret;
416 		}
417 	}
418 	adc->spi_freq = spi_freq;
419 
420 	return len;
421 }
422 
423 static int stm32_dfsdm_start_conv(struct stm32_dfsdm_adc *adc,
424 				  const struct iio_chan_spec *chan,
425 				  bool dma)
426 {
427 	struct regmap *regmap = adc->dfsdm->regmap;
428 	int ret;
429 	unsigned int dma_en = 0, cont_en = 0;
430 
431 	ret = stm32_dfsdm_start_channel(adc->dfsdm, chan->channel);
432 	if (ret < 0)
433 		return ret;
434 
435 	ret = stm32_dfsdm_filter_configure(adc->dfsdm, adc->fl_id,
436 					   chan->channel);
437 	if (ret < 0)
438 		goto stop_channels;
439 
440 	if (dma) {
441 		/* Enable DMA transfer*/
442 		dma_en =  DFSDM_CR1_RDMAEN(1);
443 		/* Enable conversion triggered by SPI clock*/
444 		cont_en = DFSDM_CR1_RCONT(1);
445 	}
446 	/* Enable DMA transfer*/
447 	ret = regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
448 				 DFSDM_CR1_RDMAEN_MASK, dma_en);
449 	if (ret < 0)
450 		goto stop_channels;
451 
452 	/* Enable conversion triggered by SPI clock*/
453 	ret = regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
454 				 DFSDM_CR1_RCONT_MASK, cont_en);
455 	if (ret < 0)
456 		goto stop_channels;
457 
458 	ret = stm32_dfsdm_start_filter(adc->dfsdm, adc->fl_id);
459 	if (ret < 0)
460 		goto stop_channels;
461 
462 	return 0;
463 
464 stop_channels:
465 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
466 			   DFSDM_CR1_RDMAEN_MASK, 0);
467 
468 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
469 			   DFSDM_CR1_RCONT_MASK, 0);
470 	stm32_dfsdm_stop_channel(adc->dfsdm, chan->channel);
471 
472 	return ret;
473 }
474 
475 static void stm32_dfsdm_stop_conv(struct stm32_dfsdm_adc *adc,
476 				  const struct iio_chan_spec *chan)
477 {
478 	struct regmap *regmap = adc->dfsdm->regmap;
479 
480 	stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
481 
482 	/* Clean conversion options */
483 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
484 			   DFSDM_CR1_RDMAEN_MASK, 0);
485 
486 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
487 			   DFSDM_CR1_RCONT_MASK, 0);
488 
489 	stm32_dfsdm_stop_channel(adc->dfsdm, chan->channel);
490 }
491 
492 static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
493 				     unsigned int val)
494 {
495 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
496 	unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
497 
498 	/*
499 	 * DMA cyclic transfers are used, buffer is split into two periods.
500 	 * There should be :
501 	 * - always one buffer (period) DMA is working on
502 	 * - one buffer (period) driver pushed to ASoC side.
503 	 */
504 	watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
505 	adc->buf_sz = watermark * 2;
506 
507 	return 0;
508 }
509 
510 static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
511 {
512 	struct dma_tx_state state;
513 	enum dma_status status;
514 
515 	status = dmaengine_tx_status(adc->dma_chan,
516 				     adc->dma_chan->cookie,
517 				     &state);
518 	if (status == DMA_IN_PROGRESS) {
519 		/* Residue is size in bytes from end of buffer */
520 		unsigned int i = adc->buf_sz - state.residue;
521 		unsigned int size;
522 
523 		/* Return available bytes */
524 		if (i >= adc->bufi)
525 			size = i - adc->bufi;
526 		else
527 			size = adc->buf_sz + i - adc->bufi;
528 
529 		return size;
530 	}
531 
532 	return 0;
533 }
534 
535 static void stm32_dfsdm_audio_dma_buffer_done(void *data)
536 {
537 	struct iio_dev *indio_dev = data;
538 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
539 	int available = stm32_dfsdm_adc_dma_residue(adc);
540 	size_t old_pos;
541 
542 	/*
543 	 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
544 	 * offers only an interface to push data samples per samples.
545 	 * For this reason IIO buffer interface is not used and interface is
546 	 * bypassed using a private callback registered by ASoC.
547 	 * This should be a temporary solution waiting a cyclic DMA engine
548 	 * support in IIO.
549 	 */
550 
551 	dev_dbg(&indio_dev->dev, "%s: pos = %d, available = %d\n", __func__,
552 		adc->bufi, available);
553 	old_pos = adc->bufi;
554 
555 	while (available >= indio_dev->scan_bytes) {
556 		u32 *buffer = (u32 *)&adc->rx_buf[adc->bufi];
557 
558 		/* Mask 8 LSB that contains the channel ID */
559 		*buffer = (*buffer & 0xFFFFFF00) << 8;
560 		available -= indio_dev->scan_bytes;
561 		adc->bufi += indio_dev->scan_bytes;
562 		if (adc->bufi >= adc->buf_sz) {
563 			if (adc->cb)
564 				adc->cb(&adc->rx_buf[old_pos],
565 					 adc->buf_sz - old_pos, adc->cb_priv);
566 			adc->bufi = 0;
567 			old_pos = 0;
568 		}
569 	}
570 	if (adc->cb)
571 		adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
572 			adc->cb_priv);
573 }
574 
575 static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
576 {
577 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
578 	struct dma_async_tx_descriptor *desc;
579 	dma_cookie_t cookie;
580 	int ret;
581 
582 	if (!adc->dma_chan)
583 		return -EINVAL;
584 
585 	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
586 		adc->buf_sz, adc->buf_sz / 2);
587 
588 	/* Prepare a DMA cyclic transaction */
589 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
590 					 adc->dma_buf,
591 					 adc->buf_sz, adc->buf_sz / 2,
592 					 DMA_DEV_TO_MEM,
593 					 DMA_PREP_INTERRUPT);
594 	if (!desc)
595 		return -EBUSY;
596 
597 	desc->callback = stm32_dfsdm_audio_dma_buffer_done;
598 	desc->callback_param = indio_dev;
599 
600 	cookie = dmaengine_submit(desc);
601 	ret = dma_submit_error(cookie);
602 	if (ret) {
603 		dmaengine_terminate_all(adc->dma_chan);
604 		return ret;
605 	}
606 
607 	/* Issue pending DMA requests */
608 	dma_async_issue_pending(adc->dma_chan);
609 
610 	return 0;
611 }
612 
613 static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
614 {
615 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
616 	const struct iio_chan_spec *chan = &indio_dev->channels[0];
617 	int ret;
618 
619 	/* Reset adc buffer index */
620 	adc->bufi = 0;
621 
622 	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
623 	if (ret < 0)
624 		return ret;
625 
626 	ret = stm32_dfsdm_start_conv(adc, chan, true);
627 	if (ret) {
628 		dev_err(&indio_dev->dev, "Can't start conversion\n");
629 		goto stop_dfsdm;
630 	}
631 
632 	if (adc->dma_chan) {
633 		ret = stm32_dfsdm_adc_dma_start(indio_dev);
634 		if (ret) {
635 			dev_err(&indio_dev->dev, "Can't start DMA\n");
636 			goto err_stop_conv;
637 		}
638 	}
639 
640 	return 0;
641 
642 err_stop_conv:
643 	stm32_dfsdm_stop_conv(adc, chan);
644 stop_dfsdm:
645 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
646 
647 	return ret;
648 }
649 
650 static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
651 {
652 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
653 	const struct iio_chan_spec *chan = &indio_dev->channels[0];
654 
655 	if (adc->dma_chan)
656 		dmaengine_terminate_all(adc->dma_chan);
657 
658 	stm32_dfsdm_stop_conv(adc, chan);
659 
660 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
661 
662 	return 0;
663 }
664 
665 static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
666 	.postenable = &stm32_dfsdm_postenable,
667 	.predisable = &stm32_dfsdm_predisable,
668 };
669 
670 /**
671  * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
672  *                             DMA transfer period is achieved.
673  *
674  * @iio_dev: Handle to IIO device.
675  * @cb: Pointer to callback function:
676  *      - data: pointer to data buffer
677  *      - size: size in byte of the data buffer
678  *      - private: pointer to consumer private structure.
679  * @private: Pointer to consumer private structure.
680  */
681 int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
682 			    int (*cb)(const void *data, size_t size,
683 				      void *private),
684 			    void *private)
685 {
686 	struct stm32_dfsdm_adc *adc;
687 
688 	if (!iio_dev)
689 		return -EINVAL;
690 	adc = iio_priv(iio_dev);
691 
692 	adc->cb = cb;
693 	adc->cb_priv = private;
694 
695 	return 0;
696 }
697 EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
698 
699 /**
700  * stm32_dfsdm_release_buff_cb - unregister buffer callback
701  *
702  * @iio_dev: Handle to IIO device.
703  */
704 int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
705 {
706 	struct stm32_dfsdm_adc *adc;
707 
708 	if (!iio_dev)
709 		return -EINVAL;
710 	adc = iio_priv(iio_dev);
711 
712 	adc->cb = NULL;
713 	adc->cb_priv = NULL;
714 
715 	return 0;
716 }
717 EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
718 
719 static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
720 				   const struct iio_chan_spec *chan, int *res)
721 {
722 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
723 	long timeout;
724 	int ret;
725 
726 	reinit_completion(&adc->completion);
727 
728 	adc->buffer = res;
729 
730 	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
731 	if (ret < 0)
732 		return ret;
733 
734 	ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
735 				 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
736 	if (ret < 0)
737 		goto stop_dfsdm;
738 
739 	ret = stm32_dfsdm_start_conv(adc, chan, false);
740 	if (ret < 0) {
741 		regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
742 				   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
743 		goto stop_dfsdm;
744 	}
745 
746 	timeout = wait_for_completion_interruptible_timeout(&adc->completion,
747 							    DFSDM_TIMEOUT);
748 
749 	/* Mask IRQ for regular conversion achievement*/
750 	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
751 			   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
752 
753 	if (timeout == 0)
754 		ret = -ETIMEDOUT;
755 	else if (timeout < 0)
756 		ret = timeout;
757 	else
758 		ret = IIO_VAL_INT;
759 
760 	stm32_dfsdm_stop_conv(adc, chan);
761 
762 stop_dfsdm:
763 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
764 
765 	return ret;
766 }
767 
768 static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
769 				 struct iio_chan_spec const *chan,
770 				 int val, int val2, long mask)
771 {
772 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
773 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
774 	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
775 	unsigned int spi_freq;
776 	int ret = -EINVAL;
777 
778 	switch (mask) {
779 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
780 		ret = stm32_dfsdm_set_osrs(fl, 0, val);
781 		if (!ret)
782 			adc->oversamp = val;
783 
784 		return ret;
785 
786 	case IIO_CHAN_INFO_SAMP_FREQ:
787 		if (!val)
788 			return -EINVAL;
789 
790 		switch (ch->src) {
791 		case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
792 			spi_freq = adc->dfsdm->spi_master_freq;
793 			break;
794 		case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
795 		case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
796 			spi_freq = adc->dfsdm->spi_master_freq / 2;
797 			break;
798 		default:
799 			spi_freq = adc->spi_freq;
800 		}
801 
802 		if (spi_freq % val)
803 			dev_warn(&indio_dev->dev,
804 				 "Sampling rate not accurate (%d)\n",
805 				 spi_freq / (spi_freq / val));
806 
807 		ret = stm32_dfsdm_set_osrs(fl, 0, (spi_freq / val));
808 		if (ret < 0) {
809 			dev_err(&indio_dev->dev,
810 				"Not able to find parameter that match!\n");
811 			return ret;
812 		}
813 		adc->sample_freq = val;
814 
815 		return 0;
816 	}
817 
818 	return -EINVAL;
819 }
820 
821 static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
822 				struct iio_chan_spec const *chan, int *val,
823 				int *val2, long mask)
824 {
825 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
826 	int ret;
827 
828 	switch (mask) {
829 	case IIO_CHAN_INFO_RAW:
830 		ret = iio_hw_consumer_enable(adc->hwc);
831 		if (ret < 0) {
832 			dev_err(&indio_dev->dev,
833 				"%s: IIO enable failed (channel %d)\n",
834 				__func__, chan->channel);
835 			return ret;
836 		}
837 		ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
838 		iio_hw_consumer_disable(adc->hwc);
839 		if (ret < 0) {
840 			dev_err(&indio_dev->dev,
841 				"%s: Conversion failed (channel %d)\n",
842 				__func__, chan->channel);
843 			return ret;
844 		}
845 		return IIO_VAL_INT;
846 
847 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
848 		*val = adc->oversamp;
849 
850 		return IIO_VAL_INT;
851 
852 	case IIO_CHAN_INFO_SAMP_FREQ:
853 		*val = adc->sample_freq;
854 
855 		return IIO_VAL_INT;
856 	}
857 
858 	return -EINVAL;
859 }
860 
861 static const struct iio_info stm32_dfsdm_info_audio = {
862 	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
863 	.read_raw = stm32_dfsdm_read_raw,
864 	.write_raw = stm32_dfsdm_write_raw,
865 };
866 
867 static const struct iio_info stm32_dfsdm_info_adc = {
868 	.read_raw = stm32_dfsdm_read_raw,
869 	.write_raw = stm32_dfsdm_write_raw,
870 };
871 
872 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
873 {
874 	struct stm32_dfsdm_adc *adc = arg;
875 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
876 	struct regmap *regmap = adc->dfsdm->regmap;
877 	unsigned int status, int_en;
878 
879 	regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
880 	regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
881 
882 	if (status & DFSDM_ISR_REOCF_MASK) {
883 		/* Read the data register clean the IRQ status */
884 		regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
885 		complete(&adc->completion);
886 	}
887 
888 	if (status & DFSDM_ISR_ROVRF_MASK) {
889 		if (int_en & DFSDM_CR2_ROVRIE_MASK)
890 			dev_warn(&indio_dev->dev, "Overrun detected\n");
891 		regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
892 				   DFSDM_ICR_CLRROVRF_MASK,
893 				   DFSDM_ICR_CLRROVRF_MASK);
894 	}
895 
896 	return IRQ_HANDLED;
897 }
898 
899 /*
900  * Define external info for SPI Frequency and audio sampling rate that can be
901  * configured by ASoC driver through consumer.h API
902  */
903 static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
904 	/* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
905 	{
906 		.name = "spi_clk_freq",
907 		.shared = IIO_SHARED_BY_TYPE,
908 		.read = dfsdm_adc_audio_get_spiclk,
909 		.write = dfsdm_adc_audio_set_spiclk,
910 	},
911 	{},
912 };
913 
914 static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
915 {
916 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
917 
918 	if (adc->dma_chan) {
919 		dma_free_coherent(adc->dma_chan->device->dev,
920 				  DFSDM_DMA_BUFFER_SIZE,
921 				  adc->rx_buf, adc->dma_buf);
922 		dma_release_channel(adc->dma_chan);
923 	}
924 }
925 
926 static int stm32_dfsdm_dma_request(struct iio_dev *indio_dev)
927 {
928 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
929 	struct dma_slave_config config = {
930 		.src_addr = (dma_addr_t)adc->dfsdm->phys_base +
931 			DFSDM_RDATAR(adc->fl_id),
932 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
933 	};
934 	int ret;
935 
936 	adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
937 	if (!adc->dma_chan)
938 		return -EINVAL;
939 
940 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
941 					 DFSDM_DMA_BUFFER_SIZE,
942 					 &adc->dma_buf, GFP_KERNEL);
943 	if (!adc->rx_buf) {
944 		ret = -ENOMEM;
945 		goto err_release;
946 	}
947 
948 	ret = dmaengine_slave_config(adc->dma_chan, &config);
949 	if (ret)
950 		goto err_free;
951 
952 	return 0;
953 
954 err_free:
955 	dma_free_coherent(adc->dma_chan->device->dev, DFSDM_DMA_BUFFER_SIZE,
956 			  adc->rx_buf, adc->dma_buf);
957 err_release:
958 	dma_release_channel(adc->dma_chan);
959 
960 	return ret;
961 }
962 
963 static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
964 					 struct iio_chan_spec *ch)
965 {
966 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
967 	int ret;
968 
969 	ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
970 	if (ret < 0)
971 		return ret;
972 
973 	ch->type = IIO_VOLTAGE;
974 	ch->indexed = 1;
975 
976 	/*
977 	 * IIO_CHAN_INFO_RAW: used to compute regular conversion
978 	 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
979 	 */
980 	ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
981 	ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO);
982 
983 	if (adc->dev_data->type == DFSDM_AUDIO) {
984 		ch->scan_type.sign = 's';
985 		ch->ext_info = dfsdm_adc_audio_ext_info;
986 	} else {
987 		ch->scan_type.sign = 'u';
988 	}
989 	ch->scan_type.realbits = 24;
990 	ch->scan_type.storagebits = 32;
991 
992 	return stm32_dfsdm_chan_configure(adc->dfsdm,
993 					  &adc->dfsdm->ch_list[ch->channel]);
994 }
995 
996 static int stm32_dfsdm_audio_init(struct iio_dev *indio_dev)
997 {
998 	struct iio_chan_spec *ch;
999 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1000 	struct stm32_dfsdm_channel *d_ch;
1001 	int ret;
1002 
1003 	indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1004 	indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1005 
1006 	ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1007 	if (!ch)
1008 		return -ENOMEM;
1009 
1010 	ch->scan_index = 0;
1011 
1012 	ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
1013 	if (ret < 0) {
1014 		dev_err(&indio_dev->dev, "Channels init failed\n");
1015 		return ret;
1016 	}
1017 	ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1018 
1019 	d_ch = &adc->dfsdm->ch_list[ch->channel];
1020 	if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1021 		adc->spi_freq = adc->dfsdm->spi_master_freq;
1022 
1023 	indio_dev->num_channels = 1;
1024 	indio_dev->channels = ch;
1025 
1026 	return stm32_dfsdm_dma_request(indio_dev);
1027 }
1028 
1029 static int stm32_dfsdm_adc_init(struct iio_dev *indio_dev)
1030 {
1031 	struct iio_chan_spec *ch;
1032 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1033 	int num_ch;
1034 	int ret, chan_idx;
1035 
1036 	adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1037 	ret = stm32_dfsdm_set_osrs(&adc->dfsdm->fl_list[adc->fl_id], 0,
1038 				   adc->oversamp);
1039 	if (ret < 0)
1040 		return ret;
1041 
1042 	num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
1043 					     "st,adc-channels");
1044 	if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
1045 		dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1046 		return num_ch < 0 ? num_ch : -EINVAL;
1047 	}
1048 
1049 	/* Bind to SD modulator IIO device */
1050 	adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1051 	if (IS_ERR(adc->hwc))
1052 		return -EPROBE_DEFER;
1053 
1054 	ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
1055 			  GFP_KERNEL);
1056 	if (!ch)
1057 		return -ENOMEM;
1058 
1059 	for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1060 		ch[chan_idx].scan_index = chan_idx;
1061 		ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
1062 		if (ret < 0) {
1063 			dev_err(&indio_dev->dev, "Channels init failed\n");
1064 			return ret;
1065 		}
1066 	}
1067 
1068 	indio_dev->num_channels = num_ch;
1069 	indio_dev->channels = ch;
1070 
1071 	init_completion(&adc->completion);
1072 
1073 	return 0;
1074 }
1075 
1076 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1077 	.type = DFSDM_IIO,
1078 	.init = stm32_dfsdm_adc_init,
1079 };
1080 
1081 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1082 	.type = DFSDM_AUDIO,
1083 	.init = stm32_dfsdm_audio_init,
1084 };
1085 
1086 static const struct of_device_id stm32_dfsdm_adc_match[] = {
1087 	{
1088 		.compatible = "st,stm32-dfsdm-adc",
1089 		.data = &stm32h7_dfsdm_adc_data,
1090 	},
1091 	{
1092 		.compatible = "st,stm32-dfsdm-dmic",
1093 		.data = &stm32h7_dfsdm_audio_data,
1094 	},
1095 	{}
1096 };
1097 
1098 static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1099 {
1100 	struct device *dev = &pdev->dev;
1101 	struct stm32_dfsdm_adc *adc;
1102 	struct device_node *np = dev->of_node;
1103 	const struct stm32_dfsdm_dev_data *dev_data;
1104 	struct iio_dev *iio;
1105 	char *name;
1106 	int ret, irq, val;
1107 
1108 	dev_data = of_device_get_match_data(dev);
1109 	iio = devm_iio_device_alloc(dev, sizeof(*adc));
1110 	if (!iio) {
1111 		dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1112 		return -ENOMEM;
1113 	}
1114 
1115 	adc = iio_priv(iio);
1116 	adc->dfsdm = dev_get_drvdata(dev->parent);
1117 
1118 	iio->dev.parent = dev;
1119 	iio->dev.of_node = np;
1120 	iio->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
1121 
1122 	platform_set_drvdata(pdev, adc);
1123 
1124 	ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1125 	if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1126 		dev_err(dev, "Missing or bad reg property\n");
1127 		return -EINVAL;
1128 	}
1129 
1130 	name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1131 	if (!name)
1132 		return -ENOMEM;
1133 	if (dev_data->type == DFSDM_AUDIO) {
1134 		iio->info = &stm32_dfsdm_info_audio;
1135 		snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1136 	} else {
1137 		iio->info = &stm32_dfsdm_info_adc;
1138 		snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1139 	}
1140 	iio->name = name;
1141 
1142 	/*
1143 	 * In a first step IRQs generated for channels are not treated.
1144 	 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1145 	 */
1146 	irq = platform_get_irq(pdev, 0);
1147 	ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1148 			       0, pdev->name, adc);
1149 	if (ret < 0) {
1150 		dev_err(dev, "Failed to request IRQ\n");
1151 		return ret;
1152 	}
1153 
1154 	ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1155 	if (ret < 0) {
1156 		dev_err(dev, "Failed to set filter order\n");
1157 		return ret;
1158 	}
1159 
1160 	adc->dfsdm->fl_list[adc->fl_id].ford = val;
1161 
1162 	ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1163 	if (!ret)
1164 		adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1165 
1166 	adc->dev_data = dev_data;
1167 	ret = dev_data->init(iio);
1168 	if (ret < 0)
1169 		return ret;
1170 
1171 	ret = iio_device_register(iio);
1172 	if (ret < 0)
1173 		goto err_cleanup;
1174 
1175 	if (dev_data->type == DFSDM_AUDIO) {
1176 		ret = of_platform_populate(np, NULL, NULL, dev);
1177 		if (ret < 0) {
1178 			dev_err(dev, "Failed to find an audio DAI\n");
1179 			goto err_unregister;
1180 		}
1181 	}
1182 
1183 	return 0;
1184 
1185 err_unregister:
1186 	iio_device_unregister(iio);
1187 err_cleanup:
1188 	stm32_dfsdm_dma_release(iio);
1189 
1190 	return ret;
1191 }
1192 
1193 static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
1194 {
1195 	struct stm32_dfsdm_adc *adc = platform_get_drvdata(pdev);
1196 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1197 
1198 	if (adc->dev_data->type == DFSDM_AUDIO)
1199 		of_platform_depopulate(&pdev->dev);
1200 	iio_device_unregister(indio_dev);
1201 	stm32_dfsdm_dma_release(indio_dev);
1202 
1203 	return 0;
1204 }
1205 
1206 static struct platform_driver stm32_dfsdm_adc_driver = {
1207 	.driver = {
1208 		.name = "stm32-dfsdm-adc",
1209 		.of_match_table = stm32_dfsdm_adc_match,
1210 	},
1211 	.probe = stm32_dfsdm_adc_probe,
1212 	.remove = stm32_dfsdm_adc_remove,
1213 };
1214 module_platform_driver(stm32_dfsdm_adc_driver);
1215 
1216 MODULE_DESCRIPTION("STM32 sigma delta ADC");
1217 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1218 MODULE_LICENSE("GPL v2");
1219