1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is the ADC part of the STM32 DFSDM driver
4  *
5  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6  * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
7  */
8 
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iio/adc/stm32-dfsdm-adc.h>
12 #include <linux/iio/buffer.h>
13 #include <linux/iio/hw-consumer.h>
14 #include <linux/iio/sysfs.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/of_device.h>
23 #include <linux/platform_device.h>
24 #include <linux/regmap.h>
25 #include <linux/slab.h>
26 
27 #include "stm32-dfsdm.h"
28 
29 #define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
30 
31 /* Conversion timeout */
32 #define DFSDM_TIMEOUT_US 100000
33 #define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
34 
35 /* Oversampling attribute default */
36 #define DFSDM_DEFAULT_OVERSAMPLING  100
37 
38 /* Oversampling max values */
39 #define DFSDM_MAX_INT_OVERSAMPLING 256
40 #define DFSDM_MAX_FL_OVERSAMPLING 1024
41 
42 /* Limit filter output resolution to 31 bits. (i.e. sample range is +/-2^30) */
43 #define DFSDM_DATA_MAX BIT(30)
44 /*
45  * Data are output as two's complement data in a 24 bit field.
46  * Data from filters are in the range +/-2^(n-1)
47  * 2^(n-1) maximum positive value cannot be coded in 2's complement n bits
48  * An extra bit is required to avoid wrap-around of the binary code for 2^(n-1)
49  * So, the resolution of samples from filter is actually limited to 23 bits
50  */
51 #define DFSDM_DATA_RES 24
52 
53 /* Filter configuration */
54 #define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
55 			    DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
56 			    DFSDM_CR1_JSCAN_MASK)
57 
58 enum sd_converter_type {
59 	DFSDM_AUDIO,
60 	DFSDM_IIO,
61 };
62 
63 struct stm32_dfsdm_dev_data {
64 	int type;
65 	int (*init)(struct device *dev, struct iio_dev *indio_dev);
66 	unsigned int num_channels;
67 	const struct regmap_config *regmap_cfg;
68 };
69 
70 struct stm32_dfsdm_adc {
71 	struct stm32_dfsdm *dfsdm;
72 	const struct stm32_dfsdm_dev_data *dev_data;
73 	unsigned int fl_id;
74 	unsigned int nconv;
75 	unsigned long smask;
76 
77 	/* ADC specific */
78 	unsigned int oversamp;
79 	struct iio_hw_consumer *hwc;
80 	struct completion completion;
81 	u32 *buffer;
82 
83 	/* Audio specific */
84 	unsigned int spi_freq;  /* SPI bus clock frequency */
85 	unsigned int sample_freq; /* Sample frequency after filter decimation */
86 	int (*cb)(const void *data, size_t size, void *cb_priv);
87 	void *cb_priv;
88 
89 	/* DMA */
90 	u8 *rx_buf;
91 	unsigned int bufi; /* Buffer current position */
92 	unsigned int buf_sz; /* Buffer size */
93 	struct dma_chan	*dma_chan;
94 	dma_addr_t dma_buf;
95 };
96 
97 struct stm32_dfsdm_str2field {
98 	const char	*name;
99 	unsigned int	val;
100 };
101 
102 /* DFSDM channel serial interface type */
103 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
104 	{ "SPI_R", 0 }, /* SPI with data on rising edge */
105 	{ "SPI_F", 1 }, /* SPI with data on falling edge */
106 	{ "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
107 	{ "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
108 	{},
109 };
110 
111 /* DFSDM channel clock source */
112 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
113 	/* External SPI clock (CLKIN x) */
114 	{ "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
115 	/* Internal SPI clock (CLKOUT) */
116 	{ "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
117 	/* Internal SPI clock divided by 2 (falling edge) */
118 	{ "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
119 	/* Internal SPI clock divided by 2 (falling edge) */
120 	{ "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
121 	{},
122 };
123 
124 static int stm32_dfsdm_str2val(const char *str,
125 			       const struct stm32_dfsdm_str2field *list)
126 {
127 	const struct stm32_dfsdm_str2field *p = list;
128 
129 	for (p = list; p && p->name; p++)
130 		if (!strcmp(p->name, str))
131 			return p->val;
132 
133 	return -EINVAL;
134 }
135 
136 /**
137  * struct stm32_dfsdm_trig_info - DFSDM trigger info
138  * @name:		name of the trigger, corresponding to its source
139  * @jextsel:		trigger signal selection
140  */
141 struct stm32_dfsdm_trig_info {
142 	const char *name;
143 	unsigned int jextsel;
144 };
145 
146 /* hardware injected trigger enable, edge selection */
147 enum stm32_dfsdm_jexten {
148 	STM32_DFSDM_JEXTEN_DISABLED,
149 	STM32_DFSDM_JEXTEN_RISING_EDGE,
150 	STM32_DFSDM_JEXTEN_FALLING_EDGE,
151 	STM32_DFSDM_EXTEN_BOTH_EDGES,
152 };
153 
154 static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
155 	{ TIM1_TRGO, 0 },
156 	{ TIM1_TRGO2, 1 },
157 	{ TIM8_TRGO, 2 },
158 	{ TIM8_TRGO2, 3 },
159 	{ TIM3_TRGO, 4 },
160 	{ TIM4_TRGO, 5 },
161 	{ TIM16_OC1, 6 },
162 	{ TIM6_TRGO, 7 },
163 	{ TIM7_TRGO, 8 },
164 	{ LPTIM1_OUT, 26 },
165 	{ LPTIM2_OUT, 27 },
166 	{ LPTIM3_OUT, 28 },
167 	{},
168 };
169 
170 static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
171 				   struct iio_trigger *trig)
172 {
173 	int i;
174 
175 	/* lookup triggers registered by stm32 timer trigger driver */
176 	for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
177 		/**
178 		 * Checking both stm32 timer trigger type and trig name
179 		 * should be safe against arbitrary trigger names.
180 		 */
181 		if ((is_stm32_timer_trigger(trig) ||
182 		     is_stm32_lptim_trigger(trig)) &&
183 		    !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
184 			return stm32_dfsdm_trigs[i].jextsel;
185 		}
186 	}
187 
188 	return -EINVAL;
189 }
190 
191 static int stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter *fl,
192 				    unsigned int fast, unsigned int oversamp)
193 {
194 	unsigned int i, d, fosr, iosr;
195 	u64 res, max;
196 	int bits, shift;
197 	unsigned int m = 1;	/* multiplication factor */
198 	unsigned int p = fl->ford;	/* filter order (ford) */
199 	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fast];
200 
201 	pr_debug("%s: Requested oversampling: %d\n",  __func__, oversamp);
202 	/*
203 	 * This function tries to compute filter oversampling and integrator
204 	 * oversampling, base on oversampling ratio requested by user.
205 	 *
206 	 * Decimation d depends on the filter order and the oversampling ratios.
207 	 * ford: filter order
208 	 * fosr: filter over sampling ratio
209 	 * iosr: integrator over sampling ratio
210 	 */
211 	if (fl->ford == DFSDM_FASTSINC_ORDER) {
212 		m = 2;
213 		p = 2;
214 	}
215 
216 	/*
217 	 * Look for filter and integrator oversampling ratios which allows
218 	 * to maximize data output resolution.
219 	 */
220 	for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
221 		for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
222 			if (fast)
223 				d = fosr * iosr;
224 			else if (fl->ford == DFSDM_FASTSINC_ORDER)
225 				d = fosr * (iosr + 3) + 2;
226 			else
227 				d = fosr * (iosr - 1 + p) + p;
228 
229 			if (d > oversamp)
230 				break;
231 			else if (d != oversamp)
232 				continue;
233 			/*
234 			 * Check resolution (limited to signed 32 bits)
235 			 *   res <= 2^31
236 			 * Sincx filters:
237 			 *   res = m * fosr^p x iosr (with m=1, p=ford)
238 			 * FastSinc filter
239 			 *   res = m * fosr^p x iosr (with m=2, p=2)
240 			 */
241 			res = fosr;
242 			for (i = p - 1; i > 0; i--) {
243 				res = res * (u64)fosr;
244 				if (res > DFSDM_DATA_MAX)
245 					break;
246 			}
247 			if (res > DFSDM_DATA_MAX)
248 				continue;
249 
250 			res = res * (u64)m * (u64)iosr;
251 			if (res > DFSDM_DATA_MAX)
252 				continue;
253 
254 			if (res >= flo->res) {
255 				flo->res = res;
256 				flo->fosr = fosr;
257 				flo->iosr = iosr;
258 
259 				bits = fls(flo->res);
260 				/* 8 LBSs in data register contain chan info */
261 				max = flo->res << 8;
262 
263 				/* if resolution is not a power of two */
264 				if (flo->res > BIT(bits - 1))
265 					bits++;
266 				else
267 					max--;
268 
269 				shift = DFSDM_DATA_RES - bits;
270 				/*
271 				 * Compute right/left shift
272 				 * Right shift is performed by hardware
273 				 * when transferring samples to data register.
274 				 * Left shift is done by software on buffer
275 				 */
276 				if (shift > 0) {
277 					/* Resolution is lower than 24 bits */
278 					flo->rshift = 0;
279 					flo->lshift = shift;
280 				} else {
281 					/*
282 					 * If resolution is 24 bits or more,
283 					 * max positive value may be ambiguous
284 					 * (equal to max negative value as sign
285 					 * bit is dropped).
286 					 * Reduce resolution to 23 bits (rshift)
287 					 * to keep the sign on bit 23 and treat
288 					 * saturation before rescaling on 24
289 					 * bits (lshift).
290 					 */
291 					flo->rshift = 1 - shift;
292 					flo->lshift = 1;
293 					max >>= flo->rshift;
294 				}
295 				flo->max = (s32)max;
296 
297 				pr_debug("%s: fast %d, fosr %d, iosr %d, res 0x%llx/%d bits, rshift %d, lshift %d\n",
298 					 __func__, fast, flo->fosr, flo->iosr,
299 					 flo->res, bits, flo->rshift,
300 					 flo->lshift);
301 			}
302 		}
303 	}
304 
305 	if (!flo->res)
306 		return -EINVAL;
307 
308 	return 0;
309 }
310 
311 static int stm32_dfsdm_compute_all_osrs(struct iio_dev *indio_dev,
312 					unsigned int oversamp)
313 {
314 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
315 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
316 	int ret0, ret1;
317 
318 	memset(&fl->flo[0], 0, sizeof(fl->flo[0]));
319 	memset(&fl->flo[1], 0, sizeof(fl->flo[1]));
320 
321 	ret0 = stm32_dfsdm_compute_osrs(fl, 0, oversamp);
322 	ret1 = stm32_dfsdm_compute_osrs(fl, 1, oversamp);
323 	if (ret0 < 0 && ret1 < 0) {
324 		dev_err(&indio_dev->dev,
325 			"Filter parameters not found: errors %d/%d\n",
326 			ret0, ret1);
327 		return -EINVAL;
328 	}
329 
330 	return 0;
331 }
332 
333 static int stm32_dfsdm_start_channel(struct stm32_dfsdm_adc *adc)
334 {
335 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
336 	struct regmap *regmap = adc->dfsdm->regmap;
337 	const struct iio_chan_spec *chan;
338 	unsigned int bit;
339 	int ret;
340 
341 	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
342 		chan = indio_dev->channels + bit;
343 		ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
344 					 DFSDM_CHCFGR1_CHEN_MASK,
345 					 DFSDM_CHCFGR1_CHEN(1));
346 		if (ret < 0)
347 			return ret;
348 	}
349 
350 	return 0;
351 }
352 
353 static void stm32_dfsdm_stop_channel(struct stm32_dfsdm_adc *adc)
354 {
355 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
356 	struct regmap *regmap = adc->dfsdm->regmap;
357 	const struct iio_chan_spec *chan;
358 	unsigned int bit;
359 
360 	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
361 		chan = indio_dev->channels + bit;
362 		regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
363 				   DFSDM_CHCFGR1_CHEN_MASK,
364 				   DFSDM_CHCFGR1_CHEN(0));
365 	}
366 }
367 
368 static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
369 				      struct stm32_dfsdm_channel *ch)
370 {
371 	unsigned int id = ch->id;
372 	struct regmap *regmap = dfsdm->regmap;
373 	int ret;
374 
375 	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
376 				 DFSDM_CHCFGR1_SITP_MASK,
377 				 DFSDM_CHCFGR1_SITP(ch->type));
378 	if (ret < 0)
379 		return ret;
380 	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
381 				 DFSDM_CHCFGR1_SPICKSEL_MASK,
382 				 DFSDM_CHCFGR1_SPICKSEL(ch->src));
383 	if (ret < 0)
384 		return ret;
385 	return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
386 				  DFSDM_CHCFGR1_CHINSEL_MASK,
387 				  DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
388 }
389 
390 static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
391 				    unsigned int fl_id,
392 				    struct iio_trigger *trig)
393 {
394 	struct stm32_dfsdm *dfsdm = adc->dfsdm;
395 	int ret;
396 
397 	/* Enable filter */
398 	ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
399 				 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
400 	if (ret < 0)
401 		return ret;
402 
403 	/* Nothing more to do for injected (scan mode/triggered) conversions */
404 	if (adc->nconv > 1 || trig)
405 		return 0;
406 
407 	/* Software start (single or continuous) regular conversion */
408 	return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
409 				  DFSDM_CR1_RSWSTART_MASK,
410 				  DFSDM_CR1_RSWSTART(1));
411 }
412 
413 static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
414 				    unsigned int fl_id)
415 {
416 	/* Disable conversion */
417 	regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
418 			   DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
419 }
420 
421 static int stm32_dfsdm_filter_set_trig(struct stm32_dfsdm_adc *adc,
422 				       unsigned int fl_id,
423 				       struct iio_trigger *trig)
424 {
425 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
426 	struct regmap *regmap = adc->dfsdm->regmap;
427 	u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
428 	int ret;
429 
430 	if (trig) {
431 		ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
432 		if (ret < 0)
433 			return ret;
434 
435 		/* set trigger source and polarity (default to rising edge) */
436 		jextsel = ret;
437 		jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
438 	}
439 
440 	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
441 				 DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
442 				 DFSDM_CR1_JEXTSEL(jextsel) |
443 				 DFSDM_CR1_JEXTEN(jexten));
444 	if (ret < 0)
445 		return ret;
446 
447 	return 0;
448 }
449 
450 static int stm32_dfsdm_channels_configure(struct stm32_dfsdm_adc *adc,
451 					  unsigned int fl_id,
452 					  struct iio_trigger *trig)
453 {
454 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
455 	struct regmap *regmap = adc->dfsdm->regmap;
456 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
457 	struct stm32_dfsdm_filter_osr *flo = &fl->flo[0];
458 	const struct iio_chan_spec *chan;
459 	unsigned int bit;
460 	int ret;
461 
462 	fl->fast = 0;
463 
464 	/*
465 	 * In continuous mode, use fast mode configuration,
466 	 * if it provides a better resolution.
467 	 */
468 	if (adc->nconv == 1 && !trig &&
469 	    (indio_dev->currentmode & INDIO_BUFFER_SOFTWARE)) {
470 		if (fl->flo[1].res >= fl->flo[0].res) {
471 			fl->fast = 1;
472 			flo = &fl->flo[1];
473 		}
474 	}
475 
476 	if (!flo->res)
477 		return -EINVAL;
478 
479 	for_each_set_bit(bit, &adc->smask,
480 			 sizeof(adc->smask) * BITS_PER_BYTE) {
481 		chan = indio_dev->channels + bit;
482 
483 		ret = regmap_update_bits(regmap,
484 					 DFSDM_CHCFGR2(chan->channel),
485 					 DFSDM_CHCFGR2_DTRBS_MASK,
486 					 DFSDM_CHCFGR2_DTRBS(flo->rshift));
487 		if (ret)
488 			return ret;
489 	}
490 
491 	return 0;
492 }
493 
494 static int stm32_dfsdm_filter_configure(struct stm32_dfsdm_adc *adc,
495 					unsigned int fl_id,
496 					struct iio_trigger *trig)
497 {
498 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
499 	struct regmap *regmap = adc->dfsdm->regmap;
500 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
501 	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
502 	u32 cr1;
503 	const struct iio_chan_spec *chan;
504 	unsigned int bit, jchg = 0;
505 	int ret;
506 
507 	/* Average integrator oversampling */
508 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
509 				 DFSDM_FCR_IOSR(flo->iosr - 1));
510 	if (ret)
511 		return ret;
512 
513 	/* Filter order and Oversampling */
514 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
515 				 DFSDM_FCR_FOSR(flo->fosr - 1));
516 	if (ret)
517 		return ret;
518 
519 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
520 				 DFSDM_FCR_FORD(fl->ford));
521 	if (ret)
522 		return ret;
523 
524 	ret = stm32_dfsdm_filter_set_trig(adc, fl_id, trig);
525 	if (ret)
526 		return ret;
527 
528 	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
529 				 DFSDM_CR1_FAST_MASK,
530 				 DFSDM_CR1_FAST(fl->fast));
531 	if (ret)
532 		return ret;
533 
534 	/*
535 	 * DFSDM modes configuration W.R.T audio/iio type modes
536 	 * ----------------------------------------------------------------
537 	 * Modes         | regular |  regular     | injected | injected   |
538 	 *               |         |  continuous  |          | + scan     |
539 	 * --------------|---------|--------------|----------|------------|
540 	 * single conv   |    x    |              |          |            |
541 	 * (1 chan)      |         |              |          |            |
542 	 * --------------|---------|--------------|----------|------------|
543 	 * 1 Audio chan	 |         | sample freq  |          |            |
544 	 *               |         | or sync_mode |          |            |
545 	 * --------------|---------|--------------|----------|------------|
546 	 * 1 IIO chan	 |         | sample freq  | trigger  |            |
547 	 *               |         | or sync_mode |          |            |
548 	 * --------------|---------|--------------|----------|------------|
549 	 * 2+ IIO chans  |         |              |          | trigger or |
550 	 *               |         |              |          | sync_mode  |
551 	 * ----------------------------------------------------------------
552 	 */
553 	if (adc->nconv == 1 && !trig) {
554 		bit = __ffs(adc->smask);
555 		chan = indio_dev->channels + bit;
556 
557 		/* Use regular conversion for single channel without trigger */
558 		cr1 = DFSDM_CR1_RCH(chan->channel);
559 
560 		/* Continuous conversions triggered by SPI clk in buffer mode */
561 		if (indio_dev->currentmode & INDIO_BUFFER_SOFTWARE)
562 			cr1 |= DFSDM_CR1_RCONT(1);
563 
564 		cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
565 	} else {
566 		/* Use injected conversion for multiple channels */
567 		for_each_set_bit(bit, &adc->smask,
568 				 sizeof(adc->smask) * BITS_PER_BYTE) {
569 			chan = indio_dev->channels + bit;
570 			jchg |= BIT(chan->channel);
571 		}
572 		ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
573 		if (ret < 0)
574 			return ret;
575 
576 		/* Use scan mode for multiple channels */
577 		cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
578 
579 		/*
580 		 * Continuous conversions not supported in injected mode,
581 		 * either use:
582 		 * - conversions in sync with filter 0
583 		 * - triggered conversions
584 		 */
585 		if (!fl->sync_mode && !trig)
586 			return -EINVAL;
587 		cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
588 	}
589 
590 	return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
591 				  cr1);
592 }
593 
594 static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
595 					struct iio_dev *indio_dev,
596 					struct iio_chan_spec *ch)
597 {
598 	struct stm32_dfsdm_channel *df_ch;
599 	const char *of_str;
600 	int chan_idx = ch->scan_index;
601 	int ret, val;
602 
603 	ret = of_property_read_u32_index(indio_dev->dev.of_node,
604 					 "st,adc-channels", chan_idx,
605 					 &ch->channel);
606 	if (ret < 0) {
607 		dev_err(&indio_dev->dev,
608 			" Error parsing 'st,adc-channels' for idx %d\n",
609 			chan_idx);
610 		return ret;
611 	}
612 	if (ch->channel >= dfsdm->num_chs) {
613 		dev_err(&indio_dev->dev,
614 			" Error bad channel number %d (max = %d)\n",
615 			ch->channel, dfsdm->num_chs);
616 		return -EINVAL;
617 	}
618 
619 	ret = of_property_read_string_index(indio_dev->dev.of_node,
620 					    "st,adc-channel-names", chan_idx,
621 					    &ch->datasheet_name);
622 	if (ret < 0) {
623 		dev_err(&indio_dev->dev,
624 			" Error parsing 'st,adc-channel-names' for idx %d\n",
625 			chan_idx);
626 		return ret;
627 	}
628 
629 	df_ch =  &dfsdm->ch_list[ch->channel];
630 	df_ch->id = ch->channel;
631 
632 	ret = of_property_read_string_index(indio_dev->dev.of_node,
633 					    "st,adc-channel-types", chan_idx,
634 					    &of_str);
635 	if (!ret) {
636 		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
637 		if (val < 0)
638 			return val;
639 	} else {
640 		val = 0;
641 	}
642 	df_ch->type = val;
643 
644 	ret = of_property_read_string_index(indio_dev->dev.of_node,
645 					    "st,adc-channel-clk-src", chan_idx,
646 					    &of_str);
647 	if (!ret) {
648 		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
649 		if (val < 0)
650 			return val;
651 	} else {
652 		val = 0;
653 	}
654 	df_ch->src = val;
655 
656 	ret = of_property_read_u32_index(indio_dev->dev.of_node,
657 					 "st,adc-alt-channel", chan_idx,
658 					 &df_ch->alt_si);
659 	if (ret < 0)
660 		df_ch->alt_si = 0;
661 
662 	return 0;
663 }
664 
665 static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
666 					  uintptr_t priv,
667 					  const struct iio_chan_spec *chan,
668 					  char *buf)
669 {
670 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
671 
672 	return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
673 }
674 
675 static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
676 				   unsigned int sample_freq,
677 				   unsigned int spi_freq)
678 {
679 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
680 	unsigned int oversamp;
681 	int ret;
682 
683 	oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
684 	if (spi_freq % sample_freq)
685 		dev_dbg(&indio_dev->dev,
686 			"Rate not accurate. requested (%u), actual (%u)\n",
687 			sample_freq, spi_freq / oversamp);
688 
689 	ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp);
690 	if (ret < 0)
691 		return ret;
692 
693 	adc->sample_freq = spi_freq / oversamp;
694 	adc->oversamp = oversamp;
695 
696 	return 0;
697 }
698 
699 static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
700 					  uintptr_t priv,
701 					  const struct iio_chan_spec *chan,
702 					  const char *buf, size_t len)
703 {
704 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
705 	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
706 	unsigned int sample_freq = adc->sample_freq;
707 	unsigned int spi_freq;
708 	int ret;
709 
710 	dev_err(&indio_dev->dev, "enter %s\n", __func__);
711 	/* If DFSDM is master on SPI, SPI freq can not be updated */
712 	if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
713 		return -EPERM;
714 
715 	ret = kstrtoint(buf, 0, &spi_freq);
716 	if (ret)
717 		return ret;
718 
719 	if (!spi_freq)
720 		return -EINVAL;
721 
722 	if (sample_freq) {
723 		ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
724 		if (ret < 0)
725 			return ret;
726 	}
727 	adc->spi_freq = spi_freq;
728 
729 	return len;
730 }
731 
732 static int stm32_dfsdm_start_conv(struct stm32_dfsdm_adc *adc,
733 				  struct iio_trigger *trig)
734 {
735 	struct regmap *regmap = adc->dfsdm->regmap;
736 	int ret;
737 
738 	ret = stm32_dfsdm_channels_configure(adc, adc->fl_id, trig);
739 	if (ret < 0)
740 		return ret;
741 
742 	ret = stm32_dfsdm_start_channel(adc);
743 	if (ret < 0)
744 		return ret;
745 
746 	ret = stm32_dfsdm_filter_configure(adc, adc->fl_id, trig);
747 	if (ret < 0)
748 		goto stop_channels;
749 
750 	ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
751 	if (ret < 0)
752 		goto filter_unconfigure;
753 
754 	return 0;
755 
756 filter_unconfigure:
757 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
758 			   DFSDM_CR1_CFG_MASK, 0);
759 stop_channels:
760 	stm32_dfsdm_stop_channel(adc);
761 
762 	return ret;
763 }
764 
765 static void stm32_dfsdm_stop_conv(struct stm32_dfsdm_adc *adc)
766 {
767 	struct regmap *regmap = adc->dfsdm->regmap;
768 
769 	stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
770 
771 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
772 			   DFSDM_CR1_CFG_MASK, 0);
773 
774 	stm32_dfsdm_stop_channel(adc);
775 }
776 
777 static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
778 				     unsigned int val)
779 {
780 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
781 	unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
782 	unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
783 
784 	/*
785 	 * DMA cyclic transfers are used, buffer is split into two periods.
786 	 * There should be :
787 	 * - always one buffer (period) DMA is working on
788 	 * - one buffer (period) driver pushed to ASoC side.
789 	 */
790 	watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
791 	adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
792 
793 	return 0;
794 }
795 
796 static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
797 {
798 	struct dma_tx_state state;
799 	enum dma_status status;
800 
801 	status = dmaengine_tx_status(adc->dma_chan,
802 				     adc->dma_chan->cookie,
803 				     &state);
804 	if (status == DMA_IN_PROGRESS) {
805 		/* Residue is size in bytes from end of buffer */
806 		unsigned int i = adc->buf_sz - state.residue;
807 		unsigned int size;
808 
809 		/* Return available bytes */
810 		if (i >= adc->bufi)
811 			size = i - adc->bufi;
812 		else
813 			size = adc->buf_sz + i - adc->bufi;
814 
815 		return size;
816 	}
817 
818 	return 0;
819 }
820 
821 static inline void stm32_dfsdm_process_data(struct stm32_dfsdm_adc *adc,
822 					    s32 *buffer)
823 {
824 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
825 	struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
826 	unsigned int i = adc->nconv;
827 	s32 *ptr = buffer;
828 
829 	while (i--) {
830 		/* Mask 8 LSB that contains the channel ID */
831 		*ptr &= 0xFFFFFF00;
832 		/* Convert 2^(n-1) sample to 2^(n-1)-1 to avoid wrap-around */
833 		if (*ptr > flo->max)
834 			*ptr -= 1;
835 		/*
836 		 * Samples from filter are retrieved with 23 bits resolution
837 		 * or less. Shift left to align MSB on 24 bits.
838 		 */
839 		*ptr <<= flo->lshift;
840 
841 		ptr++;
842 	}
843 }
844 
845 static void stm32_dfsdm_dma_buffer_done(void *data)
846 {
847 	struct iio_dev *indio_dev = data;
848 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
849 	int available = stm32_dfsdm_adc_dma_residue(adc);
850 	size_t old_pos;
851 
852 	/*
853 	 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
854 	 * offers only an interface to push data samples per samples.
855 	 * For this reason IIO buffer interface is not used and interface is
856 	 * bypassed using a private callback registered by ASoC.
857 	 * This should be a temporary solution waiting a cyclic DMA engine
858 	 * support in IIO.
859 	 */
860 
861 	dev_dbg(&indio_dev->dev, "%s: pos = %d, available = %d\n", __func__,
862 		adc->bufi, available);
863 	old_pos = adc->bufi;
864 
865 	while (available >= indio_dev->scan_bytes) {
866 		s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
867 
868 		stm32_dfsdm_process_data(adc, buffer);
869 
870 		available -= indio_dev->scan_bytes;
871 		adc->bufi += indio_dev->scan_bytes;
872 		if (adc->bufi >= adc->buf_sz) {
873 			if (adc->cb)
874 				adc->cb(&adc->rx_buf[old_pos],
875 					 adc->buf_sz - old_pos, adc->cb_priv);
876 			adc->bufi = 0;
877 			old_pos = 0;
878 		}
879 		/*
880 		 * In DMA mode the trigger services of IIO are not used
881 		 * (e.g. no call to iio_trigger_poll).
882 		 * Calling irq handler associated to the hardware trigger is not
883 		 * relevant as the conversions have already been done. Data
884 		 * transfers are performed directly in DMA callback instead.
885 		 * This implementation avoids to call trigger irq handler that
886 		 * may sleep, in an atomic context (DMA irq handler context).
887 		 */
888 		if (adc->dev_data->type == DFSDM_IIO)
889 			iio_push_to_buffers(indio_dev, buffer);
890 	}
891 	if (adc->cb)
892 		adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
893 			adc->cb_priv);
894 }
895 
896 static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
897 {
898 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
899 	/*
900 	 * The DFSDM supports half-word transfers. However, for 16 bits record,
901 	 * 4 bytes buswidth is kept, to avoid losing samples LSBs when left
902 	 * shift is required.
903 	 */
904 	struct dma_slave_config config = {
905 		.src_addr = (dma_addr_t)adc->dfsdm->phys_base,
906 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
907 	};
908 	struct dma_async_tx_descriptor *desc;
909 	dma_cookie_t cookie;
910 	int ret;
911 
912 	if (!adc->dma_chan)
913 		return -EINVAL;
914 
915 	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
916 		adc->buf_sz, adc->buf_sz / 2);
917 
918 	if (adc->nconv == 1 && !indio_dev->trig)
919 		config.src_addr += DFSDM_RDATAR(adc->fl_id);
920 	else
921 		config.src_addr += DFSDM_JDATAR(adc->fl_id);
922 	ret = dmaengine_slave_config(adc->dma_chan, &config);
923 	if (ret)
924 		return ret;
925 
926 	/* Prepare a DMA cyclic transaction */
927 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
928 					 adc->dma_buf,
929 					 adc->buf_sz, adc->buf_sz / 2,
930 					 DMA_DEV_TO_MEM,
931 					 DMA_PREP_INTERRUPT);
932 	if (!desc)
933 		return -EBUSY;
934 
935 	desc->callback = stm32_dfsdm_dma_buffer_done;
936 	desc->callback_param = indio_dev;
937 
938 	cookie = dmaengine_submit(desc);
939 	ret = dma_submit_error(cookie);
940 	if (ret)
941 		goto err_stop_dma;
942 
943 	/* Issue pending DMA requests */
944 	dma_async_issue_pending(adc->dma_chan);
945 
946 	if (adc->nconv == 1 && !indio_dev->trig) {
947 		/* Enable regular DMA transfer*/
948 		ret = regmap_update_bits(adc->dfsdm->regmap,
949 					 DFSDM_CR1(adc->fl_id),
950 					 DFSDM_CR1_RDMAEN_MASK,
951 					 DFSDM_CR1_RDMAEN_MASK);
952 	} else {
953 		/* Enable injected DMA transfer*/
954 		ret = regmap_update_bits(adc->dfsdm->regmap,
955 					 DFSDM_CR1(adc->fl_id),
956 					 DFSDM_CR1_JDMAEN_MASK,
957 					 DFSDM_CR1_JDMAEN_MASK);
958 	}
959 
960 	if (ret < 0)
961 		goto err_stop_dma;
962 
963 	return 0;
964 
965 err_stop_dma:
966 	dmaengine_terminate_all(adc->dma_chan);
967 
968 	return ret;
969 }
970 
971 static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
972 {
973 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
974 
975 	if (!adc->dma_chan)
976 		return;
977 
978 	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
979 			   DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK, 0);
980 	dmaengine_terminate_all(adc->dma_chan);
981 }
982 
983 static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
984 					const unsigned long *scan_mask)
985 {
986 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
987 
988 	adc->nconv = bitmap_weight(scan_mask, indio_dev->masklength);
989 	adc->smask = *scan_mask;
990 
991 	dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
992 
993 	return 0;
994 }
995 
996 static int __stm32_dfsdm_postenable(struct iio_dev *indio_dev)
997 {
998 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
999 	int ret;
1000 
1001 	/* Reset adc buffer index */
1002 	adc->bufi = 0;
1003 
1004 	if (adc->hwc) {
1005 		ret = iio_hw_consumer_enable(adc->hwc);
1006 		if (ret < 0)
1007 			return ret;
1008 	}
1009 
1010 	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1011 	if (ret < 0)
1012 		goto err_stop_hwc;
1013 
1014 	ret = stm32_dfsdm_adc_dma_start(indio_dev);
1015 	if (ret) {
1016 		dev_err(&indio_dev->dev, "Can't start DMA\n");
1017 		goto stop_dfsdm;
1018 	}
1019 
1020 	ret = stm32_dfsdm_start_conv(adc, indio_dev->trig);
1021 	if (ret) {
1022 		dev_err(&indio_dev->dev, "Can't start conversion\n");
1023 		goto err_stop_dma;
1024 	}
1025 
1026 	return 0;
1027 
1028 err_stop_dma:
1029 	stm32_dfsdm_adc_dma_stop(indio_dev);
1030 stop_dfsdm:
1031 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1032 err_stop_hwc:
1033 	if (adc->hwc)
1034 		iio_hw_consumer_disable(adc->hwc);
1035 
1036 	return ret;
1037 }
1038 
1039 static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
1040 {
1041 	int ret;
1042 
1043 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED) {
1044 		ret = iio_triggered_buffer_postenable(indio_dev);
1045 		if (ret < 0)
1046 			return ret;
1047 	}
1048 
1049 	ret = __stm32_dfsdm_postenable(indio_dev);
1050 	if (ret < 0)
1051 		goto err_predisable;
1052 
1053 	return 0;
1054 
1055 err_predisable:
1056 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1057 		iio_triggered_buffer_predisable(indio_dev);
1058 
1059 	return ret;
1060 }
1061 
1062 static void __stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1063 {
1064 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1065 
1066 	stm32_dfsdm_stop_conv(adc);
1067 
1068 	stm32_dfsdm_adc_dma_stop(indio_dev);
1069 
1070 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1071 
1072 	if (adc->hwc)
1073 		iio_hw_consumer_disable(adc->hwc);
1074 }
1075 
1076 static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1077 {
1078 	__stm32_dfsdm_predisable(indio_dev);
1079 
1080 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1081 		iio_triggered_buffer_predisable(indio_dev);
1082 
1083 	return 0;
1084 }
1085 
1086 static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
1087 	.postenable = &stm32_dfsdm_postenable,
1088 	.predisable = &stm32_dfsdm_predisable,
1089 };
1090 
1091 /**
1092  * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
1093  *                             DMA transfer period is achieved.
1094  *
1095  * @iio_dev: Handle to IIO device.
1096  * @cb: Pointer to callback function:
1097  *      - data: pointer to data buffer
1098  *      - size: size in byte of the data buffer
1099  *      - private: pointer to consumer private structure.
1100  * @private: Pointer to consumer private structure.
1101  */
1102 int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
1103 			    int (*cb)(const void *data, size_t size,
1104 				      void *private),
1105 			    void *private)
1106 {
1107 	struct stm32_dfsdm_adc *adc;
1108 
1109 	if (!iio_dev)
1110 		return -EINVAL;
1111 	adc = iio_priv(iio_dev);
1112 
1113 	adc->cb = cb;
1114 	adc->cb_priv = private;
1115 
1116 	return 0;
1117 }
1118 EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
1119 
1120 /**
1121  * stm32_dfsdm_release_buff_cb - unregister buffer callback
1122  *
1123  * @iio_dev: Handle to IIO device.
1124  */
1125 int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
1126 {
1127 	struct stm32_dfsdm_adc *adc;
1128 
1129 	if (!iio_dev)
1130 		return -EINVAL;
1131 	adc = iio_priv(iio_dev);
1132 
1133 	adc->cb = NULL;
1134 	adc->cb_priv = NULL;
1135 
1136 	return 0;
1137 }
1138 EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
1139 
1140 static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
1141 				   const struct iio_chan_spec *chan, int *res)
1142 {
1143 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1144 	long timeout;
1145 	int ret;
1146 
1147 	reinit_completion(&adc->completion);
1148 
1149 	adc->buffer = res;
1150 
1151 	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
1152 	if (ret < 0)
1153 		return ret;
1154 
1155 	ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1156 				 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
1157 	if (ret < 0)
1158 		goto stop_dfsdm;
1159 
1160 	adc->nconv = 1;
1161 	adc->smask = BIT(chan->scan_index);
1162 	ret = stm32_dfsdm_start_conv(adc, NULL);
1163 	if (ret < 0) {
1164 		regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1165 				   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1166 		goto stop_dfsdm;
1167 	}
1168 
1169 	timeout = wait_for_completion_interruptible_timeout(&adc->completion,
1170 							    DFSDM_TIMEOUT);
1171 
1172 	/* Mask IRQ for regular conversion achievement*/
1173 	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1174 			   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1175 
1176 	if (timeout == 0)
1177 		ret = -ETIMEDOUT;
1178 	else if (timeout < 0)
1179 		ret = timeout;
1180 	else
1181 		ret = IIO_VAL_INT;
1182 
1183 	stm32_dfsdm_stop_conv(adc);
1184 
1185 	stm32_dfsdm_process_data(adc, res);
1186 
1187 stop_dfsdm:
1188 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1189 
1190 	return ret;
1191 }
1192 
1193 static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
1194 				 struct iio_chan_spec const *chan,
1195 				 int val, int val2, long mask)
1196 {
1197 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1198 	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
1199 	unsigned int spi_freq;
1200 	int ret = -EINVAL;
1201 
1202 	switch (ch->src) {
1203 	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
1204 		spi_freq = adc->dfsdm->spi_master_freq;
1205 		break;
1206 	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
1207 	case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
1208 		spi_freq = adc->dfsdm->spi_master_freq / 2;
1209 		break;
1210 	default:
1211 		spi_freq = adc->spi_freq;
1212 	}
1213 
1214 	switch (mask) {
1215 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1216 		ret = iio_device_claim_direct_mode(indio_dev);
1217 		if (ret)
1218 			return ret;
1219 
1220 		ret = stm32_dfsdm_compute_all_osrs(indio_dev, val);
1221 		if (!ret) {
1222 			dev_dbg(&indio_dev->dev,
1223 				"Sampling rate changed from (%u) to (%u)\n",
1224 				adc->sample_freq, spi_freq / val);
1225 			adc->oversamp = val;
1226 			adc->sample_freq = spi_freq / val;
1227 		}
1228 		iio_device_release_direct_mode(indio_dev);
1229 		return ret;
1230 
1231 	case IIO_CHAN_INFO_SAMP_FREQ:
1232 		if (!val)
1233 			return -EINVAL;
1234 
1235 		ret = iio_device_claim_direct_mode(indio_dev);
1236 		if (ret)
1237 			return ret;
1238 
1239 		ret = dfsdm_adc_set_samp_freq(indio_dev, val, spi_freq);
1240 		iio_device_release_direct_mode(indio_dev);
1241 		return ret;
1242 	}
1243 
1244 	return -EINVAL;
1245 }
1246 
1247 static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
1248 				struct iio_chan_spec const *chan, int *val,
1249 				int *val2, long mask)
1250 {
1251 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1252 	int ret;
1253 
1254 	switch (mask) {
1255 	case IIO_CHAN_INFO_RAW:
1256 		ret = iio_device_claim_direct_mode(indio_dev);
1257 		if (ret)
1258 			return ret;
1259 		ret = iio_hw_consumer_enable(adc->hwc);
1260 		if (ret < 0) {
1261 			dev_err(&indio_dev->dev,
1262 				"%s: IIO enable failed (channel %d)\n",
1263 				__func__, chan->channel);
1264 			iio_device_release_direct_mode(indio_dev);
1265 			return ret;
1266 		}
1267 		ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
1268 		iio_hw_consumer_disable(adc->hwc);
1269 		if (ret < 0) {
1270 			dev_err(&indio_dev->dev,
1271 				"%s: Conversion failed (channel %d)\n",
1272 				__func__, chan->channel);
1273 			iio_device_release_direct_mode(indio_dev);
1274 			return ret;
1275 		}
1276 		iio_device_release_direct_mode(indio_dev);
1277 		return IIO_VAL_INT;
1278 
1279 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1280 		*val = adc->oversamp;
1281 
1282 		return IIO_VAL_INT;
1283 
1284 	case IIO_CHAN_INFO_SAMP_FREQ:
1285 		*val = adc->sample_freq;
1286 
1287 		return IIO_VAL_INT;
1288 	}
1289 
1290 	return -EINVAL;
1291 }
1292 
1293 static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
1294 					struct iio_trigger *trig)
1295 {
1296 	return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1297 }
1298 
1299 static const struct iio_info stm32_dfsdm_info_audio = {
1300 	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1301 	.read_raw = stm32_dfsdm_read_raw,
1302 	.write_raw = stm32_dfsdm_write_raw,
1303 	.update_scan_mode = stm32_dfsdm_update_scan_mode,
1304 };
1305 
1306 static const struct iio_info stm32_dfsdm_info_adc = {
1307 	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1308 	.read_raw = stm32_dfsdm_read_raw,
1309 	.write_raw = stm32_dfsdm_write_raw,
1310 	.update_scan_mode = stm32_dfsdm_update_scan_mode,
1311 	.validate_trigger = stm32_dfsdm_validate_trigger,
1312 };
1313 
1314 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
1315 {
1316 	struct stm32_dfsdm_adc *adc = arg;
1317 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1318 	struct regmap *regmap = adc->dfsdm->regmap;
1319 	unsigned int status, int_en;
1320 
1321 	regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
1322 	regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
1323 
1324 	if (status & DFSDM_ISR_REOCF_MASK) {
1325 		/* Read the data register clean the IRQ status */
1326 		regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
1327 		complete(&adc->completion);
1328 	}
1329 
1330 	if (status & DFSDM_ISR_ROVRF_MASK) {
1331 		if (int_en & DFSDM_CR2_ROVRIE_MASK)
1332 			dev_warn(&indio_dev->dev, "Overrun detected\n");
1333 		regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
1334 				   DFSDM_ICR_CLRROVRF_MASK,
1335 				   DFSDM_ICR_CLRROVRF_MASK);
1336 	}
1337 
1338 	return IRQ_HANDLED;
1339 }
1340 
1341 /*
1342  * Define external info for SPI Frequency and audio sampling rate that can be
1343  * configured by ASoC driver through consumer.h API
1344  */
1345 static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
1346 	/* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
1347 	{
1348 		.name = "spi_clk_freq",
1349 		.shared = IIO_SHARED_BY_TYPE,
1350 		.read = dfsdm_adc_audio_get_spiclk,
1351 		.write = dfsdm_adc_audio_set_spiclk,
1352 	},
1353 	{},
1354 };
1355 
1356 static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
1357 {
1358 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1359 
1360 	if (adc->dma_chan) {
1361 		dma_free_coherent(adc->dma_chan->device->dev,
1362 				  DFSDM_DMA_BUFFER_SIZE,
1363 				  adc->rx_buf, adc->dma_buf);
1364 		dma_release_channel(adc->dma_chan);
1365 	}
1366 }
1367 
1368 static int stm32_dfsdm_dma_request(struct device *dev,
1369 				   struct iio_dev *indio_dev)
1370 {
1371 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1372 
1373 	adc->dma_chan = dma_request_chan(dev, "rx");
1374 	if (IS_ERR(adc->dma_chan)) {
1375 		int ret = PTR_ERR(adc->dma_chan);
1376 
1377 		adc->dma_chan = NULL;
1378 		return ret;
1379 	}
1380 
1381 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1382 					 DFSDM_DMA_BUFFER_SIZE,
1383 					 &adc->dma_buf, GFP_KERNEL);
1384 	if (!adc->rx_buf) {
1385 		dma_release_channel(adc->dma_chan);
1386 		return -ENOMEM;
1387 	}
1388 
1389 	indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1390 	indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1391 
1392 	return 0;
1393 }
1394 
1395 static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
1396 					 struct iio_chan_spec *ch)
1397 {
1398 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1399 	int ret;
1400 
1401 	ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
1402 	if (ret < 0)
1403 		return ret;
1404 
1405 	ch->type = IIO_VOLTAGE;
1406 	ch->indexed = 1;
1407 
1408 	/*
1409 	 * IIO_CHAN_INFO_RAW: used to compute regular conversion
1410 	 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
1411 	 */
1412 	ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1413 	ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
1414 					BIT(IIO_CHAN_INFO_SAMP_FREQ);
1415 
1416 	if (adc->dev_data->type == DFSDM_AUDIO) {
1417 		ch->ext_info = dfsdm_adc_audio_ext_info;
1418 	} else {
1419 		ch->scan_type.shift = 8;
1420 	}
1421 	ch->scan_type.sign = 's';
1422 	ch->scan_type.realbits = 24;
1423 	ch->scan_type.storagebits = 32;
1424 
1425 	return stm32_dfsdm_chan_configure(adc->dfsdm,
1426 					  &adc->dfsdm->ch_list[ch->channel]);
1427 }
1428 
1429 static int stm32_dfsdm_audio_init(struct device *dev, struct iio_dev *indio_dev)
1430 {
1431 	struct iio_chan_spec *ch;
1432 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1433 	struct stm32_dfsdm_channel *d_ch;
1434 	int ret;
1435 
1436 	ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1437 	if (!ch)
1438 		return -ENOMEM;
1439 
1440 	ch->scan_index = 0;
1441 
1442 	ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
1443 	if (ret < 0) {
1444 		dev_err(&indio_dev->dev, "Channels init failed\n");
1445 		return ret;
1446 	}
1447 	ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1448 
1449 	d_ch = &adc->dfsdm->ch_list[ch->channel];
1450 	if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1451 		adc->spi_freq = adc->dfsdm->spi_master_freq;
1452 
1453 	indio_dev->num_channels = 1;
1454 	indio_dev->channels = ch;
1455 
1456 	return stm32_dfsdm_dma_request(dev, indio_dev);
1457 }
1458 
1459 static int stm32_dfsdm_adc_init(struct device *dev, struct iio_dev *indio_dev)
1460 {
1461 	struct iio_chan_spec *ch;
1462 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1463 	int num_ch;
1464 	int ret, chan_idx;
1465 
1466 	adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1467 	ret = stm32_dfsdm_compute_all_osrs(indio_dev, adc->oversamp);
1468 	if (ret < 0)
1469 		return ret;
1470 
1471 	num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
1472 					     "st,adc-channels");
1473 	if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
1474 		dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1475 		return num_ch < 0 ? num_ch : -EINVAL;
1476 	}
1477 
1478 	/* Bind to SD modulator IIO device */
1479 	adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1480 	if (IS_ERR(adc->hwc))
1481 		return -EPROBE_DEFER;
1482 
1483 	ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
1484 			  GFP_KERNEL);
1485 	if (!ch)
1486 		return -ENOMEM;
1487 
1488 	for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1489 		ch[chan_idx].scan_index = chan_idx;
1490 		ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
1491 		if (ret < 0) {
1492 			dev_err(&indio_dev->dev, "Channels init failed\n");
1493 			return ret;
1494 		}
1495 	}
1496 
1497 	indio_dev->num_channels = num_ch;
1498 	indio_dev->channels = ch;
1499 
1500 	init_completion(&adc->completion);
1501 
1502 	/* Optionally request DMA */
1503 	ret = stm32_dfsdm_dma_request(dev, indio_dev);
1504 	if (ret) {
1505 		if (ret != -ENODEV) {
1506 			if (ret != -EPROBE_DEFER)
1507 				dev_err(dev,
1508 					"DMA channel request failed with %d\n",
1509 					ret);
1510 			return ret;
1511 		}
1512 
1513 		dev_dbg(dev, "No DMA support\n");
1514 		return 0;
1515 	}
1516 
1517 	ret = iio_triggered_buffer_setup(indio_dev,
1518 					 &iio_pollfunc_store_time, NULL,
1519 					 &stm32_dfsdm_buffer_setup_ops);
1520 	if (ret) {
1521 		stm32_dfsdm_dma_release(indio_dev);
1522 		dev_err(&indio_dev->dev, "buffer setup failed\n");
1523 		return ret;
1524 	}
1525 
1526 	/* lptimer/timer hardware triggers */
1527 	indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
1528 
1529 	return 0;
1530 }
1531 
1532 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1533 	.type = DFSDM_IIO,
1534 	.init = stm32_dfsdm_adc_init,
1535 };
1536 
1537 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1538 	.type = DFSDM_AUDIO,
1539 	.init = stm32_dfsdm_audio_init,
1540 };
1541 
1542 static const struct of_device_id stm32_dfsdm_adc_match[] = {
1543 	{
1544 		.compatible = "st,stm32-dfsdm-adc",
1545 		.data = &stm32h7_dfsdm_adc_data,
1546 	},
1547 	{
1548 		.compatible = "st,stm32-dfsdm-dmic",
1549 		.data = &stm32h7_dfsdm_audio_data,
1550 	},
1551 	{}
1552 };
1553 
1554 static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1555 {
1556 	struct device *dev = &pdev->dev;
1557 	struct stm32_dfsdm_adc *adc;
1558 	struct device_node *np = dev->of_node;
1559 	const struct stm32_dfsdm_dev_data *dev_data;
1560 	struct iio_dev *iio;
1561 	char *name;
1562 	int ret, irq, val;
1563 
1564 	dev_data = of_device_get_match_data(dev);
1565 	iio = devm_iio_device_alloc(dev, sizeof(*adc));
1566 	if (!iio) {
1567 		dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1568 		return -ENOMEM;
1569 	}
1570 
1571 	adc = iio_priv(iio);
1572 	adc->dfsdm = dev_get_drvdata(dev->parent);
1573 
1574 	iio->dev.parent = dev;
1575 	iio->dev.of_node = np;
1576 	iio->modes = INDIO_DIRECT_MODE;
1577 
1578 	platform_set_drvdata(pdev, adc);
1579 
1580 	ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1581 	if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1582 		dev_err(dev, "Missing or bad reg property\n");
1583 		return -EINVAL;
1584 	}
1585 
1586 	name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1587 	if (!name)
1588 		return -ENOMEM;
1589 	if (dev_data->type == DFSDM_AUDIO) {
1590 		iio->info = &stm32_dfsdm_info_audio;
1591 		snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1592 	} else {
1593 		iio->info = &stm32_dfsdm_info_adc;
1594 		snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1595 	}
1596 	iio->name = name;
1597 
1598 	/*
1599 	 * In a first step IRQs generated for channels are not treated.
1600 	 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1601 	 */
1602 	irq = platform_get_irq(pdev, 0);
1603 	if (irq < 0)
1604 		return irq;
1605 
1606 	ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1607 			       0, pdev->name, adc);
1608 	if (ret < 0) {
1609 		dev_err(dev, "Failed to request IRQ\n");
1610 		return ret;
1611 	}
1612 
1613 	ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1614 	if (ret < 0) {
1615 		dev_err(dev, "Failed to set filter order\n");
1616 		return ret;
1617 	}
1618 
1619 	adc->dfsdm->fl_list[adc->fl_id].ford = val;
1620 
1621 	ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1622 	if (!ret)
1623 		adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1624 
1625 	adc->dev_data = dev_data;
1626 	ret = dev_data->init(dev, iio);
1627 	if (ret < 0)
1628 		return ret;
1629 
1630 	ret = iio_device_register(iio);
1631 	if (ret < 0)
1632 		goto err_cleanup;
1633 
1634 	if (dev_data->type == DFSDM_AUDIO) {
1635 		ret = of_platform_populate(np, NULL, NULL, dev);
1636 		if (ret < 0) {
1637 			dev_err(dev, "Failed to find an audio DAI\n");
1638 			goto err_unregister;
1639 		}
1640 	}
1641 
1642 	return 0;
1643 
1644 err_unregister:
1645 	iio_device_unregister(iio);
1646 err_cleanup:
1647 	stm32_dfsdm_dma_release(iio);
1648 
1649 	return ret;
1650 }
1651 
1652 static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
1653 {
1654 	struct stm32_dfsdm_adc *adc = platform_get_drvdata(pdev);
1655 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1656 
1657 	if (adc->dev_data->type == DFSDM_AUDIO)
1658 		of_platform_depopulate(&pdev->dev);
1659 	iio_device_unregister(indio_dev);
1660 	stm32_dfsdm_dma_release(indio_dev);
1661 
1662 	return 0;
1663 }
1664 
1665 static int __maybe_unused stm32_dfsdm_adc_suspend(struct device *dev)
1666 {
1667 	struct stm32_dfsdm_adc *adc = dev_get_drvdata(dev);
1668 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1669 
1670 	if (iio_buffer_enabled(indio_dev))
1671 		__stm32_dfsdm_predisable(indio_dev);
1672 
1673 	return 0;
1674 }
1675 
1676 static int __maybe_unused stm32_dfsdm_adc_resume(struct device *dev)
1677 {
1678 	struct stm32_dfsdm_adc *adc = dev_get_drvdata(dev);
1679 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1680 	const struct iio_chan_spec *chan;
1681 	struct stm32_dfsdm_channel *ch;
1682 	int i, ret;
1683 
1684 	/* restore channels configuration */
1685 	for (i = 0; i < indio_dev->num_channels; i++) {
1686 		chan = indio_dev->channels + i;
1687 		ch = &adc->dfsdm->ch_list[chan->channel];
1688 		ret = stm32_dfsdm_chan_configure(adc->dfsdm, ch);
1689 		if (ret)
1690 			return ret;
1691 	}
1692 
1693 	if (iio_buffer_enabled(indio_dev))
1694 		__stm32_dfsdm_postenable(indio_dev);
1695 
1696 	return 0;
1697 }
1698 
1699 static SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
1700 			 stm32_dfsdm_adc_suspend, stm32_dfsdm_adc_resume);
1701 
1702 static struct platform_driver stm32_dfsdm_adc_driver = {
1703 	.driver = {
1704 		.name = "stm32-dfsdm-adc",
1705 		.of_match_table = stm32_dfsdm_adc_match,
1706 		.pm = &stm32_dfsdm_adc_pm_ops,
1707 	},
1708 	.probe = stm32_dfsdm_adc_probe,
1709 	.remove = stm32_dfsdm_adc_remove,
1710 };
1711 module_platform_driver(stm32_dfsdm_adc_driver);
1712 
1713 MODULE_DESCRIPTION("STM32 sigma delta ADC");
1714 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1715 MODULE_LICENSE("GPL v2");
1716