1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is the ADC part of the STM32 DFSDM driver
4  *
5  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6  * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
7  */
8 
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iio/adc/stm32-dfsdm-adc.h>
12 #include <linux/iio/buffer.h>
13 #include <linux/iio/hw-consumer.h>
14 #include <linux/iio/sysfs.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/of_device.h>
23 #include <linux/platform_device.h>
24 #include <linux/regmap.h>
25 #include <linux/slab.h>
26 
27 #include "stm32-dfsdm.h"
28 
29 #define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
30 
31 /* Conversion timeout */
32 #define DFSDM_TIMEOUT_US 100000
33 #define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
34 
35 /* Oversampling attribute default */
36 #define DFSDM_DEFAULT_OVERSAMPLING  100
37 
38 /* Oversampling max values */
39 #define DFSDM_MAX_INT_OVERSAMPLING 256
40 #define DFSDM_MAX_FL_OVERSAMPLING 1024
41 
42 /* Max sample resolutions */
43 #define DFSDM_MAX_RES BIT(31)
44 #define DFSDM_DATA_RES BIT(23)
45 
46 /* Filter configuration */
47 #define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
48 			    DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
49 			    DFSDM_CR1_JSCAN_MASK)
50 
51 enum sd_converter_type {
52 	DFSDM_AUDIO,
53 	DFSDM_IIO,
54 };
55 
56 struct stm32_dfsdm_dev_data {
57 	int type;
58 	int (*init)(struct iio_dev *indio_dev);
59 	unsigned int num_channels;
60 	const struct regmap_config *regmap_cfg;
61 };
62 
63 struct stm32_dfsdm_adc {
64 	struct stm32_dfsdm *dfsdm;
65 	const struct stm32_dfsdm_dev_data *dev_data;
66 	unsigned int fl_id;
67 	unsigned int nconv;
68 	unsigned long smask;
69 
70 	/* ADC specific */
71 	unsigned int oversamp;
72 	struct iio_hw_consumer *hwc;
73 	struct completion completion;
74 	u32 *buffer;
75 
76 	/* Audio specific */
77 	unsigned int spi_freq;  /* SPI bus clock frequency */
78 	unsigned int sample_freq; /* Sample frequency after filter decimation */
79 	int (*cb)(const void *data, size_t size, void *cb_priv);
80 	void *cb_priv;
81 
82 	/* DMA */
83 	u8 *rx_buf;
84 	unsigned int bufi; /* Buffer current position */
85 	unsigned int buf_sz; /* Buffer size */
86 	struct dma_chan	*dma_chan;
87 	dma_addr_t dma_buf;
88 };
89 
90 struct stm32_dfsdm_str2field {
91 	const char	*name;
92 	unsigned int	val;
93 };
94 
95 /* DFSDM channel serial interface type */
96 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
97 	{ "SPI_R", 0 }, /* SPI with data on rising edge */
98 	{ "SPI_F", 1 }, /* SPI with data on falling edge */
99 	{ "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
100 	{ "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
101 	{},
102 };
103 
104 /* DFSDM channel clock source */
105 static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
106 	/* External SPI clock (CLKIN x) */
107 	{ "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
108 	/* Internal SPI clock (CLKOUT) */
109 	{ "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
110 	/* Internal SPI clock divided by 2 (falling edge) */
111 	{ "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
112 	/* Internal SPI clock divided by 2 (falling edge) */
113 	{ "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
114 	{},
115 };
116 
117 static int stm32_dfsdm_str2val(const char *str,
118 			       const struct stm32_dfsdm_str2field *list)
119 {
120 	const struct stm32_dfsdm_str2field *p = list;
121 
122 	for (p = list; p && p->name; p++)
123 		if (!strcmp(p->name, str))
124 			return p->val;
125 
126 	return -EINVAL;
127 }
128 
129 /**
130  * struct stm32_dfsdm_trig_info - DFSDM trigger info
131  * @name:		name of the trigger, corresponding to its source
132  * @jextsel:		trigger signal selection
133  */
134 struct stm32_dfsdm_trig_info {
135 	const char *name;
136 	unsigned int jextsel;
137 };
138 
139 /* hardware injected trigger enable, edge selection */
140 enum stm32_dfsdm_jexten {
141 	STM32_DFSDM_JEXTEN_DISABLED,
142 	STM32_DFSDM_JEXTEN_RISING_EDGE,
143 	STM32_DFSDM_JEXTEN_FALLING_EDGE,
144 	STM32_DFSDM_EXTEN_BOTH_EDGES,
145 };
146 
147 static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
148 	{ TIM1_TRGO, 0 },
149 	{ TIM1_TRGO2, 1 },
150 	{ TIM8_TRGO, 2 },
151 	{ TIM8_TRGO2, 3 },
152 	{ TIM3_TRGO, 4 },
153 	{ TIM4_TRGO, 5 },
154 	{ TIM16_OC1, 6 },
155 	{ TIM6_TRGO, 7 },
156 	{ TIM7_TRGO, 8 },
157 	{ LPTIM1_OUT, 26 },
158 	{ LPTIM2_OUT, 27 },
159 	{ LPTIM3_OUT, 28 },
160 	{},
161 };
162 
163 static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
164 				   struct iio_trigger *trig)
165 {
166 	int i;
167 
168 	/* lookup triggers registered by stm32 timer trigger driver */
169 	for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
170 		/**
171 		 * Checking both stm32 timer trigger type and trig name
172 		 * should be safe against arbitrary trigger names.
173 		 */
174 		if ((is_stm32_timer_trigger(trig) ||
175 		     is_stm32_lptim_trigger(trig)) &&
176 		    !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
177 			return stm32_dfsdm_trigs[i].jextsel;
178 		}
179 	}
180 
181 	return -EINVAL;
182 }
183 
184 static int stm32_dfsdm_set_osrs(struct stm32_dfsdm_filter *fl,
185 				unsigned int fast, unsigned int oversamp)
186 {
187 	unsigned int i, d, fosr, iosr;
188 	u64 res;
189 	s64 delta;
190 	unsigned int m = 1;	/* multiplication factor */
191 	unsigned int p = fl->ford;	/* filter order (ford) */
192 
193 	pr_debug("%s: Requested oversampling: %d\n",  __func__, oversamp);
194 	/*
195 	 * This function tries to compute filter oversampling and integrator
196 	 * oversampling, base on oversampling ratio requested by user.
197 	 *
198 	 * Decimation d depends on the filter order and the oversampling ratios.
199 	 * ford: filter order
200 	 * fosr: filter over sampling ratio
201 	 * iosr: integrator over sampling ratio
202 	 */
203 	if (fl->ford == DFSDM_FASTSINC_ORDER) {
204 		m = 2;
205 		p = 2;
206 	}
207 
208 	/*
209 	 * Look for filter and integrator oversampling ratios which allows
210 	 * to reach 24 bits data output resolution.
211 	 * Leave as soon as if exact resolution if reached.
212 	 * Otherwise the higher resolution below 32 bits is kept.
213 	 */
214 	fl->res = 0;
215 	for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
216 		for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
217 			if (fast)
218 				d = fosr * iosr;
219 			else if (fl->ford == DFSDM_FASTSINC_ORDER)
220 				d = fosr * (iosr + 3) + 2;
221 			else
222 				d = fosr * (iosr - 1 + p) + p;
223 
224 			if (d > oversamp)
225 				break;
226 			else if (d != oversamp)
227 				continue;
228 			/*
229 			 * Check resolution (limited to signed 32 bits)
230 			 *   res <= 2^31
231 			 * Sincx filters:
232 			 *   res = m * fosr^p x iosr (with m=1, p=ford)
233 			 * FastSinc filter
234 			 *   res = m * fosr^p x iosr (with m=2, p=2)
235 			 */
236 			res = fosr;
237 			for (i = p - 1; i > 0; i--) {
238 				res = res * (u64)fosr;
239 				if (res > DFSDM_MAX_RES)
240 					break;
241 			}
242 			if (res > DFSDM_MAX_RES)
243 				continue;
244 			res = res * (u64)m * (u64)iosr;
245 			if (res > DFSDM_MAX_RES)
246 				continue;
247 
248 			delta = res - DFSDM_DATA_RES;
249 
250 			if (res >= fl->res) {
251 				fl->res = res;
252 				fl->fosr = fosr;
253 				fl->iosr = iosr;
254 				fl->fast = fast;
255 				pr_debug("%s: fosr = %d, iosr = %d\n",
256 					 __func__, fl->fosr, fl->iosr);
257 			}
258 
259 			if (!delta)
260 				return 0;
261 		}
262 	}
263 
264 	if (!fl->res)
265 		return -EINVAL;
266 
267 	return 0;
268 }
269 
270 static int stm32_dfsdm_start_channel(struct stm32_dfsdm_adc *adc)
271 {
272 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
273 	struct regmap *regmap = adc->dfsdm->regmap;
274 	const struct iio_chan_spec *chan;
275 	unsigned int bit;
276 	int ret;
277 
278 	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
279 		chan = indio_dev->channels + bit;
280 		ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
281 					 DFSDM_CHCFGR1_CHEN_MASK,
282 					 DFSDM_CHCFGR1_CHEN(1));
283 		if (ret < 0)
284 			return ret;
285 	}
286 
287 	return 0;
288 }
289 
290 static void stm32_dfsdm_stop_channel(struct stm32_dfsdm_adc *adc)
291 {
292 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
293 	struct regmap *regmap = adc->dfsdm->regmap;
294 	const struct iio_chan_spec *chan;
295 	unsigned int bit;
296 
297 	for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
298 		chan = indio_dev->channels + bit;
299 		regmap_update_bits(regmap, DFSDM_CHCFGR1(chan->channel),
300 				   DFSDM_CHCFGR1_CHEN_MASK,
301 				   DFSDM_CHCFGR1_CHEN(0));
302 	}
303 }
304 
305 static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
306 				      struct stm32_dfsdm_channel *ch)
307 {
308 	unsigned int id = ch->id;
309 	struct regmap *regmap = dfsdm->regmap;
310 	int ret;
311 
312 	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
313 				 DFSDM_CHCFGR1_SITP_MASK,
314 				 DFSDM_CHCFGR1_SITP(ch->type));
315 	if (ret < 0)
316 		return ret;
317 	ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
318 				 DFSDM_CHCFGR1_SPICKSEL_MASK,
319 				 DFSDM_CHCFGR1_SPICKSEL(ch->src));
320 	if (ret < 0)
321 		return ret;
322 	return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
323 				  DFSDM_CHCFGR1_CHINSEL_MASK,
324 				  DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
325 }
326 
327 static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
328 				    unsigned int fl_id,
329 				    struct iio_trigger *trig)
330 {
331 	struct stm32_dfsdm *dfsdm = adc->dfsdm;
332 	int ret;
333 
334 	/* Enable filter */
335 	ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
336 				 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
337 	if (ret < 0)
338 		return ret;
339 
340 	/* Nothing more to do for injected (scan mode/triggered) conversions */
341 	if (adc->nconv > 1 || trig)
342 		return 0;
343 
344 	/* Software start (single or continuous) regular conversion */
345 	return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
346 				  DFSDM_CR1_RSWSTART_MASK,
347 				  DFSDM_CR1_RSWSTART(1));
348 }
349 
350 static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
351 				    unsigned int fl_id)
352 {
353 	/* Disable conversion */
354 	regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
355 			   DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
356 }
357 
358 static int stm32_dfsdm_filter_set_trig(struct stm32_dfsdm_adc *adc,
359 				       unsigned int fl_id,
360 				       struct iio_trigger *trig)
361 {
362 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
363 	struct regmap *regmap = adc->dfsdm->regmap;
364 	u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
365 	int ret;
366 
367 	if (trig) {
368 		ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
369 		if (ret < 0)
370 			return ret;
371 
372 		/* set trigger source and polarity (default to rising edge) */
373 		jextsel = ret;
374 		jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
375 	}
376 
377 	ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id),
378 				 DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
379 				 DFSDM_CR1_JEXTSEL(jextsel) |
380 				 DFSDM_CR1_JEXTEN(jexten));
381 	if (ret < 0)
382 		return ret;
383 
384 	return 0;
385 }
386 
387 static int stm32_dfsdm_filter_configure(struct stm32_dfsdm_adc *adc,
388 					unsigned int fl_id,
389 					struct iio_trigger *trig)
390 {
391 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
392 	struct regmap *regmap = adc->dfsdm->regmap;
393 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
394 	u32 cr1;
395 	const struct iio_chan_spec *chan;
396 	unsigned int bit, jchg = 0;
397 	int ret;
398 
399 	/* Average integrator oversampling */
400 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
401 				 DFSDM_FCR_IOSR(fl->iosr - 1));
402 	if (ret)
403 		return ret;
404 
405 	/* Filter order and Oversampling */
406 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
407 				 DFSDM_FCR_FOSR(fl->fosr - 1));
408 	if (ret)
409 		return ret;
410 
411 	ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
412 				 DFSDM_FCR_FORD(fl->ford));
413 	if (ret)
414 		return ret;
415 
416 	ret = stm32_dfsdm_filter_set_trig(adc, fl_id, trig);
417 	if (ret)
418 		return ret;
419 
420 	/*
421 	 * DFSDM modes configuration W.R.T audio/iio type modes
422 	 * ----------------------------------------------------------------
423 	 * Modes         | regular |  regular     | injected | injected   |
424 	 *               |         |  continuous  |          | + scan     |
425 	 * --------------|---------|--------------|----------|------------|
426 	 * single conv   |    x    |              |          |            |
427 	 * (1 chan)      |         |              |          |            |
428 	 * --------------|---------|--------------|----------|------------|
429 	 * 1 Audio chan	 |         | sample freq  |          |            |
430 	 *               |         | or sync_mode |          |            |
431 	 * --------------|---------|--------------|----------|------------|
432 	 * 1 IIO chan	 |         | sample freq  | trigger  |            |
433 	 *               |         | or sync_mode |          |            |
434 	 * --------------|---------|--------------|----------|------------|
435 	 * 2+ IIO chans  |         |              |          | trigger or |
436 	 *               |         |              |          | sync_mode  |
437 	 * ----------------------------------------------------------------
438 	 */
439 	if (adc->nconv == 1 && !trig) {
440 		bit = __ffs(adc->smask);
441 		chan = indio_dev->channels + bit;
442 
443 		/* Use regular conversion for single channel without trigger */
444 		cr1 = DFSDM_CR1_RCH(chan->channel);
445 
446 		/* Continuous conversions triggered by SPI clk in buffer mode */
447 		if (indio_dev->currentmode & INDIO_BUFFER_SOFTWARE)
448 			cr1 |= DFSDM_CR1_RCONT(1);
449 
450 		cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
451 	} else {
452 		/* Use injected conversion for multiple channels */
453 		for_each_set_bit(bit, &adc->smask,
454 				 sizeof(adc->smask) * BITS_PER_BYTE) {
455 			chan = indio_dev->channels + bit;
456 			jchg |= BIT(chan->channel);
457 		}
458 		ret = regmap_write(regmap, DFSDM_JCHGR(fl_id), jchg);
459 		if (ret < 0)
460 			return ret;
461 
462 		/* Use scan mode for multiple channels */
463 		cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
464 
465 		/*
466 		 * Continuous conversions not supported in injected mode,
467 		 * either use:
468 		 * - conversions in sync with filter 0
469 		 * - triggered conversions
470 		 */
471 		if (!fl->sync_mode && !trig)
472 			return -EINVAL;
473 		cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
474 	}
475 
476 	return regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
477 				  cr1);
478 }
479 
480 static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
481 					struct iio_dev *indio_dev,
482 					struct iio_chan_spec *ch)
483 {
484 	struct stm32_dfsdm_channel *df_ch;
485 	const char *of_str;
486 	int chan_idx = ch->scan_index;
487 	int ret, val;
488 
489 	ret = of_property_read_u32_index(indio_dev->dev.of_node,
490 					 "st,adc-channels", chan_idx,
491 					 &ch->channel);
492 	if (ret < 0) {
493 		dev_err(&indio_dev->dev,
494 			" Error parsing 'st,adc-channels' for idx %d\n",
495 			chan_idx);
496 		return ret;
497 	}
498 	if (ch->channel >= dfsdm->num_chs) {
499 		dev_err(&indio_dev->dev,
500 			" Error bad channel number %d (max = %d)\n",
501 			ch->channel, dfsdm->num_chs);
502 		return -EINVAL;
503 	}
504 
505 	ret = of_property_read_string_index(indio_dev->dev.of_node,
506 					    "st,adc-channel-names", chan_idx,
507 					    &ch->datasheet_name);
508 	if (ret < 0) {
509 		dev_err(&indio_dev->dev,
510 			" Error parsing 'st,adc-channel-names' for idx %d\n",
511 			chan_idx);
512 		return ret;
513 	}
514 
515 	df_ch =  &dfsdm->ch_list[ch->channel];
516 	df_ch->id = ch->channel;
517 
518 	ret = of_property_read_string_index(indio_dev->dev.of_node,
519 					    "st,adc-channel-types", chan_idx,
520 					    &of_str);
521 	if (!ret) {
522 		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
523 		if (val < 0)
524 			return val;
525 	} else {
526 		val = 0;
527 	}
528 	df_ch->type = val;
529 
530 	ret = of_property_read_string_index(indio_dev->dev.of_node,
531 					    "st,adc-channel-clk-src", chan_idx,
532 					    &of_str);
533 	if (!ret) {
534 		val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
535 		if (val < 0)
536 			return val;
537 	} else {
538 		val = 0;
539 	}
540 	df_ch->src = val;
541 
542 	ret = of_property_read_u32_index(indio_dev->dev.of_node,
543 					 "st,adc-alt-channel", chan_idx,
544 					 &df_ch->alt_si);
545 	if (ret < 0)
546 		df_ch->alt_si = 0;
547 
548 	return 0;
549 }
550 
551 static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
552 					  uintptr_t priv,
553 					  const struct iio_chan_spec *chan,
554 					  char *buf)
555 {
556 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
557 
558 	return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
559 }
560 
561 static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
562 					  uintptr_t priv,
563 					  const struct iio_chan_spec *chan,
564 					  const char *buf, size_t len)
565 {
566 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
567 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
568 	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
569 	unsigned int sample_freq = adc->sample_freq;
570 	unsigned int spi_freq;
571 	int ret;
572 
573 	dev_err(&indio_dev->dev, "enter %s\n", __func__);
574 	/* If DFSDM is master on SPI, SPI freq can not be updated */
575 	if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
576 		return -EPERM;
577 
578 	ret = kstrtoint(buf, 0, &spi_freq);
579 	if (ret)
580 		return ret;
581 
582 	if (!spi_freq)
583 		return -EINVAL;
584 
585 	if (sample_freq) {
586 		if (spi_freq % sample_freq)
587 			dev_warn(&indio_dev->dev,
588 				 "Sampling rate not accurate (%d)\n",
589 				 spi_freq / (spi_freq / sample_freq));
590 
591 		ret = stm32_dfsdm_set_osrs(fl, 0, (spi_freq / sample_freq));
592 		if (ret < 0) {
593 			dev_err(&indio_dev->dev,
594 				"No filter parameters that match!\n");
595 			return ret;
596 		}
597 	}
598 	adc->spi_freq = spi_freq;
599 
600 	return len;
601 }
602 
603 static int stm32_dfsdm_start_conv(struct stm32_dfsdm_adc *adc,
604 				  struct iio_trigger *trig)
605 {
606 	struct regmap *regmap = adc->dfsdm->regmap;
607 	int ret;
608 
609 	ret = stm32_dfsdm_start_channel(adc);
610 	if (ret < 0)
611 		return ret;
612 
613 	ret = stm32_dfsdm_filter_configure(adc, adc->fl_id, trig);
614 	if (ret < 0)
615 		goto stop_channels;
616 
617 	ret = stm32_dfsdm_start_filter(adc, adc->fl_id, trig);
618 	if (ret < 0)
619 		goto filter_unconfigure;
620 
621 	return 0;
622 
623 filter_unconfigure:
624 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
625 			   DFSDM_CR1_CFG_MASK, 0);
626 stop_channels:
627 	stm32_dfsdm_stop_channel(adc);
628 
629 	return ret;
630 }
631 
632 static void stm32_dfsdm_stop_conv(struct stm32_dfsdm_adc *adc)
633 {
634 	struct regmap *regmap = adc->dfsdm->regmap;
635 
636 	stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
637 
638 	regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
639 			   DFSDM_CR1_CFG_MASK, 0);
640 
641 	stm32_dfsdm_stop_channel(adc);
642 }
643 
644 static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
645 				     unsigned int val)
646 {
647 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
648 	unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
649 	unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
650 
651 	/*
652 	 * DMA cyclic transfers are used, buffer is split into two periods.
653 	 * There should be :
654 	 * - always one buffer (period) DMA is working on
655 	 * - one buffer (period) driver pushed to ASoC side.
656 	 */
657 	watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
658 	adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
659 
660 	return 0;
661 }
662 
663 static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
664 {
665 	struct dma_tx_state state;
666 	enum dma_status status;
667 
668 	status = dmaengine_tx_status(adc->dma_chan,
669 				     adc->dma_chan->cookie,
670 				     &state);
671 	if (status == DMA_IN_PROGRESS) {
672 		/* Residue is size in bytes from end of buffer */
673 		unsigned int i = adc->buf_sz - state.residue;
674 		unsigned int size;
675 
676 		/* Return available bytes */
677 		if (i >= adc->bufi)
678 			size = i - adc->bufi;
679 		else
680 			size = adc->buf_sz + i - adc->bufi;
681 
682 		return size;
683 	}
684 
685 	return 0;
686 }
687 
688 static irqreturn_t stm32_dfsdm_adc_trigger_handler(int irq, void *p)
689 {
690 	struct iio_poll_func *pf = p;
691 	struct iio_dev *indio_dev = pf->indio_dev;
692 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
693 	int available = stm32_dfsdm_adc_dma_residue(adc);
694 
695 	while (available >= indio_dev->scan_bytes) {
696 		u32 *buffer = (u32 *)&adc->rx_buf[adc->bufi];
697 
698 		iio_push_to_buffers_with_timestamp(indio_dev, buffer,
699 						   pf->timestamp);
700 		available -= indio_dev->scan_bytes;
701 		adc->bufi += indio_dev->scan_bytes;
702 		if (adc->bufi >= adc->buf_sz)
703 			adc->bufi = 0;
704 	}
705 
706 	iio_trigger_notify_done(indio_dev->trig);
707 
708 	return IRQ_HANDLED;
709 }
710 
711 static void stm32_dfsdm_dma_buffer_done(void *data)
712 {
713 	struct iio_dev *indio_dev = data;
714 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
715 	int available = stm32_dfsdm_adc_dma_residue(adc);
716 	size_t old_pos;
717 
718 	if (indio_dev->currentmode & INDIO_BUFFER_TRIGGERED) {
719 		iio_trigger_poll_chained(indio_dev->trig);
720 		return;
721 	}
722 
723 	/*
724 	 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
725 	 * offers only an interface to push data samples per samples.
726 	 * For this reason IIO buffer interface is not used and interface is
727 	 * bypassed using a private callback registered by ASoC.
728 	 * This should be a temporary solution waiting a cyclic DMA engine
729 	 * support in IIO.
730 	 */
731 
732 	dev_dbg(&indio_dev->dev, "%s: pos = %d, available = %d\n", __func__,
733 		adc->bufi, available);
734 	old_pos = adc->bufi;
735 
736 	while (available >= indio_dev->scan_bytes) {
737 		u32 *buffer = (u32 *)&adc->rx_buf[adc->bufi];
738 
739 		/* Mask 8 LSB that contains the channel ID */
740 		*buffer = (*buffer & 0xFFFFFF00) << 8;
741 		available -= indio_dev->scan_bytes;
742 		adc->bufi += indio_dev->scan_bytes;
743 		if (adc->bufi >= adc->buf_sz) {
744 			if (adc->cb)
745 				adc->cb(&adc->rx_buf[old_pos],
746 					 adc->buf_sz - old_pos, adc->cb_priv);
747 			adc->bufi = 0;
748 			old_pos = 0;
749 		}
750 		/* regular iio buffer without trigger */
751 		if (adc->dev_data->type == DFSDM_IIO)
752 			iio_push_to_buffers(indio_dev, buffer);
753 	}
754 	if (adc->cb)
755 		adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
756 			adc->cb_priv);
757 }
758 
759 static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
760 {
761 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
762 	struct dma_slave_config config = {
763 		.src_addr = (dma_addr_t)adc->dfsdm->phys_base,
764 		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
765 	};
766 	struct dma_async_tx_descriptor *desc;
767 	dma_cookie_t cookie;
768 	int ret;
769 
770 	if (!adc->dma_chan)
771 		return -EINVAL;
772 
773 	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
774 		adc->buf_sz, adc->buf_sz / 2);
775 
776 	if (adc->nconv == 1 && !indio_dev->trig)
777 		config.src_addr += DFSDM_RDATAR(adc->fl_id);
778 	else
779 		config.src_addr += DFSDM_JDATAR(adc->fl_id);
780 	ret = dmaengine_slave_config(adc->dma_chan, &config);
781 	if (ret)
782 		return ret;
783 
784 	/* Prepare a DMA cyclic transaction */
785 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
786 					 adc->dma_buf,
787 					 adc->buf_sz, adc->buf_sz / 2,
788 					 DMA_DEV_TO_MEM,
789 					 DMA_PREP_INTERRUPT);
790 	if (!desc)
791 		return -EBUSY;
792 
793 	desc->callback = stm32_dfsdm_dma_buffer_done;
794 	desc->callback_param = indio_dev;
795 
796 	cookie = dmaengine_submit(desc);
797 	ret = dma_submit_error(cookie);
798 	if (ret)
799 		goto err_stop_dma;
800 
801 	/* Issue pending DMA requests */
802 	dma_async_issue_pending(adc->dma_chan);
803 
804 	if (adc->nconv == 1 && !indio_dev->trig) {
805 		/* Enable regular DMA transfer*/
806 		ret = regmap_update_bits(adc->dfsdm->regmap,
807 					 DFSDM_CR1(adc->fl_id),
808 					 DFSDM_CR1_RDMAEN_MASK,
809 					 DFSDM_CR1_RDMAEN_MASK);
810 	} else {
811 		/* Enable injected DMA transfer*/
812 		ret = regmap_update_bits(adc->dfsdm->regmap,
813 					 DFSDM_CR1(adc->fl_id),
814 					 DFSDM_CR1_JDMAEN_MASK,
815 					 DFSDM_CR1_JDMAEN_MASK);
816 	}
817 
818 	if (ret < 0)
819 		goto err_stop_dma;
820 
821 	return 0;
822 
823 err_stop_dma:
824 	dmaengine_terminate_all(adc->dma_chan);
825 
826 	return ret;
827 }
828 
829 static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
830 {
831 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
832 
833 	if (!adc->dma_chan)
834 		return;
835 
836 	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
837 			   DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK, 0);
838 	dmaengine_terminate_all(adc->dma_chan);
839 }
840 
841 static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
842 					const unsigned long *scan_mask)
843 {
844 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
845 
846 	adc->nconv = bitmap_weight(scan_mask, indio_dev->masklength);
847 	adc->smask = *scan_mask;
848 
849 	dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
850 
851 	return 0;
852 }
853 
854 static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
855 {
856 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
857 	int ret;
858 
859 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED) {
860 		ret = iio_triggered_buffer_postenable(indio_dev);
861 		if (ret < 0)
862 			return ret;
863 	}
864 
865 	/* Reset adc buffer index */
866 	adc->bufi = 0;
867 
868 	if (adc->hwc) {
869 		ret = iio_hw_consumer_enable(adc->hwc);
870 		if (ret < 0)
871 			goto err_predisable;
872 	}
873 
874 	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
875 	if (ret < 0)
876 		goto err_stop_hwc;
877 
878 	ret = stm32_dfsdm_adc_dma_start(indio_dev);
879 	if (ret) {
880 		dev_err(&indio_dev->dev, "Can't start DMA\n");
881 		goto stop_dfsdm;
882 	}
883 
884 	ret = stm32_dfsdm_start_conv(adc, indio_dev->trig);
885 	if (ret) {
886 		dev_err(&indio_dev->dev, "Can't start conversion\n");
887 		goto err_stop_dma;
888 	}
889 
890 	return 0;
891 
892 err_stop_dma:
893 	stm32_dfsdm_adc_dma_stop(indio_dev);
894 stop_dfsdm:
895 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
896 err_stop_hwc:
897 	if (adc->hwc)
898 		iio_hw_consumer_disable(adc->hwc);
899 err_predisable:
900 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
901 		iio_triggered_buffer_predisable(indio_dev);
902 
903 	return ret;
904 }
905 
906 static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
907 {
908 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
909 
910 	stm32_dfsdm_stop_conv(adc);
911 
912 	stm32_dfsdm_adc_dma_stop(indio_dev);
913 
914 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
915 
916 	if (adc->hwc)
917 		iio_hw_consumer_disable(adc->hwc);
918 
919 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
920 		iio_triggered_buffer_predisable(indio_dev);
921 
922 	return 0;
923 }
924 
925 static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
926 	.postenable = &stm32_dfsdm_postenable,
927 	.predisable = &stm32_dfsdm_predisable,
928 };
929 
930 /**
931  * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
932  *                             DMA transfer period is achieved.
933  *
934  * @iio_dev: Handle to IIO device.
935  * @cb: Pointer to callback function:
936  *      - data: pointer to data buffer
937  *      - size: size in byte of the data buffer
938  *      - private: pointer to consumer private structure.
939  * @private: Pointer to consumer private structure.
940  */
941 int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
942 			    int (*cb)(const void *data, size_t size,
943 				      void *private),
944 			    void *private)
945 {
946 	struct stm32_dfsdm_adc *adc;
947 
948 	if (!iio_dev)
949 		return -EINVAL;
950 	adc = iio_priv(iio_dev);
951 
952 	adc->cb = cb;
953 	adc->cb_priv = private;
954 
955 	return 0;
956 }
957 EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
958 
959 /**
960  * stm32_dfsdm_release_buff_cb - unregister buffer callback
961  *
962  * @iio_dev: Handle to IIO device.
963  */
964 int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
965 {
966 	struct stm32_dfsdm_adc *adc;
967 
968 	if (!iio_dev)
969 		return -EINVAL;
970 	adc = iio_priv(iio_dev);
971 
972 	adc->cb = NULL;
973 	adc->cb_priv = NULL;
974 
975 	return 0;
976 }
977 EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
978 
979 static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
980 				   const struct iio_chan_spec *chan, int *res)
981 {
982 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
983 	long timeout;
984 	int ret;
985 
986 	reinit_completion(&adc->completion);
987 
988 	adc->buffer = res;
989 
990 	ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
991 	if (ret < 0)
992 		return ret;
993 
994 	ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
995 				 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
996 	if (ret < 0)
997 		goto stop_dfsdm;
998 
999 	adc->nconv = 1;
1000 	adc->smask = BIT(chan->scan_index);
1001 	ret = stm32_dfsdm_start_conv(adc, NULL);
1002 	if (ret < 0) {
1003 		regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1004 				   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1005 		goto stop_dfsdm;
1006 	}
1007 
1008 	timeout = wait_for_completion_interruptible_timeout(&adc->completion,
1009 							    DFSDM_TIMEOUT);
1010 
1011 	/* Mask IRQ for regular conversion achievement*/
1012 	regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1013 			   DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1014 
1015 	if (timeout == 0)
1016 		ret = -ETIMEDOUT;
1017 	else if (timeout < 0)
1018 		ret = timeout;
1019 	else
1020 		ret = IIO_VAL_INT;
1021 
1022 	stm32_dfsdm_stop_conv(adc);
1023 
1024 stop_dfsdm:
1025 	stm32_dfsdm_stop_dfsdm(adc->dfsdm);
1026 
1027 	return ret;
1028 }
1029 
1030 static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
1031 				 struct iio_chan_spec const *chan,
1032 				 int val, int val2, long mask)
1033 {
1034 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1035 	struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
1036 	struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
1037 	unsigned int spi_freq;
1038 	int ret = -EINVAL;
1039 
1040 	switch (mask) {
1041 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1042 		ret = iio_device_claim_direct_mode(indio_dev);
1043 		if (ret)
1044 			return ret;
1045 		ret = stm32_dfsdm_set_osrs(fl, 0, val);
1046 		if (!ret)
1047 			adc->oversamp = val;
1048 		iio_device_release_direct_mode(indio_dev);
1049 		return ret;
1050 
1051 	case IIO_CHAN_INFO_SAMP_FREQ:
1052 		if (!val)
1053 			return -EINVAL;
1054 
1055 		ret = iio_device_claim_direct_mode(indio_dev);
1056 		if (ret)
1057 			return ret;
1058 
1059 		switch (ch->src) {
1060 		case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
1061 			spi_freq = adc->dfsdm->spi_master_freq;
1062 			break;
1063 		case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
1064 		case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
1065 			spi_freq = adc->dfsdm->spi_master_freq / 2;
1066 			break;
1067 		default:
1068 			spi_freq = adc->spi_freq;
1069 		}
1070 
1071 		if (spi_freq % val)
1072 			dev_warn(&indio_dev->dev,
1073 				 "Sampling rate not accurate (%d)\n",
1074 				 spi_freq / (spi_freq / val));
1075 
1076 		ret = stm32_dfsdm_set_osrs(fl, 0, (spi_freq / val));
1077 		if (ret < 0) {
1078 			dev_err(&indio_dev->dev,
1079 				"Not able to find parameter that match!\n");
1080 			iio_device_release_direct_mode(indio_dev);
1081 			return ret;
1082 		}
1083 		adc->sample_freq = val;
1084 		iio_device_release_direct_mode(indio_dev);
1085 
1086 		return 0;
1087 	}
1088 
1089 	return -EINVAL;
1090 }
1091 
1092 static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
1093 				struct iio_chan_spec const *chan, int *val,
1094 				int *val2, long mask)
1095 {
1096 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1097 	int ret;
1098 
1099 	switch (mask) {
1100 	case IIO_CHAN_INFO_RAW:
1101 		ret = iio_device_claim_direct_mode(indio_dev);
1102 		if (ret)
1103 			return ret;
1104 		ret = iio_hw_consumer_enable(adc->hwc);
1105 		if (ret < 0) {
1106 			dev_err(&indio_dev->dev,
1107 				"%s: IIO enable failed (channel %d)\n",
1108 				__func__, chan->channel);
1109 			iio_device_release_direct_mode(indio_dev);
1110 			return ret;
1111 		}
1112 		ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
1113 		iio_hw_consumer_disable(adc->hwc);
1114 		if (ret < 0) {
1115 			dev_err(&indio_dev->dev,
1116 				"%s: Conversion failed (channel %d)\n",
1117 				__func__, chan->channel);
1118 			iio_device_release_direct_mode(indio_dev);
1119 			return ret;
1120 		}
1121 		iio_device_release_direct_mode(indio_dev);
1122 		return IIO_VAL_INT;
1123 
1124 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1125 		*val = adc->oversamp;
1126 
1127 		return IIO_VAL_INT;
1128 
1129 	case IIO_CHAN_INFO_SAMP_FREQ:
1130 		*val = adc->sample_freq;
1131 
1132 		return IIO_VAL_INT;
1133 	}
1134 
1135 	return -EINVAL;
1136 }
1137 
1138 static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
1139 					struct iio_trigger *trig)
1140 {
1141 	return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1142 }
1143 
1144 static const struct iio_info stm32_dfsdm_info_audio = {
1145 	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1146 	.read_raw = stm32_dfsdm_read_raw,
1147 	.write_raw = stm32_dfsdm_write_raw,
1148 	.update_scan_mode = stm32_dfsdm_update_scan_mode,
1149 };
1150 
1151 static const struct iio_info stm32_dfsdm_info_adc = {
1152 	.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1153 	.read_raw = stm32_dfsdm_read_raw,
1154 	.write_raw = stm32_dfsdm_write_raw,
1155 	.update_scan_mode = stm32_dfsdm_update_scan_mode,
1156 	.validate_trigger = stm32_dfsdm_validate_trigger,
1157 };
1158 
1159 static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
1160 {
1161 	struct stm32_dfsdm_adc *adc = arg;
1162 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1163 	struct regmap *regmap = adc->dfsdm->regmap;
1164 	unsigned int status, int_en;
1165 
1166 	regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
1167 	regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
1168 
1169 	if (status & DFSDM_ISR_REOCF_MASK) {
1170 		/* Read the data register clean the IRQ status */
1171 		regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
1172 		complete(&adc->completion);
1173 	}
1174 
1175 	if (status & DFSDM_ISR_ROVRF_MASK) {
1176 		if (int_en & DFSDM_CR2_ROVRIE_MASK)
1177 			dev_warn(&indio_dev->dev, "Overrun detected\n");
1178 		regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
1179 				   DFSDM_ICR_CLRROVRF_MASK,
1180 				   DFSDM_ICR_CLRROVRF_MASK);
1181 	}
1182 
1183 	return IRQ_HANDLED;
1184 }
1185 
1186 /*
1187  * Define external info for SPI Frequency and audio sampling rate that can be
1188  * configured by ASoC driver through consumer.h API
1189  */
1190 static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
1191 	/* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
1192 	{
1193 		.name = "spi_clk_freq",
1194 		.shared = IIO_SHARED_BY_TYPE,
1195 		.read = dfsdm_adc_audio_get_spiclk,
1196 		.write = dfsdm_adc_audio_set_spiclk,
1197 	},
1198 	{},
1199 };
1200 
1201 static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
1202 {
1203 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1204 
1205 	if (adc->dma_chan) {
1206 		dma_free_coherent(adc->dma_chan->device->dev,
1207 				  DFSDM_DMA_BUFFER_SIZE,
1208 				  adc->rx_buf, adc->dma_buf);
1209 		dma_release_channel(adc->dma_chan);
1210 	}
1211 }
1212 
1213 static int stm32_dfsdm_dma_request(struct iio_dev *indio_dev)
1214 {
1215 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1216 
1217 	adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
1218 	if (!adc->dma_chan)
1219 		return -EINVAL;
1220 
1221 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1222 					 DFSDM_DMA_BUFFER_SIZE,
1223 					 &adc->dma_buf, GFP_KERNEL);
1224 	if (!adc->rx_buf) {
1225 		dma_release_channel(adc->dma_chan);
1226 		return -ENOMEM;
1227 	}
1228 
1229 	indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1230 	indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1231 
1232 	return 0;
1233 }
1234 
1235 static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
1236 					 struct iio_chan_spec *ch)
1237 {
1238 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1239 	int ret;
1240 
1241 	ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
1242 	if (ret < 0)
1243 		return ret;
1244 
1245 	ch->type = IIO_VOLTAGE;
1246 	ch->indexed = 1;
1247 
1248 	/*
1249 	 * IIO_CHAN_INFO_RAW: used to compute regular conversion
1250 	 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
1251 	 */
1252 	ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1253 	ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
1254 					BIT(IIO_CHAN_INFO_SAMP_FREQ);
1255 
1256 	if (adc->dev_data->type == DFSDM_AUDIO) {
1257 		ch->scan_type.sign = 's';
1258 		ch->ext_info = dfsdm_adc_audio_ext_info;
1259 	} else {
1260 		ch->scan_type.sign = 'u';
1261 	}
1262 	ch->scan_type.realbits = 24;
1263 	ch->scan_type.storagebits = 32;
1264 
1265 	return stm32_dfsdm_chan_configure(adc->dfsdm,
1266 					  &adc->dfsdm->ch_list[ch->channel]);
1267 }
1268 
1269 static int stm32_dfsdm_audio_init(struct iio_dev *indio_dev)
1270 {
1271 	struct iio_chan_spec *ch;
1272 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1273 	struct stm32_dfsdm_channel *d_ch;
1274 	int ret;
1275 
1276 	ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
1277 	if (!ch)
1278 		return -ENOMEM;
1279 
1280 	ch->scan_index = 0;
1281 
1282 	ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
1283 	if (ret < 0) {
1284 		dev_err(&indio_dev->dev, "Channels init failed\n");
1285 		return ret;
1286 	}
1287 	ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1288 
1289 	d_ch = &adc->dfsdm->ch_list[ch->channel];
1290 	if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1291 		adc->spi_freq = adc->dfsdm->spi_master_freq;
1292 
1293 	indio_dev->num_channels = 1;
1294 	indio_dev->channels = ch;
1295 
1296 	return stm32_dfsdm_dma_request(indio_dev);
1297 }
1298 
1299 static int stm32_dfsdm_adc_init(struct iio_dev *indio_dev)
1300 {
1301 	struct iio_chan_spec *ch;
1302 	struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1303 	int num_ch;
1304 	int ret, chan_idx;
1305 
1306 	adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1307 	ret = stm32_dfsdm_set_osrs(&adc->dfsdm->fl_list[adc->fl_id], 0,
1308 				   adc->oversamp);
1309 	if (ret < 0)
1310 		return ret;
1311 
1312 	num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
1313 					     "st,adc-channels");
1314 	if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
1315 		dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1316 		return num_ch < 0 ? num_ch : -EINVAL;
1317 	}
1318 
1319 	/* Bind to SD modulator IIO device */
1320 	adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
1321 	if (IS_ERR(adc->hwc))
1322 		return -EPROBE_DEFER;
1323 
1324 	ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
1325 			  GFP_KERNEL);
1326 	if (!ch)
1327 		return -ENOMEM;
1328 
1329 	for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1330 		ch[chan_idx].scan_index = chan_idx;
1331 		ret = stm32_dfsdm_adc_chan_init_one(indio_dev, &ch[chan_idx]);
1332 		if (ret < 0) {
1333 			dev_err(&indio_dev->dev, "Channels init failed\n");
1334 			return ret;
1335 		}
1336 	}
1337 
1338 	indio_dev->num_channels = num_ch;
1339 	indio_dev->channels = ch;
1340 
1341 	init_completion(&adc->completion);
1342 
1343 	/* Optionally request DMA */
1344 	if (stm32_dfsdm_dma_request(indio_dev)) {
1345 		dev_dbg(&indio_dev->dev, "No DMA support\n");
1346 		return 0;
1347 	}
1348 
1349 	ret = iio_triggered_buffer_setup(indio_dev,
1350 					 &iio_pollfunc_store_time,
1351 					 &stm32_dfsdm_adc_trigger_handler,
1352 					 &stm32_dfsdm_buffer_setup_ops);
1353 	if (ret) {
1354 		stm32_dfsdm_dma_release(indio_dev);
1355 		dev_err(&indio_dev->dev, "buffer setup failed\n");
1356 		return ret;
1357 	}
1358 
1359 	/* lptimer/timer hardware triggers */
1360 	indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
1361 
1362 	return 0;
1363 }
1364 
1365 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1366 	.type = DFSDM_IIO,
1367 	.init = stm32_dfsdm_adc_init,
1368 };
1369 
1370 static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1371 	.type = DFSDM_AUDIO,
1372 	.init = stm32_dfsdm_audio_init,
1373 };
1374 
1375 static const struct of_device_id stm32_dfsdm_adc_match[] = {
1376 	{
1377 		.compatible = "st,stm32-dfsdm-adc",
1378 		.data = &stm32h7_dfsdm_adc_data,
1379 	},
1380 	{
1381 		.compatible = "st,stm32-dfsdm-dmic",
1382 		.data = &stm32h7_dfsdm_audio_data,
1383 	},
1384 	{}
1385 };
1386 
1387 static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1388 {
1389 	struct device *dev = &pdev->dev;
1390 	struct stm32_dfsdm_adc *adc;
1391 	struct device_node *np = dev->of_node;
1392 	const struct stm32_dfsdm_dev_data *dev_data;
1393 	struct iio_dev *iio;
1394 	char *name;
1395 	int ret, irq, val;
1396 
1397 	dev_data = of_device_get_match_data(dev);
1398 	iio = devm_iio_device_alloc(dev, sizeof(*adc));
1399 	if (!iio) {
1400 		dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1401 		return -ENOMEM;
1402 	}
1403 
1404 	adc = iio_priv(iio);
1405 	adc->dfsdm = dev_get_drvdata(dev->parent);
1406 
1407 	iio->dev.parent = dev;
1408 	iio->dev.of_node = np;
1409 	iio->modes = INDIO_DIRECT_MODE;
1410 
1411 	platform_set_drvdata(pdev, adc);
1412 
1413 	ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
1414 	if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1415 		dev_err(dev, "Missing or bad reg property\n");
1416 		return -EINVAL;
1417 	}
1418 
1419 	name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
1420 	if (!name)
1421 		return -ENOMEM;
1422 	if (dev_data->type == DFSDM_AUDIO) {
1423 		iio->info = &stm32_dfsdm_info_audio;
1424 		snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
1425 	} else {
1426 		iio->info = &stm32_dfsdm_info_adc;
1427 		snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
1428 	}
1429 	iio->name = name;
1430 
1431 	/*
1432 	 * In a first step IRQs generated for channels are not treated.
1433 	 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1434 	 */
1435 	irq = platform_get_irq(pdev, 0);
1436 	ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
1437 			       0, pdev->name, adc);
1438 	if (ret < 0) {
1439 		dev_err(dev, "Failed to request IRQ\n");
1440 		return ret;
1441 	}
1442 
1443 	ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
1444 	if (ret < 0) {
1445 		dev_err(dev, "Failed to set filter order\n");
1446 		return ret;
1447 	}
1448 
1449 	adc->dfsdm->fl_list[adc->fl_id].ford = val;
1450 
1451 	ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
1452 	if (!ret)
1453 		adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1454 
1455 	adc->dev_data = dev_data;
1456 	ret = dev_data->init(iio);
1457 	if (ret < 0)
1458 		return ret;
1459 
1460 	ret = iio_device_register(iio);
1461 	if (ret < 0)
1462 		goto err_cleanup;
1463 
1464 	if (dev_data->type == DFSDM_AUDIO) {
1465 		ret = of_platform_populate(np, NULL, NULL, dev);
1466 		if (ret < 0) {
1467 			dev_err(dev, "Failed to find an audio DAI\n");
1468 			goto err_unregister;
1469 		}
1470 	}
1471 
1472 	return 0;
1473 
1474 err_unregister:
1475 	iio_device_unregister(iio);
1476 err_cleanup:
1477 	stm32_dfsdm_dma_release(iio);
1478 
1479 	return ret;
1480 }
1481 
1482 static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
1483 {
1484 	struct stm32_dfsdm_adc *adc = platform_get_drvdata(pdev);
1485 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1486 
1487 	if (adc->dev_data->type == DFSDM_AUDIO)
1488 		of_platform_depopulate(&pdev->dev);
1489 	iio_device_unregister(indio_dev);
1490 	stm32_dfsdm_dma_release(indio_dev);
1491 
1492 	return 0;
1493 }
1494 
1495 static struct platform_driver stm32_dfsdm_adc_driver = {
1496 	.driver = {
1497 		.name = "stm32-dfsdm-adc",
1498 		.of_match_table = stm32_dfsdm_adc_match,
1499 	},
1500 	.probe = stm32_dfsdm_adc_probe,
1501 	.remove = stm32_dfsdm_adc_remove,
1502 };
1503 module_platform_driver(stm32_dfsdm_adc_driver);
1504 
1505 MODULE_DESCRIPTION("STM32 sigma delta ADC");
1506 MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1507 MODULE_LICENSE("GPL v2");
1508