xref: /openbmc/linux/drivers/iio/adc/stm32-adc.c (revision f220d3eb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is part of STM32 ADC driver
4  *
5  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6  * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/iio/iio.h>
14 #include <linux/iio/buffer.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/iopoll.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27 
28 #include "stm32-adc-core.h"
29 
30 /* STM32F4 - Registers for each ADC instance */
31 #define STM32F4_ADC_SR			0x00
32 #define STM32F4_ADC_CR1			0x04
33 #define STM32F4_ADC_CR2			0x08
34 #define STM32F4_ADC_SMPR1		0x0C
35 #define STM32F4_ADC_SMPR2		0x10
36 #define STM32F4_ADC_HTR			0x24
37 #define STM32F4_ADC_LTR			0x28
38 #define STM32F4_ADC_SQR1		0x2C
39 #define STM32F4_ADC_SQR2		0x30
40 #define STM32F4_ADC_SQR3		0x34
41 #define STM32F4_ADC_JSQR		0x38
42 #define STM32F4_ADC_JDR1		0x3C
43 #define STM32F4_ADC_JDR2		0x40
44 #define STM32F4_ADC_JDR3		0x44
45 #define STM32F4_ADC_JDR4		0x48
46 #define STM32F4_ADC_DR			0x4C
47 
48 /* STM32F4_ADC_SR - bit fields */
49 #define STM32F4_STRT			BIT(4)
50 #define STM32F4_EOC			BIT(1)
51 
52 /* STM32F4_ADC_CR1 - bit fields */
53 #define STM32F4_RES_SHIFT		24
54 #define STM32F4_RES_MASK		GENMASK(25, 24)
55 #define STM32F4_SCAN			BIT(8)
56 #define STM32F4_EOCIE			BIT(5)
57 
58 /* STM32F4_ADC_CR2 - bit fields */
59 #define STM32F4_SWSTART			BIT(30)
60 #define STM32F4_EXTEN_SHIFT		28
61 #define STM32F4_EXTEN_MASK		GENMASK(29, 28)
62 #define STM32F4_EXTSEL_SHIFT		24
63 #define STM32F4_EXTSEL_MASK		GENMASK(27, 24)
64 #define STM32F4_EOCS			BIT(10)
65 #define STM32F4_DDS			BIT(9)
66 #define STM32F4_DMA			BIT(8)
67 #define STM32F4_ADON			BIT(0)
68 
69 /* STM32H7 - Registers for each ADC instance */
70 #define STM32H7_ADC_ISR			0x00
71 #define STM32H7_ADC_IER			0x04
72 #define STM32H7_ADC_CR			0x08
73 #define STM32H7_ADC_CFGR		0x0C
74 #define STM32H7_ADC_SMPR1		0x14
75 #define STM32H7_ADC_SMPR2		0x18
76 #define STM32H7_ADC_PCSEL		0x1C
77 #define STM32H7_ADC_SQR1		0x30
78 #define STM32H7_ADC_SQR2		0x34
79 #define STM32H7_ADC_SQR3		0x38
80 #define STM32H7_ADC_SQR4		0x3C
81 #define STM32H7_ADC_DR			0x40
82 #define STM32H7_ADC_DIFSEL		0xC0
83 #define STM32H7_ADC_CALFACT		0xC4
84 #define STM32H7_ADC_CALFACT2		0xC8
85 
86 /* STM32H7_ADC_ISR - bit fields */
87 #define STM32MP1_VREGREADY		BIT(12)
88 #define STM32H7_EOC			BIT(2)
89 #define STM32H7_ADRDY			BIT(0)
90 
91 /* STM32H7_ADC_IER - bit fields */
92 #define STM32H7_EOCIE			STM32H7_EOC
93 
94 /* STM32H7_ADC_CR - bit fields */
95 #define STM32H7_ADCAL			BIT(31)
96 #define STM32H7_ADCALDIF		BIT(30)
97 #define STM32H7_DEEPPWD			BIT(29)
98 #define STM32H7_ADVREGEN		BIT(28)
99 #define STM32H7_LINCALRDYW6		BIT(27)
100 #define STM32H7_LINCALRDYW5		BIT(26)
101 #define STM32H7_LINCALRDYW4		BIT(25)
102 #define STM32H7_LINCALRDYW3		BIT(24)
103 #define STM32H7_LINCALRDYW2		BIT(23)
104 #define STM32H7_LINCALRDYW1		BIT(22)
105 #define STM32H7_ADCALLIN		BIT(16)
106 #define STM32H7_BOOST			BIT(8)
107 #define STM32H7_ADSTP			BIT(4)
108 #define STM32H7_ADSTART			BIT(2)
109 #define STM32H7_ADDIS			BIT(1)
110 #define STM32H7_ADEN			BIT(0)
111 
112 /* STM32H7_ADC_CFGR bit fields */
113 #define STM32H7_EXTEN_SHIFT		10
114 #define STM32H7_EXTEN_MASK		GENMASK(11, 10)
115 #define STM32H7_EXTSEL_SHIFT		5
116 #define STM32H7_EXTSEL_MASK		GENMASK(9, 5)
117 #define STM32H7_RES_SHIFT		2
118 #define STM32H7_RES_MASK		GENMASK(4, 2)
119 #define STM32H7_DMNGT_SHIFT		0
120 #define STM32H7_DMNGT_MASK		GENMASK(1, 0)
121 
122 enum stm32h7_adc_dmngt {
123 	STM32H7_DMNGT_DR_ONLY,		/* Regular data in DR only */
124 	STM32H7_DMNGT_DMA_ONESHOT,	/* DMA one shot mode */
125 	STM32H7_DMNGT_DFSDM,		/* DFSDM mode */
126 	STM32H7_DMNGT_DMA_CIRC,		/* DMA circular mode */
127 };
128 
129 /* STM32H7_ADC_CALFACT - bit fields */
130 #define STM32H7_CALFACT_D_SHIFT		16
131 #define STM32H7_CALFACT_D_MASK		GENMASK(26, 16)
132 #define STM32H7_CALFACT_S_SHIFT		0
133 #define STM32H7_CALFACT_S_MASK		GENMASK(10, 0)
134 
135 /* STM32H7_ADC_CALFACT2 - bit fields */
136 #define STM32H7_LINCALFACT_SHIFT	0
137 #define STM32H7_LINCALFACT_MASK		GENMASK(29, 0)
138 
139 /* Number of linear calibration shadow registers / LINCALRDYW control bits */
140 #define STM32H7_LINCALFACT_NUM		6
141 
142 /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
143 #define STM32H7_BOOST_CLKRATE		20000000UL
144 
145 #define STM32_ADC_CH_MAX		20	/* max number of channels */
146 #define STM32_ADC_CH_SZ			10	/* max channel name size */
147 #define STM32_ADC_MAX_SQ		16	/* SQ1..SQ16 */
148 #define STM32_ADC_MAX_SMP		7	/* SMPx range is [0..7] */
149 #define STM32_ADC_TIMEOUT_US		100000
150 #define STM32_ADC_TIMEOUT	(msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
151 
152 #define STM32_DMA_BUFFER_SIZE		PAGE_SIZE
153 
154 /* External trigger enable */
155 enum stm32_adc_exten {
156 	STM32_EXTEN_SWTRIG,
157 	STM32_EXTEN_HWTRIG_RISING_EDGE,
158 	STM32_EXTEN_HWTRIG_FALLING_EDGE,
159 	STM32_EXTEN_HWTRIG_BOTH_EDGES,
160 };
161 
162 /* extsel - trigger mux selection value */
163 enum stm32_adc_extsel {
164 	STM32_EXT0,
165 	STM32_EXT1,
166 	STM32_EXT2,
167 	STM32_EXT3,
168 	STM32_EXT4,
169 	STM32_EXT5,
170 	STM32_EXT6,
171 	STM32_EXT7,
172 	STM32_EXT8,
173 	STM32_EXT9,
174 	STM32_EXT10,
175 	STM32_EXT11,
176 	STM32_EXT12,
177 	STM32_EXT13,
178 	STM32_EXT14,
179 	STM32_EXT15,
180 	STM32_EXT16,
181 	STM32_EXT17,
182 	STM32_EXT18,
183 	STM32_EXT19,
184 	STM32_EXT20,
185 };
186 
187 /**
188  * struct stm32_adc_trig_info - ADC trigger info
189  * @name:		name of the trigger, corresponding to its source
190  * @extsel:		trigger selection
191  */
192 struct stm32_adc_trig_info {
193 	const char *name;
194 	enum stm32_adc_extsel extsel;
195 };
196 
197 /**
198  * struct stm32_adc_calib - optional adc calibration data
199  * @calfact_s: Calibration offset for single ended channels
200  * @calfact_d: Calibration offset in differential
201  * @lincalfact: Linearity calibration factor
202  */
203 struct stm32_adc_calib {
204 	u32			calfact_s;
205 	u32			calfact_d;
206 	u32			lincalfact[STM32H7_LINCALFACT_NUM];
207 };
208 
209 /**
210  * stm32_adc_regs - stm32 ADC misc registers & bitfield desc
211  * @reg:		register offset
212  * @mask:		bitfield mask
213  * @shift:		left shift
214  */
215 struct stm32_adc_regs {
216 	int reg;
217 	int mask;
218 	int shift;
219 };
220 
221 /**
222  * stm32_adc_regspec - stm32 registers definition, compatible dependent data
223  * @dr:			data register offset
224  * @ier_eoc:		interrupt enable register & eocie bitfield
225  * @isr_eoc:		interrupt status register & eoc bitfield
226  * @sqr:		reference to sequence registers array
227  * @exten:		trigger control register & bitfield
228  * @extsel:		trigger selection register & bitfield
229  * @res:		resolution selection register & bitfield
230  * @smpr:		smpr1 & smpr2 registers offset array
231  * @smp_bits:		smpr1 & smpr2 index and bitfields
232  */
233 struct stm32_adc_regspec {
234 	const u32 dr;
235 	const struct stm32_adc_regs ier_eoc;
236 	const struct stm32_adc_regs isr_eoc;
237 	const struct stm32_adc_regs *sqr;
238 	const struct stm32_adc_regs exten;
239 	const struct stm32_adc_regs extsel;
240 	const struct stm32_adc_regs res;
241 	const u32 smpr[2];
242 	const struct stm32_adc_regs *smp_bits;
243 };
244 
245 struct stm32_adc;
246 
247 /**
248  * stm32_adc_cfg - stm32 compatible configuration data
249  * @regs:		registers descriptions
250  * @adc_info:		per instance input channels definitions
251  * @trigs:		external trigger sources
252  * @clk_required:	clock is required
253  * @has_vregready:	vregready status flag presence
254  * @selfcalib:		optional routine for self-calibration
255  * @prepare:		optional prepare routine (power-up, enable)
256  * @start_conv:		routine to start conversions
257  * @stop_conv:		routine to stop conversions
258  * @unprepare:		optional unprepare routine (disable, power-down)
259  * @smp_cycles:		programmable sampling time (ADC clock cycles)
260  */
261 struct stm32_adc_cfg {
262 	const struct stm32_adc_regspec	*regs;
263 	const struct stm32_adc_info	*adc_info;
264 	struct stm32_adc_trig_info	*trigs;
265 	bool clk_required;
266 	bool has_vregready;
267 	int (*selfcalib)(struct stm32_adc *);
268 	int (*prepare)(struct stm32_adc *);
269 	void (*start_conv)(struct stm32_adc *, bool dma);
270 	void (*stop_conv)(struct stm32_adc *);
271 	void (*unprepare)(struct stm32_adc *);
272 	const unsigned int *smp_cycles;
273 };
274 
275 /**
276  * struct stm32_adc - private data of each ADC IIO instance
277  * @common:		reference to ADC block common data
278  * @offset:		ADC instance register offset in ADC block
279  * @cfg:		compatible configuration data
280  * @completion:		end of single conversion completion
281  * @buffer:		data buffer
282  * @clk:		clock for this adc instance
283  * @irq:		interrupt for this adc instance
284  * @lock:		spinlock
285  * @bufi:		data buffer index
286  * @num_conv:		expected number of scan conversions
287  * @res:		data resolution (e.g. RES bitfield value)
288  * @trigger_polarity:	external trigger polarity (e.g. exten)
289  * @dma_chan:		dma channel
290  * @rx_buf:		dma rx buffer cpu address
291  * @rx_dma_buf:		dma rx buffer bus address
292  * @rx_buf_sz:		dma rx buffer size
293  * @difsel		bitmask to set single-ended/differential channel
294  * @pcsel		bitmask to preselect channels on some devices
295  * @smpr_val:		sampling time settings (e.g. smpr1 / smpr2)
296  * @cal:		optional calibration data on some devices
297  * @chan_name:		channel name array
298  */
299 struct stm32_adc {
300 	struct stm32_adc_common	*common;
301 	u32			offset;
302 	const struct stm32_adc_cfg	*cfg;
303 	struct completion	completion;
304 	u16			buffer[STM32_ADC_MAX_SQ];
305 	struct clk		*clk;
306 	int			irq;
307 	spinlock_t		lock;		/* interrupt lock */
308 	unsigned int		bufi;
309 	unsigned int		num_conv;
310 	u32			res;
311 	u32			trigger_polarity;
312 	struct dma_chan		*dma_chan;
313 	u8			*rx_buf;
314 	dma_addr_t		rx_dma_buf;
315 	unsigned int		rx_buf_sz;
316 	u32			difsel;
317 	u32			pcsel;
318 	u32			smpr_val[2];
319 	struct stm32_adc_calib	cal;
320 	char			chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
321 };
322 
323 struct stm32_adc_diff_channel {
324 	u32 vinp;
325 	u32 vinn;
326 };
327 
328 /**
329  * struct stm32_adc_info - stm32 ADC, per instance config data
330  * @max_channels:	Number of channels
331  * @resolutions:	available resolutions
332  * @num_res:		number of available resolutions
333  */
334 struct stm32_adc_info {
335 	int max_channels;
336 	const unsigned int *resolutions;
337 	const unsigned int num_res;
338 };
339 
340 static const unsigned int stm32f4_adc_resolutions[] = {
341 	/* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
342 	12, 10, 8, 6,
343 };
344 
345 /* stm32f4 can have up to 16 channels */
346 static const struct stm32_adc_info stm32f4_adc_info = {
347 	.max_channels = 16,
348 	.resolutions = stm32f4_adc_resolutions,
349 	.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
350 };
351 
352 static const unsigned int stm32h7_adc_resolutions[] = {
353 	/* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
354 	16, 14, 12, 10, 8,
355 };
356 
357 /* stm32h7 can have up to 20 channels */
358 static const struct stm32_adc_info stm32h7_adc_info = {
359 	.max_channels = STM32_ADC_CH_MAX,
360 	.resolutions = stm32h7_adc_resolutions,
361 	.num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
362 };
363 
364 /**
365  * stm32f4_sq - describe regular sequence registers
366  * - L: sequence len (register & bit field)
367  * - SQ1..SQ16: sequence entries (register & bit field)
368  */
369 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
370 	/* L: len bit field description to be kept as first element */
371 	{ STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
372 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
373 	{ STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
374 	{ STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
375 	{ STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
376 	{ STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
377 	{ STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
378 	{ STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
379 	{ STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
380 	{ STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
381 	{ STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
382 	{ STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
383 	{ STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
384 	{ STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
385 	{ STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
386 	{ STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
387 	{ STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
388 	{ STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
389 };
390 
391 /* STM32F4 external trigger sources for all instances */
392 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
393 	{ TIM1_CH1, STM32_EXT0 },
394 	{ TIM1_CH2, STM32_EXT1 },
395 	{ TIM1_CH3, STM32_EXT2 },
396 	{ TIM2_CH2, STM32_EXT3 },
397 	{ TIM2_CH3, STM32_EXT4 },
398 	{ TIM2_CH4, STM32_EXT5 },
399 	{ TIM2_TRGO, STM32_EXT6 },
400 	{ TIM3_CH1, STM32_EXT7 },
401 	{ TIM3_TRGO, STM32_EXT8 },
402 	{ TIM4_CH4, STM32_EXT9 },
403 	{ TIM5_CH1, STM32_EXT10 },
404 	{ TIM5_CH2, STM32_EXT11 },
405 	{ TIM5_CH3, STM32_EXT12 },
406 	{ TIM8_CH1, STM32_EXT13 },
407 	{ TIM8_TRGO, STM32_EXT14 },
408 	{}, /* sentinel */
409 };
410 
411 /**
412  * stm32f4_smp_bits[] - describe sampling time register index & bit fields
413  * Sorted so it can be indexed by channel number.
414  */
415 static const struct stm32_adc_regs stm32f4_smp_bits[] = {
416 	/* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
417 	{ 1, GENMASK(2, 0), 0 },
418 	{ 1, GENMASK(5, 3), 3 },
419 	{ 1, GENMASK(8, 6), 6 },
420 	{ 1, GENMASK(11, 9), 9 },
421 	{ 1, GENMASK(14, 12), 12 },
422 	{ 1, GENMASK(17, 15), 15 },
423 	{ 1, GENMASK(20, 18), 18 },
424 	{ 1, GENMASK(23, 21), 21 },
425 	{ 1, GENMASK(26, 24), 24 },
426 	{ 1, GENMASK(29, 27), 27 },
427 	/* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
428 	{ 0, GENMASK(2, 0), 0 },
429 	{ 0, GENMASK(5, 3), 3 },
430 	{ 0, GENMASK(8, 6), 6 },
431 	{ 0, GENMASK(11, 9), 9 },
432 	{ 0, GENMASK(14, 12), 12 },
433 	{ 0, GENMASK(17, 15), 15 },
434 	{ 0, GENMASK(20, 18), 18 },
435 	{ 0, GENMASK(23, 21), 21 },
436 	{ 0, GENMASK(26, 24), 24 },
437 };
438 
439 /* STM32F4 programmable sampling time (ADC clock cycles) */
440 static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
441 	3, 15, 28, 56, 84, 112, 144, 480,
442 };
443 
444 static const struct stm32_adc_regspec stm32f4_adc_regspec = {
445 	.dr = STM32F4_ADC_DR,
446 	.ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
447 	.isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
448 	.sqr = stm32f4_sq,
449 	.exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
450 	.extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
451 		    STM32F4_EXTSEL_SHIFT },
452 	.res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
453 	.smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
454 	.smp_bits = stm32f4_smp_bits,
455 };
456 
457 static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
458 	/* L: len bit field description to be kept as first element */
459 	{ STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
460 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
461 	{ STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
462 	{ STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
463 	{ STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
464 	{ STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
465 	{ STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
466 	{ STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
467 	{ STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
468 	{ STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
469 	{ STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
470 	{ STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
471 	{ STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
472 	{ STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
473 	{ STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
474 	{ STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
475 	{ STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
476 	{ STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
477 };
478 
479 /* STM32H7 external trigger sources for all instances */
480 static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
481 	{ TIM1_CH1, STM32_EXT0 },
482 	{ TIM1_CH2, STM32_EXT1 },
483 	{ TIM1_CH3, STM32_EXT2 },
484 	{ TIM2_CH2, STM32_EXT3 },
485 	{ TIM3_TRGO, STM32_EXT4 },
486 	{ TIM4_CH4, STM32_EXT5 },
487 	{ TIM8_TRGO, STM32_EXT7 },
488 	{ TIM8_TRGO2, STM32_EXT8 },
489 	{ TIM1_TRGO, STM32_EXT9 },
490 	{ TIM1_TRGO2, STM32_EXT10 },
491 	{ TIM2_TRGO, STM32_EXT11 },
492 	{ TIM4_TRGO, STM32_EXT12 },
493 	{ TIM6_TRGO, STM32_EXT13 },
494 	{ TIM15_TRGO, STM32_EXT14 },
495 	{ TIM3_CH4, STM32_EXT15 },
496 	{ LPTIM1_OUT, STM32_EXT18 },
497 	{ LPTIM2_OUT, STM32_EXT19 },
498 	{ LPTIM3_OUT, STM32_EXT20 },
499 	{},
500 };
501 
502 /**
503  * stm32h7_smp_bits - describe sampling time register index & bit fields
504  * Sorted so it can be indexed by channel number.
505  */
506 static const struct stm32_adc_regs stm32h7_smp_bits[] = {
507 	/* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
508 	{ 0, GENMASK(2, 0), 0 },
509 	{ 0, GENMASK(5, 3), 3 },
510 	{ 0, GENMASK(8, 6), 6 },
511 	{ 0, GENMASK(11, 9), 9 },
512 	{ 0, GENMASK(14, 12), 12 },
513 	{ 0, GENMASK(17, 15), 15 },
514 	{ 0, GENMASK(20, 18), 18 },
515 	{ 0, GENMASK(23, 21), 21 },
516 	{ 0, GENMASK(26, 24), 24 },
517 	{ 0, GENMASK(29, 27), 27 },
518 	/* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
519 	{ 1, GENMASK(2, 0), 0 },
520 	{ 1, GENMASK(5, 3), 3 },
521 	{ 1, GENMASK(8, 6), 6 },
522 	{ 1, GENMASK(11, 9), 9 },
523 	{ 1, GENMASK(14, 12), 12 },
524 	{ 1, GENMASK(17, 15), 15 },
525 	{ 1, GENMASK(20, 18), 18 },
526 	{ 1, GENMASK(23, 21), 21 },
527 	{ 1, GENMASK(26, 24), 24 },
528 	{ 1, GENMASK(29, 27), 27 },
529 };
530 
531 /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
532 static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
533 	1, 2, 8, 16, 32, 64, 387, 810,
534 };
535 
536 static const struct stm32_adc_regspec stm32h7_adc_regspec = {
537 	.dr = STM32H7_ADC_DR,
538 	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
539 	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
540 	.sqr = stm32h7_sq,
541 	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
542 	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
543 		    STM32H7_EXTSEL_SHIFT },
544 	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
545 	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
546 	.smp_bits = stm32h7_smp_bits,
547 };
548 
549 /**
550  * STM32 ADC registers access routines
551  * @adc: stm32 adc instance
552  * @reg: reg offset in adc instance
553  *
554  * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
555  * for adc1, adc2 and adc3.
556  */
557 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
558 {
559 	return readl_relaxed(adc->common->base + adc->offset + reg);
560 }
561 
562 #define stm32_adc_readl_addr(addr)	stm32_adc_readl(adc, addr)
563 
564 #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
565 	readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
566 			   cond, sleep_us, timeout_us)
567 
568 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
569 {
570 	return readw_relaxed(adc->common->base + adc->offset + reg);
571 }
572 
573 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
574 {
575 	writel_relaxed(val, adc->common->base + adc->offset + reg);
576 }
577 
578 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
579 {
580 	unsigned long flags;
581 
582 	spin_lock_irqsave(&adc->lock, flags);
583 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
584 	spin_unlock_irqrestore(&adc->lock, flags);
585 }
586 
587 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
588 {
589 	unsigned long flags;
590 
591 	spin_lock_irqsave(&adc->lock, flags);
592 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
593 	spin_unlock_irqrestore(&adc->lock, flags);
594 }
595 
596 /**
597  * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
598  * @adc: stm32 adc instance
599  */
600 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
601 {
602 	stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
603 			   adc->cfg->regs->ier_eoc.mask);
604 };
605 
606 /**
607  * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
608  * @adc: stm32 adc instance
609  */
610 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
611 {
612 	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
613 			   adc->cfg->regs->ier_eoc.mask);
614 }
615 
616 static void stm32_adc_set_res(struct stm32_adc *adc)
617 {
618 	const struct stm32_adc_regs *res = &adc->cfg->regs->res;
619 	u32 val;
620 
621 	val = stm32_adc_readl(adc, res->reg);
622 	val = (val & ~res->mask) | (adc->res << res->shift);
623 	stm32_adc_writel(adc, res->reg, val);
624 }
625 
626 /**
627  * stm32f4_adc_start_conv() - Start conversions for regular channels.
628  * @adc: stm32 adc instance
629  * @dma: use dma to transfer conversion result
630  *
631  * Start conversions for regular channels.
632  * Also take care of normal or DMA mode. Circular DMA may be used for regular
633  * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
634  * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
635  */
636 static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
637 {
638 	stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
639 
640 	if (dma)
641 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
642 				   STM32F4_DMA | STM32F4_DDS);
643 
644 	stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
645 
646 	/* Wait for Power-up time (tSTAB from datasheet) */
647 	usleep_range(2, 3);
648 
649 	/* Software start ? (e.g. trigger detection disabled ?) */
650 	if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
651 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
652 }
653 
654 static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
655 {
656 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
657 	stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
658 
659 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
660 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
661 			   STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
662 }
663 
664 static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma)
665 {
666 	enum stm32h7_adc_dmngt dmngt;
667 	unsigned long flags;
668 	u32 val;
669 
670 	if (dma)
671 		dmngt = STM32H7_DMNGT_DMA_CIRC;
672 	else
673 		dmngt = STM32H7_DMNGT_DR_ONLY;
674 
675 	spin_lock_irqsave(&adc->lock, flags);
676 	val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
677 	val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
678 	stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
679 	spin_unlock_irqrestore(&adc->lock, flags);
680 
681 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
682 }
683 
684 static void stm32h7_adc_stop_conv(struct stm32_adc *adc)
685 {
686 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
687 	int ret;
688 	u32 val;
689 
690 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
691 
692 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
693 					   !(val & (STM32H7_ADSTART)),
694 					   100, STM32_ADC_TIMEOUT_US);
695 	if (ret)
696 		dev_warn(&indio_dev->dev, "stop failed\n");
697 
698 	stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
699 }
700 
701 static int stm32h7_adc_exit_pwr_down(struct stm32_adc *adc)
702 {
703 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
704 	int ret;
705 	u32 val;
706 
707 	/* Exit deep power down, then enable ADC voltage regulator */
708 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
709 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
710 
711 	if (adc->common->rate > STM32H7_BOOST_CLKRATE)
712 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
713 
714 	/* Wait for startup time */
715 	if (!adc->cfg->has_vregready) {
716 		usleep_range(10, 20);
717 		return 0;
718 	}
719 
720 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
721 					   val & STM32MP1_VREGREADY, 100,
722 					   STM32_ADC_TIMEOUT_US);
723 	if (ret) {
724 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
725 		dev_err(&indio_dev->dev, "Failed to exit power down\n");
726 	}
727 
728 	return ret;
729 }
730 
731 static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
732 {
733 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
734 
735 	/* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
736 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
737 }
738 
739 static int stm32h7_adc_enable(struct stm32_adc *adc)
740 {
741 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
742 	int ret;
743 	u32 val;
744 
745 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
746 
747 	/* Poll for ADRDY to be set (after adc startup time) */
748 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
749 					   val & STM32H7_ADRDY,
750 					   100, STM32_ADC_TIMEOUT_US);
751 	if (ret) {
752 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
753 		dev_err(&indio_dev->dev, "Failed to enable ADC\n");
754 	} else {
755 		/* Clear ADRDY by writing one */
756 		stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
757 	}
758 
759 	return ret;
760 }
761 
762 static void stm32h7_adc_disable(struct stm32_adc *adc)
763 {
764 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
765 	int ret;
766 	u32 val;
767 
768 	/* Disable ADC and wait until it's effectively disabled */
769 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
770 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
771 					   !(val & STM32H7_ADEN), 100,
772 					   STM32_ADC_TIMEOUT_US);
773 	if (ret)
774 		dev_warn(&indio_dev->dev, "Failed to disable\n");
775 }
776 
777 /**
778  * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
779  * @adc: stm32 adc instance
780  */
781 static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc)
782 {
783 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
784 	int i, ret;
785 	u32 lincalrdyw_mask, val;
786 
787 	/* Enable adc so LINCALRDYW1..6 bits are writable */
788 	ret = stm32h7_adc_enable(adc);
789 	if (ret)
790 		return ret;
791 
792 	/* Read linearity calibration */
793 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
794 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
795 		/* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
796 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
797 
798 		/* Poll: wait calib data to be ready in CALFACT2 register */
799 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
800 						   !(val & lincalrdyw_mask),
801 						   100, STM32_ADC_TIMEOUT_US);
802 		if (ret) {
803 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
804 			goto disable;
805 		}
806 
807 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
808 		adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
809 		adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
810 
811 		lincalrdyw_mask >>= 1;
812 	}
813 
814 	/* Read offset calibration */
815 	val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
816 	adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
817 	adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
818 	adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
819 	adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
820 
821 disable:
822 	stm32h7_adc_disable(adc);
823 
824 	return ret;
825 }
826 
827 /**
828  * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
829  * @adc: stm32 adc instance
830  * Note: ADC must be enabled, with no on-going conversions.
831  */
832 static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc)
833 {
834 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
835 	int i, ret;
836 	u32 lincalrdyw_mask, val;
837 
838 	val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
839 		(adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
840 	stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
841 
842 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
843 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
844 		/*
845 		 * Write saved calibration data to shadow registers:
846 		 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
847 		 * data write. Then poll to wait for complete transfer.
848 		 */
849 		val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
850 		stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
851 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
852 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
853 						   val & lincalrdyw_mask,
854 						   100, STM32_ADC_TIMEOUT_US);
855 		if (ret) {
856 			dev_err(&indio_dev->dev, "Failed to write calfact\n");
857 			return ret;
858 		}
859 
860 		/*
861 		 * Read back calibration data, has two effects:
862 		 * - It ensures bits LINCALRDYW[6..1] are kept cleared
863 		 *   for next time calibration needs to be restored.
864 		 * - BTW, bit clear triggers a read, then check data has been
865 		 *   correctly written.
866 		 */
867 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
868 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
869 						   !(val & lincalrdyw_mask),
870 						   100, STM32_ADC_TIMEOUT_US);
871 		if (ret) {
872 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
873 			return ret;
874 		}
875 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
876 		if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
877 			dev_err(&indio_dev->dev, "calfact not consistent\n");
878 			return -EIO;
879 		}
880 
881 		lincalrdyw_mask >>= 1;
882 	}
883 
884 	return 0;
885 }
886 
887 /**
888  * Fixed timeout value for ADC calibration.
889  * worst cases:
890  * - low clock frequency
891  * - maximum prescalers
892  * Calibration requires:
893  * - 131,072 ADC clock cycle for the linear calibration
894  * - 20 ADC clock cycle for the offset calibration
895  *
896  * Set to 100ms for now
897  */
898 #define STM32H7_ADC_CALIB_TIMEOUT_US		100000
899 
900 /**
901  * stm32h7_adc_selfcalib() - Procedure to calibrate ADC (from power down)
902  * @adc: stm32 adc instance
903  * Exit from power down, calibrate ADC, then return to power down.
904  */
905 static int stm32h7_adc_selfcalib(struct stm32_adc *adc)
906 {
907 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
908 	int ret;
909 	u32 val;
910 
911 	ret = stm32h7_adc_exit_pwr_down(adc);
912 	if (ret)
913 		return ret;
914 
915 	/*
916 	 * Select calibration mode:
917 	 * - Offset calibration for single ended inputs
918 	 * - No linearity calibration (do it later, before reading it)
919 	 */
920 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
921 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
922 
923 	/* Start calibration, then wait for completion */
924 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
925 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
926 					   !(val & STM32H7_ADCAL), 100,
927 					   STM32H7_ADC_CALIB_TIMEOUT_US);
928 	if (ret) {
929 		dev_err(&indio_dev->dev, "calibration failed\n");
930 		goto pwr_dwn;
931 	}
932 
933 	/*
934 	 * Select calibration mode, then start calibration:
935 	 * - Offset calibration for differential input
936 	 * - Linearity calibration (needs to be done only once for single/diff)
937 	 *   will run simultaneously with offset calibration.
938 	 */
939 	stm32_adc_set_bits(adc, STM32H7_ADC_CR,
940 			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
941 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
942 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
943 					   !(val & STM32H7_ADCAL), 100,
944 					   STM32H7_ADC_CALIB_TIMEOUT_US);
945 	if (ret) {
946 		dev_err(&indio_dev->dev, "calibration failed\n");
947 		goto pwr_dwn;
948 	}
949 
950 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
951 			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
952 
953 	/* Read calibration result for future reference */
954 	ret = stm32h7_adc_read_selfcalib(adc);
955 
956 pwr_dwn:
957 	stm32h7_adc_enter_pwr_down(adc);
958 
959 	return ret;
960 }
961 
962 /**
963  * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
964  * @adc: stm32 adc instance
965  * Leave power down mode.
966  * Configure channels as single ended or differential before enabling ADC.
967  * Enable ADC.
968  * Restore calibration data.
969  * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
970  * - Only one input is selected for single ended (e.g. 'vinp')
971  * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
972  */
973 static int stm32h7_adc_prepare(struct stm32_adc *adc)
974 {
975 	int ret;
976 
977 	ret = stm32h7_adc_exit_pwr_down(adc);
978 	if (ret)
979 		return ret;
980 
981 	stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
982 
983 	ret = stm32h7_adc_enable(adc);
984 	if (ret)
985 		goto pwr_dwn;
986 
987 	ret = stm32h7_adc_restore_selfcalib(adc);
988 	if (ret)
989 		goto disable;
990 
991 	stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
992 
993 	return 0;
994 
995 disable:
996 	stm32h7_adc_disable(adc);
997 pwr_dwn:
998 	stm32h7_adc_enter_pwr_down(adc);
999 
1000 	return ret;
1001 }
1002 
1003 static void stm32h7_adc_unprepare(struct stm32_adc *adc)
1004 {
1005 	stm32h7_adc_disable(adc);
1006 	stm32h7_adc_enter_pwr_down(adc);
1007 }
1008 
1009 /**
1010  * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
1011  * @indio_dev: IIO device
1012  * @scan_mask: channels to be converted
1013  *
1014  * Conversion sequence :
1015  * Apply sampling time settings for all channels.
1016  * Configure ADC scan sequence based on selected channels in scan_mask.
1017  * Add channels to SQR registers, from scan_mask LSB to MSB, then
1018  * program sequence len.
1019  */
1020 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
1021 				   const unsigned long *scan_mask)
1022 {
1023 	struct stm32_adc *adc = iio_priv(indio_dev);
1024 	const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
1025 	const struct iio_chan_spec *chan;
1026 	u32 val, bit;
1027 	int i = 0;
1028 
1029 	/* Apply sampling time settings */
1030 	stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
1031 	stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
1032 
1033 	for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
1034 		chan = indio_dev->channels + bit;
1035 		/*
1036 		 * Assign one channel per SQ entry in regular
1037 		 * sequence, starting with SQ1.
1038 		 */
1039 		i++;
1040 		if (i > STM32_ADC_MAX_SQ)
1041 			return -EINVAL;
1042 
1043 		dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
1044 			__func__, chan->channel, i);
1045 
1046 		val = stm32_adc_readl(adc, sqr[i].reg);
1047 		val &= ~sqr[i].mask;
1048 		val |= chan->channel << sqr[i].shift;
1049 		stm32_adc_writel(adc, sqr[i].reg, val);
1050 	}
1051 
1052 	if (!i)
1053 		return -EINVAL;
1054 
1055 	/* Sequence len */
1056 	val = stm32_adc_readl(adc, sqr[0].reg);
1057 	val &= ~sqr[0].mask;
1058 	val |= ((i - 1) << sqr[0].shift);
1059 	stm32_adc_writel(adc, sqr[0].reg, val);
1060 
1061 	return 0;
1062 }
1063 
1064 /**
1065  * stm32_adc_get_trig_extsel() - Get external trigger selection
1066  * @trig: trigger
1067  *
1068  * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1069  */
1070 static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1071 				     struct iio_trigger *trig)
1072 {
1073 	struct stm32_adc *adc = iio_priv(indio_dev);
1074 	int i;
1075 
1076 	/* lookup triggers registered by stm32 timer trigger driver */
1077 	for (i = 0; adc->cfg->trigs[i].name; i++) {
1078 		/**
1079 		 * Checking both stm32 timer trigger type and trig name
1080 		 * should be safe against arbitrary trigger names.
1081 		 */
1082 		if ((is_stm32_timer_trigger(trig) ||
1083 		     is_stm32_lptim_trigger(trig)) &&
1084 		    !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1085 			return adc->cfg->trigs[i].extsel;
1086 		}
1087 	}
1088 
1089 	return -EINVAL;
1090 }
1091 
1092 /**
1093  * stm32_adc_set_trig() - Set a regular trigger
1094  * @indio_dev: IIO device
1095  * @trig: IIO trigger
1096  *
1097  * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1098  * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1099  * - if HW trigger enabled, set source & polarity
1100  */
1101 static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1102 			      struct iio_trigger *trig)
1103 {
1104 	struct stm32_adc *adc = iio_priv(indio_dev);
1105 	u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1106 	unsigned long flags;
1107 	int ret;
1108 
1109 	if (trig) {
1110 		ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1111 		if (ret < 0)
1112 			return ret;
1113 
1114 		/* set trigger source and polarity (default to rising edge) */
1115 		extsel = ret;
1116 		exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1117 	}
1118 
1119 	spin_lock_irqsave(&adc->lock, flags);
1120 	val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1121 	val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1122 	val |= exten << adc->cfg->regs->exten.shift;
1123 	val |= extsel << adc->cfg->regs->extsel.shift;
1124 	stm32_adc_writel(adc,  adc->cfg->regs->exten.reg, val);
1125 	spin_unlock_irqrestore(&adc->lock, flags);
1126 
1127 	return 0;
1128 }
1129 
1130 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1131 				  const struct iio_chan_spec *chan,
1132 				  unsigned int type)
1133 {
1134 	struct stm32_adc *adc = iio_priv(indio_dev);
1135 
1136 	adc->trigger_polarity = type;
1137 
1138 	return 0;
1139 }
1140 
1141 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1142 				  const struct iio_chan_spec *chan)
1143 {
1144 	struct stm32_adc *adc = iio_priv(indio_dev);
1145 
1146 	return adc->trigger_polarity;
1147 }
1148 
1149 static const char * const stm32_trig_pol_items[] = {
1150 	"rising-edge", "falling-edge", "both-edges",
1151 };
1152 
1153 static const struct iio_enum stm32_adc_trig_pol = {
1154 	.items = stm32_trig_pol_items,
1155 	.num_items = ARRAY_SIZE(stm32_trig_pol_items),
1156 	.get = stm32_adc_get_trig_pol,
1157 	.set = stm32_adc_set_trig_pol,
1158 };
1159 
1160 /**
1161  * stm32_adc_single_conv() - Performs a single conversion
1162  * @indio_dev: IIO device
1163  * @chan: IIO channel
1164  * @res: conversion result
1165  *
1166  * The function performs a single conversion on a given channel:
1167  * - Apply sampling time settings
1168  * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1169  * - Use SW trigger
1170  * - Start conversion, then wait for interrupt completion.
1171  */
1172 static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1173 				 const struct iio_chan_spec *chan,
1174 				 int *res)
1175 {
1176 	struct stm32_adc *adc = iio_priv(indio_dev);
1177 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1178 	long timeout;
1179 	u32 val;
1180 	int ret;
1181 
1182 	reinit_completion(&adc->completion);
1183 
1184 	adc->bufi = 0;
1185 
1186 	if (adc->cfg->prepare) {
1187 		ret = adc->cfg->prepare(adc);
1188 		if (ret)
1189 			return ret;
1190 	}
1191 
1192 	/* Apply sampling time settings */
1193 	stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1194 	stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1195 
1196 	/* Program chan number in regular sequence (SQ1) */
1197 	val = stm32_adc_readl(adc, regs->sqr[1].reg);
1198 	val &= ~regs->sqr[1].mask;
1199 	val |= chan->channel << regs->sqr[1].shift;
1200 	stm32_adc_writel(adc, regs->sqr[1].reg, val);
1201 
1202 	/* Set regular sequence len (0 for 1 conversion) */
1203 	stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1204 
1205 	/* Trigger detection disabled (conversion can be launched in SW) */
1206 	stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1207 
1208 	stm32_adc_conv_irq_enable(adc);
1209 
1210 	adc->cfg->start_conv(adc, false);
1211 
1212 	timeout = wait_for_completion_interruptible_timeout(
1213 					&adc->completion, STM32_ADC_TIMEOUT);
1214 	if (timeout == 0) {
1215 		ret = -ETIMEDOUT;
1216 	} else if (timeout < 0) {
1217 		ret = timeout;
1218 	} else {
1219 		*res = adc->buffer[0];
1220 		ret = IIO_VAL_INT;
1221 	}
1222 
1223 	adc->cfg->stop_conv(adc);
1224 
1225 	stm32_adc_conv_irq_disable(adc);
1226 
1227 	if (adc->cfg->unprepare)
1228 		adc->cfg->unprepare(adc);
1229 
1230 	return ret;
1231 }
1232 
1233 static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1234 			      struct iio_chan_spec const *chan,
1235 			      int *val, int *val2, long mask)
1236 {
1237 	struct stm32_adc *adc = iio_priv(indio_dev);
1238 	int ret;
1239 
1240 	switch (mask) {
1241 	case IIO_CHAN_INFO_RAW:
1242 		ret = iio_device_claim_direct_mode(indio_dev);
1243 		if (ret)
1244 			return ret;
1245 		if (chan->type == IIO_VOLTAGE)
1246 			ret = stm32_adc_single_conv(indio_dev, chan, val);
1247 		else
1248 			ret = -EINVAL;
1249 		iio_device_release_direct_mode(indio_dev);
1250 		return ret;
1251 
1252 	case IIO_CHAN_INFO_SCALE:
1253 		if (chan->differential) {
1254 			*val = adc->common->vref_mv * 2;
1255 			*val2 = chan->scan_type.realbits;
1256 		} else {
1257 			*val = adc->common->vref_mv;
1258 			*val2 = chan->scan_type.realbits;
1259 		}
1260 		return IIO_VAL_FRACTIONAL_LOG2;
1261 
1262 	case IIO_CHAN_INFO_OFFSET:
1263 		if (chan->differential)
1264 			/* ADC_full_scale / 2 */
1265 			*val = -((1 << chan->scan_type.realbits) / 2);
1266 		else
1267 			*val = 0;
1268 		return IIO_VAL_INT;
1269 
1270 	default:
1271 		return -EINVAL;
1272 	}
1273 }
1274 
1275 static irqreturn_t stm32_adc_isr(int irq, void *data)
1276 {
1277 	struct stm32_adc *adc = data;
1278 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1279 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1280 	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1281 
1282 	if (status & regs->isr_eoc.mask) {
1283 		/* Reading DR also clears EOC status flag */
1284 		adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1285 		if (iio_buffer_enabled(indio_dev)) {
1286 			adc->bufi++;
1287 			if (adc->bufi >= adc->num_conv) {
1288 				stm32_adc_conv_irq_disable(adc);
1289 				iio_trigger_poll(indio_dev->trig);
1290 			}
1291 		} else {
1292 			complete(&adc->completion);
1293 		}
1294 		return IRQ_HANDLED;
1295 	}
1296 
1297 	return IRQ_NONE;
1298 }
1299 
1300 /**
1301  * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1302  * @indio_dev: IIO device
1303  * @trig: new trigger
1304  *
1305  * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1306  * driver, -EINVAL otherwise.
1307  */
1308 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1309 				      struct iio_trigger *trig)
1310 {
1311 	return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1312 }
1313 
1314 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1315 {
1316 	struct stm32_adc *adc = iio_priv(indio_dev);
1317 	unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1318 	unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1319 
1320 	/*
1321 	 * dma cyclic transfers are used, buffer is split into two periods.
1322 	 * There should be :
1323 	 * - always one buffer (period) dma is working on
1324 	 * - one buffer (period) driver can push with iio_trigger_poll().
1325 	 */
1326 	watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1327 	adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1328 
1329 	return 0;
1330 }
1331 
1332 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1333 				      const unsigned long *scan_mask)
1334 {
1335 	struct stm32_adc *adc = iio_priv(indio_dev);
1336 	int ret;
1337 
1338 	adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1339 
1340 	ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1341 	if (ret)
1342 		return ret;
1343 
1344 	return 0;
1345 }
1346 
1347 static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1348 			      const struct of_phandle_args *iiospec)
1349 {
1350 	int i;
1351 
1352 	for (i = 0; i < indio_dev->num_channels; i++)
1353 		if (indio_dev->channels[i].channel == iiospec->args[0])
1354 			return i;
1355 
1356 	return -EINVAL;
1357 }
1358 
1359 /**
1360  * stm32_adc_debugfs_reg_access - read or write register value
1361  *
1362  * To read a value from an ADC register:
1363  *   echo [ADC reg offset] > direct_reg_access
1364  *   cat direct_reg_access
1365  *
1366  * To write a value in a ADC register:
1367  *   echo [ADC_reg_offset] [value] > direct_reg_access
1368  */
1369 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1370 					unsigned reg, unsigned writeval,
1371 					unsigned *readval)
1372 {
1373 	struct stm32_adc *adc = iio_priv(indio_dev);
1374 
1375 	if (!readval)
1376 		stm32_adc_writel(adc, reg, writeval);
1377 	else
1378 		*readval = stm32_adc_readl(adc, reg);
1379 
1380 	return 0;
1381 }
1382 
1383 static const struct iio_info stm32_adc_iio_info = {
1384 	.read_raw = stm32_adc_read_raw,
1385 	.validate_trigger = stm32_adc_validate_trigger,
1386 	.hwfifo_set_watermark = stm32_adc_set_watermark,
1387 	.update_scan_mode = stm32_adc_update_scan_mode,
1388 	.debugfs_reg_access = stm32_adc_debugfs_reg_access,
1389 	.of_xlate = stm32_adc_of_xlate,
1390 };
1391 
1392 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1393 {
1394 	struct dma_tx_state state;
1395 	enum dma_status status;
1396 
1397 	status = dmaengine_tx_status(adc->dma_chan,
1398 				     adc->dma_chan->cookie,
1399 				     &state);
1400 	if (status == DMA_IN_PROGRESS) {
1401 		/* Residue is size in bytes from end of buffer */
1402 		unsigned int i = adc->rx_buf_sz - state.residue;
1403 		unsigned int size;
1404 
1405 		/* Return available bytes */
1406 		if (i >= adc->bufi)
1407 			size = i - adc->bufi;
1408 		else
1409 			size = adc->rx_buf_sz + i - adc->bufi;
1410 
1411 		return size;
1412 	}
1413 
1414 	return 0;
1415 }
1416 
1417 static void stm32_adc_dma_buffer_done(void *data)
1418 {
1419 	struct iio_dev *indio_dev = data;
1420 
1421 	iio_trigger_poll_chained(indio_dev->trig);
1422 }
1423 
1424 static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1425 {
1426 	struct stm32_adc *adc = iio_priv(indio_dev);
1427 	struct dma_async_tx_descriptor *desc;
1428 	dma_cookie_t cookie;
1429 	int ret;
1430 
1431 	if (!adc->dma_chan)
1432 		return 0;
1433 
1434 	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1435 		adc->rx_buf_sz, adc->rx_buf_sz / 2);
1436 
1437 	/* Prepare a DMA cyclic transaction */
1438 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1439 					 adc->rx_dma_buf,
1440 					 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1441 					 DMA_DEV_TO_MEM,
1442 					 DMA_PREP_INTERRUPT);
1443 	if (!desc)
1444 		return -EBUSY;
1445 
1446 	desc->callback = stm32_adc_dma_buffer_done;
1447 	desc->callback_param = indio_dev;
1448 
1449 	cookie = dmaengine_submit(desc);
1450 	ret = dma_submit_error(cookie);
1451 	if (ret) {
1452 		dmaengine_terminate_all(adc->dma_chan);
1453 		return ret;
1454 	}
1455 
1456 	/* Issue pending DMA requests */
1457 	dma_async_issue_pending(adc->dma_chan);
1458 
1459 	return 0;
1460 }
1461 
1462 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1463 {
1464 	struct stm32_adc *adc = iio_priv(indio_dev);
1465 	int ret;
1466 
1467 	if (adc->cfg->prepare) {
1468 		ret = adc->cfg->prepare(adc);
1469 		if (ret)
1470 			return ret;
1471 	}
1472 
1473 	ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1474 	if (ret) {
1475 		dev_err(&indio_dev->dev, "Can't set trigger\n");
1476 		goto err_unprepare;
1477 	}
1478 
1479 	ret = stm32_adc_dma_start(indio_dev);
1480 	if (ret) {
1481 		dev_err(&indio_dev->dev, "Can't start dma\n");
1482 		goto err_clr_trig;
1483 	}
1484 
1485 	ret = iio_triggered_buffer_postenable(indio_dev);
1486 	if (ret < 0)
1487 		goto err_stop_dma;
1488 
1489 	/* Reset adc buffer index */
1490 	adc->bufi = 0;
1491 
1492 	if (!adc->dma_chan)
1493 		stm32_adc_conv_irq_enable(adc);
1494 
1495 	adc->cfg->start_conv(adc, !!adc->dma_chan);
1496 
1497 	return 0;
1498 
1499 err_stop_dma:
1500 	if (adc->dma_chan)
1501 		dmaengine_terminate_all(adc->dma_chan);
1502 err_clr_trig:
1503 	stm32_adc_set_trig(indio_dev, NULL);
1504 err_unprepare:
1505 	if (adc->cfg->unprepare)
1506 		adc->cfg->unprepare(adc);
1507 
1508 	return ret;
1509 }
1510 
1511 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1512 {
1513 	struct stm32_adc *adc = iio_priv(indio_dev);
1514 	int ret;
1515 
1516 	adc->cfg->stop_conv(adc);
1517 	if (!adc->dma_chan)
1518 		stm32_adc_conv_irq_disable(adc);
1519 
1520 	ret = iio_triggered_buffer_predisable(indio_dev);
1521 	if (ret < 0)
1522 		dev_err(&indio_dev->dev, "predisable failed\n");
1523 
1524 	if (adc->dma_chan)
1525 		dmaengine_terminate_all(adc->dma_chan);
1526 
1527 	if (stm32_adc_set_trig(indio_dev, NULL))
1528 		dev_err(&indio_dev->dev, "Can't clear trigger\n");
1529 
1530 	if (adc->cfg->unprepare)
1531 		adc->cfg->unprepare(adc);
1532 
1533 	return ret;
1534 }
1535 
1536 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1537 	.postenable = &stm32_adc_buffer_postenable,
1538 	.predisable = &stm32_adc_buffer_predisable,
1539 };
1540 
1541 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1542 {
1543 	struct iio_poll_func *pf = p;
1544 	struct iio_dev *indio_dev = pf->indio_dev;
1545 	struct stm32_adc *adc = iio_priv(indio_dev);
1546 
1547 	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1548 
1549 	if (!adc->dma_chan) {
1550 		/* reset buffer index */
1551 		adc->bufi = 0;
1552 		iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1553 						   pf->timestamp);
1554 	} else {
1555 		int residue = stm32_adc_dma_residue(adc);
1556 
1557 		while (residue >= indio_dev->scan_bytes) {
1558 			u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1559 
1560 			iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1561 							   pf->timestamp);
1562 			residue -= indio_dev->scan_bytes;
1563 			adc->bufi += indio_dev->scan_bytes;
1564 			if (adc->bufi >= adc->rx_buf_sz)
1565 				adc->bufi = 0;
1566 		}
1567 	}
1568 
1569 	iio_trigger_notify_done(indio_dev->trig);
1570 
1571 	/* re-enable eoc irq */
1572 	if (!adc->dma_chan)
1573 		stm32_adc_conv_irq_enable(adc);
1574 
1575 	return IRQ_HANDLED;
1576 }
1577 
1578 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1579 	IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1580 	{
1581 		.name = "trigger_polarity_available",
1582 		.shared = IIO_SHARED_BY_ALL,
1583 		.read = iio_enum_available_read,
1584 		.private = (uintptr_t)&stm32_adc_trig_pol,
1585 	},
1586 	{},
1587 };
1588 
1589 static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1590 {
1591 	struct device_node *node = indio_dev->dev.of_node;
1592 	struct stm32_adc *adc = iio_priv(indio_dev);
1593 	unsigned int i;
1594 	u32 res;
1595 
1596 	if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1597 		res = adc->cfg->adc_info->resolutions[0];
1598 
1599 	for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1600 		if (res == adc->cfg->adc_info->resolutions[i])
1601 			break;
1602 	if (i >= adc->cfg->adc_info->num_res) {
1603 		dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1604 		return -EINVAL;
1605 	}
1606 
1607 	dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1608 	adc->res = i;
1609 
1610 	return 0;
1611 }
1612 
1613 static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1614 {
1615 	const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1616 	u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1617 	unsigned int smp, r = smpr->reg;
1618 
1619 	/* Determine sampling time (ADC clock cycles) */
1620 	period_ns = NSEC_PER_SEC / adc->common->rate;
1621 	for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1622 		if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1623 			break;
1624 	if (smp > STM32_ADC_MAX_SMP)
1625 		smp = STM32_ADC_MAX_SMP;
1626 
1627 	/* pre-build sampling time registers (e.g. smpr1, smpr2) */
1628 	adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1629 }
1630 
1631 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1632 				    struct iio_chan_spec *chan, u32 vinp,
1633 				    u32 vinn, int scan_index, bool differential)
1634 {
1635 	struct stm32_adc *adc = iio_priv(indio_dev);
1636 	char *name = adc->chan_name[vinp];
1637 
1638 	chan->type = IIO_VOLTAGE;
1639 	chan->channel = vinp;
1640 	if (differential) {
1641 		chan->differential = 1;
1642 		chan->channel2 = vinn;
1643 		snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1644 	} else {
1645 		snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1646 	}
1647 	chan->datasheet_name = name;
1648 	chan->scan_index = scan_index;
1649 	chan->indexed = 1;
1650 	chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1651 	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1652 					 BIT(IIO_CHAN_INFO_OFFSET);
1653 	chan->scan_type.sign = 'u';
1654 	chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1655 	chan->scan_type.storagebits = 16;
1656 	chan->ext_info = stm32_adc_ext_info;
1657 
1658 	/* pre-build selected channels mask */
1659 	adc->pcsel |= BIT(chan->channel);
1660 	if (differential) {
1661 		/* pre-build diff channels mask */
1662 		adc->difsel |= BIT(chan->channel);
1663 		/* Also add negative input to pre-selected channels */
1664 		adc->pcsel |= BIT(chan->channel2);
1665 	}
1666 }
1667 
1668 static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1669 {
1670 	struct device_node *node = indio_dev->dev.of_node;
1671 	struct stm32_adc *adc = iio_priv(indio_dev);
1672 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1673 	struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1674 	struct property *prop;
1675 	const __be32 *cur;
1676 	struct iio_chan_spec *channels;
1677 	int scan_index = 0, num_channels = 0, num_diff = 0, ret, i;
1678 	u32 val, smp = 0;
1679 
1680 	ret = of_property_count_u32_elems(node, "st,adc-channels");
1681 	if (ret > adc_info->max_channels) {
1682 		dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1683 		return -EINVAL;
1684 	} else if (ret > 0) {
1685 		num_channels += ret;
1686 	}
1687 
1688 	ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1689 					      sizeof(*diff));
1690 	if (ret > adc_info->max_channels) {
1691 		dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1692 		return -EINVAL;
1693 	} else if (ret > 0) {
1694 		int size = ret * sizeof(*diff) / sizeof(u32);
1695 
1696 		num_diff = ret;
1697 		num_channels += ret;
1698 		ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1699 						 (u32 *)diff, size);
1700 		if (ret)
1701 			return ret;
1702 	}
1703 
1704 	if (!num_channels) {
1705 		dev_err(&indio_dev->dev, "No channels configured\n");
1706 		return -ENODATA;
1707 	}
1708 
1709 	/* Optional sample time is provided either for each, or all channels */
1710 	ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1711 	if (ret > 1 && ret != num_channels) {
1712 		dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1713 		return -EINVAL;
1714 	}
1715 
1716 	channels = devm_kcalloc(&indio_dev->dev, num_channels,
1717 				sizeof(struct iio_chan_spec), GFP_KERNEL);
1718 	if (!channels)
1719 		return -ENOMEM;
1720 
1721 	of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1722 		if (val >= adc_info->max_channels) {
1723 			dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1724 			return -EINVAL;
1725 		}
1726 
1727 		/* Channel can't be configured both as single-ended & diff */
1728 		for (i = 0; i < num_diff; i++) {
1729 			if (val == diff[i].vinp) {
1730 				dev_err(&indio_dev->dev,
1731 					"channel %d miss-configured\n",	val);
1732 				return -EINVAL;
1733 			}
1734 		}
1735 		stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1736 					0, scan_index, false);
1737 		scan_index++;
1738 	}
1739 
1740 	for (i = 0; i < num_diff; i++) {
1741 		if (diff[i].vinp >= adc_info->max_channels ||
1742 		    diff[i].vinn >= adc_info->max_channels) {
1743 			dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1744 				diff[i].vinp, diff[i].vinn);
1745 			return -EINVAL;
1746 		}
1747 		stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1748 					diff[i].vinp, diff[i].vinn, scan_index,
1749 					true);
1750 		scan_index++;
1751 	}
1752 
1753 	for (i = 0; i < scan_index; i++) {
1754 		/*
1755 		 * Using of_property_read_u32_index(), smp value will only be
1756 		 * modified if valid u32 value can be decoded. This allows to
1757 		 * get either no value, 1 shared value for all indexes, or one
1758 		 * value per channel.
1759 		 */
1760 		of_property_read_u32_index(node, "st,min-sample-time-nsecs",
1761 					   i, &smp);
1762 		/* Prepare sampling time settings */
1763 		stm32_adc_smpr_init(adc, channels[i].channel, smp);
1764 	}
1765 
1766 	indio_dev->num_channels = scan_index;
1767 	indio_dev->channels = channels;
1768 
1769 	return 0;
1770 }
1771 
1772 static int stm32_adc_dma_request(struct iio_dev *indio_dev)
1773 {
1774 	struct stm32_adc *adc = iio_priv(indio_dev);
1775 	struct dma_slave_config config;
1776 	int ret;
1777 
1778 	adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
1779 	if (!adc->dma_chan)
1780 		return 0;
1781 
1782 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1783 					 STM32_DMA_BUFFER_SIZE,
1784 					 &adc->rx_dma_buf, GFP_KERNEL);
1785 	if (!adc->rx_buf) {
1786 		ret = -ENOMEM;
1787 		goto err_release;
1788 	}
1789 
1790 	/* Configure DMA channel to read data register */
1791 	memset(&config, 0, sizeof(config));
1792 	config.src_addr = (dma_addr_t)adc->common->phys_base;
1793 	config.src_addr += adc->offset + adc->cfg->regs->dr;
1794 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1795 
1796 	ret = dmaengine_slave_config(adc->dma_chan, &config);
1797 	if (ret)
1798 		goto err_free;
1799 
1800 	return 0;
1801 
1802 err_free:
1803 	dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1804 			  adc->rx_buf, adc->rx_dma_buf);
1805 err_release:
1806 	dma_release_channel(adc->dma_chan);
1807 
1808 	return ret;
1809 }
1810 
1811 static int stm32_adc_probe(struct platform_device *pdev)
1812 {
1813 	struct iio_dev *indio_dev;
1814 	struct device *dev = &pdev->dev;
1815 	struct stm32_adc *adc;
1816 	int ret;
1817 
1818 	if (!pdev->dev.of_node)
1819 		return -ENODEV;
1820 
1821 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1822 	if (!indio_dev)
1823 		return -ENOMEM;
1824 
1825 	adc = iio_priv(indio_dev);
1826 	adc->common = dev_get_drvdata(pdev->dev.parent);
1827 	spin_lock_init(&adc->lock);
1828 	init_completion(&adc->completion);
1829 	adc->cfg = (const struct stm32_adc_cfg *)
1830 		of_match_device(dev->driver->of_match_table, dev)->data;
1831 
1832 	indio_dev->name = dev_name(&pdev->dev);
1833 	indio_dev->dev.parent = &pdev->dev;
1834 	indio_dev->dev.of_node = pdev->dev.of_node;
1835 	indio_dev->info = &stm32_adc_iio_info;
1836 	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
1837 
1838 	platform_set_drvdata(pdev, adc);
1839 
1840 	ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1841 	if (ret != 0) {
1842 		dev_err(&pdev->dev, "missing reg property\n");
1843 		return -EINVAL;
1844 	}
1845 
1846 	adc->irq = platform_get_irq(pdev, 0);
1847 	if (adc->irq < 0) {
1848 		dev_err(&pdev->dev, "failed to get irq\n");
1849 		return adc->irq;
1850 	}
1851 
1852 	ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1853 			       0, pdev->name, adc);
1854 	if (ret) {
1855 		dev_err(&pdev->dev, "failed to request IRQ\n");
1856 		return ret;
1857 	}
1858 
1859 	adc->clk = devm_clk_get(&pdev->dev, NULL);
1860 	if (IS_ERR(adc->clk)) {
1861 		ret = PTR_ERR(adc->clk);
1862 		if (ret == -ENOENT && !adc->cfg->clk_required) {
1863 			adc->clk = NULL;
1864 		} else {
1865 			dev_err(&pdev->dev, "Can't get clock\n");
1866 			return ret;
1867 		}
1868 	}
1869 
1870 	if (adc->clk) {
1871 		ret = clk_prepare_enable(adc->clk);
1872 		if (ret < 0) {
1873 			dev_err(&pdev->dev, "clk enable failed\n");
1874 			return ret;
1875 		}
1876 	}
1877 
1878 	ret = stm32_adc_of_get_resolution(indio_dev);
1879 	if (ret < 0)
1880 		goto err_clk_disable;
1881 	stm32_adc_set_res(adc);
1882 
1883 	if (adc->cfg->selfcalib) {
1884 		ret = adc->cfg->selfcalib(adc);
1885 		if (ret)
1886 			goto err_clk_disable;
1887 	}
1888 
1889 	ret = stm32_adc_chan_of_init(indio_dev);
1890 	if (ret < 0)
1891 		goto err_clk_disable;
1892 
1893 	ret = stm32_adc_dma_request(indio_dev);
1894 	if (ret < 0)
1895 		goto err_clk_disable;
1896 
1897 	ret = iio_triggered_buffer_setup(indio_dev,
1898 					 &iio_pollfunc_store_time,
1899 					 &stm32_adc_trigger_handler,
1900 					 &stm32_adc_buffer_setup_ops);
1901 	if (ret) {
1902 		dev_err(&pdev->dev, "buffer setup failed\n");
1903 		goto err_dma_disable;
1904 	}
1905 
1906 	ret = iio_device_register(indio_dev);
1907 	if (ret) {
1908 		dev_err(&pdev->dev, "iio dev register failed\n");
1909 		goto err_buffer_cleanup;
1910 	}
1911 
1912 	return 0;
1913 
1914 err_buffer_cleanup:
1915 	iio_triggered_buffer_cleanup(indio_dev);
1916 
1917 err_dma_disable:
1918 	if (adc->dma_chan) {
1919 		dma_free_coherent(adc->dma_chan->device->dev,
1920 				  STM32_DMA_BUFFER_SIZE,
1921 				  adc->rx_buf, adc->rx_dma_buf);
1922 		dma_release_channel(adc->dma_chan);
1923 	}
1924 err_clk_disable:
1925 	if (adc->clk)
1926 		clk_disable_unprepare(adc->clk);
1927 
1928 	return ret;
1929 }
1930 
1931 static int stm32_adc_remove(struct platform_device *pdev)
1932 {
1933 	struct stm32_adc *adc = platform_get_drvdata(pdev);
1934 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1935 
1936 	iio_device_unregister(indio_dev);
1937 	iio_triggered_buffer_cleanup(indio_dev);
1938 	if (adc->dma_chan) {
1939 		dma_free_coherent(adc->dma_chan->device->dev,
1940 				  STM32_DMA_BUFFER_SIZE,
1941 				  adc->rx_buf, adc->rx_dma_buf);
1942 		dma_release_channel(adc->dma_chan);
1943 	}
1944 	if (adc->clk)
1945 		clk_disable_unprepare(adc->clk);
1946 
1947 	return 0;
1948 }
1949 
1950 static const struct stm32_adc_cfg stm32f4_adc_cfg = {
1951 	.regs = &stm32f4_adc_regspec,
1952 	.adc_info = &stm32f4_adc_info,
1953 	.trigs = stm32f4_adc_trigs,
1954 	.clk_required = true,
1955 	.start_conv = stm32f4_adc_start_conv,
1956 	.stop_conv = stm32f4_adc_stop_conv,
1957 	.smp_cycles = stm32f4_adc_smp_cycles,
1958 };
1959 
1960 static const struct stm32_adc_cfg stm32h7_adc_cfg = {
1961 	.regs = &stm32h7_adc_regspec,
1962 	.adc_info = &stm32h7_adc_info,
1963 	.trigs = stm32h7_adc_trigs,
1964 	.selfcalib = stm32h7_adc_selfcalib,
1965 	.start_conv = stm32h7_adc_start_conv,
1966 	.stop_conv = stm32h7_adc_stop_conv,
1967 	.prepare = stm32h7_adc_prepare,
1968 	.unprepare = stm32h7_adc_unprepare,
1969 	.smp_cycles = stm32h7_adc_smp_cycles,
1970 };
1971 
1972 static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
1973 	.regs = &stm32h7_adc_regspec,
1974 	.adc_info = &stm32h7_adc_info,
1975 	.trigs = stm32h7_adc_trigs,
1976 	.has_vregready = true,
1977 	.selfcalib = stm32h7_adc_selfcalib,
1978 	.start_conv = stm32h7_adc_start_conv,
1979 	.stop_conv = stm32h7_adc_stop_conv,
1980 	.prepare = stm32h7_adc_prepare,
1981 	.unprepare = stm32h7_adc_unprepare,
1982 	.smp_cycles = stm32h7_adc_smp_cycles,
1983 };
1984 
1985 static const struct of_device_id stm32_adc_of_match[] = {
1986 	{ .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
1987 	{ .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
1988 	{ .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
1989 	{},
1990 };
1991 MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
1992 
1993 static struct platform_driver stm32_adc_driver = {
1994 	.probe = stm32_adc_probe,
1995 	.remove = stm32_adc_remove,
1996 	.driver = {
1997 		.name = "stm32-adc",
1998 		.of_match_table = stm32_adc_of_match,
1999 	},
2000 };
2001 module_platform_driver(stm32_adc_driver);
2002 
2003 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2004 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2005 MODULE_LICENSE("GPL v2");
2006 MODULE_ALIAS("platform:stm32-adc");
2007