xref: /openbmc/linux/drivers/iio/adc/stm32-adc.c (revision e71383fb9cd15a28d6c01d2c165a96f1c0bcf418)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is part of STM32 ADC driver
4  *
5  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6  * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/debugfs.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/iio/iio.h>
15 #include <linux/iio/buffer.h>
16 #include <linux/iio/timer/stm32-lptim-trigger.h>
17 #include <linux/iio/timer/stm32-timer-trigger.h>
18 #include <linux/iio/trigger.h>
19 #include <linux/iio/trigger_consumer.h>
20 #include <linux/iio/triggered_buffer.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/iopoll.h>
24 #include <linux/module.h>
25 #include <linux/mod_devicetable.h>
26 #include <linux/nvmem-consumer.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/property.h>
30 
31 #include "stm32-adc-core.h"
32 
33 /* Number of linear calibration shadow registers / LINCALRDYW control bits */
34 #define STM32H7_LINCALFACT_NUM		6
35 
36 /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
37 #define STM32H7_BOOST_CLKRATE		20000000UL
38 
39 #define STM32_ADC_CH_MAX		20	/* max number of channels */
40 #define STM32_ADC_CH_SZ			16	/* max channel name size */
41 #define STM32_ADC_MAX_SQ		16	/* SQ1..SQ16 */
42 #define STM32_ADC_MAX_SMP		7	/* SMPx range is [0..7] */
43 #define STM32_ADC_TIMEOUT_US		100000
44 #define STM32_ADC_TIMEOUT	(msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
45 #define STM32_ADC_HW_STOP_DELAY_MS	100
46 #define STM32_ADC_VREFINT_VOLTAGE	3300
47 
48 #define STM32_DMA_BUFFER_SIZE		PAGE_SIZE
49 
50 /* External trigger enable */
51 enum stm32_adc_exten {
52 	STM32_EXTEN_SWTRIG,
53 	STM32_EXTEN_HWTRIG_RISING_EDGE,
54 	STM32_EXTEN_HWTRIG_FALLING_EDGE,
55 	STM32_EXTEN_HWTRIG_BOTH_EDGES,
56 };
57 
58 /* extsel - trigger mux selection value */
59 enum stm32_adc_extsel {
60 	STM32_EXT0,
61 	STM32_EXT1,
62 	STM32_EXT2,
63 	STM32_EXT3,
64 	STM32_EXT4,
65 	STM32_EXT5,
66 	STM32_EXT6,
67 	STM32_EXT7,
68 	STM32_EXT8,
69 	STM32_EXT9,
70 	STM32_EXT10,
71 	STM32_EXT11,
72 	STM32_EXT12,
73 	STM32_EXT13,
74 	STM32_EXT14,
75 	STM32_EXT15,
76 	STM32_EXT16,
77 	STM32_EXT17,
78 	STM32_EXT18,
79 	STM32_EXT19,
80 	STM32_EXT20,
81 };
82 
83 enum stm32_adc_int_ch {
84 	STM32_ADC_INT_CH_NONE = -1,
85 	STM32_ADC_INT_CH_VDDCORE,
86 	STM32_ADC_INT_CH_VDDCPU,
87 	STM32_ADC_INT_CH_VDDQ_DDR,
88 	STM32_ADC_INT_CH_VREFINT,
89 	STM32_ADC_INT_CH_VBAT,
90 	STM32_ADC_INT_CH_NB,
91 };
92 
93 /**
94  * struct stm32_adc_ic - ADC internal channels
95  * @name:	name of the internal channel
96  * @idx:	internal channel enum index
97  */
98 struct stm32_adc_ic {
99 	const char *name;
100 	u32 idx;
101 };
102 
103 static const struct stm32_adc_ic stm32_adc_ic[STM32_ADC_INT_CH_NB] = {
104 	{ "vddcore", STM32_ADC_INT_CH_VDDCORE },
105 	{ "vddcpu", STM32_ADC_INT_CH_VDDCPU },
106 	{ "vddq_ddr", STM32_ADC_INT_CH_VDDQ_DDR },
107 	{ "vrefint", STM32_ADC_INT_CH_VREFINT },
108 	{ "vbat", STM32_ADC_INT_CH_VBAT },
109 };
110 
111 /**
112  * struct stm32_adc_trig_info - ADC trigger info
113  * @name:		name of the trigger, corresponding to its source
114  * @extsel:		trigger selection
115  */
116 struct stm32_adc_trig_info {
117 	const char *name;
118 	enum stm32_adc_extsel extsel;
119 };
120 
121 /**
122  * struct stm32_adc_calib - optional adc calibration data
123  * @lincalfact: Linearity calibration factor
124  * @lincal_saved: Indicates that linear calibration factors are saved
125  */
126 struct stm32_adc_calib {
127 	u32			lincalfact[STM32H7_LINCALFACT_NUM];
128 	bool			lincal_saved;
129 };
130 
131 /**
132  * struct stm32_adc_regs - stm32 ADC misc registers & bitfield desc
133  * @reg:		register offset
134  * @mask:		bitfield mask
135  * @shift:		left shift
136  */
137 struct stm32_adc_regs {
138 	int reg;
139 	int mask;
140 	int shift;
141 };
142 
143 /**
144  * struct stm32_adc_vrefint - stm32 ADC internal reference voltage data
145  * @vrefint_cal:	vrefint calibration value from nvmem
146  * @vrefint_data:	vrefint actual value
147  */
148 struct stm32_adc_vrefint {
149 	u32 vrefint_cal;
150 	u32 vrefint_data;
151 };
152 
153 /**
154  * struct stm32_adc_regspec - stm32 registers definition
155  * @dr:			data register offset
156  * @ier_eoc:		interrupt enable register & eocie bitfield
157  * @ier_ovr:		interrupt enable register & overrun bitfield
158  * @isr_eoc:		interrupt status register & eoc bitfield
159  * @isr_ovr:		interrupt status register & overrun bitfield
160  * @sqr:		reference to sequence registers array
161  * @exten:		trigger control register & bitfield
162  * @extsel:		trigger selection register & bitfield
163  * @res:		resolution selection register & bitfield
164  * @difsel:		differential mode selection register & bitfield
165  * @smpr:		smpr1 & smpr2 registers offset array
166  * @smp_bits:		smpr1 & smpr2 index and bitfields
167  * @or_vddcore:		option register & vddcore bitfield
168  * @or_vddcpu:		option register & vddcpu bitfield
169  * @or_vddq_ddr:	option register & vddq_ddr bitfield
170  * @ccr_vbat:		common register & vbat bitfield
171  * @ccr_vref:		common register & vrefint bitfield
172  */
173 struct stm32_adc_regspec {
174 	const u32 dr;
175 	const struct stm32_adc_regs ier_eoc;
176 	const struct stm32_adc_regs ier_ovr;
177 	const struct stm32_adc_regs isr_eoc;
178 	const struct stm32_adc_regs isr_ovr;
179 	const struct stm32_adc_regs *sqr;
180 	const struct stm32_adc_regs exten;
181 	const struct stm32_adc_regs extsel;
182 	const struct stm32_adc_regs res;
183 	const struct stm32_adc_regs difsel;
184 	const u32 smpr[2];
185 	const struct stm32_adc_regs *smp_bits;
186 	const struct stm32_adc_regs or_vddcore;
187 	const struct stm32_adc_regs or_vddcpu;
188 	const struct stm32_adc_regs or_vddq_ddr;
189 	const struct stm32_adc_regs ccr_vbat;
190 	const struct stm32_adc_regs ccr_vref;
191 };
192 
193 struct stm32_adc;
194 
195 /**
196  * struct stm32_adc_cfg - stm32 compatible configuration data
197  * @regs:		registers descriptions
198  * @adc_info:		per instance input channels definitions
199  * @trigs:		external trigger sources
200  * @clk_required:	clock is required
201  * @has_vregready:	vregready status flag presence
202  * @has_boostmode:	boost mode support flag
203  * @has_linearcal:	linear calibration support flag
204  * @has_presel:		channel preselection support flag
205  * @prepare:		optional prepare routine (power-up, enable)
206  * @start_conv:		routine to start conversions
207  * @stop_conv:		routine to stop conversions
208  * @unprepare:		optional unprepare routine (disable, power-down)
209  * @irq_clear:		routine to clear irqs
210  * @smp_cycles:		programmable sampling time (ADC clock cycles)
211  * @ts_int_ch:		pointer to array of internal channels minimum sampling time in ns
212  */
213 struct stm32_adc_cfg {
214 	const struct stm32_adc_regspec	*regs;
215 	const struct stm32_adc_info	*adc_info;
216 	struct stm32_adc_trig_info	*trigs;
217 	bool clk_required;
218 	bool has_vregready;
219 	bool has_boostmode;
220 	bool has_linearcal;
221 	bool has_presel;
222 	int (*prepare)(struct iio_dev *);
223 	void (*start_conv)(struct iio_dev *, bool dma);
224 	void (*stop_conv)(struct iio_dev *);
225 	void (*unprepare)(struct iio_dev *);
226 	void (*irq_clear)(struct iio_dev *indio_dev, u32 msk);
227 	const unsigned int *smp_cycles;
228 	const unsigned int *ts_int_ch;
229 };
230 
231 /**
232  * struct stm32_adc - private data of each ADC IIO instance
233  * @common:		reference to ADC block common data
234  * @offset:		ADC instance register offset in ADC block
235  * @cfg:		compatible configuration data
236  * @completion:		end of single conversion completion
237  * @buffer:		data buffer + 8 bytes for timestamp if enabled
238  * @clk:		clock for this adc instance
239  * @irq:		interrupt for this adc instance
240  * @lock:		spinlock
241  * @bufi:		data buffer index
242  * @num_conv:		expected number of scan conversions
243  * @res:		data resolution (e.g. RES bitfield value)
244  * @trigger_polarity:	external trigger polarity (e.g. exten)
245  * @dma_chan:		dma channel
246  * @rx_buf:		dma rx buffer cpu address
247  * @rx_dma_buf:		dma rx buffer bus address
248  * @rx_buf_sz:		dma rx buffer size
249  * @difsel:		bitmask to set single-ended/differential channel
250  * @pcsel:		bitmask to preselect channels on some devices
251  * @smpr_val:		sampling time settings (e.g. smpr1 / smpr2)
252  * @cal:		optional calibration data on some devices
253  * @vrefint:		internal reference voltage data
254  * @chan_name:		channel name array
255  * @num_diff:		number of differential channels
256  * @int_ch:		internal channel indexes array
257  * @nsmps:		number of channels with optional sample time
258  */
259 struct stm32_adc {
260 	struct stm32_adc_common	*common;
261 	u32			offset;
262 	const struct stm32_adc_cfg	*cfg;
263 	struct completion	completion;
264 	u16			buffer[STM32_ADC_MAX_SQ + 4] __aligned(8);
265 	struct clk		*clk;
266 	int			irq;
267 	spinlock_t		lock;		/* interrupt lock */
268 	unsigned int		bufi;
269 	unsigned int		num_conv;
270 	u32			res;
271 	u32			trigger_polarity;
272 	struct dma_chan		*dma_chan;
273 	u8			*rx_buf;
274 	dma_addr_t		rx_dma_buf;
275 	unsigned int		rx_buf_sz;
276 	u32			difsel;
277 	u32			pcsel;
278 	u32			smpr_val[2];
279 	struct stm32_adc_calib	cal;
280 	struct stm32_adc_vrefint vrefint;
281 	char			chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
282 	u32			num_diff;
283 	int			int_ch[STM32_ADC_INT_CH_NB];
284 	int			nsmps;
285 };
286 
287 struct stm32_adc_diff_channel {
288 	u32 vinp;
289 	u32 vinn;
290 };
291 
292 /**
293  * struct stm32_adc_info - stm32 ADC, per instance config data
294  * @max_channels:	Number of channels
295  * @resolutions:	available resolutions
296  * @num_res:		number of available resolutions
297  */
298 struct stm32_adc_info {
299 	int max_channels;
300 	const unsigned int *resolutions;
301 	const unsigned int num_res;
302 };
303 
304 static const unsigned int stm32f4_adc_resolutions[] = {
305 	/* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
306 	12, 10, 8, 6,
307 };
308 
309 /* stm32f4 can have up to 16 channels */
310 static const struct stm32_adc_info stm32f4_adc_info = {
311 	.max_channels = 16,
312 	.resolutions = stm32f4_adc_resolutions,
313 	.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
314 };
315 
316 static const unsigned int stm32h7_adc_resolutions[] = {
317 	/* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
318 	16, 14, 12, 10, 8,
319 };
320 
321 /* stm32h7 can have up to 20 channels */
322 static const struct stm32_adc_info stm32h7_adc_info = {
323 	.max_channels = STM32_ADC_CH_MAX,
324 	.resolutions = stm32h7_adc_resolutions,
325 	.num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
326 };
327 
328 /* stm32mp13 can have up to 19 channels */
329 static const struct stm32_adc_info stm32mp13_adc_info = {
330 	.max_channels = 19,
331 	.resolutions = stm32f4_adc_resolutions,
332 	.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
333 };
334 
335 /*
336  * stm32f4_sq - describe regular sequence registers
337  * - L: sequence len (register & bit field)
338  * - SQ1..SQ16: sequence entries (register & bit field)
339  */
340 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
341 	/* L: len bit field description to be kept as first element */
342 	{ STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
343 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
344 	{ STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
345 	{ STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
346 	{ STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
347 	{ STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
348 	{ STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
349 	{ STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
350 	{ STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
351 	{ STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
352 	{ STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
353 	{ STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
354 	{ STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
355 	{ STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
356 	{ STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
357 	{ STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
358 	{ STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
359 	{ STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
360 };
361 
362 /* STM32F4 external trigger sources for all instances */
363 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
364 	{ TIM1_CH1, STM32_EXT0 },
365 	{ TIM1_CH2, STM32_EXT1 },
366 	{ TIM1_CH3, STM32_EXT2 },
367 	{ TIM2_CH2, STM32_EXT3 },
368 	{ TIM2_CH3, STM32_EXT4 },
369 	{ TIM2_CH4, STM32_EXT5 },
370 	{ TIM2_TRGO, STM32_EXT6 },
371 	{ TIM3_CH1, STM32_EXT7 },
372 	{ TIM3_TRGO, STM32_EXT8 },
373 	{ TIM4_CH4, STM32_EXT9 },
374 	{ TIM5_CH1, STM32_EXT10 },
375 	{ TIM5_CH2, STM32_EXT11 },
376 	{ TIM5_CH3, STM32_EXT12 },
377 	{ TIM8_CH1, STM32_EXT13 },
378 	{ TIM8_TRGO, STM32_EXT14 },
379 	{}, /* sentinel */
380 };
381 
382 /*
383  * stm32f4_smp_bits[] - describe sampling time register index & bit fields
384  * Sorted so it can be indexed by channel number.
385  */
386 static const struct stm32_adc_regs stm32f4_smp_bits[] = {
387 	/* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
388 	{ 1, GENMASK(2, 0), 0 },
389 	{ 1, GENMASK(5, 3), 3 },
390 	{ 1, GENMASK(8, 6), 6 },
391 	{ 1, GENMASK(11, 9), 9 },
392 	{ 1, GENMASK(14, 12), 12 },
393 	{ 1, GENMASK(17, 15), 15 },
394 	{ 1, GENMASK(20, 18), 18 },
395 	{ 1, GENMASK(23, 21), 21 },
396 	{ 1, GENMASK(26, 24), 24 },
397 	{ 1, GENMASK(29, 27), 27 },
398 	/* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
399 	{ 0, GENMASK(2, 0), 0 },
400 	{ 0, GENMASK(5, 3), 3 },
401 	{ 0, GENMASK(8, 6), 6 },
402 	{ 0, GENMASK(11, 9), 9 },
403 	{ 0, GENMASK(14, 12), 12 },
404 	{ 0, GENMASK(17, 15), 15 },
405 	{ 0, GENMASK(20, 18), 18 },
406 	{ 0, GENMASK(23, 21), 21 },
407 	{ 0, GENMASK(26, 24), 24 },
408 };
409 
410 /* STM32F4 programmable sampling time (ADC clock cycles) */
411 static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
412 	3, 15, 28, 56, 84, 112, 144, 480,
413 };
414 
415 static const struct stm32_adc_regspec stm32f4_adc_regspec = {
416 	.dr = STM32F4_ADC_DR,
417 	.ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
418 	.ier_ovr = { STM32F4_ADC_CR1, STM32F4_OVRIE },
419 	.isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
420 	.isr_ovr = { STM32F4_ADC_SR, STM32F4_OVR },
421 	.sqr = stm32f4_sq,
422 	.exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
423 	.extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
424 		    STM32F4_EXTSEL_SHIFT },
425 	.res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
426 	.smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
427 	.smp_bits = stm32f4_smp_bits,
428 };
429 
430 static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
431 	/* L: len bit field description to be kept as first element */
432 	{ STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
433 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
434 	{ STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
435 	{ STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
436 	{ STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
437 	{ STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
438 	{ STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
439 	{ STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
440 	{ STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
441 	{ STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
442 	{ STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
443 	{ STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
444 	{ STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
445 	{ STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
446 	{ STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
447 	{ STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
448 	{ STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
449 	{ STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
450 };
451 
452 /* STM32H7 external trigger sources for all instances */
453 static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
454 	{ TIM1_CH1, STM32_EXT0 },
455 	{ TIM1_CH2, STM32_EXT1 },
456 	{ TIM1_CH3, STM32_EXT2 },
457 	{ TIM2_CH2, STM32_EXT3 },
458 	{ TIM3_TRGO, STM32_EXT4 },
459 	{ TIM4_CH4, STM32_EXT5 },
460 	{ TIM8_TRGO, STM32_EXT7 },
461 	{ TIM8_TRGO2, STM32_EXT8 },
462 	{ TIM1_TRGO, STM32_EXT9 },
463 	{ TIM1_TRGO2, STM32_EXT10 },
464 	{ TIM2_TRGO, STM32_EXT11 },
465 	{ TIM4_TRGO, STM32_EXT12 },
466 	{ TIM6_TRGO, STM32_EXT13 },
467 	{ TIM15_TRGO, STM32_EXT14 },
468 	{ TIM3_CH4, STM32_EXT15 },
469 	{ LPTIM1_OUT, STM32_EXT18 },
470 	{ LPTIM2_OUT, STM32_EXT19 },
471 	{ LPTIM3_OUT, STM32_EXT20 },
472 	{},
473 };
474 
475 /*
476  * stm32h7_smp_bits - describe sampling time register index & bit fields
477  * Sorted so it can be indexed by channel number.
478  */
479 static const struct stm32_adc_regs stm32h7_smp_bits[] = {
480 	/* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
481 	{ 0, GENMASK(2, 0), 0 },
482 	{ 0, GENMASK(5, 3), 3 },
483 	{ 0, GENMASK(8, 6), 6 },
484 	{ 0, GENMASK(11, 9), 9 },
485 	{ 0, GENMASK(14, 12), 12 },
486 	{ 0, GENMASK(17, 15), 15 },
487 	{ 0, GENMASK(20, 18), 18 },
488 	{ 0, GENMASK(23, 21), 21 },
489 	{ 0, GENMASK(26, 24), 24 },
490 	{ 0, GENMASK(29, 27), 27 },
491 	/* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
492 	{ 1, GENMASK(2, 0), 0 },
493 	{ 1, GENMASK(5, 3), 3 },
494 	{ 1, GENMASK(8, 6), 6 },
495 	{ 1, GENMASK(11, 9), 9 },
496 	{ 1, GENMASK(14, 12), 12 },
497 	{ 1, GENMASK(17, 15), 15 },
498 	{ 1, GENMASK(20, 18), 18 },
499 	{ 1, GENMASK(23, 21), 21 },
500 	{ 1, GENMASK(26, 24), 24 },
501 	{ 1, GENMASK(29, 27), 27 },
502 };
503 
504 /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
505 static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
506 	1, 2, 8, 16, 32, 64, 387, 810,
507 };
508 
509 static const struct stm32_adc_regspec stm32h7_adc_regspec = {
510 	.dr = STM32H7_ADC_DR,
511 	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
512 	.ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
513 	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
514 	.isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
515 	.sqr = stm32h7_sq,
516 	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
517 	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
518 		    STM32H7_EXTSEL_SHIFT },
519 	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
520 	.difsel = { STM32H7_ADC_DIFSEL, STM32H7_DIFSEL_MASK},
521 	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
522 	.smp_bits = stm32h7_smp_bits,
523 };
524 
525 /* STM32MP13 programmable sampling time (ADC clock cycles, rounded down) */
526 static const unsigned int stm32mp13_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
527 	2, 6, 12, 24, 47, 92, 247, 640,
528 };
529 
530 static const struct stm32_adc_regspec stm32mp13_adc_regspec = {
531 	.dr = STM32H7_ADC_DR,
532 	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
533 	.ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
534 	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
535 	.isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
536 	.sqr = stm32h7_sq,
537 	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
538 	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
539 		    STM32H7_EXTSEL_SHIFT },
540 	.res = { STM32H7_ADC_CFGR, STM32MP13_RES_MASK, STM32MP13_RES_SHIFT },
541 	.difsel = { STM32MP13_ADC_DIFSEL, STM32MP13_DIFSEL_MASK},
542 	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
543 	.smp_bits = stm32h7_smp_bits,
544 	.or_vddcore = { STM32MP13_ADC2_OR, STM32MP13_OP0 },
545 	.or_vddcpu = { STM32MP13_ADC2_OR, STM32MP13_OP1 },
546 	.or_vddq_ddr = { STM32MP13_ADC2_OR, STM32MP13_OP2 },
547 	.ccr_vbat = { STM32H7_ADC_CCR, STM32H7_VBATEN },
548 	.ccr_vref = { STM32H7_ADC_CCR, STM32H7_VREFEN },
549 };
550 
551 static const struct stm32_adc_regspec stm32mp1_adc_regspec = {
552 	.dr = STM32H7_ADC_DR,
553 	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
554 	.ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
555 	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
556 	.isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
557 	.sqr = stm32h7_sq,
558 	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
559 	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
560 		    STM32H7_EXTSEL_SHIFT },
561 	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
562 	.difsel = { STM32H7_ADC_DIFSEL, STM32H7_DIFSEL_MASK},
563 	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
564 	.smp_bits = stm32h7_smp_bits,
565 	.or_vddcore = { STM32MP1_ADC2_OR, STM32MP1_VDDCOREEN },
566 	.ccr_vbat = { STM32H7_ADC_CCR, STM32H7_VBATEN },
567 	.ccr_vref = { STM32H7_ADC_CCR, STM32H7_VREFEN },
568 };
569 
570 /*
571  * STM32 ADC registers access routines
572  * @adc: stm32 adc instance
573  * @reg: reg offset in adc instance
574  *
575  * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
576  * for adc1, adc2 and adc3.
577  */
578 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
579 {
580 	return readl_relaxed(adc->common->base + adc->offset + reg);
581 }
582 
583 #define stm32_adc_readl_addr(addr)	stm32_adc_readl(adc, addr)
584 
585 #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
586 	readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
587 			   cond, sleep_us, timeout_us)
588 
589 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
590 {
591 	return readw_relaxed(adc->common->base + adc->offset + reg);
592 }
593 
594 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
595 {
596 	writel_relaxed(val, adc->common->base + adc->offset + reg);
597 }
598 
599 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
600 {
601 	unsigned long flags;
602 
603 	spin_lock_irqsave(&adc->lock, flags);
604 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
605 	spin_unlock_irqrestore(&adc->lock, flags);
606 }
607 
608 static void stm32_adc_set_bits_common(struct stm32_adc *adc, u32 reg, u32 bits)
609 {
610 	spin_lock(&adc->common->lock);
611 	writel_relaxed(readl_relaxed(adc->common->base + reg) | bits,
612 		       adc->common->base + reg);
613 	spin_unlock(&adc->common->lock);
614 }
615 
616 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
617 {
618 	unsigned long flags;
619 
620 	spin_lock_irqsave(&adc->lock, flags);
621 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
622 	spin_unlock_irqrestore(&adc->lock, flags);
623 }
624 
625 static void stm32_adc_clr_bits_common(struct stm32_adc *adc, u32 reg, u32 bits)
626 {
627 	spin_lock(&adc->common->lock);
628 	writel_relaxed(readl_relaxed(adc->common->base + reg) & ~bits,
629 		       adc->common->base + reg);
630 	spin_unlock(&adc->common->lock);
631 }
632 
633 /**
634  * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
635  * @adc: stm32 adc instance
636  */
637 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
638 {
639 	stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
640 			   adc->cfg->regs->ier_eoc.mask);
641 };
642 
643 /**
644  * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
645  * @adc: stm32 adc instance
646  */
647 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
648 {
649 	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
650 			   adc->cfg->regs->ier_eoc.mask);
651 }
652 
653 static void stm32_adc_ovr_irq_enable(struct stm32_adc *adc)
654 {
655 	stm32_adc_set_bits(adc, adc->cfg->regs->ier_ovr.reg,
656 			   adc->cfg->regs->ier_ovr.mask);
657 }
658 
659 static void stm32_adc_ovr_irq_disable(struct stm32_adc *adc)
660 {
661 	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_ovr.reg,
662 			   adc->cfg->regs->ier_ovr.mask);
663 }
664 
665 static void stm32_adc_set_res(struct stm32_adc *adc)
666 {
667 	const struct stm32_adc_regs *res = &adc->cfg->regs->res;
668 	u32 val;
669 
670 	val = stm32_adc_readl(adc, res->reg);
671 	val = (val & ~res->mask) | (adc->res << res->shift);
672 	stm32_adc_writel(adc, res->reg, val);
673 }
674 
675 static int stm32_adc_hw_stop(struct device *dev)
676 {
677 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
678 	struct stm32_adc *adc = iio_priv(indio_dev);
679 
680 	if (adc->cfg->unprepare)
681 		adc->cfg->unprepare(indio_dev);
682 
683 	clk_disable_unprepare(adc->clk);
684 
685 	return 0;
686 }
687 
688 static int stm32_adc_hw_start(struct device *dev)
689 {
690 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
691 	struct stm32_adc *adc = iio_priv(indio_dev);
692 	int ret;
693 
694 	ret = clk_prepare_enable(adc->clk);
695 	if (ret)
696 		return ret;
697 
698 	stm32_adc_set_res(adc);
699 
700 	if (adc->cfg->prepare) {
701 		ret = adc->cfg->prepare(indio_dev);
702 		if (ret)
703 			goto err_clk_dis;
704 	}
705 
706 	return 0;
707 
708 err_clk_dis:
709 	clk_disable_unprepare(adc->clk);
710 
711 	return ret;
712 }
713 
714 static void stm32_adc_int_ch_enable(struct iio_dev *indio_dev)
715 {
716 	struct stm32_adc *adc = iio_priv(indio_dev);
717 	u32 i;
718 
719 	for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
720 		if (adc->int_ch[i] == STM32_ADC_INT_CH_NONE)
721 			continue;
722 
723 		switch (i) {
724 		case STM32_ADC_INT_CH_VDDCORE:
725 			dev_dbg(&indio_dev->dev, "Enable VDDCore\n");
726 			stm32_adc_set_bits(adc, adc->cfg->regs->or_vddcore.reg,
727 					   adc->cfg->regs->or_vddcore.mask);
728 			break;
729 		case STM32_ADC_INT_CH_VDDCPU:
730 			dev_dbg(&indio_dev->dev, "Enable VDDCPU\n");
731 			stm32_adc_set_bits(adc, adc->cfg->regs->or_vddcpu.reg,
732 					   adc->cfg->regs->or_vddcpu.mask);
733 			break;
734 		case STM32_ADC_INT_CH_VDDQ_DDR:
735 			dev_dbg(&indio_dev->dev, "Enable VDDQ_DDR\n");
736 			stm32_adc_set_bits(adc, adc->cfg->regs->or_vddq_ddr.reg,
737 					   adc->cfg->regs->or_vddq_ddr.mask);
738 			break;
739 		case STM32_ADC_INT_CH_VREFINT:
740 			dev_dbg(&indio_dev->dev, "Enable VREFInt\n");
741 			stm32_adc_set_bits_common(adc, adc->cfg->regs->ccr_vref.reg,
742 						  adc->cfg->regs->ccr_vref.mask);
743 			break;
744 		case STM32_ADC_INT_CH_VBAT:
745 			dev_dbg(&indio_dev->dev, "Enable VBAT\n");
746 			stm32_adc_set_bits_common(adc, adc->cfg->regs->ccr_vbat.reg,
747 						  adc->cfg->regs->ccr_vbat.mask);
748 			break;
749 		}
750 	}
751 }
752 
753 static void stm32_adc_int_ch_disable(struct stm32_adc *adc)
754 {
755 	u32 i;
756 
757 	for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
758 		if (adc->int_ch[i] == STM32_ADC_INT_CH_NONE)
759 			continue;
760 
761 		switch (i) {
762 		case STM32_ADC_INT_CH_VDDCORE:
763 			stm32_adc_clr_bits(adc, adc->cfg->regs->or_vddcore.reg,
764 					   adc->cfg->regs->or_vddcore.mask);
765 			break;
766 		case STM32_ADC_INT_CH_VDDCPU:
767 			stm32_adc_clr_bits(adc, adc->cfg->regs->or_vddcpu.reg,
768 					   adc->cfg->regs->or_vddcpu.mask);
769 			break;
770 		case STM32_ADC_INT_CH_VDDQ_DDR:
771 			stm32_adc_clr_bits(adc, adc->cfg->regs->or_vddq_ddr.reg,
772 					   adc->cfg->regs->or_vddq_ddr.mask);
773 			break;
774 		case STM32_ADC_INT_CH_VREFINT:
775 			stm32_adc_clr_bits_common(adc, adc->cfg->regs->ccr_vref.reg,
776 						  adc->cfg->regs->ccr_vref.mask);
777 			break;
778 		case STM32_ADC_INT_CH_VBAT:
779 			stm32_adc_clr_bits_common(adc, adc->cfg->regs->ccr_vbat.reg,
780 						  adc->cfg->regs->ccr_vbat.mask);
781 			break;
782 		}
783 	}
784 }
785 
786 /**
787  * stm32f4_adc_start_conv() - Start conversions for regular channels.
788  * @indio_dev: IIO device instance
789  * @dma: use dma to transfer conversion result
790  *
791  * Start conversions for regular channels.
792  * Also take care of normal or DMA mode. Circular DMA may be used for regular
793  * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
794  * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
795  */
796 static void stm32f4_adc_start_conv(struct iio_dev *indio_dev, bool dma)
797 {
798 	struct stm32_adc *adc = iio_priv(indio_dev);
799 
800 	stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
801 
802 	if (dma)
803 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
804 				   STM32F4_DMA | STM32F4_DDS);
805 
806 	stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
807 
808 	/* Wait for Power-up time (tSTAB from datasheet) */
809 	usleep_range(2, 3);
810 
811 	/* Software start ? (e.g. trigger detection disabled ?) */
812 	if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
813 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
814 }
815 
816 static void stm32f4_adc_stop_conv(struct iio_dev *indio_dev)
817 {
818 	struct stm32_adc *adc = iio_priv(indio_dev);
819 
820 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
821 	stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
822 
823 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
824 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
825 			   STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
826 }
827 
828 static void stm32f4_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
829 {
830 	struct stm32_adc *adc = iio_priv(indio_dev);
831 
832 	stm32_adc_clr_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
833 }
834 
835 static void stm32h7_adc_start_conv(struct iio_dev *indio_dev, bool dma)
836 {
837 	struct stm32_adc *adc = iio_priv(indio_dev);
838 	enum stm32h7_adc_dmngt dmngt;
839 	unsigned long flags;
840 	u32 val;
841 
842 	if (dma)
843 		dmngt = STM32H7_DMNGT_DMA_CIRC;
844 	else
845 		dmngt = STM32H7_DMNGT_DR_ONLY;
846 
847 	spin_lock_irqsave(&adc->lock, flags);
848 	val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
849 	val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
850 	stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
851 	spin_unlock_irqrestore(&adc->lock, flags);
852 
853 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
854 }
855 
856 static void stm32h7_adc_stop_conv(struct iio_dev *indio_dev)
857 {
858 	struct stm32_adc *adc = iio_priv(indio_dev);
859 	int ret;
860 	u32 val;
861 
862 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
863 
864 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
865 					   !(val & (STM32H7_ADSTART)),
866 					   100, STM32_ADC_TIMEOUT_US);
867 	if (ret)
868 		dev_warn(&indio_dev->dev, "stop failed\n");
869 
870 	/* STM32H7_DMNGT_MASK covers STM32MP13_DMAEN & STM32MP13_DMACFG */
871 	stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
872 }
873 
874 static void stm32h7_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
875 {
876 	struct stm32_adc *adc = iio_priv(indio_dev);
877 	/* On STM32H7 IRQs are cleared by writing 1 into ISR register */
878 	stm32_adc_set_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
879 }
880 
881 static void stm32mp13_adc_start_conv(struct iio_dev *indio_dev, bool dma)
882 {
883 	struct stm32_adc *adc = iio_priv(indio_dev);
884 
885 	if (dma)
886 		stm32_adc_set_bits(adc, STM32H7_ADC_CFGR,
887 				   STM32MP13_DMAEN | STM32MP13_DMACFG);
888 
889 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
890 }
891 
892 static int stm32h7_adc_exit_pwr_down(struct iio_dev *indio_dev)
893 {
894 	struct stm32_adc *adc = iio_priv(indio_dev);
895 	int ret;
896 	u32 val;
897 
898 	/* Exit deep power down, then enable ADC voltage regulator */
899 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
900 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
901 
902 	if (adc->cfg->has_boostmode &&
903 	    adc->common->rate > STM32H7_BOOST_CLKRATE)
904 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
905 
906 	/* Wait for startup time */
907 	if (!adc->cfg->has_vregready) {
908 		usleep_range(10, 20);
909 		return 0;
910 	}
911 
912 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
913 					   val & STM32MP1_VREGREADY, 100,
914 					   STM32_ADC_TIMEOUT_US);
915 	if (ret) {
916 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
917 		dev_err(&indio_dev->dev, "Failed to exit power down\n");
918 	}
919 
920 	return ret;
921 }
922 
923 static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
924 {
925 	if (adc->cfg->has_boostmode)
926 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
927 
928 	/* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
929 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
930 }
931 
932 static int stm32h7_adc_enable(struct iio_dev *indio_dev)
933 {
934 	struct stm32_adc *adc = iio_priv(indio_dev);
935 	int ret;
936 	u32 val;
937 
938 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
939 
940 	/* Poll for ADRDY to be set (after adc startup time) */
941 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
942 					   val & STM32H7_ADRDY,
943 					   100, STM32_ADC_TIMEOUT_US);
944 	if (ret) {
945 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
946 		dev_err(&indio_dev->dev, "Failed to enable ADC\n");
947 	} else {
948 		/* Clear ADRDY by writing one */
949 		stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
950 	}
951 
952 	return ret;
953 }
954 
955 static void stm32h7_adc_disable(struct iio_dev *indio_dev)
956 {
957 	struct stm32_adc *adc = iio_priv(indio_dev);
958 	int ret;
959 	u32 val;
960 
961 	if (!(stm32_adc_readl(adc, STM32H7_ADC_CR) & STM32H7_ADEN))
962 		return;
963 
964 	/* Disable ADC and wait until it's effectively disabled */
965 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
966 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
967 					   !(val & STM32H7_ADEN), 100,
968 					   STM32_ADC_TIMEOUT_US);
969 	if (ret)
970 		dev_warn(&indio_dev->dev, "Failed to disable\n");
971 }
972 
973 /**
974  * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
975  * @indio_dev: IIO device instance
976  * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
977  */
978 static int stm32h7_adc_read_selfcalib(struct iio_dev *indio_dev)
979 {
980 	struct stm32_adc *adc = iio_priv(indio_dev);
981 	int i, ret;
982 	u32 lincalrdyw_mask, val;
983 
984 	/* Read linearity calibration */
985 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
986 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
987 		/* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
988 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
989 
990 		/* Poll: wait calib data to be ready in CALFACT2 register */
991 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
992 						   !(val & lincalrdyw_mask),
993 						   100, STM32_ADC_TIMEOUT_US);
994 		if (ret) {
995 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
996 			return ret;
997 		}
998 
999 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
1000 		adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
1001 		adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
1002 
1003 		lincalrdyw_mask >>= 1;
1004 	}
1005 	adc->cal.lincal_saved = true;
1006 
1007 	return 0;
1008 }
1009 
1010 /**
1011  * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
1012  * @indio_dev: IIO device instance
1013  * Note: ADC must be enabled, with no on-going conversions.
1014  */
1015 static int stm32h7_adc_restore_selfcalib(struct iio_dev *indio_dev)
1016 {
1017 	struct stm32_adc *adc = iio_priv(indio_dev);
1018 	int i, ret;
1019 	u32 lincalrdyw_mask, val;
1020 
1021 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
1022 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
1023 		/*
1024 		 * Write saved calibration data to shadow registers:
1025 		 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
1026 		 * data write. Then poll to wait for complete transfer.
1027 		 */
1028 		val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
1029 		stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
1030 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
1031 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1032 						   val & lincalrdyw_mask,
1033 						   100, STM32_ADC_TIMEOUT_US);
1034 		if (ret) {
1035 			dev_err(&indio_dev->dev, "Failed to write calfact\n");
1036 			return ret;
1037 		}
1038 
1039 		/*
1040 		 * Read back calibration data, has two effects:
1041 		 * - It ensures bits LINCALRDYW[6..1] are kept cleared
1042 		 *   for next time calibration needs to be restored.
1043 		 * - BTW, bit clear triggers a read, then check data has been
1044 		 *   correctly written.
1045 		 */
1046 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
1047 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1048 						   !(val & lincalrdyw_mask),
1049 						   100, STM32_ADC_TIMEOUT_US);
1050 		if (ret) {
1051 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
1052 			return ret;
1053 		}
1054 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
1055 		if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
1056 			dev_err(&indio_dev->dev, "calfact not consistent\n");
1057 			return -EIO;
1058 		}
1059 
1060 		lincalrdyw_mask >>= 1;
1061 	}
1062 
1063 	return 0;
1064 }
1065 
1066 /*
1067  * Fixed timeout value for ADC calibration.
1068  * worst cases:
1069  * - low clock frequency
1070  * - maximum prescalers
1071  * Calibration requires:
1072  * - 131,072 ADC clock cycle for the linear calibration
1073  * - 20 ADC clock cycle for the offset calibration
1074  *
1075  * Set to 100ms for now
1076  */
1077 #define STM32H7_ADC_CALIB_TIMEOUT_US		100000
1078 
1079 /**
1080  * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
1081  * @indio_dev: IIO device instance
1082  * @do_lincal: linear calibration request flag
1083  * Note: Must be called once ADC is out of power down.
1084  *
1085  * Run offset calibration unconditionally.
1086  * Run linear calibration if requested & supported.
1087  */
1088 static int stm32h7_adc_selfcalib(struct iio_dev *indio_dev, int do_lincal)
1089 {
1090 	struct stm32_adc *adc = iio_priv(indio_dev);
1091 	int ret;
1092 	u32 msk = STM32H7_ADCALDIF;
1093 	u32 val;
1094 
1095 	if (adc->cfg->has_linearcal && do_lincal)
1096 		msk |= STM32H7_ADCALLIN;
1097 	/* ADC must be disabled for calibration */
1098 	stm32h7_adc_disable(indio_dev);
1099 
1100 	/*
1101 	 * Select calibration mode:
1102 	 * - Offset calibration for single ended inputs
1103 	 * - No linearity calibration (do it later, before reading it)
1104 	 */
1105 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, msk);
1106 
1107 	/* Start calibration, then wait for completion */
1108 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
1109 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1110 					   !(val & STM32H7_ADCAL), 100,
1111 					   STM32H7_ADC_CALIB_TIMEOUT_US);
1112 	if (ret) {
1113 		dev_err(&indio_dev->dev, "calibration (single-ended) error %d\n", ret);
1114 		goto out;
1115 	}
1116 
1117 	/*
1118 	 * Select calibration mode, then start calibration:
1119 	 * - Offset calibration for differential input
1120 	 * - Linearity calibration (needs to be done only once for single/diff)
1121 	 *   will run simultaneously with offset calibration.
1122 	 */
1123 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, msk);
1124 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
1125 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1126 					   !(val & STM32H7_ADCAL), 100,
1127 					   STM32H7_ADC_CALIB_TIMEOUT_US);
1128 	if (ret) {
1129 		dev_err(&indio_dev->dev, "calibration (diff%s) error %d\n",
1130 			(msk & STM32H7_ADCALLIN) ? "+linear" : "", ret);
1131 		goto out;
1132 	}
1133 
1134 out:
1135 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, msk);
1136 
1137 	return ret;
1138 }
1139 
1140 /**
1141  * stm32h7_adc_check_selfcalib() - Check linear calibration status
1142  * @indio_dev: IIO device instance
1143  *
1144  * Used to check if linear calibration has been done.
1145  * Return true if linear calibration factors are already saved in private data
1146  * or if a linear calibration has been done at boot stage.
1147  */
1148 static int stm32h7_adc_check_selfcalib(struct iio_dev *indio_dev)
1149 {
1150 	struct stm32_adc *adc = iio_priv(indio_dev);
1151 	u32 val;
1152 
1153 	if (adc->cal.lincal_saved)
1154 		return true;
1155 
1156 	/*
1157 	 * Check if linear calibration factors are available in ADC registers,
1158 	 * by checking that all LINCALRDYWx bits are set.
1159 	 */
1160 	val = stm32_adc_readl(adc, STM32H7_ADC_CR) & STM32H7_LINCALRDYW_MASK;
1161 	if (val == STM32H7_LINCALRDYW_MASK)
1162 		return true;
1163 
1164 	return false;
1165 }
1166 
1167 /**
1168  * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
1169  * @indio_dev: IIO device instance
1170  * Leave power down mode.
1171  * Configure channels as single ended or differential before enabling ADC.
1172  * Enable ADC.
1173  * Restore calibration data.
1174  * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
1175  * - Only one input is selected for single ended (e.g. 'vinp')
1176  * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
1177  */
1178 static int stm32h7_adc_prepare(struct iio_dev *indio_dev)
1179 {
1180 	struct stm32_adc *adc = iio_priv(indio_dev);
1181 	int lincal_done = false;
1182 	int ret;
1183 
1184 	ret = stm32h7_adc_exit_pwr_down(indio_dev);
1185 	if (ret)
1186 		return ret;
1187 
1188 	if (adc->cfg->has_linearcal)
1189 		lincal_done = stm32h7_adc_check_selfcalib(indio_dev);
1190 
1191 	/* Always run offset calibration. Run linear calibration only once */
1192 	ret = stm32h7_adc_selfcalib(indio_dev, !lincal_done);
1193 	if (ret < 0)
1194 		goto pwr_dwn;
1195 
1196 	stm32_adc_int_ch_enable(indio_dev);
1197 
1198 	stm32_adc_writel(adc, adc->cfg->regs->difsel.reg, adc->difsel);
1199 
1200 	ret = stm32h7_adc_enable(indio_dev);
1201 	if (ret)
1202 		goto ch_disable;
1203 
1204 	if (adc->cfg->has_linearcal) {
1205 		if (!adc->cal.lincal_saved)
1206 			ret = stm32h7_adc_read_selfcalib(indio_dev);
1207 		else
1208 			ret = stm32h7_adc_restore_selfcalib(indio_dev);
1209 
1210 		if (ret)
1211 			goto disable;
1212 	}
1213 
1214 	if (adc->cfg->has_presel)
1215 		stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
1216 
1217 	return 0;
1218 
1219 disable:
1220 	stm32h7_adc_disable(indio_dev);
1221 ch_disable:
1222 	stm32_adc_int_ch_disable(adc);
1223 pwr_dwn:
1224 	stm32h7_adc_enter_pwr_down(adc);
1225 
1226 	return ret;
1227 }
1228 
1229 static void stm32h7_adc_unprepare(struct iio_dev *indio_dev)
1230 {
1231 	struct stm32_adc *adc = iio_priv(indio_dev);
1232 
1233 	if (adc->cfg->has_presel)
1234 		stm32_adc_writel(adc, STM32H7_ADC_PCSEL, 0);
1235 	stm32h7_adc_disable(indio_dev);
1236 	stm32_adc_int_ch_disable(adc);
1237 	stm32h7_adc_enter_pwr_down(adc);
1238 }
1239 
1240 /**
1241  * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
1242  * @indio_dev: IIO device
1243  * @scan_mask: channels to be converted
1244  *
1245  * Conversion sequence :
1246  * Apply sampling time settings for all channels.
1247  * Configure ADC scan sequence based on selected channels in scan_mask.
1248  * Add channels to SQR registers, from scan_mask LSB to MSB, then
1249  * program sequence len.
1250  */
1251 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
1252 				   const unsigned long *scan_mask)
1253 {
1254 	struct stm32_adc *adc = iio_priv(indio_dev);
1255 	const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
1256 	const struct iio_chan_spec *chan;
1257 	u32 val, bit;
1258 	int i = 0;
1259 
1260 	/* Apply sampling time settings */
1261 	stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
1262 	stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
1263 
1264 	for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
1265 		chan = indio_dev->channels + bit;
1266 		/*
1267 		 * Assign one channel per SQ entry in regular
1268 		 * sequence, starting with SQ1.
1269 		 */
1270 		i++;
1271 		if (i > STM32_ADC_MAX_SQ)
1272 			return -EINVAL;
1273 
1274 		dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
1275 			__func__, chan->channel, i);
1276 
1277 		val = stm32_adc_readl(adc, sqr[i].reg);
1278 		val &= ~sqr[i].mask;
1279 		val |= chan->channel << sqr[i].shift;
1280 		stm32_adc_writel(adc, sqr[i].reg, val);
1281 	}
1282 
1283 	if (!i)
1284 		return -EINVAL;
1285 
1286 	/* Sequence len */
1287 	val = stm32_adc_readl(adc, sqr[0].reg);
1288 	val &= ~sqr[0].mask;
1289 	val |= ((i - 1) << sqr[0].shift);
1290 	stm32_adc_writel(adc, sqr[0].reg, val);
1291 
1292 	return 0;
1293 }
1294 
1295 /**
1296  * stm32_adc_get_trig_extsel() - Get external trigger selection
1297  * @indio_dev: IIO device structure
1298  * @trig: trigger
1299  *
1300  * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1301  */
1302 static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1303 				     struct iio_trigger *trig)
1304 {
1305 	struct stm32_adc *adc = iio_priv(indio_dev);
1306 	int i;
1307 
1308 	/* lookup triggers registered by stm32 timer trigger driver */
1309 	for (i = 0; adc->cfg->trigs[i].name; i++) {
1310 		/**
1311 		 * Checking both stm32 timer trigger type and trig name
1312 		 * should be safe against arbitrary trigger names.
1313 		 */
1314 		if ((is_stm32_timer_trigger(trig) ||
1315 		     is_stm32_lptim_trigger(trig)) &&
1316 		    !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1317 			return adc->cfg->trigs[i].extsel;
1318 		}
1319 	}
1320 
1321 	return -EINVAL;
1322 }
1323 
1324 /**
1325  * stm32_adc_set_trig() - Set a regular trigger
1326  * @indio_dev: IIO device
1327  * @trig: IIO trigger
1328  *
1329  * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1330  * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1331  * - if HW trigger enabled, set source & polarity
1332  */
1333 static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1334 			      struct iio_trigger *trig)
1335 {
1336 	struct stm32_adc *adc = iio_priv(indio_dev);
1337 	u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1338 	unsigned long flags;
1339 	int ret;
1340 
1341 	if (trig) {
1342 		ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1343 		if (ret < 0)
1344 			return ret;
1345 
1346 		/* set trigger source and polarity (default to rising edge) */
1347 		extsel = ret;
1348 		exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1349 	}
1350 
1351 	spin_lock_irqsave(&adc->lock, flags);
1352 	val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1353 	val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1354 	val |= exten << adc->cfg->regs->exten.shift;
1355 	val |= extsel << adc->cfg->regs->extsel.shift;
1356 	stm32_adc_writel(adc,  adc->cfg->regs->exten.reg, val);
1357 	spin_unlock_irqrestore(&adc->lock, flags);
1358 
1359 	return 0;
1360 }
1361 
1362 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1363 				  const struct iio_chan_spec *chan,
1364 				  unsigned int type)
1365 {
1366 	struct stm32_adc *adc = iio_priv(indio_dev);
1367 
1368 	adc->trigger_polarity = type;
1369 
1370 	return 0;
1371 }
1372 
1373 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1374 				  const struct iio_chan_spec *chan)
1375 {
1376 	struct stm32_adc *adc = iio_priv(indio_dev);
1377 
1378 	return adc->trigger_polarity;
1379 }
1380 
1381 static const char * const stm32_trig_pol_items[] = {
1382 	"rising-edge", "falling-edge", "both-edges",
1383 };
1384 
1385 static const struct iio_enum stm32_adc_trig_pol = {
1386 	.items = stm32_trig_pol_items,
1387 	.num_items = ARRAY_SIZE(stm32_trig_pol_items),
1388 	.get = stm32_adc_get_trig_pol,
1389 	.set = stm32_adc_set_trig_pol,
1390 };
1391 
1392 /**
1393  * stm32_adc_single_conv() - Performs a single conversion
1394  * @indio_dev: IIO device
1395  * @chan: IIO channel
1396  * @res: conversion result
1397  *
1398  * The function performs a single conversion on a given channel:
1399  * - Apply sampling time settings
1400  * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1401  * - Use SW trigger
1402  * - Start conversion, then wait for interrupt completion.
1403  */
1404 static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1405 				 const struct iio_chan_spec *chan,
1406 				 int *res)
1407 {
1408 	struct stm32_adc *adc = iio_priv(indio_dev);
1409 	struct device *dev = indio_dev->dev.parent;
1410 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1411 	long timeout;
1412 	u32 val;
1413 	int ret;
1414 
1415 	reinit_completion(&adc->completion);
1416 
1417 	adc->bufi = 0;
1418 
1419 	ret = pm_runtime_resume_and_get(dev);
1420 	if (ret < 0)
1421 		return ret;
1422 
1423 	/* Apply sampling time settings */
1424 	stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1425 	stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1426 
1427 	/* Program chan number in regular sequence (SQ1) */
1428 	val = stm32_adc_readl(adc, regs->sqr[1].reg);
1429 	val &= ~regs->sqr[1].mask;
1430 	val |= chan->channel << regs->sqr[1].shift;
1431 	stm32_adc_writel(adc, regs->sqr[1].reg, val);
1432 
1433 	/* Set regular sequence len (0 for 1 conversion) */
1434 	stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1435 
1436 	/* Trigger detection disabled (conversion can be launched in SW) */
1437 	stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1438 
1439 	stm32_adc_conv_irq_enable(adc);
1440 
1441 	adc->cfg->start_conv(indio_dev, false);
1442 
1443 	timeout = wait_for_completion_interruptible_timeout(
1444 					&adc->completion, STM32_ADC_TIMEOUT);
1445 	if (timeout == 0) {
1446 		ret = -ETIMEDOUT;
1447 	} else if (timeout < 0) {
1448 		ret = timeout;
1449 	} else {
1450 		*res = adc->buffer[0];
1451 		ret = IIO_VAL_INT;
1452 	}
1453 
1454 	adc->cfg->stop_conv(indio_dev);
1455 
1456 	stm32_adc_conv_irq_disable(adc);
1457 
1458 	pm_runtime_mark_last_busy(dev);
1459 	pm_runtime_put_autosuspend(dev);
1460 
1461 	return ret;
1462 }
1463 
1464 static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1465 			      struct iio_chan_spec const *chan,
1466 			      int *val, int *val2, long mask)
1467 {
1468 	struct stm32_adc *adc = iio_priv(indio_dev);
1469 	int ret;
1470 
1471 	switch (mask) {
1472 	case IIO_CHAN_INFO_RAW:
1473 	case IIO_CHAN_INFO_PROCESSED:
1474 		ret = iio_device_claim_direct_mode(indio_dev);
1475 		if (ret)
1476 			return ret;
1477 		if (chan->type == IIO_VOLTAGE)
1478 			ret = stm32_adc_single_conv(indio_dev, chan, val);
1479 		else
1480 			ret = -EINVAL;
1481 
1482 		if (mask == IIO_CHAN_INFO_PROCESSED)
1483 			*val = STM32_ADC_VREFINT_VOLTAGE * adc->vrefint.vrefint_cal / *val;
1484 
1485 		iio_device_release_direct_mode(indio_dev);
1486 		return ret;
1487 
1488 	case IIO_CHAN_INFO_SCALE:
1489 		if (chan->differential) {
1490 			*val = adc->common->vref_mv * 2;
1491 			*val2 = chan->scan_type.realbits;
1492 		} else {
1493 			*val = adc->common->vref_mv;
1494 			*val2 = chan->scan_type.realbits;
1495 		}
1496 		return IIO_VAL_FRACTIONAL_LOG2;
1497 
1498 	case IIO_CHAN_INFO_OFFSET:
1499 		if (chan->differential)
1500 			/* ADC_full_scale / 2 */
1501 			*val = -((1 << chan->scan_type.realbits) / 2);
1502 		else
1503 			*val = 0;
1504 		return IIO_VAL_INT;
1505 
1506 	default:
1507 		return -EINVAL;
1508 	}
1509 }
1510 
1511 static void stm32_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
1512 {
1513 	struct stm32_adc *adc = iio_priv(indio_dev);
1514 
1515 	adc->cfg->irq_clear(indio_dev, msk);
1516 }
1517 
1518 static irqreturn_t stm32_adc_threaded_isr(int irq, void *data)
1519 {
1520 	struct iio_dev *indio_dev = data;
1521 	struct stm32_adc *adc = iio_priv(indio_dev);
1522 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1523 	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1524 
1525 	/* Check ovr status right now, as ovr mask should be already disabled */
1526 	if (status & regs->isr_ovr.mask) {
1527 		/*
1528 		 * Clear ovr bit to avoid subsequent calls to IRQ handler.
1529 		 * This requires to stop ADC first. OVR bit state in ISR,
1530 		 * is propaged to CSR register by hardware.
1531 		 */
1532 		adc->cfg->stop_conv(indio_dev);
1533 		stm32_adc_irq_clear(indio_dev, regs->isr_ovr.mask);
1534 		dev_err(&indio_dev->dev, "Overrun, stopping: restart needed\n");
1535 		return IRQ_HANDLED;
1536 	}
1537 
1538 	return IRQ_NONE;
1539 }
1540 
1541 static irqreturn_t stm32_adc_isr(int irq, void *data)
1542 {
1543 	struct iio_dev *indio_dev = data;
1544 	struct stm32_adc *adc = iio_priv(indio_dev);
1545 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1546 	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1547 
1548 	if (status & regs->isr_ovr.mask) {
1549 		/*
1550 		 * Overrun occurred on regular conversions: data for wrong
1551 		 * channel may be read. Unconditionally disable interrupts
1552 		 * to stop processing data and print error message.
1553 		 * Restarting the capture can be done by disabling, then
1554 		 * re-enabling it (e.g. write 0, then 1 to buffer/enable).
1555 		 */
1556 		stm32_adc_ovr_irq_disable(adc);
1557 		stm32_adc_conv_irq_disable(adc);
1558 		return IRQ_WAKE_THREAD;
1559 	}
1560 
1561 	if (status & regs->isr_eoc.mask) {
1562 		/* Reading DR also clears EOC status flag */
1563 		adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1564 		if (iio_buffer_enabled(indio_dev)) {
1565 			adc->bufi++;
1566 			if (adc->bufi >= adc->num_conv) {
1567 				stm32_adc_conv_irq_disable(adc);
1568 				iio_trigger_poll(indio_dev->trig);
1569 			}
1570 		} else {
1571 			complete(&adc->completion);
1572 		}
1573 		return IRQ_HANDLED;
1574 	}
1575 
1576 	return IRQ_NONE;
1577 }
1578 
1579 /**
1580  * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1581  * @indio_dev: IIO device
1582  * @trig: new trigger
1583  *
1584  * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1585  * driver, -EINVAL otherwise.
1586  */
1587 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1588 				      struct iio_trigger *trig)
1589 {
1590 	return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1591 }
1592 
1593 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1594 {
1595 	struct stm32_adc *adc = iio_priv(indio_dev);
1596 	unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1597 	unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1598 
1599 	/*
1600 	 * dma cyclic transfers are used, buffer is split into two periods.
1601 	 * There should be :
1602 	 * - always one buffer (period) dma is working on
1603 	 * - one buffer (period) driver can push data.
1604 	 */
1605 	watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1606 	adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1607 
1608 	return 0;
1609 }
1610 
1611 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1612 				      const unsigned long *scan_mask)
1613 {
1614 	struct stm32_adc *adc = iio_priv(indio_dev);
1615 	struct device *dev = indio_dev->dev.parent;
1616 	int ret;
1617 
1618 	ret = pm_runtime_resume_and_get(dev);
1619 	if (ret < 0)
1620 		return ret;
1621 
1622 	adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1623 
1624 	ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1625 	pm_runtime_mark_last_busy(dev);
1626 	pm_runtime_put_autosuspend(dev);
1627 
1628 	return ret;
1629 }
1630 
1631 static int stm32_adc_fwnode_xlate(struct iio_dev *indio_dev,
1632 				  const struct fwnode_reference_args *iiospec)
1633 {
1634 	int i;
1635 
1636 	for (i = 0; i < indio_dev->num_channels; i++)
1637 		if (indio_dev->channels[i].channel == iiospec->args[0])
1638 			return i;
1639 
1640 	return -EINVAL;
1641 }
1642 
1643 /**
1644  * stm32_adc_debugfs_reg_access - read or write register value
1645  * @indio_dev: IIO device structure
1646  * @reg: register offset
1647  * @writeval: value to write
1648  * @readval: value to read
1649  *
1650  * To read a value from an ADC register:
1651  *   echo [ADC reg offset] > direct_reg_access
1652  *   cat direct_reg_access
1653  *
1654  * To write a value in a ADC register:
1655  *   echo [ADC_reg_offset] [value] > direct_reg_access
1656  */
1657 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1658 					unsigned reg, unsigned writeval,
1659 					unsigned *readval)
1660 {
1661 	struct stm32_adc *adc = iio_priv(indio_dev);
1662 	struct device *dev = indio_dev->dev.parent;
1663 	int ret;
1664 
1665 	ret = pm_runtime_resume_and_get(dev);
1666 	if (ret < 0)
1667 		return ret;
1668 
1669 	if (!readval)
1670 		stm32_adc_writel(adc, reg, writeval);
1671 	else
1672 		*readval = stm32_adc_readl(adc, reg);
1673 
1674 	pm_runtime_mark_last_busy(dev);
1675 	pm_runtime_put_autosuspend(dev);
1676 
1677 	return 0;
1678 }
1679 
1680 static const struct iio_info stm32_adc_iio_info = {
1681 	.read_raw = stm32_adc_read_raw,
1682 	.validate_trigger = stm32_adc_validate_trigger,
1683 	.hwfifo_set_watermark = stm32_adc_set_watermark,
1684 	.update_scan_mode = stm32_adc_update_scan_mode,
1685 	.debugfs_reg_access = stm32_adc_debugfs_reg_access,
1686 	.fwnode_xlate = stm32_adc_fwnode_xlate,
1687 };
1688 
1689 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1690 {
1691 	struct dma_tx_state state;
1692 	enum dma_status status;
1693 
1694 	status = dmaengine_tx_status(adc->dma_chan,
1695 				     adc->dma_chan->cookie,
1696 				     &state);
1697 	if (status == DMA_IN_PROGRESS) {
1698 		/* Residue is size in bytes from end of buffer */
1699 		unsigned int i = adc->rx_buf_sz - state.residue;
1700 		unsigned int size;
1701 
1702 		/* Return available bytes */
1703 		if (i >= adc->bufi)
1704 			size = i - adc->bufi;
1705 		else
1706 			size = adc->rx_buf_sz + i - adc->bufi;
1707 
1708 		return size;
1709 	}
1710 
1711 	return 0;
1712 }
1713 
1714 static void stm32_adc_dma_buffer_done(void *data)
1715 {
1716 	struct iio_dev *indio_dev = data;
1717 	struct stm32_adc *adc = iio_priv(indio_dev);
1718 	int residue = stm32_adc_dma_residue(adc);
1719 
1720 	/*
1721 	 * In DMA mode the trigger services of IIO are not used
1722 	 * (e.g. no call to iio_trigger_poll).
1723 	 * Calling irq handler associated to the hardware trigger is not
1724 	 * relevant as the conversions have already been done. Data
1725 	 * transfers are performed directly in DMA callback instead.
1726 	 * This implementation avoids to call trigger irq handler that
1727 	 * may sleep, in an atomic context (DMA irq handler context).
1728 	 */
1729 	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1730 
1731 	while (residue >= indio_dev->scan_bytes) {
1732 		u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1733 
1734 		iio_push_to_buffers(indio_dev, buffer);
1735 
1736 		residue -= indio_dev->scan_bytes;
1737 		adc->bufi += indio_dev->scan_bytes;
1738 		if (adc->bufi >= adc->rx_buf_sz)
1739 			adc->bufi = 0;
1740 	}
1741 }
1742 
1743 static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1744 {
1745 	struct stm32_adc *adc = iio_priv(indio_dev);
1746 	struct dma_async_tx_descriptor *desc;
1747 	dma_cookie_t cookie;
1748 	int ret;
1749 
1750 	if (!adc->dma_chan)
1751 		return 0;
1752 
1753 	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1754 		adc->rx_buf_sz, adc->rx_buf_sz / 2);
1755 
1756 	/* Prepare a DMA cyclic transaction */
1757 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1758 					 adc->rx_dma_buf,
1759 					 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1760 					 DMA_DEV_TO_MEM,
1761 					 DMA_PREP_INTERRUPT);
1762 	if (!desc)
1763 		return -EBUSY;
1764 
1765 	desc->callback = stm32_adc_dma_buffer_done;
1766 	desc->callback_param = indio_dev;
1767 
1768 	cookie = dmaengine_submit(desc);
1769 	ret = dma_submit_error(cookie);
1770 	if (ret) {
1771 		dmaengine_terminate_sync(adc->dma_chan);
1772 		return ret;
1773 	}
1774 
1775 	/* Issue pending DMA requests */
1776 	dma_async_issue_pending(adc->dma_chan);
1777 
1778 	return 0;
1779 }
1780 
1781 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1782 {
1783 	struct stm32_adc *adc = iio_priv(indio_dev);
1784 	struct device *dev = indio_dev->dev.parent;
1785 	int ret;
1786 
1787 	ret = pm_runtime_resume_and_get(dev);
1788 	if (ret < 0)
1789 		return ret;
1790 
1791 	ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1792 	if (ret) {
1793 		dev_err(&indio_dev->dev, "Can't set trigger\n");
1794 		goto err_pm_put;
1795 	}
1796 
1797 	ret = stm32_adc_dma_start(indio_dev);
1798 	if (ret) {
1799 		dev_err(&indio_dev->dev, "Can't start dma\n");
1800 		goto err_clr_trig;
1801 	}
1802 
1803 	/* Reset adc buffer index */
1804 	adc->bufi = 0;
1805 
1806 	stm32_adc_ovr_irq_enable(adc);
1807 
1808 	if (!adc->dma_chan)
1809 		stm32_adc_conv_irq_enable(adc);
1810 
1811 	adc->cfg->start_conv(indio_dev, !!adc->dma_chan);
1812 
1813 	return 0;
1814 
1815 err_clr_trig:
1816 	stm32_adc_set_trig(indio_dev, NULL);
1817 err_pm_put:
1818 	pm_runtime_mark_last_busy(dev);
1819 	pm_runtime_put_autosuspend(dev);
1820 
1821 	return ret;
1822 }
1823 
1824 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1825 {
1826 	struct stm32_adc *adc = iio_priv(indio_dev);
1827 	struct device *dev = indio_dev->dev.parent;
1828 
1829 	adc->cfg->stop_conv(indio_dev);
1830 	if (!adc->dma_chan)
1831 		stm32_adc_conv_irq_disable(adc);
1832 
1833 	stm32_adc_ovr_irq_disable(adc);
1834 
1835 	if (adc->dma_chan)
1836 		dmaengine_terminate_sync(adc->dma_chan);
1837 
1838 	if (stm32_adc_set_trig(indio_dev, NULL))
1839 		dev_err(&indio_dev->dev, "Can't clear trigger\n");
1840 
1841 	pm_runtime_mark_last_busy(dev);
1842 	pm_runtime_put_autosuspend(dev);
1843 
1844 	return 0;
1845 }
1846 
1847 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1848 	.postenable = &stm32_adc_buffer_postenable,
1849 	.predisable = &stm32_adc_buffer_predisable,
1850 };
1851 
1852 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1853 {
1854 	struct iio_poll_func *pf = p;
1855 	struct iio_dev *indio_dev = pf->indio_dev;
1856 	struct stm32_adc *adc = iio_priv(indio_dev);
1857 
1858 	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1859 
1860 	/* reset buffer index */
1861 	adc->bufi = 0;
1862 	iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1863 					   pf->timestamp);
1864 	iio_trigger_notify_done(indio_dev->trig);
1865 
1866 	/* re-enable eoc irq */
1867 	stm32_adc_conv_irq_enable(adc);
1868 
1869 	return IRQ_HANDLED;
1870 }
1871 
1872 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1873 	IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1874 	{
1875 		.name = "trigger_polarity_available",
1876 		.shared = IIO_SHARED_BY_ALL,
1877 		.read = iio_enum_available_read,
1878 		.private = (uintptr_t)&stm32_adc_trig_pol,
1879 	},
1880 	{},
1881 };
1882 
1883 static void stm32_adc_debugfs_init(struct iio_dev *indio_dev)
1884 {
1885 	struct stm32_adc *adc = iio_priv(indio_dev);
1886 	struct dentry *d = iio_get_debugfs_dentry(indio_dev);
1887 	struct stm32_adc_calib *cal = &adc->cal;
1888 	char buf[16];
1889 	unsigned int i;
1890 
1891 	if (!adc->cfg->has_linearcal)
1892 		return;
1893 
1894 	for (i = 0; i < STM32H7_LINCALFACT_NUM; i++) {
1895 		snprintf(buf, sizeof(buf), "lincalfact%d", i + 1);
1896 		debugfs_create_u32(buf, 0444, d, &cal->lincalfact[i]);
1897 	}
1898 }
1899 
1900 static int stm32_adc_fw_get_resolution(struct iio_dev *indio_dev)
1901 {
1902 	struct device *dev = &indio_dev->dev;
1903 	struct stm32_adc *adc = iio_priv(indio_dev);
1904 	unsigned int i;
1905 	u32 res;
1906 
1907 	if (device_property_read_u32(dev, "assigned-resolution-bits", &res))
1908 		res = adc->cfg->adc_info->resolutions[0];
1909 
1910 	for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1911 		if (res == adc->cfg->adc_info->resolutions[i])
1912 			break;
1913 	if (i >= adc->cfg->adc_info->num_res) {
1914 		dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1915 		return -EINVAL;
1916 	}
1917 
1918 	dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1919 	adc->res = i;
1920 
1921 	return 0;
1922 }
1923 
1924 static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1925 {
1926 	const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1927 	u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1928 	unsigned int i, smp, r = smpr->reg;
1929 
1930 	/*
1931 	 * For internal channels, ensure that the sampling time cannot
1932 	 * be lower than the one specified in the datasheet
1933 	 */
1934 	for (i = 0; i < STM32_ADC_INT_CH_NB; i++)
1935 		if (channel == adc->int_ch[i] && adc->int_ch[i] != STM32_ADC_INT_CH_NONE)
1936 			smp_ns = max(smp_ns, adc->cfg->ts_int_ch[i]);
1937 
1938 	/* Determine sampling time (ADC clock cycles) */
1939 	period_ns = NSEC_PER_SEC / adc->common->rate;
1940 	for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1941 		if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1942 			break;
1943 	if (smp > STM32_ADC_MAX_SMP)
1944 		smp = STM32_ADC_MAX_SMP;
1945 
1946 	/* pre-build sampling time registers (e.g. smpr1, smpr2) */
1947 	adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1948 }
1949 
1950 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1951 				    struct iio_chan_spec *chan, u32 vinp,
1952 				    u32 vinn, int scan_index, bool differential)
1953 {
1954 	struct stm32_adc *adc = iio_priv(indio_dev);
1955 	char *name = adc->chan_name[vinp];
1956 
1957 	chan->type = IIO_VOLTAGE;
1958 	chan->channel = vinp;
1959 	if (differential) {
1960 		chan->differential = 1;
1961 		chan->channel2 = vinn;
1962 		snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1963 	} else {
1964 		snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1965 	}
1966 	chan->datasheet_name = name;
1967 	chan->scan_index = scan_index;
1968 	chan->indexed = 1;
1969 	if (chan->channel == adc->int_ch[STM32_ADC_INT_CH_VREFINT])
1970 		chan->info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED);
1971 	else
1972 		chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1973 	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1974 					 BIT(IIO_CHAN_INFO_OFFSET);
1975 	chan->scan_type.sign = 'u';
1976 	chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1977 	chan->scan_type.storagebits = 16;
1978 	chan->ext_info = stm32_adc_ext_info;
1979 
1980 	/* pre-build selected channels mask */
1981 	adc->pcsel |= BIT(chan->channel);
1982 	if (differential) {
1983 		/* pre-build diff channels mask */
1984 		adc->difsel |= BIT(chan->channel) & adc->cfg->regs->difsel.mask;
1985 		/* Also add negative input to pre-selected channels */
1986 		adc->pcsel |= BIT(chan->channel2);
1987 	}
1988 }
1989 
1990 static int stm32_adc_get_legacy_chan_count(struct iio_dev *indio_dev, struct stm32_adc *adc)
1991 {
1992 	struct device *dev = &indio_dev->dev;
1993 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1994 	int num_channels = 0, ret;
1995 
1996 	ret = device_property_count_u32(dev, "st,adc-channels");
1997 	if (ret > adc_info->max_channels) {
1998 		dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1999 		return -EINVAL;
2000 	} else if (ret > 0) {
2001 		num_channels += ret;
2002 	}
2003 
2004 	/*
2005 	 * each st,adc-diff-channels is a group of 2 u32 so we divide @ret
2006 	 * to get the *real* number of channels.
2007 	 */
2008 	ret = device_property_count_u32(dev, "st,adc-diff-channels");
2009 	if (ret > 0) {
2010 		ret /= (int)(sizeof(struct stm32_adc_diff_channel) / sizeof(u32));
2011 		if (ret > adc_info->max_channels) {
2012 			dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
2013 			return -EINVAL;
2014 		} else if (ret > 0) {
2015 			adc->num_diff = ret;
2016 			num_channels += ret;
2017 		}
2018 	}
2019 
2020 	/* Optional sample time is provided either for each, or all channels */
2021 	adc->nsmps = device_property_count_u32(dev, "st,min-sample-time-nsecs");
2022 	if (adc->nsmps > 1 && adc->nsmps != num_channels) {
2023 		dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
2024 		return -EINVAL;
2025 	}
2026 
2027 	return num_channels;
2028 }
2029 
2030 static int stm32_adc_legacy_chan_init(struct iio_dev *indio_dev,
2031 				      struct stm32_adc *adc,
2032 				      struct iio_chan_spec *channels,
2033 				      int nchans)
2034 {
2035 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
2036 	struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
2037 	struct device *dev = &indio_dev->dev;
2038 	u32 num_diff = adc->num_diff;
2039 	int num_se = nchans - num_diff;
2040 	int size = num_diff * sizeof(*diff) / sizeof(u32);
2041 	int scan_index = 0, ret, i, c;
2042 	u32 smp = 0, smps[STM32_ADC_CH_MAX], chans[STM32_ADC_CH_MAX];
2043 
2044 	if (num_diff) {
2045 		ret = device_property_read_u32_array(dev, "st,adc-diff-channels",
2046 						     (u32 *)diff, size);
2047 		if (ret) {
2048 			dev_err(&indio_dev->dev, "Failed to get diff channels %d\n", ret);
2049 			return ret;
2050 		}
2051 
2052 		for (i = 0; i < num_diff; i++) {
2053 			if (diff[i].vinp >= adc_info->max_channels ||
2054 			    diff[i].vinn >= adc_info->max_channels) {
2055 				dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
2056 					diff[i].vinp, diff[i].vinn);
2057 				return -EINVAL;
2058 			}
2059 
2060 			stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
2061 						diff[i].vinp, diff[i].vinn,
2062 						scan_index, true);
2063 			scan_index++;
2064 		}
2065 	}
2066 	if (num_se > 0) {
2067 		ret = device_property_read_u32_array(dev, "st,adc-channels", chans, num_se);
2068 		if (ret) {
2069 			dev_err(&indio_dev->dev, "Failed to get st,adc-channels %d\n", ret);
2070 			return ret;
2071 		}
2072 
2073 		for (c = 0; c < num_se; c++) {
2074 			if (chans[c] >= adc_info->max_channels) {
2075 				dev_err(&indio_dev->dev, "Invalid channel %d\n",
2076 					chans[c]);
2077 				return -EINVAL;
2078 			}
2079 
2080 			/* Channel can't be configured both as single-ended & diff */
2081 			for (i = 0; i < num_diff; i++) {
2082 				if (chans[c] == diff[i].vinp) {
2083 					dev_err(&indio_dev->dev, "channel %d misconfigured\n",
2084 						chans[c]);
2085 					return -EINVAL;
2086 				}
2087 			}
2088 			stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
2089 						chans[c], 0, scan_index, false);
2090 			scan_index++;
2091 		}
2092 	}
2093 
2094 	if (adc->nsmps > 0) {
2095 		ret = device_property_read_u32_array(dev, "st,min-sample-time-nsecs",
2096 						     smps, adc->nsmps);
2097 		if (ret)
2098 			return ret;
2099 	}
2100 
2101 	for (i = 0; i < scan_index; i++) {
2102 		/*
2103 		 * This check is used with the above logic so that smp value
2104 		 * will only be modified if valid u32 value can be decoded. This
2105 		 * allows to get either no value, 1 shared value for all indexes,
2106 		 * or one value per channel. The point is to have the same
2107 		 * behavior as 'of_property_read_u32_index()'.
2108 		 */
2109 		if (i < adc->nsmps)
2110 			smp = smps[i];
2111 
2112 		/* Prepare sampling time settings */
2113 		stm32_adc_smpr_init(adc, channels[i].channel, smp);
2114 	}
2115 
2116 	return scan_index;
2117 }
2118 
2119 static int stm32_adc_populate_int_ch(struct iio_dev *indio_dev, const char *ch_name,
2120 				     int chan)
2121 {
2122 	struct stm32_adc *adc = iio_priv(indio_dev);
2123 	u16 vrefint;
2124 	int i, ret;
2125 
2126 	for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
2127 		if (!strncmp(stm32_adc_ic[i].name, ch_name, STM32_ADC_CH_SZ)) {
2128 			/* Check internal channel availability */
2129 			switch (i) {
2130 			case STM32_ADC_INT_CH_VDDCORE:
2131 				if (!adc->cfg->regs->or_vddcore.reg)
2132 					dev_warn(&indio_dev->dev,
2133 						 "%s channel not available\n", ch_name);
2134 				break;
2135 			case STM32_ADC_INT_CH_VDDCPU:
2136 				if (!adc->cfg->regs->or_vddcpu.reg)
2137 					dev_warn(&indio_dev->dev,
2138 						 "%s channel not available\n", ch_name);
2139 				break;
2140 			case STM32_ADC_INT_CH_VDDQ_DDR:
2141 				if (!adc->cfg->regs->or_vddq_ddr.reg)
2142 					dev_warn(&indio_dev->dev,
2143 						 "%s channel not available\n", ch_name);
2144 				break;
2145 			case STM32_ADC_INT_CH_VREFINT:
2146 				if (!adc->cfg->regs->ccr_vref.reg)
2147 					dev_warn(&indio_dev->dev,
2148 						 "%s channel not available\n", ch_name);
2149 				break;
2150 			case STM32_ADC_INT_CH_VBAT:
2151 				if (!adc->cfg->regs->ccr_vbat.reg)
2152 					dev_warn(&indio_dev->dev,
2153 						 "%s channel not available\n", ch_name);
2154 				break;
2155 			}
2156 
2157 			if (stm32_adc_ic[i].idx != STM32_ADC_INT_CH_VREFINT) {
2158 				adc->int_ch[i] = chan;
2159 				break;
2160 			}
2161 
2162 			/* Get calibration data for vrefint channel */
2163 			ret = nvmem_cell_read_u16(&indio_dev->dev, "vrefint", &vrefint);
2164 			if (ret && ret != -ENOENT) {
2165 				return dev_err_probe(indio_dev->dev.parent, ret,
2166 						     "nvmem access error\n");
2167 			}
2168 			if (ret == -ENOENT) {
2169 				dev_dbg(&indio_dev->dev, "vrefint calibration not found. Skip vrefint channel\n");
2170 				return ret;
2171 			} else if (!vrefint) {
2172 				dev_dbg(&indio_dev->dev, "Null vrefint calibration value. Skip vrefint channel\n");
2173 				return -ENOENT;
2174 			}
2175 			adc->int_ch[i] = chan;
2176 			adc->vrefint.vrefint_cal = vrefint;
2177 		}
2178 	}
2179 
2180 	return 0;
2181 }
2182 
2183 static int stm32_adc_generic_chan_init(struct iio_dev *indio_dev,
2184 				       struct stm32_adc *adc,
2185 				       struct iio_chan_spec *channels)
2186 {
2187 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
2188 	struct fwnode_handle *child;
2189 	const char *name;
2190 	int val, scan_index = 0, ret;
2191 	bool differential;
2192 	u32 vin[2];
2193 
2194 	device_for_each_child_node(&indio_dev->dev, child) {
2195 		ret = fwnode_property_read_u32(child, "reg", &val);
2196 		if (ret) {
2197 			dev_err(&indio_dev->dev, "Missing channel index %d\n", ret);
2198 			goto err;
2199 		}
2200 
2201 		ret = fwnode_property_read_string(child, "label", &name);
2202 		/* label is optional */
2203 		if (!ret) {
2204 			if (strlen(name) >= STM32_ADC_CH_SZ) {
2205 				dev_err(&indio_dev->dev, "Label %s exceeds %d characters\n",
2206 					name, STM32_ADC_CH_SZ);
2207 				ret = -EINVAL;
2208 				goto err;
2209 			}
2210 			strncpy(adc->chan_name[val], name, STM32_ADC_CH_SZ);
2211 			ret = stm32_adc_populate_int_ch(indio_dev, name, val);
2212 			if (ret == -ENOENT)
2213 				continue;
2214 			else if (ret)
2215 				goto err;
2216 		} else if (ret != -EINVAL) {
2217 			dev_err(&indio_dev->dev, "Invalid label %d\n", ret);
2218 			goto err;
2219 		}
2220 
2221 		if (val >= adc_info->max_channels) {
2222 			dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
2223 			ret = -EINVAL;
2224 			goto err;
2225 		}
2226 
2227 		differential = false;
2228 		ret = fwnode_property_read_u32_array(child, "diff-channels", vin, 2);
2229 		/* diff-channels is optional */
2230 		if (!ret) {
2231 			differential = true;
2232 			if (vin[0] != val || vin[1] >= adc_info->max_channels) {
2233 				dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
2234 					vin[0], vin[1]);
2235 				goto err;
2236 			}
2237 		} else if (ret != -EINVAL) {
2238 			dev_err(&indio_dev->dev, "Invalid diff-channels property %d\n", ret);
2239 			goto err;
2240 		}
2241 
2242 		stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
2243 					vin[1], scan_index, differential);
2244 
2245 		val = 0;
2246 		ret = fwnode_property_read_u32(child, "st,min-sample-time-ns", &val);
2247 		/* st,min-sample-time-ns is optional */
2248 		if (ret && ret != -EINVAL) {
2249 			dev_err(&indio_dev->dev, "Invalid st,min-sample-time-ns property %d\n",
2250 				ret);
2251 			goto err;
2252 		}
2253 
2254 		stm32_adc_smpr_init(adc, channels[scan_index].channel, val);
2255 		if (differential)
2256 			stm32_adc_smpr_init(adc, vin[1], val);
2257 
2258 		scan_index++;
2259 	}
2260 
2261 	return scan_index;
2262 
2263 err:
2264 	fwnode_handle_put(child);
2265 
2266 	return ret;
2267 }
2268 
2269 static int stm32_adc_chan_fw_init(struct iio_dev *indio_dev, bool timestamping)
2270 {
2271 	struct stm32_adc *adc = iio_priv(indio_dev);
2272 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
2273 	struct iio_chan_spec *channels;
2274 	int scan_index = 0, num_channels = 0, ret, i;
2275 	bool legacy = false;
2276 
2277 	for (i = 0; i < STM32_ADC_INT_CH_NB; i++)
2278 		adc->int_ch[i] = STM32_ADC_INT_CH_NONE;
2279 
2280 	num_channels = device_get_child_node_count(&indio_dev->dev);
2281 	/* If no channels have been found, fallback to channels legacy properties. */
2282 	if (!num_channels) {
2283 		legacy = true;
2284 
2285 		ret = stm32_adc_get_legacy_chan_count(indio_dev, adc);
2286 		if (!ret) {
2287 			dev_err(indio_dev->dev.parent, "No channel found\n");
2288 			return -ENODATA;
2289 		} else if (ret < 0) {
2290 			return ret;
2291 		}
2292 
2293 		num_channels = ret;
2294 	}
2295 
2296 	if (num_channels > adc_info->max_channels) {
2297 		dev_err(&indio_dev->dev, "Channel number [%d] exceeds %d\n",
2298 			num_channels, adc_info->max_channels);
2299 		return -EINVAL;
2300 	}
2301 
2302 	if (timestamping)
2303 		num_channels++;
2304 
2305 	channels = devm_kcalloc(&indio_dev->dev, num_channels,
2306 				sizeof(struct iio_chan_spec), GFP_KERNEL);
2307 	if (!channels)
2308 		return -ENOMEM;
2309 
2310 	if (legacy)
2311 		ret = stm32_adc_legacy_chan_init(indio_dev, adc, channels,
2312 						 timestamping ? num_channels - 1 : num_channels);
2313 	else
2314 		ret = stm32_adc_generic_chan_init(indio_dev, adc, channels);
2315 	if (ret < 0)
2316 		return ret;
2317 	scan_index = ret;
2318 
2319 	if (timestamping) {
2320 		struct iio_chan_spec *timestamp = &channels[scan_index];
2321 
2322 		timestamp->type = IIO_TIMESTAMP;
2323 		timestamp->channel = -1;
2324 		timestamp->scan_index = scan_index;
2325 		timestamp->scan_type.sign = 's';
2326 		timestamp->scan_type.realbits = 64;
2327 		timestamp->scan_type.storagebits = 64;
2328 
2329 		scan_index++;
2330 	}
2331 
2332 	indio_dev->num_channels = scan_index;
2333 	indio_dev->channels = channels;
2334 
2335 	return 0;
2336 }
2337 
2338 static int stm32_adc_dma_request(struct device *dev, struct iio_dev *indio_dev)
2339 {
2340 	struct stm32_adc *adc = iio_priv(indio_dev);
2341 	struct dma_slave_config config;
2342 	int ret;
2343 
2344 	adc->dma_chan = dma_request_chan(dev, "rx");
2345 	if (IS_ERR(adc->dma_chan)) {
2346 		ret = PTR_ERR(adc->dma_chan);
2347 		if (ret != -ENODEV)
2348 			return dev_err_probe(dev, ret,
2349 					     "DMA channel request failed with\n");
2350 
2351 		/* DMA is optional: fall back to IRQ mode */
2352 		adc->dma_chan = NULL;
2353 		return 0;
2354 	}
2355 
2356 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
2357 					 STM32_DMA_BUFFER_SIZE,
2358 					 &adc->rx_dma_buf, GFP_KERNEL);
2359 	if (!adc->rx_buf) {
2360 		ret = -ENOMEM;
2361 		goto err_release;
2362 	}
2363 
2364 	/* Configure DMA channel to read data register */
2365 	memset(&config, 0, sizeof(config));
2366 	config.src_addr = (dma_addr_t)adc->common->phys_base;
2367 	config.src_addr += adc->offset + adc->cfg->regs->dr;
2368 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
2369 
2370 	ret = dmaengine_slave_config(adc->dma_chan, &config);
2371 	if (ret)
2372 		goto err_free;
2373 
2374 	return 0;
2375 
2376 err_free:
2377 	dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
2378 			  adc->rx_buf, adc->rx_dma_buf);
2379 err_release:
2380 	dma_release_channel(adc->dma_chan);
2381 
2382 	return ret;
2383 }
2384 
2385 static int stm32_adc_probe(struct platform_device *pdev)
2386 {
2387 	struct iio_dev *indio_dev;
2388 	struct device *dev = &pdev->dev;
2389 	irqreturn_t (*handler)(int irq, void *p) = NULL;
2390 	struct stm32_adc *adc;
2391 	bool timestamping = false;
2392 	int ret;
2393 
2394 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
2395 	if (!indio_dev)
2396 		return -ENOMEM;
2397 
2398 	adc = iio_priv(indio_dev);
2399 	adc->common = dev_get_drvdata(pdev->dev.parent);
2400 	spin_lock_init(&adc->lock);
2401 	init_completion(&adc->completion);
2402 	adc->cfg = device_get_match_data(dev);
2403 
2404 	indio_dev->name = dev_name(&pdev->dev);
2405 	device_set_node(&indio_dev->dev, dev_fwnode(&pdev->dev));
2406 	indio_dev->info = &stm32_adc_iio_info;
2407 	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
2408 
2409 	platform_set_drvdata(pdev, indio_dev);
2410 
2411 	ret = device_property_read_u32(dev, "reg", &adc->offset);
2412 	if (ret != 0) {
2413 		dev_err(&pdev->dev, "missing reg property\n");
2414 		return -EINVAL;
2415 	}
2416 
2417 	adc->irq = platform_get_irq(pdev, 0);
2418 	if (adc->irq < 0)
2419 		return adc->irq;
2420 
2421 	ret = devm_request_threaded_irq(&pdev->dev, adc->irq, stm32_adc_isr,
2422 					stm32_adc_threaded_isr,
2423 					0, pdev->name, indio_dev);
2424 	if (ret) {
2425 		dev_err(&pdev->dev, "failed to request IRQ\n");
2426 		return ret;
2427 	}
2428 
2429 	adc->clk = devm_clk_get(&pdev->dev, NULL);
2430 	if (IS_ERR(adc->clk)) {
2431 		ret = PTR_ERR(adc->clk);
2432 		if (ret == -ENOENT && !adc->cfg->clk_required) {
2433 			adc->clk = NULL;
2434 		} else {
2435 			dev_err(&pdev->dev, "Can't get clock\n");
2436 			return ret;
2437 		}
2438 	}
2439 
2440 	ret = stm32_adc_fw_get_resolution(indio_dev);
2441 	if (ret < 0)
2442 		return ret;
2443 
2444 	ret = stm32_adc_dma_request(dev, indio_dev);
2445 	if (ret < 0)
2446 		return ret;
2447 
2448 	if (!adc->dma_chan) {
2449 		/* For PIO mode only, iio_pollfunc_store_time stores a timestamp
2450 		 * in the primary trigger IRQ handler and stm32_adc_trigger_handler
2451 		 * runs in the IRQ thread to push out buffer along with timestamp.
2452 		 */
2453 		handler = &stm32_adc_trigger_handler;
2454 		timestamping = true;
2455 	}
2456 
2457 	ret = stm32_adc_chan_fw_init(indio_dev, timestamping);
2458 	if (ret < 0)
2459 		goto err_dma_disable;
2460 
2461 	ret = iio_triggered_buffer_setup(indio_dev,
2462 					 &iio_pollfunc_store_time, handler,
2463 					 &stm32_adc_buffer_setup_ops);
2464 	if (ret) {
2465 		dev_err(&pdev->dev, "buffer setup failed\n");
2466 		goto err_dma_disable;
2467 	}
2468 
2469 	/* Get stm32-adc-core PM online */
2470 	pm_runtime_get_noresume(dev);
2471 	pm_runtime_set_active(dev);
2472 	pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
2473 	pm_runtime_use_autosuspend(dev);
2474 	pm_runtime_enable(dev);
2475 
2476 	ret = stm32_adc_hw_start(dev);
2477 	if (ret)
2478 		goto err_buffer_cleanup;
2479 
2480 	ret = iio_device_register(indio_dev);
2481 	if (ret) {
2482 		dev_err(&pdev->dev, "iio dev register failed\n");
2483 		goto err_hw_stop;
2484 	}
2485 
2486 	pm_runtime_mark_last_busy(dev);
2487 	pm_runtime_put_autosuspend(dev);
2488 
2489 	if (IS_ENABLED(CONFIG_DEBUG_FS))
2490 		stm32_adc_debugfs_init(indio_dev);
2491 
2492 	return 0;
2493 
2494 err_hw_stop:
2495 	stm32_adc_hw_stop(dev);
2496 
2497 err_buffer_cleanup:
2498 	pm_runtime_disable(dev);
2499 	pm_runtime_set_suspended(dev);
2500 	pm_runtime_put_noidle(dev);
2501 	iio_triggered_buffer_cleanup(indio_dev);
2502 
2503 err_dma_disable:
2504 	if (adc->dma_chan) {
2505 		dma_free_coherent(adc->dma_chan->device->dev,
2506 				  STM32_DMA_BUFFER_SIZE,
2507 				  adc->rx_buf, adc->rx_dma_buf);
2508 		dma_release_channel(adc->dma_chan);
2509 	}
2510 
2511 	return ret;
2512 }
2513 
2514 static int stm32_adc_remove(struct platform_device *pdev)
2515 {
2516 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
2517 	struct stm32_adc *adc = iio_priv(indio_dev);
2518 
2519 	pm_runtime_get_sync(&pdev->dev);
2520 	/* iio_device_unregister() also removes debugfs entries */
2521 	iio_device_unregister(indio_dev);
2522 	stm32_adc_hw_stop(&pdev->dev);
2523 	pm_runtime_disable(&pdev->dev);
2524 	pm_runtime_set_suspended(&pdev->dev);
2525 	pm_runtime_put_noidle(&pdev->dev);
2526 	iio_triggered_buffer_cleanup(indio_dev);
2527 	if (adc->dma_chan) {
2528 		dma_free_coherent(adc->dma_chan->device->dev,
2529 				  STM32_DMA_BUFFER_SIZE,
2530 				  adc->rx_buf, adc->rx_dma_buf);
2531 		dma_release_channel(adc->dma_chan);
2532 	}
2533 
2534 	return 0;
2535 }
2536 
2537 static int stm32_adc_suspend(struct device *dev)
2538 {
2539 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2540 
2541 	if (iio_buffer_enabled(indio_dev))
2542 		stm32_adc_buffer_predisable(indio_dev);
2543 
2544 	return pm_runtime_force_suspend(dev);
2545 }
2546 
2547 static int stm32_adc_resume(struct device *dev)
2548 {
2549 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2550 	int ret;
2551 
2552 	ret = pm_runtime_force_resume(dev);
2553 	if (ret < 0)
2554 		return ret;
2555 
2556 	if (!iio_buffer_enabled(indio_dev))
2557 		return 0;
2558 
2559 	ret = stm32_adc_update_scan_mode(indio_dev,
2560 					 indio_dev->active_scan_mask);
2561 	if (ret < 0)
2562 		return ret;
2563 
2564 	return stm32_adc_buffer_postenable(indio_dev);
2565 }
2566 
2567 static int stm32_adc_runtime_suspend(struct device *dev)
2568 {
2569 	return stm32_adc_hw_stop(dev);
2570 }
2571 
2572 static int stm32_adc_runtime_resume(struct device *dev)
2573 {
2574 	return stm32_adc_hw_start(dev);
2575 }
2576 
2577 static const struct dev_pm_ops stm32_adc_pm_ops = {
2578 	SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
2579 	RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
2580 		       NULL)
2581 };
2582 
2583 static const struct stm32_adc_cfg stm32f4_adc_cfg = {
2584 	.regs = &stm32f4_adc_regspec,
2585 	.adc_info = &stm32f4_adc_info,
2586 	.trigs = stm32f4_adc_trigs,
2587 	.clk_required = true,
2588 	.start_conv = stm32f4_adc_start_conv,
2589 	.stop_conv = stm32f4_adc_stop_conv,
2590 	.smp_cycles = stm32f4_adc_smp_cycles,
2591 	.irq_clear = stm32f4_adc_irq_clear,
2592 };
2593 
2594 static const unsigned int stm32_adc_min_ts_h7[] = { 0, 0, 0, 4300, 9000 };
2595 static_assert(ARRAY_SIZE(stm32_adc_min_ts_h7) == STM32_ADC_INT_CH_NB);
2596 
2597 static const struct stm32_adc_cfg stm32h7_adc_cfg = {
2598 	.regs = &stm32h7_adc_regspec,
2599 	.adc_info = &stm32h7_adc_info,
2600 	.trigs = stm32h7_adc_trigs,
2601 	.has_boostmode = true,
2602 	.has_linearcal = true,
2603 	.has_presel = true,
2604 	.start_conv = stm32h7_adc_start_conv,
2605 	.stop_conv = stm32h7_adc_stop_conv,
2606 	.prepare = stm32h7_adc_prepare,
2607 	.unprepare = stm32h7_adc_unprepare,
2608 	.smp_cycles = stm32h7_adc_smp_cycles,
2609 	.irq_clear = stm32h7_adc_irq_clear,
2610 	.ts_int_ch = stm32_adc_min_ts_h7,
2611 };
2612 
2613 static const unsigned int stm32_adc_min_ts_mp1[] = { 100, 100, 100, 4300, 9800 };
2614 static_assert(ARRAY_SIZE(stm32_adc_min_ts_mp1) == STM32_ADC_INT_CH_NB);
2615 
2616 static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
2617 	.regs = &stm32mp1_adc_regspec,
2618 	.adc_info = &stm32h7_adc_info,
2619 	.trigs = stm32h7_adc_trigs,
2620 	.has_vregready = true,
2621 	.has_boostmode = true,
2622 	.has_linearcal = true,
2623 	.has_presel = true,
2624 	.start_conv = stm32h7_adc_start_conv,
2625 	.stop_conv = stm32h7_adc_stop_conv,
2626 	.prepare = stm32h7_adc_prepare,
2627 	.unprepare = stm32h7_adc_unprepare,
2628 	.smp_cycles = stm32h7_adc_smp_cycles,
2629 	.irq_clear = stm32h7_adc_irq_clear,
2630 	.ts_int_ch = stm32_adc_min_ts_mp1,
2631 };
2632 
2633 static const unsigned int stm32_adc_min_ts_mp13[] = { 100, 0, 0, 4300, 9800 };
2634 static_assert(ARRAY_SIZE(stm32_adc_min_ts_mp13) == STM32_ADC_INT_CH_NB);
2635 
2636 static const struct stm32_adc_cfg stm32mp13_adc_cfg = {
2637 	.regs = &stm32mp13_adc_regspec,
2638 	.adc_info = &stm32mp13_adc_info,
2639 	.trigs = stm32h7_adc_trigs,
2640 	.start_conv = stm32mp13_adc_start_conv,
2641 	.stop_conv = stm32h7_adc_stop_conv,
2642 	.prepare = stm32h7_adc_prepare,
2643 	.unprepare = stm32h7_adc_unprepare,
2644 	.smp_cycles = stm32mp13_adc_smp_cycles,
2645 	.irq_clear = stm32h7_adc_irq_clear,
2646 	.ts_int_ch = stm32_adc_min_ts_mp13,
2647 };
2648 
2649 static const struct of_device_id stm32_adc_of_match[] = {
2650 	{ .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2651 	{ .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2652 	{ .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2653 	{ .compatible = "st,stm32mp13-adc", .data = (void *)&stm32mp13_adc_cfg },
2654 	{},
2655 };
2656 MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2657 
2658 static struct platform_driver stm32_adc_driver = {
2659 	.probe = stm32_adc_probe,
2660 	.remove = stm32_adc_remove,
2661 	.driver = {
2662 		.name = "stm32-adc",
2663 		.of_match_table = stm32_adc_of_match,
2664 		.pm = pm_ptr(&stm32_adc_pm_ops),
2665 	},
2666 };
2667 module_platform_driver(stm32_adc_driver);
2668 
2669 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2670 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2671 MODULE_LICENSE("GPL v2");
2672 MODULE_ALIAS("platform:stm32-adc");
2673