xref: /openbmc/linux/drivers/iio/adc/stm32-adc.c (revision de528723)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is part of STM32 ADC driver
4  *
5  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6  * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/iio/iio.h>
14 #include <linux/iio/buffer.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/iopoll.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 
29 #include "stm32-adc-core.h"
30 
31 /* Number of linear calibration shadow registers / LINCALRDYW control bits */
32 #define STM32H7_LINCALFACT_NUM		6
33 
34 /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
35 #define STM32H7_BOOST_CLKRATE		20000000UL
36 
37 #define STM32_ADC_CH_MAX		20	/* max number of channels */
38 #define STM32_ADC_CH_SZ			10	/* max channel name size */
39 #define STM32_ADC_MAX_SQ		16	/* SQ1..SQ16 */
40 #define STM32_ADC_MAX_SMP		7	/* SMPx range is [0..7] */
41 #define STM32_ADC_TIMEOUT_US		100000
42 #define STM32_ADC_TIMEOUT	(msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
43 #define STM32_ADC_HW_STOP_DELAY_MS	100
44 
45 #define STM32_DMA_BUFFER_SIZE		PAGE_SIZE
46 
47 /* External trigger enable */
48 enum stm32_adc_exten {
49 	STM32_EXTEN_SWTRIG,
50 	STM32_EXTEN_HWTRIG_RISING_EDGE,
51 	STM32_EXTEN_HWTRIG_FALLING_EDGE,
52 	STM32_EXTEN_HWTRIG_BOTH_EDGES,
53 };
54 
55 /* extsel - trigger mux selection value */
56 enum stm32_adc_extsel {
57 	STM32_EXT0,
58 	STM32_EXT1,
59 	STM32_EXT2,
60 	STM32_EXT3,
61 	STM32_EXT4,
62 	STM32_EXT5,
63 	STM32_EXT6,
64 	STM32_EXT7,
65 	STM32_EXT8,
66 	STM32_EXT9,
67 	STM32_EXT10,
68 	STM32_EXT11,
69 	STM32_EXT12,
70 	STM32_EXT13,
71 	STM32_EXT14,
72 	STM32_EXT15,
73 	STM32_EXT16,
74 	STM32_EXT17,
75 	STM32_EXT18,
76 	STM32_EXT19,
77 	STM32_EXT20,
78 };
79 
80 /**
81  * struct stm32_adc_trig_info - ADC trigger info
82  * @name:		name of the trigger, corresponding to its source
83  * @extsel:		trigger selection
84  */
85 struct stm32_adc_trig_info {
86 	const char *name;
87 	enum stm32_adc_extsel extsel;
88 };
89 
90 /**
91  * struct stm32_adc_calib - optional adc calibration data
92  * @calfact_s: Calibration offset for single ended channels
93  * @calfact_d: Calibration offset in differential
94  * @lincalfact: Linearity calibration factor
95  * @calibrated: Indicates calibration status
96  */
97 struct stm32_adc_calib {
98 	u32			calfact_s;
99 	u32			calfact_d;
100 	u32			lincalfact[STM32H7_LINCALFACT_NUM];
101 	bool			calibrated;
102 };
103 
104 /**
105  * stm32_adc_regs - stm32 ADC misc registers & bitfield desc
106  * @reg:		register offset
107  * @mask:		bitfield mask
108  * @shift:		left shift
109  */
110 struct stm32_adc_regs {
111 	int reg;
112 	int mask;
113 	int shift;
114 };
115 
116 /**
117  * stm32_adc_regspec - stm32 registers definition, compatible dependent data
118  * @dr:			data register offset
119  * @ier_eoc:		interrupt enable register & eocie bitfield
120  * @isr_eoc:		interrupt status register & eoc bitfield
121  * @sqr:		reference to sequence registers array
122  * @exten:		trigger control register & bitfield
123  * @extsel:		trigger selection register & bitfield
124  * @res:		resolution selection register & bitfield
125  * @smpr:		smpr1 & smpr2 registers offset array
126  * @smp_bits:		smpr1 & smpr2 index and bitfields
127  */
128 struct stm32_adc_regspec {
129 	const u32 dr;
130 	const struct stm32_adc_regs ier_eoc;
131 	const struct stm32_adc_regs isr_eoc;
132 	const struct stm32_adc_regs *sqr;
133 	const struct stm32_adc_regs exten;
134 	const struct stm32_adc_regs extsel;
135 	const struct stm32_adc_regs res;
136 	const u32 smpr[2];
137 	const struct stm32_adc_regs *smp_bits;
138 };
139 
140 struct stm32_adc;
141 
142 /**
143  * stm32_adc_cfg - stm32 compatible configuration data
144  * @regs:		registers descriptions
145  * @adc_info:		per instance input channels definitions
146  * @trigs:		external trigger sources
147  * @clk_required:	clock is required
148  * @has_vregready:	vregready status flag presence
149  * @prepare:		optional prepare routine (power-up, enable)
150  * @start_conv:		routine to start conversions
151  * @stop_conv:		routine to stop conversions
152  * @unprepare:		optional unprepare routine (disable, power-down)
153  * @smp_cycles:		programmable sampling time (ADC clock cycles)
154  */
155 struct stm32_adc_cfg {
156 	const struct stm32_adc_regspec	*regs;
157 	const struct stm32_adc_info	*adc_info;
158 	struct stm32_adc_trig_info	*trigs;
159 	bool clk_required;
160 	bool has_vregready;
161 	int (*prepare)(struct stm32_adc *);
162 	void (*start_conv)(struct stm32_adc *, bool dma);
163 	void (*stop_conv)(struct stm32_adc *);
164 	void (*unprepare)(struct stm32_adc *);
165 	const unsigned int *smp_cycles;
166 };
167 
168 /**
169  * struct stm32_adc - private data of each ADC IIO instance
170  * @common:		reference to ADC block common data
171  * @offset:		ADC instance register offset in ADC block
172  * @cfg:		compatible configuration data
173  * @completion:		end of single conversion completion
174  * @buffer:		data buffer
175  * @clk:		clock for this adc instance
176  * @irq:		interrupt for this adc instance
177  * @lock:		spinlock
178  * @bufi:		data buffer index
179  * @num_conv:		expected number of scan conversions
180  * @res:		data resolution (e.g. RES bitfield value)
181  * @trigger_polarity:	external trigger polarity (e.g. exten)
182  * @dma_chan:		dma channel
183  * @rx_buf:		dma rx buffer cpu address
184  * @rx_dma_buf:		dma rx buffer bus address
185  * @rx_buf_sz:		dma rx buffer size
186  * @difsel		bitmask to set single-ended/differential channel
187  * @pcsel		bitmask to preselect channels on some devices
188  * @smpr_val:		sampling time settings (e.g. smpr1 / smpr2)
189  * @cal:		optional calibration data on some devices
190  * @chan_name:		channel name array
191  */
192 struct stm32_adc {
193 	struct stm32_adc_common	*common;
194 	u32			offset;
195 	const struct stm32_adc_cfg	*cfg;
196 	struct completion	completion;
197 	u16			buffer[STM32_ADC_MAX_SQ];
198 	struct clk		*clk;
199 	int			irq;
200 	spinlock_t		lock;		/* interrupt lock */
201 	unsigned int		bufi;
202 	unsigned int		num_conv;
203 	u32			res;
204 	u32			trigger_polarity;
205 	struct dma_chan		*dma_chan;
206 	u8			*rx_buf;
207 	dma_addr_t		rx_dma_buf;
208 	unsigned int		rx_buf_sz;
209 	u32			difsel;
210 	u32			pcsel;
211 	u32			smpr_val[2];
212 	struct stm32_adc_calib	cal;
213 	char			chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
214 };
215 
216 struct stm32_adc_diff_channel {
217 	u32 vinp;
218 	u32 vinn;
219 };
220 
221 /**
222  * struct stm32_adc_info - stm32 ADC, per instance config data
223  * @max_channels:	Number of channels
224  * @resolutions:	available resolutions
225  * @num_res:		number of available resolutions
226  */
227 struct stm32_adc_info {
228 	int max_channels;
229 	const unsigned int *resolutions;
230 	const unsigned int num_res;
231 };
232 
233 static const unsigned int stm32f4_adc_resolutions[] = {
234 	/* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
235 	12, 10, 8, 6,
236 };
237 
238 /* stm32f4 can have up to 16 channels */
239 static const struct stm32_adc_info stm32f4_adc_info = {
240 	.max_channels = 16,
241 	.resolutions = stm32f4_adc_resolutions,
242 	.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
243 };
244 
245 static const unsigned int stm32h7_adc_resolutions[] = {
246 	/* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
247 	16, 14, 12, 10, 8,
248 };
249 
250 /* stm32h7 can have up to 20 channels */
251 static const struct stm32_adc_info stm32h7_adc_info = {
252 	.max_channels = STM32_ADC_CH_MAX,
253 	.resolutions = stm32h7_adc_resolutions,
254 	.num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
255 };
256 
257 /**
258  * stm32f4_sq - describe regular sequence registers
259  * - L: sequence len (register & bit field)
260  * - SQ1..SQ16: sequence entries (register & bit field)
261  */
262 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
263 	/* L: len bit field description to be kept as first element */
264 	{ STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
265 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
266 	{ STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
267 	{ STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
268 	{ STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
269 	{ STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
270 	{ STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
271 	{ STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
272 	{ STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
273 	{ STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
274 	{ STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
275 	{ STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
276 	{ STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
277 	{ STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
278 	{ STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
279 	{ STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
280 	{ STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
281 	{ STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
282 };
283 
284 /* STM32F4 external trigger sources for all instances */
285 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
286 	{ TIM1_CH1, STM32_EXT0 },
287 	{ TIM1_CH2, STM32_EXT1 },
288 	{ TIM1_CH3, STM32_EXT2 },
289 	{ TIM2_CH2, STM32_EXT3 },
290 	{ TIM2_CH3, STM32_EXT4 },
291 	{ TIM2_CH4, STM32_EXT5 },
292 	{ TIM2_TRGO, STM32_EXT6 },
293 	{ TIM3_CH1, STM32_EXT7 },
294 	{ TIM3_TRGO, STM32_EXT8 },
295 	{ TIM4_CH4, STM32_EXT9 },
296 	{ TIM5_CH1, STM32_EXT10 },
297 	{ TIM5_CH2, STM32_EXT11 },
298 	{ TIM5_CH3, STM32_EXT12 },
299 	{ TIM8_CH1, STM32_EXT13 },
300 	{ TIM8_TRGO, STM32_EXT14 },
301 	{}, /* sentinel */
302 };
303 
304 /**
305  * stm32f4_smp_bits[] - describe sampling time register index & bit fields
306  * Sorted so it can be indexed by channel number.
307  */
308 static const struct stm32_adc_regs stm32f4_smp_bits[] = {
309 	/* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
310 	{ 1, GENMASK(2, 0), 0 },
311 	{ 1, GENMASK(5, 3), 3 },
312 	{ 1, GENMASK(8, 6), 6 },
313 	{ 1, GENMASK(11, 9), 9 },
314 	{ 1, GENMASK(14, 12), 12 },
315 	{ 1, GENMASK(17, 15), 15 },
316 	{ 1, GENMASK(20, 18), 18 },
317 	{ 1, GENMASK(23, 21), 21 },
318 	{ 1, GENMASK(26, 24), 24 },
319 	{ 1, GENMASK(29, 27), 27 },
320 	/* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
321 	{ 0, GENMASK(2, 0), 0 },
322 	{ 0, GENMASK(5, 3), 3 },
323 	{ 0, GENMASK(8, 6), 6 },
324 	{ 0, GENMASK(11, 9), 9 },
325 	{ 0, GENMASK(14, 12), 12 },
326 	{ 0, GENMASK(17, 15), 15 },
327 	{ 0, GENMASK(20, 18), 18 },
328 	{ 0, GENMASK(23, 21), 21 },
329 	{ 0, GENMASK(26, 24), 24 },
330 };
331 
332 /* STM32F4 programmable sampling time (ADC clock cycles) */
333 static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
334 	3, 15, 28, 56, 84, 112, 144, 480,
335 };
336 
337 static const struct stm32_adc_regspec stm32f4_adc_regspec = {
338 	.dr = STM32F4_ADC_DR,
339 	.ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
340 	.isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
341 	.sqr = stm32f4_sq,
342 	.exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
343 	.extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
344 		    STM32F4_EXTSEL_SHIFT },
345 	.res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
346 	.smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
347 	.smp_bits = stm32f4_smp_bits,
348 };
349 
350 static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
351 	/* L: len bit field description to be kept as first element */
352 	{ STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
353 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
354 	{ STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
355 	{ STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
356 	{ STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
357 	{ STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
358 	{ STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
359 	{ STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
360 	{ STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
361 	{ STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
362 	{ STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
363 	{ STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
364 	{ STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
365 	{ STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
366 	{ STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
367 	{ STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
368 	{ STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
369 	{ STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
370 };
371 
372 /* STM32H7 external trigger sources for all instances */
373 static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
374 	{ TIM1_CH1, STM32_EXT0 },
375 	{ TIM1_CH2, STM32_EXT1 },
376 	{ TIM1_CH3, STM32_EXT2 },
377 	{ TIM2_CH2, STM32_EXT3 },
378 	{ TIM3_TRGO, STM32_EXT4 },
379 	{ TIM4_CH4, STM32_EXT5 },
380 	{ TIM8_TRGO, STM32_EXT7 },
381 	{ TIM8_TRGO2, STM32_EXT8 },
382 	{ TIM1_TRGO, STM32_EXT9 },
383 	{ TIM1_TRGO2, STM32_EXT10 },
384 	{ TIM2_TRGO, STM32_EXT11 },
385 	{ TIM4_TRGO, STM32_EXT12 },
386 	{ TIM6_TRGO, STM32_EXT13 },
387 	{ TIM15_TRGO, STM32_EXT14 },
388 	{ TIM3_CH4, STM32_EXT15 },
389 	{ LPTIM1_OUT, STM32_EXT18 },
390 	{ LPTIM2_OUT, STM32_EXT19 },
391 	{ LPTIM3_OUT, STM32_EXT20 },
392 	{},
393 };
394 
395 /**
396  * stm32h7_smp_bits - describe sampling time register index & bit fields
397  * Sorted so it can be indexed by channel number.
398  */
399 static const struct stm32_adc_regs stm32h7_smp_bits[] = {
400 	/* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
401 	{ 0, GENMASK(2, 0), 0 },
402 	{ 0, GENMASK(5, 3), 3 },
403 	{ 0, GENMASK(8, 6), 6 },
404 	{ 0, GENMASK(11, 9), 9 },
405 	{ 0, GENMASK(14, 12), 12 },
406 	{ 0, GENMASK(17, 15), 15 },
407 	{ 0, GENMASK(20, 18), 18 },
408 	{ 0, GENMASK(23, 21), 21 },
409 	{ 0, GENMASK(26, 24), 24 },
410 	{ 0, GENMASK(29, 27), 27 },
411 	/* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
412 	{ 1, GENMASK(2, 0), 0 },
413 	{ 1, GENMASK(5, 3), 3 },
414 	{ 1, GENMASK(8, 6), 6 },
415 	{ 1, GENMASK(11, 9), 9 },
416 	{ 1, GENMASK(14, 12), 12 },
417 	{ 1, GENMASK(17, 15), 15 },
418 	{ 1, GENMASK(20, 18), 18 },
419 	{ 1, GENMASK(23, 21), 21 },
420 	{ 1, GENMASK(26, 24), 24 },
421 	{ 1, GENMASK(29, 27), 27 },
422 };
423 
424 /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
425 static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
426 	1, 2, 8, 16, 32, 64, 387, 810,
427 };
428 
429 static const struct stm32_adc_regspec stm32h7_adc_regspec = {
430 	.dr = STM32H7_ADC_DR,
431 	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
432 	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
433 	.sqr = stm32h7_sq,
434 	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
435 	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
436 		    STM32H7_EXTSEL_SHIFT },
437 	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
438 	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
439 	.smp_bits = stm32h7_smp_bits,
440 };
441 
442 /**
443  * STM32 ADC registers access routines
444  * @adc: stm32 adc instance
445  * @reg: reg offset in adc instance
446  *
447  * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
448  * for adc1, adc2 and adc3.
449  */
450 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
451 {
452 	return readl_relaxed(adc->common->base + adc->offset + reg);
453 }
454 
455 #define stm32_adc_readl_addr(addr)	stm32_adc_readl(adc, addr)
456 
457 #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
458 	readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
459 			   cond, sleep_us, timeout_us)
460 
461 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
462 {
463 	return readw_relaxed(adc->common->base + adc->offset + reg);
464 }
465 
466 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
467 {
468 	writel_relaxed(val, adc->common->base + adc->offset + reg);
469 }
470 
471 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
472 {
473 	unsigned long flags;
474 
475 	spin_lock_irqsave(&adc->lock, flags);
476 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
477 	spin_unlock_irqrestore(&adc->lock, flags);
478 }
479 
480 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
481 {
482 	unsigned long flags;
483 
484 	spin_lock_irqsave(&adc->lock, flags);
485 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
486 	spin_unlock_irqrestore(&adc->lock, flags);
487 }
488 
489 /**
490  * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
491  * @adc: stm32 adc instance
492  */
493 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
494 {
495 	stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
496 			   adc->cfg->regs->ier_eoc.mask);
497 };
498 
499 /**
500  * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
501  * @adc: stm32 adc instance
502  */
503 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
504 {
505 	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
506 			   adc->cfg->regs->ier_eoc.mask);
507 }
508 
509 static void stm32_adc_set_res(struct stm32_adc *adc)
510 {
511 	const struct stm32_adc_regs *res = &adc->cfg->regs->res;
512 	u32 val;
513 
514 	val = stm32_adc_readl(adc, res->reg);
515 	val = (val & ~res->mask) | (adc->res << res->shift);
516 	stm32_adc_writel(adc, res->reg, val);
517 }
518 
519 static int stm32_adc_hw_stop(struct device *dev)
520 {
521 	struct stm32_adc *adc = dev_get_drvdata(dev);
522 
523 	if (adc->cfg->unprepare)
524 		adc->cfg->unprepare(adc);
525 
526 	if (adc->clk)
527 		clk_disable_unprepare(adc->clk);
528 
529 	return 0;
530 }
531 
532 static int stm32_adc_hw_start(struct device *dev)
533 {
534 	struct stm32_adc *adc = dev_get_drvdata(dev);
535 	int ret;
536 
537 	if (adc->clk) {
538 		ret = clk_prepare_enable(adc->clk);
539 		if (ret)
540 			return ret;
541 	}
542 
543 	stm32_adc_set_res(adc);
544 
545 	if (adc->cfg->prepare) {
546 		ret = adc->cfg->prepare(adc);
547 		if (ret)
548 			goto err_clk_dis;
549 	}
550 
551 	return 0;
552 
553 err_clk_dis:
554 	if (adc->clk)
555 		clk_disable_unprepare(adc->clk);
556 
557 	return ret;
558 }
559 
560 /**
561  * stm32f4_adc_start_conv() - Start conversions for regular channels.
562  * @adc: stm32 adc instance
563  * @dma: use dma to transfer conversion result
564  *
565  * Start conversions for regular channels.
566  * Also take care of normal or DMA mode. Circular DMA may be used for regular
567  * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
568  * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
569  */
570 static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
571 {
572 	stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
573 
574 	if (dma)
575 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
576 				   STM32F4_DMA | STM32F4_DDS);
577 
578 	stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
579 
580 	/* Wait for Power-up time (tSTAB from datasheet) */
581 	usleep_range(2, 3);
582 
583 	/* Software start ? (e.g. trigger detection disabled ?) */
584 	if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
585 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
586 }
587 
588 static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
589 {
590 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
591 	stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
592 
593 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
594 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
595 			   STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
596 }
597 
598 static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma)
599 {
600 	enum stm32h7_adc_dmngt dmngt;
601 	unsigned long flags;
602 	u32 val;
603 
604 	if (dma)
605 		dmngt = STM32H7_DMNGT_DMA_CIRC;
606 	else
607 		dmngt = STM32H7_DMNGT_DR_ONLY;
608 
609 	spin_lock_irqsave(&adc->lock, flags);
610 	val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
611 	val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
612 	stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
613 	spin_unlock_irqrestore(&adc->lock, flags);
614 
615 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
616 }
617 
618 static void stm32h7_adc_stop_conv(struct stm32_adc *adc)
619 {
620 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
621 	int ret;
622 	u32 val;
623 
624 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
625 
626 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
627 					   !(val & (STM32H7_ADSTART)),
628 					   100, STM32_ADC_TIMEOUT_US);
629 	if (ret)
630 		dev_warn(&indio_dev->dev, "stop failed\n");
631 
632 	stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
633 }
634 
635 static int stm32h7_adc_exit_pwr_down(struct stm32_adc *adc)
636 {
637 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
638 	int ret;
639 	u32 val;
640 
641 	/* Exit deep power down, then enable ADC voltage regulator */
642 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
643 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
644 
645 	if (adc->common->rate > STM32H7_BOOST_CLKRATE)
646 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
647 
648 	/* Wait for startup time */
649 	if (!adc->cfg->has_vregready) {
650 		usleep_range(10, 20);
651 		return 0;
652 	}
653 
654 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
655 					   val & STM32MP1_VREGREADY, 100,
656 					   STM32_ADC_TIMEOUT_US);
657 	if (ret) {
658 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
659 		dev_err(&indio_dev->dev, "Failed to exit power down\n");
660 	}
661 
662 	return ret;
663 }
664 
665 static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
666 {
667 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
668 
669 	/* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
670 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
671 }
672 
673 static int stm32h7_adc_enable(struct stm32_adc *adc)
674 {
675 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
676 	int ret;
677 	u32 val;
678 
679 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
680 
681 	/* Poll for ADRDY to be set (after adc startup time) */
682 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
683 					   val & STM32H7_ADRDY,
684 					   100, STM32_ADC_TIMEOUT_US);
685 	if (ret) {
686 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
687 		dev_err(&indio_dev->dev, "Failed to enable ADC\n");
688 	} else {
689 		/* Clear ADRDY by writing one */
690 		stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
691 	}
692 
693 	return ret;
694 }
695 
696 static void stm32h7_adc_disable(struct stm32_adc *adc)
697 {
698 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
699 	int ret;
700 	u32 val;
701 
702 	/* Disable ADC and wait until it's effectively disabled */
703 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
704 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
705 					   !(val & STM32H7_ADEN), 100,
706 					   STM32_ADC_TIMEOUT_US);
707 	if (ret)
708 		dev_warn(&indio_dev->dev, "Failed to disable\n");
709 }
710 
711 /**
712  * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
713  * @adc: stm32 adc instance
714  * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
715  */
716 static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc)
717 {
718 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
719 	int i, ret;
720 	u32 lincalrdyw_mask, val;
721 
722 	/* Read linearity calibration */
723 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
724 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
725 		/* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
726 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
727 
728 		/* Poll: wait calib data to be ready in CALFACT2 register */
729 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
730 						   !(val & lincalrdyw_mask),
731 						   100, STM32_ADC_TIMEOUT_US);
732 		if (ret) {
733 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
734 			return ret;
735 		}
736 
737 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
738 		adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
739 		adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
740 
741 		lincalrdyw_mask >>= 1;
742 	}
743 
744 	/* Read offset calibration */
745 	val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
746 	adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
747 	adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
748 	adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
749 	adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
750 	adc->cal.calibrated = true;
751 
752 	return 0;
753 }
754 
755 /**
756  * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
757  * @adc: stm32 adc instance
758  * Note: ADC must be enabled, with no on-going conversions.
759  */
760 static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc)
761 {
762 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
763 	int i, ret;
764 	u32 lincalrdyw_mask, val;
765 
766 	val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
767 		(adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
768 	stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
769 
770 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
771 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
772 		/*
773 		 * Write saved calibration data to shadow registers:
774 		 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
775 		 * data write. Then poll to wait for complete transfer.
776 		 */
777 		val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
778 		stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
779 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
780 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
781 						   val & lincalrdyw_mask,
782 						   100, STM32_ADC_TIMEOUT_US);
783 		if (ret) {
784 			dev_err(&indio_dev->dev, "Failed to write calfact\n");
785 			return ret;
786 		}
787 
788 		/*
789 		 * Read back calibration data, has two effects:
790 		 * - It ensures bits LINCALRDYW[6..1] are kept cleared
791 		 *   for next time calibration needs to be restored.
792 		 * - BTW, bit clear triggers a read, then check data has been
793 		 *   correctly written.
794 		 */
795 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
796 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
797 						   !(val & lincalrdyw_mask),
798 						   100, STM32_ADC_TIMEOUT_US);
799 		if (ret) {
800 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
801 			return ret;
802 		}
803 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
804 		if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
805 			dev_err(&indio_dev->dev, "calfact not consistent\n");
806 			return -EIO;
807 		}
808 
809 		lincalrdyw_mask >>= 1;
810 	}
811 
812 	return 0;
813 }
814 
815 /**
816  * Fixed timeout value for ADC calibration.
817  * worst cases:
818  * - low clock frequency
819  * - maximum prescalers
820  * Calibration requires:
821  * - 131,072 ADC clock cycle for the linear calibration
822  * - 20 ADC clock cycle for the offset calibration
823  *
824  * Set to 100ms for now
825  */
826 #define STM32H7_ADC_CALIB_TIMEOUT_US		100000
827 
828 /**
829  * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
830  * @adc: stm32 adc instance
831  * Note: Must be called once ADC is out of power down.
832  */
833 static int stm32h7_adc_selfcalib(struct stm32_adc *adc)
834 {
835 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
836 	int ret;
837 	u32 val;
838 
839 	if (adc->cal.calibrated)
840 		return true;
841 
842 	/*
843 	 * Select calibration mode:
844 	 * - Offset calibration for single ended inputs
845 	 * - No linearity calibration (do it later, before reading it)
846 	 */
847 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
848 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
849 
850 	/* Start calibration, then wait for completion */
851 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
852 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
853 					   !(val & STM32H7_ADCAL), 100,
854 					   STM32H7_ADC_CALIB_TIMEOUT_US);
855 	if (ret) {
856 		dev_err(&indio_dev->dev, "calibration failed\n");
857 		goto out;
858 	}
859 
860 	/*
861 	 * Select calibration mode, then start calibration:
862 	 * - Offset calibration for differential input
863 	 * - Linearity calibration (needs to be done only once for single/diff)
864 	 *   will run simultaneously with offset calibration.
865 	 */
866 	stm32_adc_set_bits(adc, STM32H7_ADC_CR,
867 			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
868 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
869 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
870 					   !(val & STM32H7_ADCAL), 100,
871 					   STM32H7_ADC_CALIB_TIMEOUT_US);
872 	if (ret) {
873 		dev_err(&indio_dev->dev, "calibration failed\n");
874 		goto out;
875 	}
876 
877 out:
878 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
879 			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
880 
881 	return ret;
882 }
883 
884 /**
885  * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
886  * @adc: stm32 adc instance
887  * Leave power down mode.
888  * Configure channels as single ended or differential before enabling ADC.
889  * Enable ADC.
890  * Restore calibration data.
891  * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
892  * - Only one input is selected for single ended (e.g. 'vinp')
893  * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
894  */
895 static int stm32h7_adc_prepare(struct stm32_adc *adc)
896 {
897 	int calib, ret;
898 
899 	ret = stm32h7_adc_exit_pwr_down(adc);
900 	if (ret)
901 		return ret;
902 
903 	ret = stm32h7_adc_selfcalib(adc);
904 	if (ret < 0)
905 		goto pwr_dwn;
906 	calib = ret;
907 
908 	stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
909 
910 	ret = stm32h7_adc_enable(adc);
911 	if (ret)
912 		goto pwr_dwn;
913 
914 	/* Either restore or read calibration result for future reference */
915 	if (calib)
916 		ret = stm32h7_adc_restore_selfcalib(adc);
917 	else
918 		ret = stm32h7_adc_read_selfcalib(adc);
919 	if (ret)
920 		goto disable;
921 
922 	stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
923 
924 	return 0;
925 
926 disable:
927 	stm32h7_adc_disable(adc);
928 pwr_dwn:
929 	stm32h7_adc_enter_pwr_down(adc);
930 
931 	return ret;
932 }
933 
934 static void stm32h7_adc_unprepare(struct stm32_adc *adc)
935 {
936 	stm32h7_adc_disable(adc);
937 	stm32h7_adc_enter_pwr_down(adc);
938 }
939 
940 /**
941  * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
942  * @indio_dev: IIO device
943  * @scan_mask: channels to be converted
944  *
945  * Conversion sequence :
946  * Apply sampling time settings for all channels.
947  * Configure ADC scan sequence based on selected channels in scan_mask.
948  * Add channels to SQR registers, from scan_mask LSB to MSB, then
949  * program sequence len.
950  */
951 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
952 				   const unsigned long *scan_mask)
953 {
954 	struct stm32_adc *adc = iio_priv(indio_dev);
955 	const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
956 	const struct iio_chan_spec *chan;
957 	u32 val, bit;
958 	int i = 0;
959 
960 	/* Apply sampling time settings */
961 	stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
962 	stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
963 
964 	for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
965 		chan = indio_dev->channels + bit;
966 		/*
967 		 * Assign one channel per SQ entry in regular
968 		 * sequence, starting with SQ1.
969 		 */
970 		i++;
971 		if (i > STM32_ADC_MAX_SQ)
972 			return -EINVAL;
973 
974 		dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
975 			__func__, chan->channel, i);
976 
977 		val = stm32_adc_readl(adc, sqr[i].reg);
978 		val &= ~sqr[i].mask;
979 		val |= chan->channel << sqr[i].shift;
980 		stm32_adc_writel(adc, sqr[i].reg, val);
981 	}
982 
983 	if (!i)
984 		return -EINVAL;
985 
986 	/* Sequence len */
987 	val = stm32_adc_readl(adc, sqr[0].reg);
988 	val &= ~sqr[0].mask;
989 	val |= ((i - 1) << sqr[0].shift);
990 	stm32_adc_writel(adc, sqr[0].reg, val);
991 
992 	return 0;
993 }
994 
995 /**
996  * stm32_adc_get_trig_extsel() - Get external trigger selection
997  * @trig: trigger
998  *
999  * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1000  */
1001 static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1002 				     struct iio_trigger *trig)
1003 {
1004 	struct stm32_adc *adc = iio_priv(indio_dev);
1005 	int i;
1006 
1007 	/* lookup triggers registered by stm32 timer trigger driver */
1008 	for (i = 0; adc->cfg->trigs[i].name; i++) {
1009 		/**
1010 		 * Checking both stm32 timer trigger type and trig name
1011 		 * should be safe against arbitrary trigger names.
1012 		 */
1013 		if ((is_stm32_timer_trigger(trig) ||
1014 		     is_stm32_lptim_trigger(trig)) &&
1015 		    !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1016 			return adc->cfg->trigs[i].extsel;
1017 		}
1018 	}
1019 
1020 	return -EINVAL;
1021 }
1022 
1023 /**
1024  * stm32_adc_set_trig() - Set a regular trigger
1025  * @indio_dev: IIO device
1026  * @trig: IIO trigger
1027  *
1028  * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1029  * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1030  * - if HW trigger enabled, set source & polarity
1031  */
1032 static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1033 			      struct iio_trigger *trig)
1034 {
1035 	struct stm32_adc *adc = iio_priv(indio_dev);
1036 	u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1037 	unsigned long flags;
1038 	int ret;
1039 
1040 	if (trig) {
1041 		ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1042 		if (ret < 0)
1043 			return ret;
1044 
1045 		/* set trigger source and polarity (default to rising edge) */
1046 		extsel = ret;
1047 		exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1048 	}
1049 
1050 	spin_lock_irqsave(&adc->lock, flags);
1051 	val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1052 	val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1053 	val |= exten << adc->cfg->regs->exten.shift;
1054 	val |= extsel << adc->cfg->regs->extsel.shift;
1055 	stm32_adc_writel(adc,  adc->cfg->regs->exten.reg, val);
1056 	spin_unlock_irqrestore(&adc->lock, flags);
1057 
1058 	return 0;
1059 }
1060 
1061 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1062 				  const struct iio_chan_spec *chan,
1063 				  unsigned int type)
1064 {
1065 	struct stm32_adc *adc = iio_priv(indio_dev);
1066 
1067 	adc->trigger_polarity = type;
1068 
1069 	return 0;
1070 }
1071 
1072 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1073 				  const struct iio_chan_spec *chan)
1074 {
1075 	struct stm32_adc *adc = iio_priv(indio_dev);
1076 
1077 	return adc->trigger_polarity;
1078 }
1079 
1080 static const char * const stm32_trig_pol_items[] = {
1081 	"rising-edge", "falling-edge", "both-edges",
1082 };
1083 
1084 static const struct iio_enum stm32_adc_trig_pol = {
1085 	.items = stm32_trig_pol_items,
1086 	.num_items = ARRAY_SIZE(stm32_trig_pol_items),
1087 	.get = stm32_adc_get_trig_pol,
1088 	.set = stm32_adc_set_trig_pol,
1089 };
1090 
1091 /**
1092  * stm32_adc_single_conv() - Performs a single conversion
1093  * @indio_dev: IIO device
1094  * @chan: IIO channel
1095  * @res: conversion result
1096  *
1097  * The function performs a single conversion on a given channel:
1098  * - Apply sampling time settings
1099  * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1100  * - Use SW trigger
1101  * - Start conversion, then wait for interrupt completion.
1102  */
1103 static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1104 				 const struct iio_chan_spec *chan,
1105 				 int *res)
1106 {
1107 	struct stm32_adc *adc = iio_priv(indio_dev);
1108 	struct device *dev = indio_dev->dev.parent;
1109 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1110 	long timeout;
1111 	u32 val;
1112 	int ret;
1113 
1114 	reinit_completion(&adc->completion);
1115 
1116 	adc->bufi = 0;
1117 
1118 	ret = pm_runtime_get_sync(dev);
1119 	if (ret < 0) {
1120 		pm_runtime_put_noidle(dev);
1121 		return ret;
1122 	}
1123 
1124 	/* Apply sampling time settings */
1125 	stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1126 	stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1127 
1128 	/* Program chan number in regular sequence (SQ1) */
1129 	val = stm32_adc_readl(adc, regs->sqr[1].reg);
1130 	val &= ~regs->sqr[1].mask;
1131 	val |= chan->channel << regs->sqr[1].shift;
1132 	stm32_adc_writel(adc, regs->sqr[1].reg, val);
1133 
1134 	/* Set regular sequence len (0 for 1 conversion) */
1135 	stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1136 
1137 	/* Trigger detection disabled (conversion can be launched in SW) */
1138 	stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1139 
1140 	stm32_adc_conv_irq_enable(adc);
1141 
1142 	adc->cfg->start_conv(adc, false);
1143 
1144 	timeout = wait_for_completion_interruptible_timeout(
1145 					&adc->completion, STM32_ADC_TIMEOUT);
1146 	if (timeout == 0) {
1147 		ret = -ETIMEDOUT;
1148 	} else if (timeout < 0) {
1149 		ret = timeout;
1150 	} else {
1151 		*res = adc->buffer[0];
1152 		ret = IIO_VAL_INT;
1153 	}
1154 
1155 	adc->cfg->stop_conv(adc);
1156 
1157 	stm32_adc_conv_irq_disable(adc);
1158 
1159 	pm_runtime_mark_last_busy(dev);
1160 	pm_runtime_put_autosuspend(dev);
1161 
1162 	return ret;
1163 }
1164 
1165 static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1166 			      struct iio_chan_spec const *chan,
1167 			      int *val, int *val2, long mask)
1168 {
1169 	struct stm32_adc *adc = iio_priv(indio_dev);
1170 	int ret;
1171 
1172 	switch (mask) {
1173 	case IIO_CHAN_INFO_RAW:
1174 		ret = iio_device_claim_direct_mode(indio_dev);
1175 		if (ret)
1176 			return ret;
1177 		if (chan->type == IIO_VOLTAGE)
1178 			ret = stm32_adc_single_conv(indio_dev, chan, val);
1179 		else
1180 			ret = -EINVAL;
1181 		iio_device_release_direct_mode(indio_dev);
1182 		return ret;
1183 
1184 	case IIO_CHAN_INFO_SCALE:
1185 		if (chan->differential) {
1186 			*val = adc->common->vref_mv * 2;
1187 			*val2 = chan->scan_type.realbits;
1188 		} else {
1189 			*val = adc->common->vref_mv;
1190 			*val2 = chan->scan_type.realbits;
1191 		}
1192 		return IIO_VAL_FRACTIONAL_LOG2;
1193 
1194 	case IIO_CHAN_INFO_OFFSET:
1195 		if (chan->differential)
1196 			/* ADC_full_scale / 2 */
1197 			*val = -((1 << chan->scan_type.realbits) / 2);
1198 		else
1199 			*val = 0;
1200 		return IIO_VAL_INT;
1201 
1202 	default:
1203 		return -EINVAL;
1204 	}
1205 }
1206 
1207 static irqreturn_t stm32_adc_isr(int irq, void *data)
1208 {
1209 	struct stm32_adc *adc = data;
1210 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1211 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1212 	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1213 
1214 	if (status & regs->isr_eoc.mask) {
1215 		/* Reading DR also clears EOC status flag */
1216 		adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1217 		if (iio_buffer_enabled(indio_dev)) {
1218 			adc->bufi++;
1219 			if (adc->bufi >= adc->num_conv) {
1220 				stm32_adc_conv_irq_disable(adc);
1221 				iio_trigger_poll(indio_dev->trig);
1222 			}
1223 		} else {
1224 			complete(&adc->completion);
1225 		}
1226 		return IRQ_HANDLED;
1227 	}
1228 
1229 	return IRQ_NONE;
1230 }
1231 
1232 /**
1233  * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1234  * @indio_dev: IIO device
1235  * @trig: new trigger
1236  *
1237  * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1238  * driver, -EINVAL otherwise.
1239  */
1240 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1241 				      struct iio_trigger *trig)
1242 {
1243 	return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1244 }
1245 
1246 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1247 {
1248 	struct stm32_adc *adc = iio_priv(indio_dev);
1249 	unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1250 	unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1251 
1252 	/*
1253 	 * dma cyclic transfers are used, buffer is split into two periods.
1254 	 * There should be :
1255 	 * - always one buffer (period) dma is working on
1256 	 * - one buffer (period) driver can push with iio_trigger_poll().
1257 	 */
1258 	watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1259 	adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1260 
1261 	return 0;
1262 }
1263 
1264 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1265 				      const unsigned long *scan_mask)
1266 {
1267 	struct stm32_adc *adc = iio_priv(indio_dev);
1268 	struct device *dev = indio_dev->dev.parent;
1269 	int ret;
1270 
1271 	ret = pm_runtime_get_sync(dev);
1272 	if (ret < 0) {
1273 		pm_runtime_put_noidle(dev);
1274 		return ret;
1275 	}
1276 
1277 	adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1278 
1279 	ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1280 	pm_runtime_mark_last_busy(dev);
1281 	pm_runtime_put_autosuspend(dev);
1282 
1283 	return ret;
1284 }
1285 
1286 static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1287 			      const struct of_phandle_args *iiospec)
1288 {
1289 	int i;
1290 
1291 	for (i = 0; i < indio_dev->num_channels; i++)
1292 		if (indio_dev->channels[i].channel == iiospec->args[0])
1293 			return i;
1294 
1295 	return -EINVAL;
1296 }
1297 
1298 /**
1299  * stm32_adc_debugfs_reg_access - read or write register value
1300  *
1301  * To read a value from an ADC register:
1302  *   echo [ADC reg offset] > direct_reg_access
1303  *   cat direct_reg_access
1304  *
1305  * To write a value in a ADC register:
1306  *   echo [ADC_reg_offset] [value] > direct_reg_access
1307  */
1308 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1309 					unsigned reg, unsigned writeval,
1310 					unsigned *readval)
1311 {
1312 	struct stm32_adc *adc = iio_priv(indio_dev);
1313 	struct device *dev = indio_dev->dev.parent;
1314 	int ret;
1315 
1316 	ret = pm_runtime_get_sync(dev);
1317 	if (ret < 0) {
1318 		pm_runtime_put_noidle(dev);
1319 		return ret;
1320 	}
1321 
1322 	if (!readval)
1323 		stm32_adc_writel(adc, reg, writeval);
1324 	else
1325 		*readval = stm32_adc_readl(adc, reg);
1326 
1327 	pm_runtime_mark_last_busy(dev);
1328 	pm_runtime_put_autosuspend(dev);
1329 
1330 	return 0;
1331 }
1332 
1333 static const struct iio_info stm32_adc_iio_info = {
1334 	.read_raw = stm32_adc_read_raw,
1335 	.validate_trigger = stm32_adc_validate_trigger,
1336 	.hwfifo_set_watermark = stm32_adc_set_watermark,
1337 	.update_scan_mode = stm32_adc_update_scan_mode,
1338 	.debugfs_reg_access = stm32_adc_debugfs_reg_access,
1339 	.of_xlate = stm32_adc_of_xlate,
1340 };
1341 
1342 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1343 {
1344 	struct dma_tx_state state;
1345 	enum dma_status status;
1346 
1347 	status = dmaengine_tx_status(adc->dma_chan,
1348 				     adc->dma_chan->cookie,
1349 				     &state);
1350 	if (status == DMA_IN_PROGRESS) {
1351 		/* Residue is size in bytes from end of buffer */
1352 		unsigned int i = adc->rx_buf_sz - state.residue;
1353 		unsigned int size;
1354 
1355 		/* Return available bytes */
1356 		if (i >= adc->bufi)
1357 			size = i - adc->bufi;
1358 		else
1359 			size = adc->rx_buf_sz + i - adc->bufi;
1360 
1361 		return size;
1362 	}
1363 
1364 	return 0;
1365 }
1366 
1367 static void stm32_adc_dma_buffer_done(void *data)
1368 {
1369 	struct iio_dev *indio_dev = data;
1370 
1371 	iio_trigger_poll_chained(indio_dev->trig);
1372 }
1373 
1374 static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1375 {
1376 	struct stm32_adc *adc = iio_priv(indio_dev);
1377 	struct dma_async_tx_descriptor *desc;
1378 	dma_cookie_t cookie;
1379 	int ret;
1380 
1381 	if (!adc->dma_chan)
1382 		return 0;
1383 
1384 	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1385 		adc->rx_buf_sz, adc->rx_buf_sz / 2);
1386 
1387 	/* Prepare a DMA cyclic transaction */
1388 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1389 					 adc->rx_dma_buf,
1390 					 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1391 					 DMA_DEV_TO_MEM,
1392 					 DMA_PREP_INTERRUPT);
1393 	if (!desc)
1394 		return -EBUSY;
1395 
1396 	desc->callback = stm32_adc_dma_buffer_done;
1397 	desc->callback_param = indio_dev;
1398 
1399 	cookie = dmaengine_submit(desc);
1400 	ret = dma_submit_error(cookie);
1401 	if (ret) {
1402 		dmaengine_terminate_all(adc->dma_chan);
1403 		return ret;
1404 	}
1405 
1406 	/* Issue pending DMA requests */
1407 	dma_async_issue_pending(adc->dma_chan);
1408 
1409 	return 0;
1410 }
1411 
1412 static int __stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1413 {
1414 	struct stm32_adc *adc = iio_priv(indio_dev);
1415 	struct device *dev = indio_dev->dev.parent;
1416 	int ret;
1417 
1418 	ret = pm_runtime_get_sync(dev);
1419 	if (ret < 0) {
1420 		pm_runtime_put_noidle(dev);
1421 		return ret;
1422 	}
1423 
1424 	ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1425 	if (ret) {
1426 		dev_err(&indio_dev->dev, "Can't set trigger\n");
1427 		goto err_pm_put;
1428 	}
1429 
1430 	ret = stm32_adc_dma_start(indio_dev);
1431 	if (ret) {
1432 		dev_err(&indio_dev->dev, "Can't start dma\n");
1433 		goto err_clr_trig;
1434 	}
1435 
1436 	/* Reset adc buffer index */
1437 	adc->bufi = 0;
1438 
1439 	if (!adc->dma_chan)
1440 		stm32_adc_conv_irq_enable(adc);
1441 
1442 	adc->cfg->start_conv(adc, !!adc->dma_chan);
1443 
1444 	return 0;
1445 
1446 err_clr_trig:
1447 	stm32_adc_set_trig(indio_dev, NULL);
1448 err_pm_put:
1449 	pm_runtime_mark_last_busy(dev);
1450 	pm_runtime_put_autosuspend(dev);
1451 
1452 	return ret;
1453 }
1454 
1455 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1456 {
1457 	int ret;
1458 
1459 	ret = iio_triggered_buffer_postenable(indio_dev);
1460 	if (ret < 0)
1461 		return ret;
1462 
1463 	ret = __stm32_adc_buffer_postenable(indio_dev);
1464 	if (ret < 0)
1465 		iio_triggered_buffer_predisable(indio_dev);
1466 
1467 	return ret;
1468 }
1469 
1470 static void __stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1471 {
1472 	struct stm32_adc *adc = iio_priv(indio_dev);
1473 	struct device *dev = indio_dev->dev.parent;
1474 
1475 	adc->cfg->stop_conv(adc);
1476 	if (!adc->dma_chan)
1477 		stm32_adc_conv_irq_disable(adc);
1478 
1479 	if (adc->dma_chan)
1480 		dmaengine_terminate_all(adc->dma_chan);
1481 
1482 	if (stm32_adc_set_trig(indio_dev, NULL))
1483 		dev_err(&indio_dev->dev, "Can't clear trigger\n");
1484 
1485 	pm_runtime_mark_last_busy(dev);
1486 	pm_runtime_put_autosuspend(dev);
1487 }
1488 
1489 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1490 {
1491 	int ret;
1492 
1493 	__stm32_adc_buffer_predisable(indio_dev);
1494 
1495 	ret = iio_triggered_buffer_predisable(indio_dev);
1496 	if (ret < 0)
1497 		dev_err(&indio_dev->dev, "predisable failed\n");
1498 
1499 	return ret;
1500 }
1501 
1502 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1503 	.postenable = &stm32_adc_buffer_postenable,
1504 	.predisable = &stm32_adc_buffer_predisable,
1505 };
1506 
1507 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1508 {
1509 	struct iio_poll_func *pf = p;
1510 	struct iio_dev *indio_dev = pf->indio_dev;
1511 	struct stm32_adc *adc = iio_priv(indio_dev);
1512 
1513 	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1514 
1515 	if (!adc->dma_chan) {
1516 		/* reset buffer index */
1517 		adc->bufi = 0;
1518 		iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1519 						   pf->timestamp);
1520 	} else {
1521 		int residue = stm32_adc_dma_residue(adc);
1522 
1523 		while (residue >= indio_dev->scan_bytes) {
1524 			u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1525 
1526 			iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1527 							   pf->timestamp);
1528 			residue -= indio_dev->scan_bytes;
1529 			adc->bufi += indio_dev->scan_bytes;
1530 			if (adc->bufi >= adc->rx_buf_sz)
1531 				adc->bufi = 0;
1532 		}
1533 	}
1534 
1535 	iio_trigger_notify_done(indio_dev->trig);
1536 
1537 	/* re-enable eoc irq */
1538 	if (!adc->dma_chan)
1539 		stm32_adc_conv_irq_enable(adc);
1540 
1541 	return IRQ_HANDLED;
1542 }
1543 
1544 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1545 	IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1546 	{
1547 		.name = "trigger_polarity_available",
1548 		.shared = IIO_SHARED_BY_ALL,
1549 		.read = iio_enum_available_read,
1550 		.private = (uintptr_t)&stm32_adc_trig_pol,
1551 	},
1552 	{},
1553 };
1554 
1555 static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1556 {
1557 	struct device_node *node = indio_dev->dev.of_node;
1558 	struct stm32_adc *adc = iio_priv(indio_dev);
1559 	unsigned int i;
1560 	u32 res;
1561 
1562 	if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1563 		res = adc->cfg->adc_info->resolutions[0];
1564 
1565 	for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1566 		if (res == adc->cfg->adc_info->resolutions[i])
1567 			break;
1568 	if (i >= adc->cfg->adc_info->num_res) {
1569 		dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1570 		return -EINVAL;
1571 	}
1572 
1573 	dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1574 	adc->res = i;
1575 
1576 	return 0;
1577 }
1578 
1579 static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1580 {
1581 	const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1582 	u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1583 	unsigned int smp, r = smpr->reg;
1584 
1585 	/* Determine sampling time (ADC clock cycles) */
1586 	period_ns = NSEC_PER_SEC / adc->common->rate;
1587 	for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1588 		if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1589 			break;
1590 	if (smp > STM32_ADC_MAX_SMP)
1591 		smp = STM32_ADC_MAX_SMP;
1592 
1593 	/* pre-build sampling time registers (e.g. smpr1, smpr2) */
1594 	adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1595 }
1596 
1597 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1598 				    struct iio_chan_spec *chan, u32 vinp,
1599 				    u32 vinn, int scan_index, bool differential)
1600 {
1601 	struct stm32_adc *adc = iio_priv(indio_dev);
1602 	char *name = adc->chan_name[vinp];
1603 
1604 	chan->type = IIO_VOLTAGE;
1605 	chan->channel = vinp;
1606 	if (differential) {
1607 		chan->differential = 1;
1608 		chan->channel2 = vinn;
1609 		snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1610 	} else {
1611 		snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1612 	}
1613 	chan->datasheet_name = name;
1614 	chan->scan_index = scan_index;
1615 	chan->indexed = 1;
1616 	chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1617 	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1618 					 BIT(IIO_CHAN_INFO_OFFSET);
1619 	chan->scan_type.sign = 'u';
1620 	chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1621 	chan->scan_type.storagebits = 16;
1622 	chan->ext_info = stm32_adc_ext_info;
1623 
1624 	/* pre-build selected channels mask */
1625 	adc->pcsel |= BIT(chan->channel);
1626 	if (differential) {
1627 		/* pre-build diff channels mask */
1628 		adc->difsel |= BIT(chan->channel);
1629 		/* Also add negative input to pre-selected channels */
1630 		adc->pcsel |= BIT(chan->channel2);
1631 	}
1632 }
1633 
1634 static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1635 {
1636 	struct device_node *node = indio_dev->dev.of_node;
1637 	struct stm32_adc *adc = iio_priv(indio_dev);
1638 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1639 	struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1640 	struct property *prop;
1641 	const __be32 *cur;
1642 	struct iio_chan_spec *channels;
1643 	int scan_index = 0, num_channels = 0, num_diff = 0, ret, i;
1644 	u32 val, smp = 0;
1645 
1646 	ret = of_property_count_u32_elems(node, "st,adc-channels");
1647 	if (ret > adc_info->max_channels) {
1648 		dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1649 		return -EINVAL;
1650 	} else if (ret > 0) {
1651 		num_channels += ret;
1652 	}
1653 
1654 	ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1655 					      sizeof(*diff));
1656 	if (ret > adc_info->max_channels) {
1657 		dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1658 		return -EINVAL;
1659 	} else if (ret > 0) {
1660 		int size = ret * sizeof(*diff) / sizeof(u32);
1661 
1662 		num_diff = ret;
1663 		num_channels += ret;
1664 		ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1665 						 (u32 *)diff, size);
1666 		if (ret)
1667 			return ret;
1668 	}
1669 
1670 	if (!num_channels) {
1671 		dev_err(&indio_dev->dev, "No channels configured\n");
1672 		return -ENODATA;
1673 	}
1674 
1675 	/* Optional sample time is provided either for each, or all channels */
1676 	ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1677 	if (ret > 1 && ret != num_channels) {
1678 		dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1679 		return -EINVAL;
1680 	}
1681 
1682 	channels = devm_kcalloc(&indio_dev->dev, num_channels,
1683 				sizeof(struct iio_chan_spec), GFP_KERNEL);
1684 	if (!channels)
1685 		return -ENOMEM;
1686 
1687 	of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1688 		if (val >= adc_info->max_channels) {
1689 			dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1690 			return -EINVAL;
1691 		}
1692 
1693 		/* Channel can't be configured both as single-ended & diff */
1694 		for (i = 0; i < num_diff; i++) {
1695 			if (val == diff[i].vinp) {
1696 				dev_err(&indio_dev->dev,
1697 					"channel %d miss-configured\n",	val);
1698 				return -EINVAL;
1699 			}
1700 		}
1701 		stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1702 					0, scan_index, false);
1703 		scan_index++;
1704 	}
1705 
1706 	for (i = 0; i < num_diff; i++) {
1707 		if (diff[i].vinp >= adc_info->max_channels ||
1708 		    diff[i].vinn >= adc_info->max_channels) {
1709 			dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1710 				diff[i].vinp, diff[i].vinn);
1711 			return -EINVAL;
1712 		}
1713 		stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1714 					diff[i].vinp, diff[i].vinn, scan_index,
1715 					true);
1716 		scan_index++;
1717 	}
1718 
1719 	for (i = 0; i < scan_index; i++) {
1720 		/*
1721 		 * Using of_property_read_u32_index(), smp value will only be
1722 		 * modified if valid u32 value can be decoded. This allows to
1723 		 * get either no value, 1 shared value for all indexes, or one
1724 		 * value per channel.
1725 		 */
1726 		of_property_read_u32_index(node, "st,min-sample-time-nsecs",
1727 					   i, &smp);
1728 		/* Prepare sampling time settings */
1729 		stm32_adc_smpr_init(adc, channels[i].channel, smp);
1730 	}
1731 
1732 	indio_dev->num_channels = scan_index;
1733 	indio_dev->channels = channels;
1734 
1735 	return 0;
1736 }
1737 
1738 static int stm32_adc_dma_request(struct iio_dev *indio_dev)
1739 {
1740 	struct stm32_adc *adc = iio_priv(indio_dev);
1741 	struct dma_slave_config config;
1742 	int ret;
1743 
1744 	adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
1745 	if (!adc->dma_chan)
1746 		return 0;
1747 
1748 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1749 					 STM32_DMA_BUFFER_SIZE,
1750 					 &adc->rx_dma_buf, GFP_KERNEL);
1751 	if (!adc->rx_buf) {
1752 		ret = -ENOMEM;
1753 		goto err_release;
1754 	}
1755 
1756 	/* Configure DMA channel to read data register */
1757 	memset(&config, 0, sizeof(config));
1758 	config.src_addr = (dma_addr_t)adc->common->phys_base;
1759 	config.src_addr += adc->offset + adc->cfg->regs->dr;
1760 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1761 
1762 	ret = dmaengine_slave_config(adc->dma_chan, &config);
1763 	if (ret)
1764 		goto err_free;
1765 
1766 	return 0;
1767 
1768 err_free:
1769 	dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1770 			  adc->rx_buf, adc->rx_dma_buf);
1771 err_release:
1772 	dma_release_channel(adc->dma_chan);
1773 
1774 	return ret;
1775 }
1776 
1777 static int stm32_adc_probe(struct platform_device *pdev)
1778 {
1779 	struct iio_dev *indio_dev;
1780 	struct device *dev = &pdev->dev;
1781 	struct stm32_adc *adc;
1782 	int ret;
1783 
1784 	if (!pdev->dev.of_node)
1785 		return -ENODEV;
1786 
1787 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1788 	if (!indio_dev)
1789 		return -ENOMEM;
1790 
1791 	adc = iio_priv(indio_dev);
1792 	adc->common = dev_get_drvdata(pdev->dev.parent);
1793 	spin_lock_init(&adc->lock);
1794 	init_completion(&adc->completion);
1795 	adc->cfg = (const struct stm32_adc_cfg *)
1796 		of_match_device(dev->driver->of_match_table, dev)->data;
1797 
1798 	indio_dev->name = dev_name(&pdev->dev);
1799 	indio_dev->dev.parent = &pdev->dev;
1800 	indio_dev->dev.of_node = pdev->dev.of_node;
1801 	indio_dev->info = &stm32_adc_iio_info;
1802 	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
1803 
1804 	platform_set_drvdata(pdev, adc);
1805 
1806 	ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1807 	if (ret != 0) {
1808 		dev_err(&pdev->dev, "missing reg property\n");
1809 		return -EINVAL;
1810 	}
1811 
1812 	adc->irq = platform_get_irq(pdev, 0);
1813 	if (adc->irq < 0)
1814 		return adc->irq;
1815 
1816 	ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1817 			       0, pdev->name, adc);
1818 	if (ret) {
1819 		dev_err(&pdev->dev, "failed to request IRQ\n");
1820 		return ret;
1821 	}
1822 
1823 	adc->clk = devm_clk_get(&pdev->dev, NULL);
1824 	if (IS_ERR(adc->clk)) {
1825 		ret = PTR_ERR(adc->clk);
1826 		if (ret == -ENOENT && !adc->cfg->clk_required) {
1827 			adc->clk = NULL;
1828 		} else {
1829 			dev_err(&pdev->dev, "Can't get clock\n");
1830 			return ret;
1831 		}
1832 	}
1833 
1834 	ret = stm32_adc_of_get_resolution(indio_dev);
1835 	if (ret < 0)
1836 		return ret;
1837 
1838 	ret = stm32_adc_chan_of_init(indio_dev);
1839 	if (ret < 0)
1840 		return ret;
1841 
1842 	ret = stm32_adc_dma_request(indio_dev);
1843 	if (ret < 0)
1844 		return ret;
1845 
1846 	ret = iio_triggered_buffer_setup(indio_dev,
1847 					 &iio_pollfunc_store_time,
1848 					 &stm32_adc_trigger_handler,
1849 					 &stm32_adc_buffer_setup_ops);
1850 	if (ret) {
1851 		dev_err(&pdev->dev, "buffer setup failed\n");
1852 		goto err_dma_disable;
1853 	}
1854 
1855 	/* Get stm32-adc-core PM online */
1856 	pm_runtime_get_noresume(dev);
1857 	pm_runtime_set_active(dev);
1858 	pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
1859 	pm_runtime_use_autosuspend(dev);
1860 	pm_runtime_enable(dev);
1861 
1862 	ret = stm32_adc_hw_start(dev);
1863 	if (ret)
1864 		goto err_buffer_cleanup;
1865 
1866 	ret = iio_device_register(indio_dev);
1867 	if (ret) {
1868 		dev_err(&pdev->dev, "iio dev register failed\n");
1869 		goto err_hw_stop;
1870 	}
1871 
1872 	pm_runtime_mark_last_busy(dev);
1873 	pm_runtime_put_autosuspend(dev);
1874 
1875 	return 0;
1876 
1877 err_hw_stop:
1878 	stm32_adc_hw_stop(dev);
1879 
1880 err_buffer_cleanup:
1881 	pm_runtime_disable(dev);
1882 	pm_runtime_set_suspended(dev);
1883 	pm_runtime_put_noidle(dev);
1884 	iio_triggered_buffer_cleanup(indio_dev);
1885 
1886 err_dma_disable:
1887 	if (adc->dma_chan) {
1888 		dma_free_coherent(adc->dma_chan->device->dev,
1889 				  STM32_DMA_BUFFER_SIZE,
1890 				  adc->rx_buf, adc->rx_dma_buf);
1891 		dma_release_channel(adc->dma_chan);
1892 	}
1893 
1894 	return ret;
1895 }
1896 
1897 static int stm32_adc_remove(struct platform_device *pdev)
1898 {
1899 	struct stm32_adc *adc = platform_get_drvdata(pdev);
1900 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1901 
1902 	pm_runtime_get_sync(&pdev->dev);
1903 	iio_device_unregister(indio_dev);
1904 	stm32_adc_hw_stop(&pdev->dev);
1905 	pm_runtime_disable(&pdev->dev);
1906 	pm_runtime_set_suspended(&pdev->dev);
1907 	pm_runtime_put_noidle(&pdev->dev);
1908 	iio_triggered_buffer_cleanup(indio_dev);
1909 	if (adc->dma_chan) {
1910 		dma_free_coherent(adc->dma_chan->device->dev,
1911 				  STM32_DMA_BUFFER_SIZE,
1912 				  adc->rx_buf, adc->rx_dma_buf);
1913 		dma_release_channel(adc->dma_chan);
1914 	}
1915 
1916 	return 0;
1917 }
1918 
1919 #if defined(CONFIG_PM_SLEEP)
1920 static int stm32_adc_suspend(struct device *dev)
1921 {
1922 	struct stm32_adc *adc = dev_get_drvdata(dev);
1923 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1924 
1925 	if (iio_buffer_enabled(indio_dev))
1926 		__stm32_adc_buffer_predisable(indio_dev);
1927 
1928 	return pm_runtime_force_suspend(dev);
1929 }
1930 
1931 static int stm32_adc_resume(struct device *dev)
1932 {
1933 	struct stm32_adc *adc = dev_get_drvdata(dev);
1934 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1935 	int ret;
1936 
1937 	ret = pm_runtime_force_resume(dev);
1938 	if (ret < 0)
1939 		return ret;
1940 
1941 	if (!iio_buffer_enabled(indio_dev))
1942 		return 0;
1943 
1944 	ret = stm32_adc_update_scan_mode(indio_dev,
1945 					 indio_dev->active_scan_mask);
1946 	if (ret < 0)
1947 		return ret;
1948 
1949 	return __stm32_adc_buffer_postenable(indio_dev);
1950 }
1951 #endif
1952 
1953 #if defined(CONFIG_PM)
1954 static int stm32_adc_runtime_suspend(struct device *dev)
1955 {
1956 	return stm32_adc_hw_stop(dev);
1957 }
1958 
1959 static int stm32_adc_runtime_resume(struct device *dev)
1960 {
1961 	return stm32_adc_hw_start(dev);
1962 }
1963 #endif
1964 
1965 static const struct dev_pm_ops stm32_adc_pm_ops = {
1966 	SET_SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
1967 	SET_RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
1968 			   NULL)
1969 };
1970 
1971 static const struct stm32_adc_cfg stm32f4_adc_cfg = {
1972 	.regs = &stm32f4_adc_regspec,
1973 	.adc_info = &stm32f4_adc_info,
1974 	.trigs = stm32f4_adc_trigs,
1975 	.clk_required = true,
1976 	.start_conv = stm32f4_adc_start_conv,
1977 	.stop_conv = stm32f4_adc_stop_conv,
1978 	.smp_cycles = stm32f4_adc_smp_cycles,
1979 };
1980 
1981 static const struct stm32_adc_cfg stm32h7_adc_cfg = {
1982 	.regs = &stm32h7_adc_regspec,
1983 	.adc_info = &stm32h7_adc_info,
1984 	.trigs = stm32h7_adc_trigs,
1985 	.start_conv = stm32h7_adc_start_conv,
1986 	.stop_conv = stm32h7_adc_stop_conv,
1987 	.prepare = stm32h7_adc_prepare,
1988 	.unprepare = stm32h7_adc_unprepare,
1989 	.smp_cycles = stm32h7_adc_smp_cycles,
1990 };
1991 
1992 static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
1993 	.regs = &stm32h7_adc_regspec,
1994 	.adc_info = &stm32h7_adc_info,
1995 	.trigs = stm32h7_adc_trigs,
1996 	.has_vregready = true,
1997 	.start_conv = stm32h7_adc_start_conv,
1998 	.stop_conv = stm32h7_adc_stop_conv,
1999 	.prepare = stm32h7_adc_prepare,
2000 	.unprepare = stm32h7_adc_unprepare,
2001 	.smp_cycles = stm32h7_adc_smp_cycles,
2002 };
2003 
2004 static const struct of_device_id stm32_adc_of_match[] = {
2005 	{ .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2006 	{ .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2007 	{ .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2008 	{},
2009 };
2010 MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2011 
2012 static struct platform_driver stm32_adc_driver = {
2013 	.probe = stm32_adc_probe,
2014 	.remove = stm32_adc_remove,
2015 	.driver = {
2016 		.name = "stm32-adc",
2017 		.of_match_table = stm32_adc_of_match,
2018 		.pm = &stm32_adc_pm_ops,
2019 	},
2020 };
2021 module_platform_driver(stm32_adc_driver);
2022 
2023 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2024 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2025 MODULE_LICENSE("GPL v2");
2026 MODULE_ALIAS("platform:stm32-adc");
2027