xref: /openbmc/linux/drivers/iio/adc/stm32-adc.c (revision c64d01b3ceba873aa8e8605598cec4a6bc6d1601)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is part of STM32 ADC driver
4  *
5  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6  * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/iio/iio.h>
14 #include <linux/iio/buffer.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/iopoll.h>
23 #include <linux/module.h>
24 #include <linux/nvmem-consumer.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 
30 #include "stm32-adc-core.h"
31 
32 /* Number of linear calibration shadow registers / LINCALRDYW control bits */
33 #define STM32H7_LINCALFACT_NUM		6
34 
35 /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
36 #define STM32H7_BOOST_CLKRATE		20000000UL
37 
38 #define STM32_ADC_CH_MAX		20	/* max number of channels */
39 #define STM32_ADC_CH_SZ			16	/* max channel name size */
40 #define STM32_ADC_MAX_SQ		16	/* SQ1..SQ16 */
41 #define STM32_ADC_MAX_SMP		7	/* SMPx range is [0..7] */
42 #define STM32_ADC_TIMEOUT_US		100000
43 #define STM32_ADC_TIMEOUT	(msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
44 #define STM32_ADC_HW_STOP_DELAY_MS	100
45 #define STM32_ADC_VREFINT_VOLTAGE	3300
46 
47 #define STM32_DMA_BUFFER_SIZE		PAGE_SIZE
48 
49 /* External trigger enable */
50 enum stm32_adc_exten {
51 	STM32_EXTEN_SWTRIG,
52 	STM32_EXTEN_HWTRIG_RISING_EDGE,
53 	STM32_EXTEN_HWTRIG_FALLING_EDGE,
54 	STM32_EXTEN_HWTRIG_BOTH_EDGES,
55 };
56 
57 /* extsel - trigger mux selection value */
58 enum stm32_adc_extsel {
59 	STM32_EXT0,
60 	STM32_EXT1,
61 	STM32_EXT2,
62 	STM32_EXT3,
63 	STM32_EXT4,
64 	STM32_EXT5,
65 	STM32_EXT6,
66 	STM32_EXT7,
67 	STM32_EXT8,
68 	STM32_EXT9,
69 	STM32_EXT10,
70 	STM32_EXT11,
71 	STM32_EXT12,
72 	STM32_EXT13,
73 	STM32_EXT14,
74 	STM32_EXT15,
75 	STM32_EXT16,
76 	STM32_EXT17,
77 	STM32_EXT18,
78 	STM32_EXT19,
79 	STM32_EXT20,
80 };
81 
82 enum stm32_adc_int_ch {
83 	STM32_ADC_INT_CH_NONE = -1,
84 	STM32_ADC_INT_CH_VDDCORE,
85 	STM32_ADC_INT_CH_VREFINT,
86 	STM32_ADC_INT_CH_VBAT,
87 	STM32_ADC_INT_CH_NB,
88 };
89 
90 /**
91  * struct stm32_adc_ic - ADC internal channels
92  * @name:	name of the internal channel
93  * @idx:	internal channel enum index
94  */
95 struct stm32_adc_ic {
96 	const char *name;
97 	u32 idx;
98 };
99 
100 static const struct stm32_adc_ic stm32_adc_ic[STM32_ADC_INT_CH_NB] = {
101 	{ "vddcore", STM32_ADC_INT_CH_VDDCORE },
102 	{ "vrefint", STM32_ADC_INT_CH_VREFINT },
103 	{ "vbat", STM32_ADC_INT_CH_VBAT },
104 };
105 
106 /**
107  * struct stm32_adc_trig_info - ADC trigger info
108  * @name:		name of the trigger, corresponding to its source
109  * @extsel:		trigger selection
110  */
111 struct stm32_adc_trig_info {
112 	const char *name;
113 	enum stm32_adc_extsel extsel;
114 };
115 
116 /**
117  * struct stm32_adc_calib - optional adc calibration data
118  * @calfact_s: Calibration offset for single ended channels
119  * @calfact_d: Calibration offset in differential
120  * @lincalfact: Linearity calibration factor
121  * @calibrated: Indicates calibration status
122  */
123 struct stm32_adc_calib {
124 	u32			calfact_s;
125 	u32			calfact_d;
126 	u32			lincalfact[STM32H7_LINCALFACT_NUM];
127 	bool			calibrated;
128 };
129 
130 /**
131  * struct stm32_adc_regs - stm32 ADC misc registers & bitfield desc
132  * @reg:		register offset
133  * @mask:		bitfield mask
134  * @shift:		left shift
135  */
136 struct stm32_adc_regs {
137 	int reg;
138 	int mask;
139 	int shift;
140 };
141 
142 /**
143  * struct stm32_adc_vrefint - stm32 ADC internal reference voltage data
144  * @vrefint_cal:	vrefint calibration value from nvmem
145  * @vrefint_data:	vrefint actual value
146  */
147 struct stm32_adc_vrefint {
148 	u32 vrefint_cal;
149 	u32 vrefint_data;
150 };
151 
152 /**
153  * struct stm32_adc_regspec - stm32 registers definition
154  * @dr:			data register offset
155  * @ier_eoc:		interrupt enable register & eocie bitfield
156  * @ier_ovr:		interrupt enable register & overrun bitfield
157  * @isr_eoc:		interrupt status register & eoc bitfield
158  * @isr_ovr:		interrupt status register & overrun bitfield
159  * @sqr:		reference to sequence registers array
160  * @exten:		trigger control register & bitfield
161  * @extsel:		trigger selection register & bitfield
162  * @res:		resolution selection register & bitfield
163  * @smpr:		smpr1 & smpr2 registers offset array
164  * @smp_bits:		smpr1 & smpr2 index and bitfields
165  * @or_vdd:		option register & vddcore bitfield
166  * @ccr_vbat:		common register & vbat bitfield
167  * @ccr_vref:		common register & vrefint bitfield
168  */
169 struct stm32_adc_regspec {
170 	const u32 dr;
171 	const struct stm32_adc_regs ier_eoc;
172 	const struct stm32_adc_regs ier_ovr;
173 	const struct stm32_adc_regs isr_eoc;
174 	const struct stm32_adc_regs isr_ovr;
175 	const struct stm32_adc_regs *sqr;
176 	const struct stm32_adc_regs exten;
177 	const struct stm32_adc_regs extsel;
178 	const struct stm32_adc_regs res;
179 	const u32 smpr[2];
180 	const struct stm32_adc_regs *smp_bits;
181 	const struct stm32_adc_regs or_vdd;
182 	const struct stm32_adc_regs ccr_vbat;
183 	const struct stm32_adc_regs ccr_vref;
184 };
185 
186 struct stm32_adc;
187 
188 /**
189  * struct stm32_adc_cfg - stm32 compatible configuration data
190  * @regs:		registers descriptions
191  * @adc_info:		per instance input channels definitions
192  * @trigs:		external trigger sources
193  * @clk_required:	clock is required
194  * @has_vregready:	vregready status flag presence
195  * @prepare:		optional prepare routine (power-up, enable)
196  * @start_conv:		routine to start conversions
197  * @stop_conv:		routine to stop conversions
198  * @unprepare:		optional unprepare routine (disable, power-down)
199  * @irq_clear:		routine to clear irqs
200  * @smp_cycles:		programmable sampling time (ADC clock cycles)
201  * @ts_vrefint_ns:	vrefint minimum sampling time in ns
202  */
203 struct stm32_adc_cfg {
204 	const struct stm32_adc_regspec	*regs;
205 	const struct stm32_adc_info	*adc_info;
206 	struct stm32_adc_trig_info	*trigs;
207 	bool clk_required;
208 	bool has_vregready;
209 	int (*prepare)(struct iio_dev *);
210 	void (*start_conv)(struct iio_dev *, bool dma);
211 	void (*stop_conv)(struct iio_dev *);
212 	void (*unprepare)(struct iio_dev *);
213 	void (*irq_clear)(struct iio_dev *indio_dev, u32 msk);
214 	const unsigned int *smp_cycles;
215 	const unsigned int ts_vrefint_ns;
216 };
217 
218 /**
219  * struct stm32_adc - private data of each ADC IIO instance
220  * @common:		reference to ADC block common data
221  * @offset:		ADC instance register offset in ADC block
222  * @cfg:		compatible configuration data
223  * @completion:		end of single conversion completion
224  * @buffer:		data buffer + 8 bytes for timestamp if enabled
225  * @clk:		clock for this adc instance
226  * @irq:		interrupt for this adc instance
227  * @lock:		spinlock
228  * @bufi:		data buffer index
229  * @num_conv:		expected number of scan conversions
230  * @res:		data resolution (e.g. RES bitfield value)
231  * @trigger_polarity:	external trigger polarity (e.g. exten)
232  * @dma_chan:		dma channel
233  * @rx_buf:		dma rx buffer cpu address
234  * @rx_dma_buf:		dma rx buffer bus address
235  * @rx_buf_sz:		dma rx buffer size
236  * @difsel:		bitmask to set single-ended/differential channel
237  * @pcsel:		bitmask to preselect channels on some devices
238  * @smpr_val:		sampling time settings (e.g. smpr1 / smpr2)
239  * @cal:		optional calibration data on some devices
240  * @vrefint:		internal reference voltage data
241  * @chan_name:		channel name array
242  * @num_diff:		number of differential channels
243  * @int_ch:		internal channel indexes array
244  */
245 struct stm32_adc {
246 	struct stm32_adc_common	*common;
247 	u32			offset;
248 	const struct stm32_adc_cfg	*cfg;
249 	struct completion	completion;
250 	u16			buffer[STM32_ADC_MAX_SQ + 4] __aligned(8);
251 	struct clk		*clk;
252 	int			irq;
253 	spinlock_t		lock;		/* interrupt lock */
254 	unsigned int		bufi;
255 	unsigned int		num_conv;
256 	u32			res;
257 	u32			trigger_polarity;
258 	struct dma_chan		*dma_chan;
259 	u8			*rx_buf;
260 	dma_addr_t		rx_dma_buf;
261 	unsigned int		rx_buf_sz;
262 	u32			difsel;
263 	u32			pcsel;
264 	u32			smpr_val[2];
265 	struct stm32_adc_calib	cal;
266 	struct stm32_adc_vrefint vrefint;
267 	char			chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
268 	u32			num_diff;
269 	int			int_ch[STM32_ADC_INT_CH_NB];
270 };
271 
272 struct stm32_adc_diff_channel {
273 	u32 vinp;
274 	u32 vinn;
275 };
276 
277 /**
278  * struct stm32_adc_info - stm32 ADC, per instance config data
279  * @max_channels:	Number of channels
280  * @resolutions:	available resolutions
281  * @num_res:		number of available resolutions
282  */
283 struct stm32_adc_info {
284 	int max_channels;
285 	const unsigned int *resolutions;
286 	const unsigned int num_res;
287 };
288 
289 static const unsigned int stm32f4_adc_resolutions[] = {
290 	/* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
291 	12, 10, 8, 6,
292 };
293 
294 /* stm32f4 can have up to 16 channels */
295 static const struct stm32_adc_info stm32f4_adc_info = {
296 	.max_channels = 16,
297 	.resolutions = stm32f4_adc_resolutions,
298 	.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
299 };
300 
301 static const unsigned int stm32h7_adc_resolutions[] = {
302 	/* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
303 	16, 14, 12, 10, 8,
304 };
305 
306 /* stm32h7 can have up to 20 channels */
307 static const struct stm32_adc_info stm32h7_adc_info = {
308 	.max_channels = STM32_ADC_CH_MAX,
309 	.resolutions = stm32h7_adc_resolutions,
310 	.num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
311 };
312 
313 /*
314  * stm32f4_sq - describe regular sequence registers
315  * - L: sequence len (register & bit field)
316  * - SQ1..SQ16: sequence entries (register & bit field)
317  */
318 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
319 	/* L: len bit field description to be kept as first element */
320 	{ STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
321 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
322 	{ STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
323 	{ STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
324 	{ STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
325 	{ STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
326 	{ STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
327 	{ STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
328 	{ STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
329 	{ STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
330 	{ STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
331 	{ STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
332 	{ STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
333 	{ STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
334 	{ STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
335 	{ STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
336 	{ STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
337 	{ STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
338 };
339 
340 /* STM32F4 external trigger sources for all instances */
341 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
342 	{ TIM1_CH1, STM32_EXT0 },
343 	{ TIM1_CH2, STM32_EXT1 },
344 	{ TIM1_CH3, STM32_EXT2 },
345 	{ TIM2_CH2, STM32_EXT3 },
346 	{ TIM2_CH3, STM32_EXT4 },
347 	{ TIM2_CH4, STM32_EXT5 },
348 	{ TIM2_TRGO, STM32_EXT6 },
349 	{ TIM3_CH1, STM32_EXT7 },
350 	{ TIM3_TRGO, STM32_EXT8 },
351 	{ TIM4_CH4, STM32_EXT9 },
352 	{ TIM5_CH1, STM32_EXT10 },
353 	{ TIM5_CH2, STM32_EXT11 },
354 	{ TIM5_CH3, STM32_EXT12 },
355 	{ TIM8_CH1, STM32_EXT13 },
356 	{ TIM8_TRGO, STM32_EXT14 },
357 	{}, /* sentinel */
358 };
359 
360 /*
361  * stm32f4_smp_bits[] - describe sampling time register index & bit fields
362  * Sorted so it can be indexed by channel number.
363  */
364 static const struct stm32_adc_regs stm32f4_smp_bits[] = {
365 	/* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
366 	{ 1, GENMASK(2, 0), 0 },
367 	{ 1, GENMASK(5, 3), 3 },
368 	{ 1, GENMASK(8, 6), 6 },
369 	{ 1, GENMASK(11, 9), 9 },
370 	{ 1, GENMASK(14, 12), 12 },
371 	{ 1, GENMASK(17, 15), 15 },
372 	{ 1, GENMASK(20, 18), 18 },
373 	{ 1, GENMASK(23, 21), 21 },
374 	{ 1, GENMASK(26, 24), 24 },
375 	{ 1, GENMASK(29, 27), 27 },
376 	/* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
377 	{ 0, GENMASK(2, 0), 0 },
378 	{ 0, GENMASK(5, 3), 3 },
379 	{ 0, GENMASK(8, 6), 6 },
380 	{ 0, GENMASK(11, 9), 9 },
381 	{ 0, GENMASK(14, 12), 12 },
382 	{ 0, GENMASK(17, 15), 15 },
383 	{ 0, GENMASK(20, 18), 18 },
384 	{ 0, GENMASK(23, 21), 21 },
385 	{ 0, GENMASK(26, 24), 24 },
386 };
387 
388 /* STM32F4 programmable sampling time (ADC clock cycles) */
389 static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
390 	3, 15, 28, 56, 84, 112, 144, 480,
391 };
392 
393 static const struct stm32_adc_regspec stm32f4_adc_regspec = {
394 	.dr = STM32F4_ADC_DR,
395 	.ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
396 	.ier_ovr = { STM32F4_ADC_CR1, STM32F4_OVRIE },
397 	.isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
398 	.isr_ovr = { STM32F4_ADC_SR, STM32F4_OVR },
399 	.sqr = stm32f4_sq,
400 	.exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
401 	.extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
402 		    STM32F4_EXTSEL_SHIFT },
403 	.res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
404 	.smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
405 	.smp_bits = stm32f4_smp_bits,
406 };
407 
408 static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
409 	/* L: len bit field description to be kept as first element */
410 	{ STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
411 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
412 	{ STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
413 	{ STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
414 	{ STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
415 	{ STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
416 	{ STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
417 	{ STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
418 	{ STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
419 	{ STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
420 	{ STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
421 	{ STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
422 	{ STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
423 	{ STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
424 	{ STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
425 	{ STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
426 	{ STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
427 	{ STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
428 };
429 
430 /* STM32H7 external trigger sources for all instances */
431 static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
432 	{ TIM1_CH1, STM32_EXT0 },
433 	{ TIM1_CH2, STM32_EXT1 },
434 	{ TIM1_CH3, STM32_EXT2 },
435 	{ TIM2_CH2, STM32_EXT3 },
436 	{ TIM3_TRGO, STM32_EXT4 },
437 	{ TIM4_CH4, STM32_EXT5 },
438 	{ TIM8_TRGO, STM32_EXT7 },
439 	{ TIM8_TRGO2, STM32_EXT8 },
440 	{ TIM1_TRGO, STM32_EXT9 },
441 	{ TIM1_TRGO2, STM32_EXT10 },
442 	{ TIM2_TRGO, STM32_EXT11 },
443 	{ TIM4_TRGO, STM32_EXT12 },
444 	{ TIM6_TRGO, STM32_EXT13 },
445 	{ TIM15_TRGO, STM32_EXT14 },
446 	{ TIM3_CH4, STM32_EXT15 },
447 	{ LPTIM1_OUT, STM32_EXT18 },
448 	{ LPTIM2_OUT, STM32_EXT19 },
449 	{ LPTIM3_OUT, STM32_EXT20 },
450 	{},
451 };
452 
453 /*
454  * stm32h7_smp_bits - describe sampling time register index & bit fields
455  * Sorted so it can be indexed by channel number.
456  */
457 static const struct stm32_adc_regs stm32h7_smp_bits[] = {
458 	/* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
459 	{ 0, GENMASK(2, 0), 0 },
460 	{ 0, GENMASK(5, 3), 3 },
461 	{ 0, GENMASK(8, 6), 6 },
462 	{ 0, GENMASK(11, 9), 9 },
463 	{ 0, GENMASK(14, 12), 12 },
464 	{ 0, GENMASK(17, 15), 15 },
465 	{ 0, GENMASK(20, 18), 18 },
466 	{ 0, GENMASK(23, 21), 21 },
467 	{ 0, GENMASK(26, 24), 24 },
468 	{ 0, GENMASK(29, 27), 27 },
469 	/* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
470 	{ 1, GENMASK(2, 0), 0 },
471 	{ 1, GENMASK(5, 3), 3 },
472 	{ 1, GENMASK(8, 6), 6 },
473 	{ 1, GENMASK(11, 9), 9 },
474 	{ 1, GENMASK(14, 12), 12 },
475 	{ 1, GENMASK(17, 15), 15 },
476 	{ 1, GENMASK(20, 18), 18 },
477 	{ 1, GENMASK(23, 21), 21 },
478 	{ 1, GENMASK(26, 24), 24 },
479 	{ 1, GENMASK(29, 27), 27 },
480 };
481 
482 /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
483 static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
484 	1, 2, 8, 16, 32, 64, 387, 810,
485 };
486 
487 static const struct stm32_adc_regspec stm32h7_adc_regspec = {
488 	.dr = STM32H7_ADC_DR,
489 	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
490 	.ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
491 	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
492 	.isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
493 	.sqr = stm32h7_sq,
494 	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
495 	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
496 		    STM32H7_EXTSEL_SHIFT },
497 	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
498 	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
499 	.smp_bits = stm32h7_smp_bits,
500 };
501 
502 static const struct stm32_adc_regspec stm32mp1_adc_regspec = {
503 	.dr = STM32H7_ADC_DR,
504 	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
505 	.ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
506 	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
507 	.isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
508 	.sqr = stm32h7_sq,
509 	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
510 	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
511 		    STM32H7_EXTSEL_SHIFT },
512 	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
513 	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
514 	.smp_bits = stm32h7_smp_bits,
515 	.or_vdd = { STM32MP1_ADC2_OR, STM32MP1_VDDCOREEN },
516 	.ccr_vbat = { STM32H7_ADC_CCR, STM32H7_VBATEN },
517 	.ccr_vref = { STM32H7_ADC_CCR, STM32H7_VREFEN },
518 };
519 
520 /*
521  * STM32 ADC registers access routines
522  * @adc: stm32 adc instance
523  * @reg: reg offset in adc instance
524  *
525  * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
526  * for adc1, adc2 and adc3.
527  */
528 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
529 {
530 	return readl_relaxed(adc->common->base + adc->offset + reg);
531 }
532 
533 #define stm32_adc_readl_addr(addr)	stm32_adc_readl(adc, addr)
534 
535 #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
536 	readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
537 			   cond, sleep_us, timeout_us)
538 
539 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
540 {
541 	return readw_relaxed(adc->common->base + adc->offset + reg);
542 }
543 
544 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
545 {
546 	writel_relaxed(val, adc->common->base + adc->offset + reg);
547 }
548 
549 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
550 {
551 	unsigned long flags;
552 
553 	spin_lock_irqsave(&adc->lock, flags);
554 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
555 	spin_unlock_irqrestore(&adc->lock, flags);
556 }
557 
558 static void stm32_adc_set_bits_common(struct stm32_adc *adc, u32 reg, u32 bits)
559 {
560 	spin_lock(&adc->common->lock);
561 	writel_relaxed(readl_relaxed(adc->common->base + reg) | bits,
562 		       adc->common->base + reg);
563 	spin_unlock(&adc->common->lock);
564 }
565 
566 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
567 {
568 	unsigned long flags;
569 
570 	spin_lock_irqsave(&adc->lock, flags);
571 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
572 	spin_unlock_irqrestore(&adc->lock, flags);
573 }
574 
575 static void stm32_adc_clr_bits_common(struct stm32_adc *adc, u32 reg, u32 bits)
576 {
577 	spin_lock(&adc->common->lock);
578 	writel_relaxed(readl_relaxed(adc->common->base + reg) & ~bits,
579 		       adc->common->base + reg);
580 	spin_unlock(&adc->common->lock);
581 }
582 
583 /**
584  * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
585  * @adc: stm32 adc instance
586  */
587 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
588 {
589 	stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
590 			   adc->cfg->regs->ier_eoc.mask);
591 };
592 
593 /**
594  * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
595  * @adc: stm32 adc instance
596  */
597 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
598 {
599 	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
600 			   adc->cfg->regs->ier_eoc.mask);
601 }
602 
603 static void stm32_adc_ovr_irq_enable(struct stm32_adc *adc)
604 {
605 	stm32_adc_set_bits(adc, adc->cfg->regs->ier_ovr.reg,
606 			   adc->cfg->regs->ier_ovr.mask);
607 }
608 
609 static void stm32_adc_ovr_irq_disable(struct stm32_adc *adc)
610 {
611 	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_ovr.reg,
612 			   adc->cfg->regs->ier_ovr.mask);
613 }
614 
615 static void stm32_adc_set_res(struct stm32_adc *adc)
616 {
617 	const struct stm32_adc_regs *res = &adc->cfg->regs->res;
618 	u32 val;
619 
620 	val = stm32_adc_readl(adc, res->reg);
621 	val = (val & ~res->mask) | (adc->res << res->shift);
622 	stm32_adc_writel(adc, res->reg, val);
623 }
624 
625 static int stm32_adc_hw_stop(struct device *dev)
626 {
627 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
628 	struct stm32_adc *adc = iio_priv(indio_dev);
629 
630 	if (adc->cfg->unprepare)
631 		adc->cfg->unprepare(indio_dev);
632 
633 	clk_disable_unprepare(adc->clk);
634 
635 	return 0;
636 }
637 
638 static int stm32_adc_hw_start(struct device *dev)
639 {
640 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
641 	struct stm32_adc *adc = iio_priv(indio_dev);
642 	int ret;
643 
644 	ret = clk_prepare_enable(adc->clk);
645 	if (ret)
646 		return ret;
647 
648 	stm32_adc_set_res(adc);
649 
650 	if (adc->cfg->prepare) {
651 		ret = adc->cfg->prepare(indio_dev);
652 		if (ret)
653 			goto err_clk_dis;
654 	}
655 
656 	return 0;
657 
658 err_clk_dis:
659 	clk_disable_unprepare(adc->clk);
660 
661 	return ret;
662 }
663 
664 static void stm32_adc_int_ch_enable(struct iio_dev *indio_dev)
665 {
666 	struct stm32_adc *adc = iio_priv(indio_dev);
667 	u32 i;
668 
669 	for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
670 		if (adc->int_ch[i] == STM32_ADC_INT_CH_NONE)
671 			continue;
672 
673 		switch (i) {
674 		case STM32_ADC_INT_CH_VDDCORE:
675 			dev_dbg(&indio_dev->dev, "Enable VDDCore\n");
676 			stm32_adc_set_bits(adc, adc->cfg->regs->or_vdd.reg,
677 					   adc->cfg->regs->or_vdd.mask);
678 			break;
679 		case STM32_ADC_INT_CH_VREFINT:
680 			dev_dbg(&indio_dev->dev, "Enable VREFInt\n");
681 			stm32_adc_set_bits_common(adc, adc->cfg->regs->ccr_vref.reg,
682 						  adc->cfg->regs->ccr_vref.mask);
683 			break;
684 		case STM32_ADC_INT_CH_VBAT:
685 			dev_dbg(&indio_dev->dev, "Enable VBAT\n");
686 			stm32_adc_set_bits_common(adc, adc->cfg->regs->ccr_vbat.reg,
687 						  adc->cfg->regs->ccr_vbat.mask);
688 			break;
689 		}
690 	}
691 }
692 
693 static void stm32_adc_int_ch_disable(struct stm32_adc *adc)
694 {
695 	u32 i;
696 
697 	for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
698 		if (adc->int_ch[i] == STM32_ADC_INT_CH_NONE)
699 			continue;
700 
701 		switch (i) {
702 		case STM32_ADC_INT_CH_VDDCORE:
703 			stm32_adc_clr_bits(adc, adc->cfg->regs->or_vdd.reg,
704 					   adc->cfg->regs->or_vdd.mask);
705 			break;
706 		case STM32_ADC_INT_CH_VREFINT:
707 			stm32_adc_clr_bits_common(adc, adc->cfg->regs->ccr_vref.reg,
708 						  adc->cfg->regs->ccr_vref.mask);
709 			break;
710 		case STM32_ADC_INT_CH_VBAT:
711 			stm32_adc_clr_bits_common(adc, adc->cfg->regs->ccr_vbat.reg,
712 						  adc->cfg->regs->ccr_vbat.mask);
713 			break;
714 		}
715 	}
716 }
717 
718 /**
719  * stm32f4_adc_start_conv() - Start conversions for regular channels.
720  * @indio_dev: IIO device instance
721  * @dma: use dma to transfer conversion result
722  *
723  * Start conversions for regular channels.
724  * Also take care of normal or DMA mode. Circular DMA may be used for regular
725  * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
726  * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
727  */
728 static void stm32f4_adc_start_conv(struct iio_dev *indio_dev, bool dma)
729 {
730 	struct stm32_adc *adc = iio_priv(indio_dev);
731 
732 	stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
733 
734 	if (dma)
735 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
736 				   STM32F4_DMA | STM32F4_DDS);
737 
738 	stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
739 
740 	/* Wait for Power-up time (tSTAB from datasheet) */
741 	usleep_range(2, 3);
742 
743 	/* Software start ? (e.g. trigger detection disabled ?) */
744 	if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
745 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
746 }
747 
748 static void stm32f4_adc_stop_conv(struct iio_dev *indio_dev)
749 {
750 	struct stm32_adc *adc = iio_priv(indio_dev);
751 
752 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
753 	stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
754 
755 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
756 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
757 			   STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
758 }
759 
760 static void stm32f4_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
761 {
762 	struct stm32_adc *adc = iio_priv(indio_dev);
763 
764 	stm32_adc_clr_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
765 }
766 
767 static void stm32h7_adc_start_conv(struct iio_dev *indio_dev, bool dma)
768 {
769 	struct stm32_adc *adc = iio_priv(indio_dev);
770 	enum stm32h7_adc_dmngt dmngt;
771 	unsigned long flags;
772 	u32 val;
773 
774 	if (dma)
775 		dmngt = STM32H7_DMNGT_DMA_CIRC;
776 	else
777 		dmngt = STM32H7_DMNGT_DR_ONLY;
778 
779 	spin_lock_irqsave(&adc->lock, flags);
780 	val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
781 	val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
782 	stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
783 	spin_unlock_irqrestore(&adc->lock, flags);
784 
785 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
786 }
787 
788 static void stm32h7_adc_stop_conv(struct iio_dev *indio_dev)
789 {
790 	struct stm32_adc *adc = iio_priv(indio_dev);
791 	int ret;
792 	u32 val;
793 
794 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
795 
796 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
797 					   !(val & (STM32H7_ADSTART)),
798 					   100, STM32_ADC_TIMEOUT_US);
799 	if (ret)
800 		dev_warn(&indio_dev->dev, "stop failed\n");
801 
802 	stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
803 }
804 
805 static void stm32h7_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
806 {
807 	struct stm32_adc *adc = iio_priv(indio_dev);
808 	/* On STM32H7 IRQs are cleared by writing 1 into ISR register */
809 	stm32_adc_set_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
810 }
811 
812 static int stm32h7_adc_exit_pwr_down(struct iio_dev *indio_dev)
813 {
814 	struct stm32_adc *adc = iio_priv(indio_dev);
815 	int ret;
816 	u32 val;
817 
818 	/* Exit deep power down, then enable ADC voltage regulator */
819 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
820 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
821 
822 	if (adc->common->rate > STM32H7_BOOST_CLKRATE)
823 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
824 
825 	/* Wait for startup time */
826 	if (!adc->cfg->has_vregready) {
827 		usleep_range(10, 20);
828 		return 0;
829 	}
830 
831 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
832 					   val & STM32MP1_VREGREADY, 100,
833 					   STM32_ADC_TIMEOUT_US);
834 	if (ret) {
835 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
836 		dev_err(&indio_dev->dev, "Failed to exit power down\n");
837 	}
838 
839 	return ret;
840 }
841 
842 static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
843 {
844 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
845 
846 	/* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
847 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
848 }
849 
850 static int stm32h7_adc_enable(struct iio_dev *indio_dev)
851 {
852 	struct stm32_adc *adc = iio_priv(indio_dev);
853 	int ret;
854 	u32 val;
855 
856 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
857 
858 	/* Poll for ADRDY to be set (after adc startup time) */
859 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
860 					   val & STM32H7_ADRDY,
861 					   100, STM32_ADC_TIMEOUT_US);
862 	if (ret) {
863 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
864 		dev_err(&indio_dev->dev, "Failed to enable ADC\n");
865 	} else {
866 		/* Clear ADRDY by writing one */
867 		stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
868 	}
869 
870 	return ret;
871 }
872 
873 static void stm32h7_adc_disable(struct iio_dev *indio_dev)
874 {
875 	struct stm32_adc *adc = iio_priv(indio_dev);
876 	int ret;
877 	u32 val;
878 
879 	/* Disable ADC and wait until it's effectively disabled */
880 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
881 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
882 					   !(val & STM32H7_ADEN), 100,
883 					   STM32_ADC_TIMEOUT_US);
884 	if (ret)
885 		dev_warn(&indio_dev->dev, "Failed to disable\n");
886 }
887 
888 /**
889  * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
890  * @indio_dev: IIO device instance
891  * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
892  */
893 static int stm32h7_adc_read_selfcalib(struct iio_dev *indio_dev)
894 {
895 	struct stm32_adc *adc = iio_priv(indio_dev);
896 	int i, ret;
897 	u32 lincalrdyw_mask, val;
898 
899 	/* Read linearity calibration */
900 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
901 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
902 		/* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
903 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
904 
905 		/* Poll: wait calib data to be ready in CALFACT2 register */
906 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
907 						   !(val & lincalrdyw_mask),
908 						   100, STM32_ADC_TIMEOUT_US);
909 		if (ret) {
910 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
911 			return ret;
912 		}
913 
914 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
915 		adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
916 		adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
917 
918 		lincalrdyw_mask >>= 1;
919 	}
920 
921 	/* Read offset calibration */
922 	val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
923 	adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
924 	adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
925 	adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
926 	adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
927 	adc->cal.calibrated = true;
928 
929 	return 0;
930 }
931 
932 /**
933  * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
934  * @indio_dev: IIO device instance
935  * Note: ADC must be enabled, with no on-going conversions.
936  */
937 static int stm32h7_adc_restore_selfcalib(struct iio_dev *indio_dev)
938 {
939 	struct stm32_adc *adc = iio_priv(indio_dev);
940 	int i, ret;
941 	u32 lincalrdyw_mask, val;
942 
943 	val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
944 		(adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
945 	stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
946 
947 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
948 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
949 		/*
950 		 * Write saved calibration data to shadow registers:
951 		 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
952 		 * data write. Then poll to wait for complete transfer.
953 		 */
954 		val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
955 		stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
956 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
957 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
958 						   val & lincalrdyw_mask,
959 						   100, STM32_ADC_TIMEOUT_US);
960 		if (ret) {
961 			dev_err(&indio_dev->dev, "Failed to write calfact\n");
962 			return ret;
963 		}
964 
965 		/*
966 		 * Read back calibration data, has two effects:
967 		 * - It ensures bits LINCALRDYW[6..1] are kept cleared
968 		 *   for next time calibration needs to be restored.
969 		 * - BTW, bit clear triggers a read, then check data has been
970 		 *   correctly written.
971 		 */
972 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
973 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
974 						   !(val & lincalrdyw_mask),
975 						   100, STM32_ADC_TIMEOUT_US);
976 		if (ret) {
977 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
978 			return ret;
979 		}
980 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
981 		if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
982 			dev_err(&indio_dev->dev, "calfact not consistent\n");
983 			return -EIO;
984 		}
985 
986 		lincalrdyw_mask >>= 1;
987 	}
988 
989 	return 0;
990 }
991 
992 /*
993  * Fixed timeout value for ADC calibration.
994  * worst cases:
995  * - low clock frequency
996  * - maximum prescalers
997  * Calibration requires:
998  * - 131,072 ADC clock cycle for the linear calibration
999  * - 20 ADC clock cycle for the offset calibration
1000  *
1001  * Set to 100ms for now
1002  */
1003 #define STM32H7_ADC_CALIB_TIMEOUT_US		100000
1004 
1005 /**
1006  * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
1007  * @indio_dev: IIO device instance
1008  * Note: Must be called once ADC is out of power down.
1009  */
1010 static int stm32h7_adc_selfcalib(struct iio_dev *indio_dev)
1011 {
1012 	struct stm32_adc *adc = iio_priv(indio_dev);
1013 	int ret;
1014 	u32 val;
1015 
1016 	if (adc->cal.calibrated)
1017 		return true;
1018 
1019 	/*
1020 	 * Select calibration mode:
1021 	 * - Offset calibration for single ended inputs
1022 	 * - No linearity calibration (do it later, before reading it)
1023 	 */
1024 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
1025 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
1026 
1027 	/* Start calibration, then wait for completion */
1028 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
1029 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1030 					   !(val & STM32H7_ADCAL), 100,
1031 					   STM32H7_ADC_CALIB_TIMEOUT_US);
1032 	if (ret) {
1033 		dev_err(&indio_dev->dev, "calibration failed\n");
1034 		goto out;
1035 	}
1036 
1037 	/*
1038 	 * Select calibration mode, then start calibration:
1039 	 * - Offset calibration for differential input
1040 	 * - Linearity calibration (needs to be done only once for single/diff)
1041 	 *   will run simultaneously with offset calibration.
1042 	 */
1043 	stm32_adc_set_bits(adc, STM32H7_ADC_CR,
1044 			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
1045 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
1046 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1047 					   !(val & STM32H7_ADCAL), 100,
1048 					   STM32H7_ADC_CALIB_TIMEOUT_US);
1049 	if (ret) {
1050 		dev_err(&indio_dev->dev, "calibration failed\n");
1051 		goto out;
1052 	}
1053 
1054 out:
1055 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
1056 			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
1057 
1058 	return ret;
1059 }
1060 
1061 /**
1062  * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
1063  * @indio_dev: IIO device instance
1064  * Leave power down mode.
1065  * Configure channels as single ended or differential before enabling ADC.
1066  * Enable ADC.
1067  * Restore calibration data.
1068  * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
1069  * - Only one input is selected for single ended (e.g. 'vinp')
1070  * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
1071  */
1072 static int stm32h7_adc_prepare(struct iio_dev *indio_dev)
1073 {
1074 	struct stm32_adc *adc = iio_priv(indio_dev);
1075 	int calib, ret;
1076 
1077 	ret = stm32h7_adc_exit_pwr_down(indio_dev);
1078 	if (ret)
1079 		return ret;
1080 
1081 	ret = stm32h7_adc_selfcalib(indio_dev);
1082 	if (ret < 0)
1083 		goto pwr_dwn;
1084 	calib = ret;
1085 
1086 	stm32_adc_int_ch_enable(indio_dev);
1087 
1088 	stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
1089 
1090 	ret = stm32h7_adc_enable(indio_dev);
1091 	if (ret)
1092 		goto ch_disable;
1093 
1094 	/* Either restore or read calibration result for future reference */
1095 	if (calib)
1096 		ret = stm32h7_adc_restore_selfcalib(indio_dev);
1097 	else
1098 		ret = stm32h7_adc_read_selfcalib(indio_dev);
1099 	if (ret)
1100 		goto disable;
1101 
1102 	stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
1103 
1104 	return 0;
1105 
1106 disable:
1107 	stm32h7_adc_disable(indio_dev);
1108 ch_disable:
1109 	stm32_adc_int_ch_disable(adc);
1110 pwr_dwn:
1111 	stm32h7_adc_enter_pwr_down(adc);
1112 
1113 	return ret;
1114 }
1115 
1116 static void stm32h7_adc_unprepare(struct iio_dev *indio_dev)
1117 {
1118 	struct stm32_adc *adc = iio_priv(indio_dev);
1119 
1120 	stm32h7_adc_disable(indio_dev);
1121 	stm32_adc_int_ch_disable(adc);
1122 	stm32h7_adc_enter_pwr_down(adc);
1123 }
1124 
1125 /**
1126  * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
1127  * @indio_dev: IIO device
1128  * @scan_mask: channels to be converted
1129  *
1130  * Conversion sequence :
1131  * Apply sampling time settings for all channels.
1132  * Configure ADC scan sequence based on selected channels in scan_mask.
1133  * Add channels to SQR registers, from scan_mask LSB to MSB, then
1134  * program sequence len.
1135  */
1136 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
1137 				   const unsigned long *scan_mask)
1138 {
1139 	struct stm32_adc *adc = iio_priv(indio_dev);
1140 	const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
1141 	const struct iio_chan_spec *chan;
1142 	u32 val, bit;
1143 	int i = 0;
1144 
1145 	/* Apply sampling time settings */
1146 	stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
1147 	stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
1148 
1149 	for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
1150 		chan = indio_dev->channels + bit;
1151 		/*
1152 		 * Assign one channel per SQ entry in regular
1153 		 * sequence, starting with SQ1.
1154 		 */
1155 		i++;
1156 		if (i > STM32_ADC_MAX_SQ)
1157 			return -EINVAL;
1158 
1159 		dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
1160 			__func__, chan->channel, i);
1161 
1162 		val = stm32_adc_readl(adc, sqr[i].reg);
1163 		val &= ~sqr[i].mask;
1164 		val |= chan->channel << sqr[i].shift;
1165 		stm32_adc_writel(adc, sqr[i].reg, val);
1166 	}
1167 
1168 	if (!i)
1169 		return -EINVAL;
1170 
1171 	/* Sequence len */
1172 	val = stm32_adc_readl(adc, sqr[0].reg);
1173 	val &= ~sqr[0].mask;
1174 	val |= ((i - 1) << sqr[0].shift);
1175 	stm32_adc_writel(adc, sqr[0].reg, val);
1176 
1177 	return 0;
1178 }
1179 
1180 /**
1181  * stm32_adc_get_trig_extsel() - Get external trigger selection
1182  * @indio_dev: IIO device structure
1183  * @trig: trigger
1184  *
1185  * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1186  */
1187 static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1188 				     struct iio_trigger *trig)
1189 {
1190 	struct stm32_adc *adc = iio_priv(indio_dev);
1191 	int i;
1192 
1193 	/* lookup triggers registered by stm32 timer trigger driver */
1194 	for (i = 0; adc->cfg->trigs[i].name; i++) {
1195 		/**
1196 		 * Checking both stm32 timer trigger type and trig name
1197 		 * should be safe against arbitrary trigger names.
1198 		 */
1199 		if ((is_stm32_timer_trigger(trig) ||
1200 		     is_stm32_lptim_trigger(trig)) &&
1201 		    !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1202 			return adc->cfg->trigs[i].extsel;
1203 		}
1204 	}
1205 
1206 	return -EINVAL;
1207 }
1208 
1209 /**
1210  * stm32_adc_set_trig() - Set a regular trigger
1211  * @indio_dev: IIO device
1212  * @trig: IIO trigger
1213  *
1214  * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1215  * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1216  * - if HW trigger enabled, set source & polarity
1217  */
1218 static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1219 			      struct iio_trigger *trig)
1220 {
1221 	struct stm32_adc *adc = iio_priv(indio_dev);
1222 	u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1223 	unsigned long flags;
1224 	int ret;
1225 
1226 	if (trig) {
1227 		ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1228 		if (ret < 0)
1229 			return ret;
1230 
1231 		/* set trigger source and polarity (default to rising edge) */
1232 		extsel = ret;
1233 		exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1234 	}
1235 
1236 	spin_lock_irqsave(&adc->lock, flags);
1237 	val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1238 	val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1239 	val |= exten << adc->cfg->regs->exten.shift;
1240 	val |= extsel << adc->cfg->regs->extsel.shift;
1241 	stm32_adc_writel(adc,  adc->cfg->regs->exten.reg, val);
1242 	spin_unlock_irqrestore(&adc->lock, flags);
1243 
1244 	return 0;
1245 }
1246 
1247 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1248 				  const struct iio_chan_spec *chan,
1249 				  unsigned int type)
1250 {
1251 	struct stm32_adc *adc = iio_priv(indio_dev);
1252 
1253 	adc->trigger_polarity = type;
1254 
1255 	return 0;
1256 }
1257 
1258 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1259 				  const struct iio_chan_spec *chan)
1260 {
1261 	struct stm32_adc *adc = iio_priv(indio_dev);
1262 
1263 	return adc->trigger_polarity;
1264 }
1265 
1266 static const char * const stm32_trig_pol_items[] = {
1267 	"rising-edge", "falling-edge", "both-edges",
1268 };
1269 
1270 static const struct iio_enum stm32_adc_trig_pol = {
1271 	.items = stm32_trig_pol_items,
1272 	.num_items = ARRAY_SIZE(stm32_trig_pol_items),
1273 	.get = stm32_adc_get_trig_pol,
1274 	.set = stm32_adc_set_trig_pol,
1275 };
1276 
1277 /**
1278  * stm32_adc_single_conv() - Performs a single conversion
1279  * @indio_dev: IIO device
1280  * @chan: IIO channel
1281  * @res: conversion result
1282  *
1283  * The function performs a single conversion on a given channel:
1284  * - Apply sampling time settings
1285  * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1286  * - Use SW trigger
1287  * - Start conversion, then wait for interrupt completion.
1288  */
1289 static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1290 				 const struct iio_chan_spec *chan,
1291 				 int *res)
1292 {
1293 	struct stm32_adc *adc = iio_priv(indio_dev);
1294 	struct device *dev = indio_dev->dev.parent;
1295 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1296 	long timeout;
1297 	u32 val;
1298 	int ret;
1299 
1300 	reinit_completion(&adc->completion);
1301 
1302 	adc->bufi = 0;
1303 
1304 	ret = pm_runtime_resume_and_get(dev);
1305 	if (ret < 0)
1306 		return ret;
1307 
1308 	/* Apply sampling time settings */
1309 	stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1310 	stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1311 
1312 	/* Program chan number in regular sequence (SQ1) */
1313 	val = stm32_adc_readl(adc, regs->sqr[1].reg);
1314 	val &= ~regs->sqr[1].mask;
1315 	val |= chan->channel << regs->sqr[1].shift;
1316 	stm32_adc_writel(adc, regs->sqr[1].reg, val);
1317 
1318 	/* Set regular sequence len (0 for 1 conversion) */
1319 	stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1320 
1321 	/* Trigger detection disabled (conversion can be launched in SW) */
1322 	stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1323 
1324 	stm32_adc_conv_irq_enable(adc);
1325 
1326 	adc->cfg->start_conv(indio_dev, false);
1327 
1328 	timeout = wait_for_completion_interruptible_timeout(
1329 					&adc->completion, STM32_ADC_TIMEOUT);
1330 	if (timeout == 0) {
1331 		ret = -ETIMEDOUT;
1332 	} else if (timeout < 0) {
1333 		ret = timeout;
1334 	} else {
1335 		*res = adc->buffer[0];
1336 		ret = IIO_VAL_INT;
1337 	}
1338 
1339 	adc->cfg->stop_conv(indio_dev);
1340 
1341 	stm32_adc_conv_irq_disable(adc);
1342 
1343 	pm_runtime_mark_last_busy(dev);
1344 	pm_runtime_put_autosuspend(dev);
1345 
1346 	return ret;
1347 }
1348 
1349 static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1350 			      struct iio_chan_spec const *chan,
1351 			      int *val, int *val2, long mask)
1352 {
1353 	struct stm32_adc *adc = iio_priv(indio_dev);
1354 	int ret;
1355 
1356 	switch (mask) {
1357 	case IIO_CHAN_INFO_RAW:
1358 	case IIO_CHAN_INFO_PROCESSED:
1359 		ret = iio_device_claim_direct_mode(indio_dev);
1360 		if (ret)
1361 			return ret;
1362 		if (chan->type == IIO_VOLTAGE)
1363 			ret = stm32_adc_single_conv(indio_dev, chan, val);
1364 		else
1365 			ret = -EINVAL;
1366 
1367 		if (mask == IIO_CHAN_INFO_PROCESSED && adc->vrefint.vrefint_cal)
1368 			*val = STM32_ADC_VREFINT_VOLTAGE * adc->vrefint.vrefint_cal / *val;
1369 
1370 		iio_device_release_direct_mode(indio_dev);
1371 		return ret;
1372 
1373 	case IIO_CHAN_INFO_SCALE:
1374 		if (chan->differential) {
1375 			*val = adc->common->vref_mv * 2;
1376 			*val2 = chan->scan_type.realbits;
1377 		} else {
1378 			*val = adc->common->vref_mv;
1379 			*val2 = chan->scan_type.realbits;
1380 		}
1381 		return IIO_VAL_FRACTIONAL_LOG2;
1382 
1383 	case IIO_CHAN_INFO_OFFSET:
1384 		if (chan->differential)
1385 			/* ADC_full_scale / 2 */
1386 			*val = -((1 << chan->scan_type.realbits) / 2);
1387 		else
1388 			*val = 0;
1389 		return IIO_VAL_INT;
1390 
1391 	default:
1392 		return -EINVAL;
1393 	}
1394 }
1395 
1396 static void stm32_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
1397 {
1398 	struct stm32_adc *adc = iio_priv(indio_dev);
1399 
1400 	adc->cfg->irq_clear(indio_dev, msk);
1401 }
1402 
1403 static irqreturn_t stm32_adc_threaded_isr(int irq, void *data)
1404 {
1405 	struct iio_dev *indio_dev = data;
1406 	struct stm32_adc *adc = iio_priv(indio_dev);
1407 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1408 	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1409 	u32 mask = stm32_adc_readl(adc, regs->ier_eoc.reg);
1410 
1411 	/* Check ovr status right now, as ovr mask should be already disabled */
1412 	if (status & regs->isr_ovr.mask) {
1413 		/*
1414 		 * Clear ovr bit to avoid subsequent calls to IRQ handler.
1415 		 * This requires to stop ADC first. OVR bit state in ISR,
1416 		 * is propaged to CSR register by hardware.
1417 		 */
1418 		adc->cfg->stop_conv(indio_dev);
1419 		stm32_adc_irq_clear(indio_dev, regs->isr_ovr.mask);
1420 		dev_err(&indio_dev->dev, "Overrun, stopping: restart needed\n");
1421 		return IRQ_HANDLED;
1422 	}
1423 
1424 	if (!(status & mask))
1425 		dev_err_ratelimited(&indio_dev->dev,
1426 				    "Unexpected IRQ: IER=0x%08x, ISR=0x%08x\n",
1427 				    mask, status);
1428 
1429 	return IRQ_NONE;
1430 }
1431 
1432 static irqreturn_t stm32_adc_isr(int irq, void *data)
1433 {
1434 	struct iio_dev *indio_dev = data;
1435 	struct stm32_adc *adc = iio_priv(indio_dev);
1436 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1437 	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1438 	u32 mask = stm32_adc_readl(adc, regs->ier_eoc.reg);
1439 
1440 	if (!(status & mask))
1441 		return IRQ_WAKE_THREAD;
1442 
1443 	if (status & regs->isr_ovr.mask) {
1444 		/*
1445 		 * Overrun occurred on regular conversions: data for wrong
1446 		 * channel may be read. Unconditionally disable interrupts
1447 		 * to stop processing data and print error message.
1448 		 * Restarting the capture can be done by disabling, then
1449 		 * re-enabling it (e.g. write 0, then 1 to buffer/enable).
1450 		 */
1451 		stm32_adc_ovr_irq_disable(adc);
1452 		stm32_adc_conv_irq_disable(adc);
1453 		return IRQ_WAKE_THREAD;
1454 	}
1455 
1456 	if (status & regs->isr_eoc.mask) {
1457 		/* Reading DR also clears EOC status flag */
1458 		adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1459 		if (iio_buffer_enabled(indio_dev)) {
1460 			adc->bufi++;
1461 			if (adc->bufi >= adc->num_conv) {
1462 				stm32_adc_conv_irq_disable(adc);
1463 				iio_trigger_poll(indio_dev->trig);
1464 			}
1465 		} else {
1466 			complete(&adc->completion);
1467 		}
1468 		return IRQ_HANDLED;
1469 	}
1470 
1471 	return IRQ_NONE;
1472 }
1473 
1474 /**
1475  * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1476  * @indio_dev: IIO device
1477  * @trig: new trigger
1478  *
1479  * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1480  * driver, -EINVAL otherwise.
1481  */
1482 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1483 				      struct iio_trigger *trig)
1484 {
1485 	return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1486 }
1487 
1488 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1489 {
1490 	struct stm32_adc *adc = iio_priv(indio_dev);
1491 	unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1492 	unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1493 
1494 	/*
1495 	 * dma cyclic transfers are used, buffer is split into two periods.
1496 	 * There should be :
1497 	 * - always one buffer (period) dma is working on
1498 	 * - one buffer (period) driver can push data.
1499 	 */
1500 	watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1501 	adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1502 
1503 	return 0;
1504 }
1505 
1506 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1507 				      const unsigned long *scan_mask)
1508 {
1509 	struct stm32_adc *adc = iio_priv(indio_dev);
1510 	struct device *dev = indio_dev->dev.parent;
1511 	int ret;
1512 
1513 	ret = pm_runtime_resume_and_get(dev);
1514 	if (ret < 0)
1515 		return ret;
1516 
1517 	adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1518 
1519 	ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1520 	pm_runtime_mark_last_busy(dev);
1521 	pm_runtime_put_autosuspend(dev);
1522 
1523 	return ret;
1524 }
1525 
1526 static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1527 			      const struct of_phandle_args *iiospec)
1528 {
1529 	int i;
1530 
1531 	for (i = 0; i < indio_dev->num_channels; i++)
1532 		if (indio_dev->channels[i].channel == iiospec->args[0])
1533 			return i;
1534 
1535 	return -EINVAL;
1536 }
1537 
1538 /**
1539  * stm32_adc_debugfs_reg_access - read or write register value
1540  * @indio_dev: IIO device structure
1541  * @reg: register offset
1542  * @writeval: value to write
1543  * @readval: value to read
1544  *
1545  * To read a value from an ADC register:
1546  *   echo [ADC reg offset] > direct_reg_access
1547  *   cat direct_reg_access
1548  *
1549  * To write a value in a ADC register:
1550  *   echo [ADC_reg_offset] [value] > direct_reg_access
1551  */
1552 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1553 					unsigned reg, unsigned writeval,
1554 					unsigned *readval)
1555 {
1556 	struct stm32_adc *adc = iio_priv(indio_dev);
1557 	struct device *dev = indio_dev->dev.parent;
1558 	int ret;
1559 
1560 	ret = pm_runtime_resume_and_get(dev);
1561 	if (ret < 0)
1562 		return ret;
1563 
1564 	if (!readval)
1565 		stm32_adc_writel(adc, reg, writeval);
1566 	else
1567 		*readval = stm32_adc_readl(adc, reg);
1568 
1569 	pm_runtime_mark_last_busy(dev);
1570 	pm_runtime_put_autosuspend(dev);
1571 
1572 	return 0;
1573 }
1574 
1575 static const struct iio_info stm32_adc_iio_info = {
1576 	.read_raw = stm32_adc_read_raw,
1577 	.validate_trigger = stm32_adc_validate_trigger,
1578 	.hwfifo_set_watermark = stm32_adc_set_watermark,
1579 	.update_scan_mode = stm32_adc_update_scan_mode,
1580 	.debugfs_reg_access = stm32_adc_debugfs_reg_access,
1581 	.of_xlate = stm32_adc_of_xlate,
1582 };
1583 
1584 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1585 {
1586 	struct dma_tx_state state;
1587 	enum dma_status status;
1588 
1589 	status = dmaengine_tx_status(adc->dma_chan,
1590 				     adc->dma_chan->cookie,
1591 				     &state);
1592 	if (status == DMA_IN_PROGRESS) {
1593 		/* Residue is size in bytes from end of buffer */
1594 		unsigned int i = adc->rx_buf_sz - state.residue;
1595 		unsigned int size;
1596 
1597 		/* Return available bytes */
1598 		if (i >= adc->bufi)
1599 			size = i - adc->bufi;
1600 		else
1601 			size = adc->rx_buf_sz + i - adc->bufi;
1602 
1603 		return size;
1604 	}
1605 
1606 	return 0;
1607 }
1608 
1609 static void stm32_adc_dma_buffer_done(void *data)
1610 {
1611 	struct iio_dev *indio_dev = data;
1612 	struct stm32_adc *adc = iio_priv(indio_dev);
1613 	int residue = stm32_adc_dma_residue(adc);
1614 
1615 	/*
1616 	 * In DMA mode the trigger services of IIO are not used
1617 	 * (e.g. no call to iio_trigger_poll).
1618 	 * Calling irq handler associated to the hardware trigger is not
1619 	 * relevant as the conversions have already been done. Data
1620 	 * transfers are performed directly in DMA callback instead.
1621 	 * This implementation avoids to call trigger irq handler that
1622 	 * may sleep, in an atomic context (DMA irq handler context).
1623 	 */
1624 	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1625 
1626 	while (residue >= indio_dev->scan_bytes) {
1627 		u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1628 
1629 		iio_push_to_buffers(indio_dev, buffer);
1630 
1631 		residue -= indio_dev->scan_bytes;
1632 		adc->bufi += indio_dev->scan_bytes;
1633 		if (adc->bufi >= adc->rx_buf_sz)
1634 			adc->bufi = 0;
1635 	}
1636 }
1637 
1638 static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1639 {
1640 	struct stm32_adc *adc = iio_priv(indio_dev);
1641 	struct dma_async_tx_descriptor *desc;
1642 	dma_cookie_t cookie;
1643 	int ret;
1644 
1645 	if (!adc->dma_chan)
1646 		return 0;
1647 
1648 	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1649 		adc->rx_buf_sz, adc->rx_buf_sz / 2);
1650 
1651 	/* Prepare a DMA cyclic transaction */
1652 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1653 					 adc->rx_dma_buf,
1654 					 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1655 					 DMA_DEV_TO_MEM,
1656 					 DMA_PREP_INTERRUPT);
1657 	if (!desc)
1658 		return -EBUSY;
1659 
1660 	desc->callback = stm32_adc_dma_buffer_done;
1661 	desc->callback_param = indio_dev;
1662 
1663 	cookie = dmaengine_submit(desc);
1664 	ret = dma_submit_error(cookie);
1665 	if (ret) {
1666 		dmaengine_terminate_sync(adc->dma_chan);
1667 		return ret;
1668 	}
1669 
1670 	/* Issue pending DMA requests */
1671 	dma_async_issue_pending(adc->dma_chan);
1672 
1673 	return 0;
1674 }
1675 
1676 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1677 {
1678 	struct stm32_adc *adc = iio_priv(indio_dev);
1679 	struct device *dev = indio_dev->dev.parent;
1680 	int ret;
1681 
1682 	ret = pm_runtime_resume_and_get(dev);
1683 	if (ret < 0)
1684 		return ret;
1685 
1686 	ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1687 	if (ret) {
1688 		dev_err(&indio_dev->dev, "Can't set trigger\n");
1689 		goto err_pm_put;
1690 	}
1691 
1692 	ret = stm32_adc_dma_start(indio_dev);
1693 	if (ret) {
1694 		dev_err(&indio_dev->dev, "Can't start dma\n");
1695 		goto err_clr_trig;
1696 	}
1697 
1698 	/* Reset adc buffer index */
1699 	adc->bufi = 0;
1700 
1701 	stm32_adc_ovr_irq_enable(adc);
1702 
1703 	if (!adc->dma_chan)
1704 		stm32_adc_conv_irq_enable(adc);
1705 
1706 	adc->cfg->start_conv(indio_dev, !!adc->dma_chan);
1707 
1708 	return 0;
1709 
1710 err_clr_trig:
1711 	stm32_adc_set_trig(indio_dev, NULL);
1712 err_pm_put:
1713 	pm_runtime_mark_last_busy(dev);
1714 	pm_runtime_put_autosuspend(dev);
1715 
1716 	return ret;
1717 }
1718 
1719 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1720 {
1721 	struct stm32_adc *adc = iio_priv(indio_dev);
1722 	struct device *dev = indio_dev->dev.parent;
1723 
1724 	adc->cfg->stop_conv(indio_dev);
1725 	if (!adc->dma_chan)
1726 		stm32_adc_conv_irq_disable(adc);
1727 
1728 	stm32_adc_ovr_irq_disable(adc);
1729 
1730 	if (adc->dma_chan)
1731 		dmaengine_terminate_sync(adc->dma_chan);
1732 
1733 	if (stm32_adc_set_trig(indio_dev, NULL))
1734 		dev_err(&indio_dev->dev, "Can't clear trigger\n");
1735 
1736 	pm_runtime_mark_last_busy(dev);
1737 	pm_runtime_put_autosuspend(dev);
1738 
1739 	return 0;
1740 }
1741 
1742 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1743 	.postenable = &stm32_adc_buffer_postenable,
1744 	.predisable = &stm32_adc_buffer_predisable,
1745 };
1746 
1747 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1748 {
1749 	struct iio_poll_func *pf = p;
1750 	struct iio_dev *indio_dev = pf->indio_dev;
1751 	struct stm32_adc *adc = iio_priv(indio_dev);
1752 
1753 	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1754 
1755 	/* reset buffer index */
1756 	adc->bufi = 0;
1757 	iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1758 					   pf->timestamp);
1759 	iio_trigger_notify_done(indio_dev->trig);
1760 
1761 	/* re-enable eoc irq */
1762 	stm32_adc_conv_irq_enable(adc);
1763 
1764 	return IRQ_HANDLED;
1765 }
1766 
1767 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1768 	IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1769 	{
1770 		.name = "trigger_polarity_available",
1771 		.shared = IIO_SHARED_BY_ALL,
1772 		.read = iio_enum_available_read,
1773 		.private = (uintptr_t)&stm32_adc_trig_pol,
1774 	},
1775 	{},
1776 };
1777 
1778 static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1779 {
1780 	struct device_node *node = indio_dev->dev.of_node;
1781 	struct stm32_adc *adc = iio_priv(indio_dev);
1782 	unsigned int i;
1783 	u32 res;
1784 
1785 	if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1786 		res = adc->cfg->adc_info->resolutions[0];
1787 
1788 	for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1789 		if (res == adc->cfg->adc_info->resolutions[i])
1790 			break;
1791 	if (i >= adc->cfg->adc_info->num_res) {
1792 		dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1793 		return -EINVAL;
1794 	}
1795 
1796 	dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1797 	adc->res = i;
1798 
1799 	return 0;
1800 }
1801 
1802 static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1803 {
1804 	const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1805 	u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1806 	unsigned int smp, r = smpr->reg;
1807 
1808 	/*
1809 	 * For vrefint channel, ensure that the sampling time cannot
1810 	 * be lower than the one specified in the datasheet
1811 	 */
1812 	if (channel == adc->int_ch[STM32_ADC_INT_CH_VREFINT])
1813 		smp_ns = max(smp_ns, adc->cfg->ts_vrefint_ns);
1814 
1815 	/* Determine sampling time (ADC clock cycles) */
1816 	period_ns = NSEC_PER_SEC / adc->common->rate;
1817 	for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1818 		if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1819 			break;
1820 	if (smp > STM32_ADC_MAX_SMP)
1821 		smp = STM32_ADC_MAX_SMP;
1822 
1823 	/* pre-build sampling time registers (e.g. smpr1, smpr2) */
1824 	adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1825 }
1826 
1827 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1828 				    struct iio_chan_spec *chan, u32 vinp,
1829 				    u32 vinn, int scan_index, bool differential)
1830 {
1831 	struct stm32_adc *adc = iio_priv(indio_dev);
1832 	char *name = adc->chan_name[vinp];
1833 
1834 	chan->type = IIO_VOLTAGE;
1835 	chan->channel = vinp;
1836 	if (differential) {
1837 		chan->differential = 1;
1838 		chan->channel2 = vinn;
1839 		snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1840 	} else {
1841 		snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1842 	}
1843 	chan->datasheet_name = name;
1844 	chan->scan_index = scan_index;
1845 	chan->indexed = 1;
1846 	if (chan->channel == adc->int_ch[STM32_ADC_INT_CH_VREFINT])
1847 		chan->info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED);
1848 	else
1849 		chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1850 	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1851 					 BIT(IIO_CHAN_INFO_OFFSET);
1852 	chan->scan_type.sign = 'u';
1853 	chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1854 	chan->scan_type.storagebits = 16;
1855 	chan->ext_info = stm32_adc_ext_info;
1856 
1857 	/* pre-build selected channels mask */
1858 	adc->pcsel |= BIT(chan->channel);
1859 	if (differential) {
1860 		/* pre-build diff channels mask */
1861 		adc->difsel |= BIT(chan->channel);
1862 		/* Also add negative input to pre-selected channels */
1863 		adc->pcsel |= BIT(chan->channel2);
1864 	}
1865 }
1866 
1867 static int stm32_adc_get_legacy_chan_count(struct iio_dev *indio_dev, struct stm32_adc *adc)
1868 {
1869 	struct device_node *node = indio_dev->dev.of_node;
1870 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1871 	int num_channels = 0, ret;
1872 
1873 	ret = of_property_count_u32_elems(node, "st,adc-channels");
1874 	if (ret > adc_info->max_channels) {
1875 		dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1876 		return -EINVAL;
1877 	} else if (ret > 0) {
1878 		num_channels += ret;
1879 	}
1880 
1881 	ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1882 					      sizeof(struct stm32_adc_diff_channel));
1883 	if (ret > adc_info->max_channels) {
1884 		dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1885 		return -EINVAL;
1886 	} else if (ret > 0) {
1887 		adc->num_diff = ret;
1888 		num_channels += ret;
1889 	}
1890 
1891 	/* Optional sample time is provided either for each, or all channels */
1892 	ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1893 	if (ret > 1 && ret != num_channels) {
1894 		dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1895 		return -EINVAL;
1896 	}
1897 
1898 	return num_channels;
1899 }
1900 
1901 static int stm32_adc_legacy_chan_init(struct iio_dev *indio_dev,
1902 				      struct stm32_adc *adc,
1903 				      struct iio_chan_spec *channels)
1904 {
1905 	struct device_node *node = indio_dev->dev.of_node;
1906 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1907 	struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1908 	u32 num_diff = adc->num_diff;
1909 	int size = num_diff * sizeof(*diff) / sizeof(u32);
1910 	int scan_index = 0, val, ret, i;
1911 	struct property *prop;
1912 	const __be32 *cur;
1913 	u32 smp = 0;
1914 
1915 	if (num_diff) {
1916 		ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1917 						 (u32 *)diff, size);
1918 		if (ret) {
1919 			dev_err(&indio_dev->dev, "Failed to get diff channels %d\n", ret);
1920 			return ret;
1921 		}
1922 
1923 		for (i = 0; i < num_diff; i++) {
1924 			if (diff[i].vinp >= adc_info->max_channels ||
1925 			    diff[i].vinn >= adc_info->max_channels) {
1926 				dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1927 					diff[i].vinp, diff[i].vinn);
1928 				return -EINVAL;
1929 			}
1930 
1931 			stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1932 						diff[i].vinp, diff[i].vinn,
1933 						scan_index, true);
1934 			scan_index++;
1935 		}
1936 	}
1937 
1938 	of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1939 		if (val >= adc_info->max_channels) {
1940 			dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1941 			return -EINVAL;
1942 		}
1943 
1944 		/* Channel can't be configured both as single-ended & diff */
1945 		for (i = 0; i < num_diff; i++) {
1946 			if (val == diff[i].vinp) {
1947 				dev_err(&indio_dev->dev, "channel %d misconfigured\n",	val);
1948 				return -EINVAL;
1949 			}
1950 		}
1951 		stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1952 					0, scan_index, false);
1953 		scan_index++;
1954 	}
1955 
1956 	for (i = 0; i < scan_index; i++) {
1957 		/*
1958 		 * Using of_property_read_u32_index(), smp value will only be
1959 		 * modified if valid u32 value can be decoded. This allows to
1960 		 * get either no value, 1 shared value for all indexes, or one
1961 		 * value per channel.
1962 		 */
1963 		of_property_read_u32_index(node, "st,min-sample-time-nsecs", i, &smp);
1964 
1965 		/* Prepare sampling time settings */
1966 		stm32_adc_smpr_init(adc, channels[i].channel, smp);
1967 	}
1968 
1969 	return scan_index;
1970 }
1971 
1972 static int stm32_adc_populate_int_ch(struct iio_dev *indio_dev, const char *ch_name,
1973 				     int chan)
1974 {
1975 	struct stm32_adc *adc = iio_priv(indio_dev);
1976 	u16 vrefint;
1977 	int i, ret;
1978 
1979 	for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
1980 		if (!strncmp(stm32_adc_ic[i].name, ch_name, STM32_ADC_CH_SZ)) {
1981 			adc->int_ch[i] = chan;
1982 
1983 			if (stm32_adc_ic[i].idx != STM32_ADC_INT_CH_VREFINT)
1984 				continue;
1985 
1986 			/* Get calibration data for vrefint channel */
1987 			ret = nvmem_cell_read_u16(&indio_dev->dev, "vrefint", &vrefint);
1988 			if (ret && ret != -ENOENT) {
1989 				return dev_err_probe(&indio_dev->dev, ret,
1990 						     "nvmem access error\n");
1991 			}
1992 			if (ret == -ENOENT)
1993 				dev_dbg(&indio_dev->dev, "vrefint calibration not found\n");
1994 			else
1995 				adc->vrefint.vrefint_cal = vrefint;
1996 		}
1997 	}
1998 
1999 	return 0;
2000 }
2001 
2002 static int stm32_adc_generic_chan_init(struct iio_dev *indio_dev,
2003 				       struct stm32_adc *adc,
2004 				       struct iio_chan_spec *channels)
2005 {
2006 	struct device_node *node = indio_dev->dev.of_node;
2007 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
2008 	struct device_node *child;
2009 	const char *name;
2010 	int val, scan_index = 0, ret;
2011 	bool differential;
2012 	u32 vin[2];
2013 
2014 	for_each_available_child_of_node(node, child) {
2015 		ret = of_property_read_u32(child, "reg", &val);
2016 		if (ret) {
2017 			dev_err(&indio_dev->dev, "Missing channel index %d\n", ret);
2018 			goto err;
2019 		}
2020 
2021 		ret = of_property_read_string(child, "label", &name);
2022 		/* label is optional */
2023 		if (!ret) {
2024 			if (strlen(name) >= STM32_ADC_CH_SZ) {
2025 				dev_err(&indio_dev->dev, "Label %s exceeds %d characters\n",
2026 					name, STM32_ADC_CH_SZ);
2027 				return -EINVAL;
2028 			}
2029 			strncpy(adc->chan_name[val], name, STM32_ADC_CH_SZ);
2030 			ret = stm32_adc_populate_int_ch(indio_dev, name, val);
2031 			if (ret)
2032 				goto err;
2033 		} else if (ret != -EINVAL) {
2034 			dev_err(&indio_dev->dev, "Invalid label %d\n", ret);
2035 			goto err;
2036 		}
2037 
2038 		if (val >= adc_info->max_channels) {
2039 			dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
2040 			ret = -EINVAL;
2041 			goto err;
2042 		}
2043 
2044 		differential = false;
2045 		ret = of_property_read_u32_array(child, "diff-channels", vin, 2);
2046 		/* diff-channels is optional */
2047 		if (!ret) {
2048 			differential = true;
2049 			if (vin[0] != val || vin[1] >= adc_info->max_channels) {
2050 				dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
2051 					vin[0], vin[1]);
2052 				goto err;
2053 			}
2054 		} else if (ret != -EINVAL) {
2055 			dev_err(&indio_dev->dev, "Invalid diff-channels property %d\n", ret);
2056 			goto err;
2057 		}
2058 
2059 		stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
2060 					vin[1], scan_index, differential);
2061 
2062 		ret = of_property_read_u32(child, "st,min-sample-time-ns", &val);
2063 		/* st,min-sample-time-ns is optional */
2064 		if (!ret) {
2065 			stm32_adc_smpr_init(adc, channels[scan_index].channel, val);
2066 			if (differential)
2067 				stm32_adc_smpr_init(adc, vin[1], val);
2068 		} else if (ret != -EINVAL) {
2069 			dev_err(&indio_dev->dev, "Invalid st,min-sample-time-ns property %d\n",
2070 				ret);
2071 			goto err;
2072 		}
2073 
2074 		scan_index++;
2075 	}
2076 
2077 	return scan_index;
2078 
2079 err:
2080 	of_node_put(child);
2081 
2082 	return ret;
2083 }
2084 
2085 static int stm32_adc_chan_of_init(struct iio_dev *indio_dev, bool timestamping)
2086 {
2087 	struct device_node *node = indio_dev->dev.of_node;
2088 	struct stm32_adc *adc = iio_priv(indio_dev);
2089 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
2090 	struct iio_chan_spec *channels;
2091 	int scan_index = 0, num_channels = 0, ret, i;
2092 	bool legacy = false;
2093 
2094 	for (i = 0; i < STM32_ADC_INT_CH_NB; i++)
2095 		adc->int_ch[i] = STM32_ADC_INT_CH_NONE;
2096 
2097 	num_channels = of_get_available_child_count(node);
2098 	/* If no channels have been found, fallback to channels legacy properties. */
2099 	if (!num_channels) {
2100 		legacy = true;
2101 
2102 		ret = stm32_adc_get_legacy_chan_count(indio_dev, adc);
2103 		if (!ret) {
2104 			dev_err(indio_dev->dev.parent, "No channel found\n");
2105 			return -ENODATA;
2106 		} else if (ret < 0) {
2107 			return ret;
2108 		}
2109 
2110 		num_channels = ret;
2111 	}
2112 
2113 	if (num_channels > adc_info->max_channels) {
2114 		dev_err(&indio_dev->dev, "Channel number [%d] exceeds %d\n",
2115 			num_channels, adc_info->max_channels);
2116 		return -EINVAL;
2117 	}
2118 
2119 	if (timestamping)
2120 		num_channels++;
2121 
2122 	channels = devm_kcalloc(&indio_dev->dev, num_channels,
2123 				sizeof(struct iio_chan_spec), GFP_KERNEL);
2124 	if (!channels)
2125 		return -ENOMEM;
2126 
2127 	if (legacy)
2128 		ret = stm32_adc_legacy_chan_init(indio_dev, adc, channels);
2129 	else
2130 		ret = stm32_adc_generic_chan_init(indio_dev, adc, channels);
2131 	if (ret < 0)
2132 		return ret;
2133 	scan_index = ret;
2134 
2135 	if (timestamping) {
2136 		struct iio_chan_spec *timestamp = &channels[scan_index];
2137 
2138 		timestamp->type = IIO_TIMESTAMP;
2139 		timestamp->channel = -1;
2140 		timestamp->scan_index = scan_index;
2141 		timestamp->scan_type.sign = 's';
2142 		timestamp->scan_type.realbits = 64;
2143 		timestamp->scan_type.storagebits = 64;
2144 
2145 		scan_index++;
2146 	}
2147 
2148 	indio_dev->num_channels = scan_index;
2149 	indio_dev->channels = channels;
2150 
2151 	return 0;
2152 }
2153 
2154 static int stm32_adc_dma_request(struct device *dev, struct iio_dev *indio_dev)
2155 {
2156 	struct stm32_adc *adc = iio_priv(indio_dev);
2157 	struct dma_slave_config config;
2158 	int ret;
2159 
2160 	adc->dma_chan = dma_request_chan(dev, "rx");
2161 	if (IS_ERR(adc->dma_chan)) {
2162 		ret = PTR_ERR(adc->dma_chan);
2163 		if (ret != -ENODEV)
2164 			return dev_err_probe(dev, ret,
2165 					     "DMA channel request failed with\n");
2166 
2167 		/* DMA is optional: fall back to IRQ mode */
2168 		adc->dma_chan = NULL;
2169 		return 0;
2170 	}
2171 
2172 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
2173 					 STM32_DMA_BUFFER_SIZE,
2174 					 &adc->rx_dma_buf, GFP_KERNEL);
2175 	if (!adc->rx_buf) {
2176 		ret = -ENOMEM;
2177 		goto err_release;
2178 	}
2179 
2180 	/* Configure DMA channel to read data register */
2181 	memset(&config, 0, sizeof(config));
2182 	config.src_addr = (dma_addr_t)adc->common->phys_base;
2183 	config.src_addr += adc->offset + adc->cfg->regs->dr;
2184 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
2185 
2186 	ret = dmaengine_slave_config(adc->dma_chan, &config);
2187 	if (ret)
2188 		goto err_free;
2189 
2190 	return 0;
2191 
2192 err_free:
2193 	dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
2194 			  adc->rx_buf, adc->rx_dma_buf);
2195 err_release:
2196 	dma_release_channel(adc->dma_chan);
2197 
2198 	return ret;
2199 }
2200 
2201 static int stm32_adc_probe(struct platform_device *pdev)
2202 {
2203 	struct iio_dev *indio_dev;
2204 	struct device *dev = &pdev->dev;
2205 	irqreturn_t (*handler)(int irq, void *p) = NULL;
2206 	struct stm32_adc *adc;
2207 	bool timestamping = false;
2208 	int ret;
2209 
2210 	if (!pdev->dev.of_node)
2211 		return -ENODEV;
2212 
2213 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
2214 	if (!indio_dev)
2215 		return -ENOMEM;
2216 
2217 	adc = iio_priv(indio_dev);
2218 	adc->common = dev_get_drvdata(pdev->dev.parent);
2219 	spin_lock_init(&adc->lock);
2220 	init_completion(&adc->completion);
2221 	adc->cfg = (const struct stm32_adc_cfg *)
2222 		of_match_device(dev->driver->of_match_table, dev)->data;
2223 
2224 	indio_dev->name = dev_name(&pdev->dev);
2225 	indio_dev->dev.of_node = pdev->dev.of_node;
2226 	indio_dev->info = &stm32_adc_iio_info;
2227 	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
2228 
2229 	platform_set_drvdata(pdev, indio_dev);
2230 
2231 	ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
2232 	if (ret != 0) {
2233 		dev_err(&pdev->dev, "missing reg property\n");
2234 		return -EINVAL;
2235 	}
2236 
2237 	adc->irq = platform_get_irq(pdev, 0);
2238 	if (adc->irq < 0)
2239 		return adc->irq;
2240 
2241 	ret = devm_request_threaded_irq(&pdev->dev, adc->irq, stm32_adc_isr,
2242 					stm32_adc_threaded_isr,
2243 					0, pdev->name, indio_dev);
2244 	if (ret) {
2245 		dev_err(&pdev->dev, "failed to request IRQ\n");
2246 		return ret;
2247 	}
2248 
2249 	adc->clk = devm_clk_get(&pdev->dev, NULL);
2250 	if (IS_ERR(adc->clk)) {
2251 		ret = PTR_ERR(adc->clk);
2252 		if (ret == -ENOENT && !adc->cfg->clk_required) {
2253 			adc->clk = NULL;
2254 		} else {
2255 			dev_err(&pdev->dev, "Can't get clock\n");
2256 			return ret;
2257 		}
2258 	}
2259 
2260 	ret = stm32_adc_of_get_resolution(indio_dev);
2261 	if (ret < 0)
2262 		return ret;
2263 
2264 	ret = stm32_adc_dma_request(dev, indio_dev);
2265 	if (ret < 0)
2266 		return ret;
2267 
2268 	if (!adc->dma_chan) {
2269 		/* For PIO mode only, iio_pollfunc_store_time stores a timestamp
2270 		 * in the primary trigger IRQ handler and stm32_adc_trigger_handler
2271 		 * runs in the IRQ thread to push out buffer along with timestamp.
2272 		 */
2273 		handler = &stm32_adc_trigger_handler;
2274 		timestamping = true;
2275 	}
2276 
2277 	ret = stm32_adc_chan_of_init(indio_dev, timestamping);
2278 	if (ret < 0)
2279 		goto err_dma_disable;
2280 
2281 	ret = iio_triggered_buffer_setup(indio_dev,
2282 					 &iio_pollfunc_store_time, handler,
2283 					 &stm32_adc_buffer_setup_ops);
2284 	if (ret) {
2285 		dev_err(&pdev->dev, "buffer setup failed\n");
2286 		goto err_dma_disable;
2287 	}
2288 
2289 	/* Get stm32-adc-core PM online */
2290 	pm_runtime_get_noresume(dev);
2291 	pm_runtime_set_active(dev);
2292 	pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
2293 	pm_runtime_use_autosuspend(dev);
2294 	pm_runtime_enable(dev);
2295 
2296 	ret = stm32_adc_hw_start(dev);
2297 	if (ret)
2298 		goto err_buffer_cleanup;
2299 
2300 	ret = iio_device_register(indio_dev);
2301 	if (ret) {
2302 		dev_err(&pdev->dev, "iio dev register failed\n");
2303 		goto err_hw_stop;
2304 	}
2305 
2306 	pm_runtime_mark_last_busy(dev);
2307 	pm_runtime_put_autosuspend(dev);
2308 
2309 	return 0;
2310 
2311 err_hw_stop:
2312 	stm32_adc_hw_stop(dev);
2313 
2314 err_buffer_cleanup:
2315 	pm_runtime_disable(dev);
2316 	pm_runtime_set_suspended(dev);
2317 	pm_runtime_put_noidle(dev);
2318 	iio_triggered_buffer_cleanup(indio_dev);
2319 
2320 err_dma_disable:
2321 	if (adc->dma_chan) {
2322 		dma_free_coherent(adc->dma_chan->device->dev,
2323 				  STM32_DMA_BUFFER_SIZE,
2324 				  adc->rx_buf, adc->rx_dma_buf);
2325 		dma_release_channel(adc->dma_chan);
2326 	}
2327 
2328 	return ret;
2329 }
2330 
2331 static int stm32_adc_remove(struct platform_device *pdev)
2332 {
2333 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
2334 	struct stm32_adc *adc = iio_priv(indio_dev);
2335 
2336 	pm_runtime_get_sync(&pdev->dev);
2337 	iio_device_unregister(indio_dev);
2338 	stm32_adc_hw_stop(&pdev->dev);
2339 	pm_runtime_disable(&pdev->dev);
2340 	pm_runtime_set_suspended(&pdev->dev);
2341 	pm_runtime_put_noidle(&pdev->dev);
2342 	iio_triggered_buffer_cleanup(indio_dev);
2343 	if (adc->dma_chan) {
2344 		dma_free_coherent(adc->dma_chan->device->dev,
2345 				  STM32_DMA_BUFFER_SIZE,
2346 				  adc->rx_buf, adc->rx_dma_buf);
2347 		dma_release_channel(adc->dma_chan);
2348 	}
2349 
2350 	return 0;
2351 }
2352 
2353 #if defined(CONFIG_PM_SLEEP)
2354 static int stm32_adc_suspend(struct device *dev)
2355 {
2356 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2357 
2358 	if (iio_buffer_enabled(indio_dev))
2359 		stm32_adc_buffer_predisable(indio_dev);
2360 
2361 	return pm_runtime_force_suspend(dev);
2362 }
2363 
2364 static int stm32_adc_resume(struct device *dev)
2365 {
2366 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2367 	int ret;
2368 
2369 	ret = pm_runtime_force_resume(dev);
2370 	if (ret < 0)
2371 		return ret;
2372 
2373 	if (!iio_buffer_enabled(indio_dev))
2374 		return 0;
2375 
2376 	ret = stm32_adc_update_scan_mode(indio_dev,
2377 					 indio_dev->active_scan_mask);
2378 	if (ret < 0)
2379 		return ret;
2380 
2381 	return stm32_adc_buffer_postenable(indio_dev);
2382 }
2383 #endif
2384 
2385 #if defined(CONFIG_PM)
2386 static int stm32_adc_runtime_suspend(struct device *dev)
2387 {
2388 	return stm32_adc_hw_stop(dev);
2389 }
2390 
2391 static int stm32_adc_runtime_resume(struct device *dev)
2392 {
2393 	return stm32_adc_hw_start(dev);
2394 }
2395 #endif
2396 
2397 static const struct dev_pm_ops stm32_adc_pm_ops = {
2398 	SET_SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
2399 	SET_RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
2400 			   NULL)
2401 };
2402 
2403 static const struct stm32_adc_cfg stm32f4_adc_cfg = {
2404 	.regs = &stm32f4_adc_regspec,
2405 	.adc_info = &stm32f4_adc_info,
2406 	.trigs = stm32f4_adc_trigs,
2407 	.clk_required = true,
2408 	.start_conv = stm32f4_adc_start_conv,
2409 	.stop_conv = stm32f4_adc_stop_conv,
2410 	.smp_cycles = stm32f4_adc_smp_cycles,
2411 	.irq_clear = stm32f4_adc_irq_clear,
2412 };
2413 
2414 static const struct stm32_adc_cfg stm32h7_adc_cfg = {
2415 	.regs = &stm32h7_adc_regspec,
2416 	.adc_info = &stm32h7_adc_info,
2417 	.trigs = stm32h7_adc_trigs,
2418 	.start_conv = stm32h7_adc_start_conv,
2419 	.stop_conv = stm32h7_adc_stop_conv,
2420 	.prepare = stm32h7_adc_prepare,
2421 	.unprepare = stm32h7_adc_unprepare,
2422 	.smp_cycles = stm32h7_adc_smp_cycles,
2423 	.irq_clear = stm32h7_adc_irq_clear,
2424 };
2425 
2426 static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
2427 	.regs = &stm32mp1_adc_regspec,
2428 	.adc_info = &stm32h7_adc_info,
2429 	.trigs = stm32h7_adc_trigs,
2430 	.has_vregready = true,
2431 	.start_conv = stm32h7_adc_start_conv,
2432 	.stop_conv = stm32h7_adc_stop_conv,
2433 	.prepare = stm32h7_adc_prepare,
2434 	.unprepare = stm32h7_adc_unprepare,
2435 	.smp_cycles = stm32h7_adc_smp_cycles,
2436 	.irq_clear = stm32h7_adc_irq_clear,
2437 	.ts_vrefint_ns = 4300,
2438 };
2439 
2440 static const struct of_device_id stm32_adc_of_match[] = {
2441 	{ .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2442 	{ .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2443 	{ .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2444 	{},
2445 };
2446 MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2447 
2448 static struct platform_driver stm32_adc_driver = {
2449 	.probe = stm32_adc_probe,
2450 	.remove = stm32_adc_remove,
2451 	.driver = {
2452 		.name = "stm32-adc",
2453 		.of_match_table = stm32_adc_of_match,
2454 		.pm = &stm32_adc_pm_ops,
2455 	},
2456 };
2457 module_platform_driver(stm32_adc_driver);
2458 
2459 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2460 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2461 MODULE_LICENSE("GPL v2");
2462 MODULE_ALIAS("platform:stm32-adc");
2463