xref: /openbmc/linux/drivers/iio/adc/stm32-adc.c (revision c059ee9d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is part of STM32 ADC driver
4  *
5  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6  * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/iio/iio.h>
14 #include <linux/iio/buffer.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/iopoll.h>
23 #include <linux/module.h>
24 #include <linux/nvmem-consumer.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 
30 #include "stm32-adc-core.h"
31 
32 /* Number of linear calibration shadow registers / LINCALRDYW control bits */
33 #define STM32H7_LINCALFACT_NUM		6
34 
35 /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
36 #define STM32H7_BOOST_CLKRATE		20000000UL
37 
38 #define STM32_ADC_CH_MAX		20	/* max number of channels */
39 #define STM32_ADC_CH_SZ			16	/* max channel name size */
40 #define STM32_ADC_MAX_SQ		16	/* SQ1..SQ16 */
41 #define STM32_ADC_MAX_SMP		7	/* SMPx range is [0..7] */
42 #define STM32_ADC_TIMEOUT_US		100000
43 #define STM32_ADC_TIMEOUT	(msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
44 #define STM32_ADC_HW_STOP_DELAY_MS	100
45 #define STM32_ADC_VREFINT_VOLTAGE	3300
46 
47 #define STM32_DMA_BUFFER_SIZE		PAGE_SIZE
48 
49 /* External trigger enable */
50 enum stm32_adc_exten {
51 	STM32_EXTEN_SWTRIG,
52 	STM32_EXTEN_HWTRIG_RISING_EDGE,
53 	STM32_EXTEN_HWTRIG_FALLING_EDGE,
54 	STM32_EXTEN_HWTRIG_BOTH_EDGES,
55 };
56 
57 /* extsel - trigger mux selection value */
58 enum stm32_adc_extsel {
59 	STM32_EXT0,
60 	STM32_EXT1,
61 	STM32_EXT2,
62 	STM32_EXT3,
63 	STM32_EXT4,
64 	STM32_EXT5,
65 	STM32_EXT6,
66 	STM32_EXT7,
67 	STM32_EXT8,
68 	STM32_EXT9,
69 	STM32_EXT10,
70 	STM32_EXT11,
71 	STM32_EXT12,
72 	STM32_EXT13,
73 	STM32_EXT14,
74 	STM32_EXT15,
75 	STM32_EXT16,
76 	STM32_EXT17,
77 	STM32_EXT18,
78 	STM32_EXT19,
79 	STM32_EXT20,
80 };
81 
82 enum stm32_adc_int_ch {
83 	STM32_ADC_INT_CH_NONE = -1,
84 	STM32_ADC_INT_CH_VDDCORE,
85 	STM32_ADC_INT_CH_VREFINT,
86 	STM32_ADC_INT_CH_VBAT,
87 	STM32_ADC_INT_CH_NB,
88 };
89 
90 /**
91  * struct stm32_adc_ic - ADC internal channels
92  * @name:	name of the internal channel
93  * @idx:	internal channel enum index
94  */
95 struct stm32_adc_ic {
96 	const char *name;
97 	u32 idx;
98 };
99 
100 static const struct stm32_adc_ic stm32_adc_ic[STM32_ADC_INT_CH_NB] = {
101 	{ "vddcore", STM32_ADC_INT_CH_VDDCORE },
102 	{ "vrefint", STM32_ADC_INT_CH_VREFINT },
103 	{ "vbat", STM32_ADC_INT_CH_VBAT },
104 };
105 
106 /**
107  * struct stm32_adc_trig_info - ADC trigger info
108  * @name:		name of the trigger, corresponding to its source
109  * @extsel:		trigger selection
110  */
111 struct stm32_adc_trig_info {
112 	const char *name;
113 	enum stm32_adc_extsel extsel;
114 };
115 
116 /**
117  * struct stm32_adc_calib - optional adc calibration data
118  * @calfact_s: Calibration offset for single ended channels
119  * @calfact_d: Calibration offset in differential
120  * @lincalfact: Linearity calibration factor
121  * @calibrated: Indicates calibration status
122  */
123 struct stm32_adc_calib {
124 	u32			calfact_s;
125 	u32			calfact_d;
126 	u32			lincalfact[STM32H7_LINCALFACT_NUM];
127 	bool			calibrated;
128 };
129 
130 /**
131  * struct stm32_adc_regs - stm32 ADC misc registers & bitfield desc
132  * @reg:		register offset
133  * @mask:		bitfield mask
134  * @shift:		left shift
135  */
136 struct stm32_adc_regs {
137 	int reg;
138 	int mask;
139 	int shift;
140 };
141 
142 /**
143  * struct stm32_adc_vrefint - stm32 ADC internal reference voltage data
144  * @vrefint_cal:	vrefint calibration value from nvmem
145  * @vrefint_data:	vrefint actual value
146  */
147 struct stm32_adc_vrefint {
148 	u32 vrefint_cal;
149 	u32 vrefint_data;
150 };
151 
152 /**
153  * struct stm32_adc_regspec - stm32 registers definition
154  * @dr:			data register offset
155  * @ier_eoc:		interrupt enable register & eocie bitfield
156  * @ier_ovr:		interrupt enable register & overrun bitfield
157  * @isr_eoc:		interrupt status register & eoc bitfield
158  * @isr_ovr:		interrupt status register & overrun bitfield
159  * @sqr:		reference to sequence registers array
160  * @exten:		trigger control register & bitfield
161  * @extsel:		trigger selection register & bitfield
162  * @res:		resolution selection register & bitfield
163  * @smpr:		smpr1 & smpr2 registers offset array
164  * @smp_bits:		smpr1 & smpr2 index and bitfields
165  * @or_vdd:		option register & vddcore bitfield
166  * @ccr_vbat:		common register & vbat bitfield
167  * @ccr_vref:		common register & vrefint bitfield
168  */
169 struct stm32_adc_regspec {
170 	const u32 dr;
171 	const struct stm32_adc_regs ier_eoc;
172 	const struct stm32_adc_regs ier_ovr;
173 	const struct stm32_adc_regs isr_eoc;
174 	const struct stm32_adc_regs isr_ovr;
175 	const struct stm32_adc_regs *sqr;
176 	const struct stm32_adc_regs exten;
177 	const struct stm32_adc_regs extsel;
178 	const struct stm32_adc_regs res;
179 	const u32 smpr[2];
180 	const struct stm32_adc_regs *smp_bits;
181 	const struct stm32_adc_regs or_vdd;
182 	const struct stm32_adc_regs ccr_vbat;
183 	const struct stm32_adc_regs ccr_vref;
184 };
185 
186 struct stm32_adc;
187 
188 /**
189  * struct stm32_adc_cfg - stm32 compatible configuration data
190  * @regs:		registers descriptions
191  * @adc_info:		per instance input channels definitions
192  * @trigs:		external trigger sources
193  * @clk_required:	clock is required
194  * @has_vregready:	vregready status flag presence
195  * @prepare:		optional prepare routine (power-up, enable)
196  * @start_conv:		routine to start conversions
197  * @stop_conv:		routine to stop conversions
198  * @unprepare:		optional unprepare routine (disable, power-down)
199  * @irq_clear:		routine to clear irqs
200  * @smp_cycles:		programmable sampling time (ADC clock cycles)
201  * @ts_vrefint_ns:	vrefint minimum sampling time in ns
202  */
203 struct stm32_adc_cfg {
204 	const struct stm32_adc_regspec	*regs;
205 	const struct stm32_adc_info	*adc_info;
206 	struct stm32_adc_trig_info	*trigs;
207 	bool clk_required;
208 	bool has_vregready;
209 	int (*prepare)(struct iio_dev *);
210 	void (*start_conv)(struct iio_dev *, bool dma);
211 	void (*stop_conv)(struct iio_dev *);
212 	void (*unprepare)(struct iio_dev *);
213 	void (*irq_clear)(struct iio_dev *indio_dev, u32 msk);
214 	const unsigned int *smp_cycles;
215 	const unsigned int ts_vrefint_ns;
216 };
217 
218 /**
219  * struct stm32_adc - private data of each ADC IIO instance
220  * @common:		reference to ADC block common data
221  * @offset:		ADC instance register offset in ADC block
222  * @cfg:		compatible configuration data
223  * @completion:		end of single conversion completion
224  * @buffer:		data buffer + 8 bytes for timestamp if enabled
225  * @clk:		clock for this adc instance
226  * @irq:		interrupt for this adc instance
227  * @lock:		spinlock
228  * @bufi:		data buffer index
229  * @num_conv:		expected number of scan conversions
230  * @res:		data resolution (e.g. RES bitfield value)
231  * @trigger_polarity:	external trigger polarity (e.g. exten)
232  * @dma_chan:		dma channel
233  * @rx_buf:		dma rx buffer cpu address
234  * @rx_dma_buf:		dma rx buffer bus address
235  * @rx_buf_sz:		dma rx buffer size
236  * @difsel:		bitmask to set single-ended/differential channel
237  * @pcsel:		bitmask to preselect channels on some devices
238  * @smpr_val:		sampling time settings (e.g. smpr1 / smpr2)
239  * @cal:		optional calibration data on some devices
240  * @vrefint:		internal reference voltage data
241  * @chan_name:		channel name array
242  * @num_diff:		number of differential channels
243  * @int_ch:		internal channel indexes array
244  */
245 struct stm32_adc {
246 	struct stm32_adc_common	*common;
247 	u32			offset;
248 	const struct stm32_adc_cfg	*cfg;
249 	struct completion	completion;
250 	u16			buffer[STM32_ADC_MAX_SQ + 4] __aligned(8);
251 	struct clk		*clk;
252 	int			irq;
253 	spinlock_t		lock;		/* interrupt lock */
254 	unsigned int		bufi;
255 	unsigned int		num_conv;
256 	u32			res;
257 	u32			trigger_polarity;
258 	struct dma_chan		*dma_chan;
259 	u8			*rx_buf;
260 	dma_addr_t		rx_dma_buf;
261 	unsigned int		rx_buf_sz;
262 	u32			difsel;
263 	u32			pcsel;
264 	u32			smpr_val[2];
265 	struct stm32_adc_calib	cal;
266 	struct stm32_adc_vrefint vrefint;
267 	char			chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
268 	u32			num_diff;
269 	int			int_ch[STM32_ADC_INT_CH_NB];
270 };
271 
272 struct stm32_adc_diff_channel {
273 	u32 vinp;
274 	u32 vinn;
275 };
276 
277 /**
278  * struct stm32_adc_info - stm32 ADC, per instance config data
279  * @max_channels:	Number of channels
280  * @resolutions:	available resolutions
281  * @num_res:		number of available resolutions
282  */
283 struct stm32_adc_info {
284 	int max_channels;
285 	const unsigned int *resolutions;
286 	const unsigned int num_res;
287 };
288 
289 static const unsigned int stm32f4_adc_resolutions[] = {
290 	/* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
291 	12, 10, 8, 6,
292 };
293 
294 /* stm32f4 can have up to 16 channels */
295 static const struct stm32_adc_info stm32f4_adc_info = {
296 	.max_channels = 16,
297 	.resolutions = stm32f4_adc_resolutions,
298 	.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
299 };
300 
301 static const unsigned int stm32h7_adc_resolutions[] = {
302 	/* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
303 	16, 14, 12, 10, 8,
304 };
305 
306 /* stm32h7 can have up to 20 channels */
307 static const struct stm32_adc_info stm32h7_adc_info = {
308 	.max_channels = STM32_ADC_CH_MAX,
309 	.resolutions = stm32h7_adc_resolutions,
310 	.num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
311 };
312 
313 /*
314  * stm32f4_sq - describe regular sequence registers
315  * - L: sequence len (register & bit field)
316  * - SQ1..SQ16: sequence entries (register & bit field)
317  */
318 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
319 	/* L: len bit field description to be kept as first element */
320 	{ STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
321 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
322 	{ STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
323 	{ STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
324 	{ STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
325 	{ STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
326 	{ STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
327 	{ STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
328 	{ STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
329 	{ STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
330 	{ STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
331 	{ STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
332 	{ STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
333 	{ STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
334 	{ STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
335 	{ STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
336 	{ STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
337 	{ STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
338 };
339 
340 /* STM32F4 external trigger sources for all instances */
341 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
342 	{ TIM1_CH1, STM32_EXT0 },
343 	{ TIM1_CH2, STM32_EXT1 },
344 	{ TIM1_CH3, STM32_EXT2 },
345 	{ TIM2_CH2, STM32_EXT3 },
346 	{ TIM2_CH3, STM32_EXT4 },
347 	{ TIM2_CH4, STM32_EXT5 },
348 	{ TIM2_TRGO, STM32_EXT6 },
349 	{ TIM3_CH1, STM32_EXT7 },
350 	{ TIM3_TRGO, STM32_EXT8 },
351 	{ TIM4_CH4, STM32_EXT9 },
352 	{ TIM5_CH1, STM32_EXT10 },
353 	{ TIM5_CH2, STM32_EXT11 },
354 	{ TIM5_CH3, STM32_EXT12 },
355 	{ TIM8_CH1, STM32_EXT13 },
356 	{ TIM8_TRGO, STM32_EXT14 },
357 	{}, /* sentinel */
358 };
359 
360 /*
361  * stm32f4_smp_bits[] - describe sampling time register index & bit fields
362  * Sorted so it can be indexed by channel number.
363  */
364 static const struct stm32_adc_regs stm32f4_smp_bits[] = {
365 	/* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
366 	{ 1, GENMASK(2, 0), 0 },
367 	{ 1, GENMASK(5, 3), 3 },
368 	{ 1, GENMASK(8, 6), 6 },
369 	{ 1, GENMASK(11, 9), 9 },
370 	{ 1, GENMASK(14, 12), 12 },
371 	{ 1, GENMASK(17, 15), 15 },
372 	{ 1, GENMASK(20, 18), 18 },
373 	{ 1, GENMASK(23, 21), 21 },
374 	{ 1, GENMASK(26, 24), 24 },
375 	{ 1, GENMASK(29, 27), 27 },
376 	/* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
377 	{ 0, GENMASK(2, 0), 0 },
378 	{ 0, GENMASK(5, 3), 3 },
379 	{ 0, GENMASK(8, 6), 6 },
380 	{ 0, GENMASK(11, 9), 9 },
381 	{ 0, GENMASK(14, 12), 12 },
382 	{ 0, GENMASK(17, 15), 15 },
383 	{ 0, GENMASK(20, 18), 18 },
384 	{ 0, GENMASK(23, 21), 21 },
385 	{ 0, GENMASK(26, 24), 24 },
386 };
387 
388 /* STM32F4 programmable sampling time (ADC clock cycles) */
389 static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
390 	3, 15, 28, 56, 84, 112, 144, 480,
391 };
392 
393 static const struct stm32_adc_regspec stm32f4_adc_regspec = {
394 	.dr = STM32F4_ADC_DR,
395 	.ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
396 	.ier_ovr = { STM32F4_ADC_CR1, STM32F4_OVRIE },
397 	.isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
398 	.isr_ovr = { STM32F4_ADC_SR, STM32F4_OVR },
399 	.sqr = stm32f4_sq,
400 	.exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
401 	.extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
402 		    STM32F4_EXTSEL_SHIFT },
403 	.res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
404 	.smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
405 	.smp_bits = stm32f4_smp_bits,
406 };
407 
408 static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
409 	/* L: len bit field description to be kept as first element */
410 	{ STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
411 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
412 	{ STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
413 	{ STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
414 	{ STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
415 	{ STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
416 	{ STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
417 	{ STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
418 	{ STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
419 	{ STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
420 	{ STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
421 	{ STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
422 	{ STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
423 	{ STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
424 	{ STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
425 	{ STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
426 	{ STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
427 	{ STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
428 };
429 
430 /* STM32H7 external trigger sources for all instances */
431 static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
432 	{ TIM1_CH1, STM32_EXT0 },
433 	{ TIM1_CH2, STM32_EXT1 },
434 	{ TIM1_CH3, STM32_EXT2 },
435 	{ TIM2_CH2, STM32_EXT3 },
436 	{ TIM3_TRGO, STM32_EXT4 },
437 	{ TIM4_CH4, STM32_EXT5 },
438 	{ TIM8_TRGO, STM32_EXT7 },
439 	{ TIM8_TRGO2, STM32_EXT8 },
440 	{ TIM1_TRGO, STM32_EXT9 },
441 	{ TIM1_TRGO2, STM32_EXT10 },
442 	{ TIM2_TRGO, STM32_EXT11 },
443 	{ TIM4_TRGO, STM32_EXT12 },
444 	{ TIM6_TRGO, STM32_EXT13 },
445 	{ TIM15_TRGO, STM32_EXT14 },
446 	{ TIM3_CH4, STM32_EXT15 },
447 	{ LPTIM1_OUT, STM32_EXT18 },
448 	{ LPTIM2_OUT, STM32_EXT19 },
449 	{ LPTIM3_OUT, STM32_EXT20 },
450 	{},
451 };
452 
453 /*
454  * stm32h7_smp_bits - describe sampling time register index & bit fields
455  * Sorted so it can be indexed by channel number.
456  */
457 static const struct stm32_adc_regs stm32h7_smp_bits[] = {
458 	/* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
459 	{ 0, GENMASK(2, 0), 0 },
460 	{ 0, GENMASK(5, 3), 3 },
461 	{ 0, GENMASK(8, 6), 6 },
462 	{ 0, GENMASK(11, 9), 9 },
463 	{ 0, GENMASK(14, 12), 12 },
464 	{ 0, GENMASK(17, 15), 15 },
465 	{ 0, GENMASK(20, 18), 18 },
466 	{ 0, GENMASK(23, 21), 21 },
467 	{ 0, GENMASK(26, 24), 24 },
468 	{ 0, GENMASK(29, 27), 27 },
469 	/* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
470 	{ 1, GENMASK(2, 0), 0 },
471 	{ 1, GENMASK(5, 3), 3 },
472 	{ 1, GENMASK(8, 6), 6 },
473 	{ 1, GENMASK(11, 9), 9 },
474 	{ 1, GENMASK(14, 12), 12 },
475 	{ 1, GENMASK(17, 15), 15 },
476 	{ 1, GENMASK(20, 18), 18 },
477 	{ 1, GENMASK(23, 21), 21 },
478 	{ 1, GENMASK(26, 24), 24 },
479 	{ 1, GENMASK(29, 27), 27 },
480 };
481 
482 /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
483 static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
484 	1, 2, 8, 16, 32, 64, 387, 810,
485 };
486 
487 static const struct stm32_adc_regspec stm32h7_adc_regspec = {
488 	.dr = STM32H7_ADC_DR,
489 	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
490 	.ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
491 	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
492 	.isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
493 	.sqr = stm32h7_sq,
494 	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
495 	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
496 		    STM32H7_EXTSEL_SHIFT },
497 	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
498 	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
499 	.smp_bits = stm32h7_smp_bits,
500 };
501 
502 static const struct stm32_adc_regspec stm32mp1_adc_regspec = {
503 	.dr = STM32H7_ADC_DR,
504 	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
505 	.ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
506 	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
507 	.isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
508 	.sqr = stm32h7_sq,
509 	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
510 	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
511 		    STM32H7_EXTSEL_SHIFT },
512 	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
513 	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
514 	.smp_bits = stm32h7_smp_bits,
515 	.or_vdd = { STM32MP1_ADC2_OR, STM32MP1_VDDCOREEN },
516 	.ccr_vbat = { STM32H7_ADC_CCR, STM32H7_VBATEN },
517 	.ccr_vref = { STM32H7_ADC_CCR, STM32H7_VREFEN },
518 };
519 
520 /*
521  * STM32 ADC registers access routines
522  * @adc: stm32 adc instance
523  * @reg: reg offset in adc instance
524  *
525  * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
526  * for adc1, adc2 and adc3.
527  */
528 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
529 {
530 	return readl_relaxed(adc->common->base + adc->offset + reg);
531 }
532 
533 #define stm32_adc_readl_addr(addr)	stm32_adc_readl(adc, addr)
534 
535 #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
536 	readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
537 			   cond, sleep_us, timeout_us)
538 
539 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
540 {
541 	return readw_relaxed(adc->common->base + adc->offset + reg);
542 }
543 
544 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
545 {
546 	writel_relaxed(val, adc->common->base + adc->offset + reg);
547 }
548 
549 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
550 {
551 	unsigned long flags;
552 
553 	spin_lock_irqsave(&adc->lock, flags);
554 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
555 	spin_unlock_irqrestore(&adc->lock, flags);
556 }
557 
558 static void stm32_adc_set_bits_common(struct stm32_adc *adc, u32 reg, u32 bits)
559 {
560 	spin_lock(&adc->common->lock);
561 	writel_relaxed(readl_relaxed(adc->common->base + reg) | bits,
562 		       adc->common->base + reg);
563 	spin_unlock(&adc->common->lock);
564 }
565 
566 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
567 {
568 	unsigned long flags;
569 
570 	spin_lock_irqsave(&adc->lock, flags);
571 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
572 	spin_unlock_irqrestore(&adc->lock, flags);
573 }
574 
575 static void stm32_adc_clr_bits_common(struct stm32_adc *adc, u32 reg, u32 bits)
576 {
577 	spin_lock(&adc->common->lock);
578 	writel_relaxed(readl_relaxed(adc->common->base + reg) & ~bits,
579 		       adc->common->base + reg);
580 	spin_unlock(&adc->common->lock);
581 }
582 
583 /**
584  * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
585  * @adc: stm32 adc instance
586  */
587 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
588 {
589 	stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
590 			   adc->cfg->regs->ier_eoc.mask);
591 };
592 
593 /**
594  * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
595  * @adc: stm32 adc instance
596  */
597 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
598 {
599 	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
600 			   adc->cfg->regs->ier_eoc.mask);
601 }
602 
603 static void stm32_adc_ovr_irq_enable(struct stm32_adc *adc)
604 {
605 	stm32_adc_set_bits(adc, adc->cfg->regs->ier_ovr.reg,
606 			   adc->cfg->regs->ier_ovr.mask);
607 }
608 
609 static void stm32_adc_ovr_irq_disable(struct stm32_adc *adc)
610 {
611 	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_ovr.reg,
612 			   adc->cfg->regs->ier_ovr.mask);
613 }
614 
615 static void stm32_adc_set_res(struct stm32_adc *adc)
616 {
617 	const struct stm32_adc_regs *res = &adc->cfg->regs->res;
618 	u32 val;
619 
620 	val = stm32_adc_readl(adc, res->reg);
621 	val = (val & ~res->mask) | (adc->res << res->shift);
622 	stm32_adc_writel(adc, res->reg, val);
623 }
624 
625 static int stm32_adc_hw_stop(struct device *dev)
626 {
627 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
628 	struct stm32_adc *adc = iio_priv(indio_dev);
629 
630 	if (adc->cfg->unprepare)
631 		adc->cfg->unprepare(indio_dev);
632 
633 	clk_disable_unprepare(adc->clk);
634 
635 	return 0;
636 }
637 
638 static int stm32_adc_hw_start(struct device *dev)
639 {
640 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
641 	struct stm32_adc *adc = iio_priv(indio_dev);
642 	int ret;
643 
644 	ret = clk_prepare_enable(adc->clk);
645 	if (ret)
646 		return ret;
647 
648 	stm32_adc_set_res(adc);
649 
650 	if (adc->cfg->prepare) {
651 		ret = adc->cfg->prepare(indio_dev);
652 		if (ret)
653 			goto err_clk_dis;
654 	}
655 
656 	return 0;
657 
658 err_clk_dis:
659 	clk_disable_unprepare(adc->clk);
660 
661 	return ret;
662 }
663 
664 static void stm32_adc_int_ch_enable(struct iio_dev *indio_dev)
665 {
666 	struct stm32_adc *adc = iio_priv(indio_dev);
667 	u32 i;
668 
669 	for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
670 		if (adc->int_ch[i] == STM32_ADC_INT_CH_NONE)
671 			continue;
672 
673 		switch (i) {
674 		case STM32_ADC_INT_CH_VDDCORE:
675 			dev_dbg(&indio_dev->dev, "Enable VDDCore\n");
676 			stm32_adc_set_bits(adc, adc->cfg->regs->or_vdd.reg,
677 					   adc->cfg->regs->or_vdd.mask);
678 			break;
679 		case STM32_ADC_INT_CH_VREFINT:
680 			dev_dbg(&indio_dev->dev, "Enable VREFInt\n");
681 			stm32_adc_set_bits_common(adc, adc->cfg->regs->ccr_vref.reg,
682 						  adc->cfg->regs->ccr_vref.mask);
683 			break;
684 		case STM32_ADC_INT_CH_VBAT:
685 			dev_dbg(&indio_dev->dev, "Enable VBAT\n");
686 			stm32_adc_set_bits_common(adc, adc->cfg->regs->ccr_vbat.reg,
687 						  adc->cfg->regs->ccr_vbat.mask);
688 			break;
689 		}
690 	}
691 }
692 
693 static void stm32_adc_int_ch_disable(struct stm32_adc *adc)
694 {
695 	u32 i;
696 
697 	for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
698 		if (adc->int_ch[i] == STM32_ADC_INT_CH_NONE)
699 			continue;
700 
701 		switch (i) {
702 		case STM32_ADC_INT_CH_VDDCORE:
703 			stm32_adc_clr_bits(adc, adc->cfg->regs->or_vdd.reg,
704 					   adc->cfg->regs->or_vdd.mask);
705 			break;
706 		case STM32_ADC_INT_CH_VREFINT:
707 			stm32_adc_clr_bits_common(adc, adc->cfg->regs->ccr_vref.reg,
708 						  adc->cfg->regs->ccr_vref.mask);
709 			break;
710 		case STM32_ADC_INT_CH_VBAT:
711 			stm32_adc_clr_bits_common(adc, adc->cfg->regs->ccr_vbat.reg,
712 						  adc->cfg->regs->ccr_vbat.mask);
713 			break;
714 		}
715 	}
716 }
717 
718 /**
719  * stm32f4_adc_start_conv() - Start conversions for regular channels.
720  * @indio_dev: IIO device instance
721  * @dma: use dma to transfer conversion result
722  *
723  * Start conversions for regular channels.
724  * Also take care of normal or DMA mode. Circular DMA may be used for regular
725  * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
726  * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
727  */
728 static void stm32f4_adc_start_conv(struct iio_dev *indio_dev, bool dma)
729 {
730 	struct stm32_adc *adc = iio_priv(indio_dev);
731 
732 	stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
733 
734 	if (dma)
735 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
736 				   STM32F4_DMA | STM32F4_DDS);
737 
738 	stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
739 
740 	/* Wait for Power-up time (tSTAB from datasheet) */
741 	usleep_range(2, 3);
742 
743 	/* Software start ? (e.g. trigger detection disabled ?) */
744 	if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
745 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
746 }
747 
748 static void stm32f4_adc_stop_conv(struct iio_dev *indio_dev)
749 {
750 	struct stm32_adc *adc = iio_priv(indio_dev);
751 
752 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
753 	stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
754 
755 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
756 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
757 			   STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
758 }
759 
760 static void stm32f4_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
761 {
762 	struct stm32_adc *adc = iio_priv(indio_dev);
763 
764 	stm32_adc_clr_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
765 }
766 
767 static void stm32h7_adc_start_conv(struct iio_dev *indio_dev, bool dma)
768 {
769 	struct stm32_adc *adc = iio_priv(indio_dev);
770 	enum stm32h7_adc_dmngt dmngt;
771 	unsigned long flags;
772 	u32 val;
773 
774 	if (dma)
775 		dmngt = STM32H7_DMNGT_DMA_CIRC;
776 	else
777 		dmngt = STM32H7_DMNGT_DR_ONLY;
778 
779 	spin_lock_irqsave(&adc->lock, flags);
780 	val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
781 	val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
782 	stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
783 	spin_unlock_irqrestore(&adc->lock, flags);
784 
785 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
786 }
787 
788 static void stm32h7_adc_stop_conv(struct iio_dev *indio_dev)
789 {
790 	struct stm32_adc *adc = iio_priv(indio_dev);
791 	int ret;
792 	u32 val;
793 
794 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
795 
796 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
797 					   !(val & (STM32H7_ADSTART)),
798 					   100, STM32_ADC_TIMEOUT_US);
799 	if (ret)
800 		dev_warn(&indio_dev->dev, "stop failed\n");
801 
802 	stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
803 }
804 
805 static void stm32h7_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
806 {
807 	struct stm32_adc *adc = iio_priv(indio_dev);
808 	/* On STM32H7 IRQs are cleared by writing 1 into ISR register */
809 	stm32_adc_set_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
810 }
811 
812 static int stm32h7_adc_exit_pwr_down(struct iio_dev *indio_dev)
813 {
814 	struct stm32_adc *adc = iio_priv(indio_dev);
815 	int ret;
816 	u32 val;
817 
818 	/* Exit deep power down, then enable ADC voltage regulator */
819 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
820 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
821 
822 	if (adc->common->rate > STM32H7_BOOST_CLKRATE)
823 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
824 
825 	/* Wait for startup time */
826 	if (!adc->cfg->has_vregready) {
827 		usleep_range(10, 20);
828 		return 0;
829 	}
830 
831 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
832 					   val & STM32MP1_VREGREADY, 100,
833 					   STM32_ADC_TIMEOUT_US);
834 	if (ret) {
835 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
836 		dev_err(&indio_dev->dev, "Failed to exit power down\n");
837 	}
838 
839 	return ret;
840 }
841 
842 static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
843 {
844 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
845 
846 	/* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
847 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
848 }
849 
850 static int stm32h7_adc_enable(struct iio_dev *indio_dev)
851 {
852 	struct stm32_adc *adc = iio_priv(indio_dev);
853 	int ret;
854 	u32 val;
855 
856 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
857 
858 	/* Poll for ADRDY to be set (after adc startup time) */
859 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
860 					   val & STM32H7_ADRDY,
861 					   100, STM32_ADC_TIMEOUT_US);
862 	if (ret) {
863 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
864 		dev_err(&indio_dev->dev, "Failed to enable ADC\n");
865 	} else {
866 		/* Clear ADRDY by writing one */
867 		stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
868 	}
869 
870 	return ret;
871 }
872 
873 static void stm32h7_adc_disable(struct iio_dev *indio_dev)
874 {
875 	struct stm32_adc *adc = iio_priv(indio_dev);
876 	int ret;
877 	u32 val;
878 
879 	/* Disable ADC and wait until it's effectively disabled */
880 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
881 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
882 					   !(val & STM32H7_ADEN), 100,
883 					   STM32_ADC_TIMEOUT_US);
884 	if (ret)
885 		dev_warn(&indio_dev->dev, "Failed to disable\n");
886 }
887 
888 /**
889  * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
890  * @indio_dev: IIO device instance
891  * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
892  */
893 static int stm32h7_adc_read_selfcalib(struct iio_dev *indio_dev)
894 {
895 	struct stm32_adc *adc = iio_priv(indio_dev);
896 	int i, ret;
897 	u32 lincalrdyw_mask, val;
898 
899 	/* Read linearity calibration */
900 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
901 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
902 		/* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
903 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
904 
905 		/* Poll: wait calib data to be ready in CALFACT2 register */
906 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
907 						   !(val & lincalrdyw_mask),
908 						   100, STM32_ADC_TIMEOUT_US);
909 		if (ret) {
910 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
911 			return ret;
912 		}
913 
914 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
915 		adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
916 		adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
917 
918 		lincalrdyw_mask >>= 1;
919 	}
920 
921 	/* Read offset calibration */
922 	val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
923 	adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
924 	adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
925 	adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
926 	adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
927 	adc->cal.calibrated = true;
928 
929 	return 0;
930 }
931 
932 /**
933  * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
934  * @indio_dev: IIO device instance
935  * Note: ADC must be enabled, with no on-going conversions.
936  */
937 static int stm32h7_adc_restore_selfcalib(struct iio_dev *indio_dev)
938 {
939 	struct stm32_adc *adc = iio_priv(indio_dev);
940 	int i, ret;
941 	u32 lincalrdyw_mask, val;
942 
943 	val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
944 		(adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
945 	stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
946 
947 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
948 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
949 		/*
950 		 * Write saved calibration data to shadow registers:
951 		 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
952 		 * data write. Then poll to wait for complete transfer.
953 		 */
954 		val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
955 		stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
956 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
957 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
958 						   val & lincalrdyw_mask,
959 						   100, STM32_ADC_TIMEOUT_US);
960 		if (ret) {
961 			dev_err(&indio_dev->dev, "Failed to write calfact\n");
962 			return ret;
963 		}
964 
965 		/*
966 		 * Read back calibration data, has two effects:
967 		 * - It ensures bits LINCALRDYW[6..1] are kept cleared
968 		 *   for next time calibration needs to be restored.
969 		 * - BTW, bit clear triggers a read, then check data has been
970 		 *   correctly written.
971 		 */
972 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
973 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
974 						   !(val & lincalrdyw_mask),
975 						   100, STM32_ADC_TIMEOUT_US);
976 		if (ret) {
977 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
978 			return ret;
979 		}
980 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
981 		if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
982 			dev_err(&indio_dev->dev, "calfact not consistent\n");
983 			return -EIO;
984 		}
985 
986 		lincalrdyw_mask >>= 1;
987 	}
988 
989 	return 0;
990 }
991 
992 /*
993  * Fixed timeout value for ADC calibration.
994  * worst cases:
995  * - low clock frequency
996  * - maximum prescalers
997  * Calibration requires:
998  * - 131,072 ADC clock cycle for the linear calibration
999  * - 20 ADC clock cycle for the offset calibration
1000  *
1001  * Set to 100ms for now
1002  */
1003 #define STM32H7_ADC_CALIB_TIMEOUT_US		100000
1004 
1005 /**
1006  * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
1007  * @indio_dev: IIO device instance
1008  * Note: Must be called once ADC is out of power down.
1009  */
1010 static int stm32h7_adc_selfcalib(struct iio_dev *indio_dev)
1011 {
1012 	struct stm32_adc *adc = iio_priv(indio_dev);
1013 	int ret;
1014 	u32 val;
1015 
1016 	if (adc->cal.calibrated)
1017 		return true;
1018 
1019 	/*
1020 	 * Select calibration mode:
1021 	 * - Offset calibration for single ended inputs
1022 	 * - No linearity calibration (do it later, before reading it)
1023 	 */
1024 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
1025 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
1026 
1027 	/* Start calibration, then wait for completion */
1028 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
1029 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1030 					   !(val & STM32H7_ADCAL), 100,
1031 					   STM32H7_ADC_CALIB_TIMEOUT_US);
1032 	if (ret) {
1033 		dev_err(&indio_dev->dev, "calibration failed\n");
1034 		goto out;
1035 	}
1036 
1037 	/*
1038 	 * Select calibration mode, then start calibration:
1039 	 * - Offset calibration for differential input
1040 	 * - Linearity calibration (needs to be done only once for single/diff)
1041 	 *   will run simultaneously with offset calibration.
1042 	 */
1043 	stm32_adc_set_bits(adc, STM32H7_ADC_CR,
1044 			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
1045 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
1046 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
1047 					   !(val & STM32H7_ADCAL), 100,
1048 					   STM32H7_ADC_CALIB_TIMEOUT_US);
1049 	if (ret) {
1050 		dev_err(&indio_dev->dev, "calibration failed\n");
1051 		goto out;
1052 	}
1053 
1054 out:
1055 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
1056 			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
1057 
1058 	return ret;
1059 }
1060 
1061 /**
1062  * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
1063  * @indio_dev: IIO device instance
1064  * Leave power down mode.
1065  * Configure channels as single ended or differential before enabling ADC.
1066  * Enable ADC.
1067  * Restore calibration data.
1068  * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
1069  * - Only one input is selected for single ended (e.g. 'vinp')
1070  * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
1071  */
1072 static int stm32h7_adc_prepare(struct iio_dev *indio_dev)
1073 {
1074 	struct stm32_adc *adc = iio_priv(indio_dev);
1075 	int calib, ret;
1076 
1077 	ret = stm32h7_adc_exit_pwr_down(indio_dev);
1078 	if (ret)
1079 		return ret;
1080 
1081 	ret = stm32h7_adc_selfcalib(indio_dev);
1082 	if (ret < 0)
1083 		goto pwr_dwn;
1084 	calib = ret;
1085 
1086 	stm32_adc_int_ch_enable(indio_dev);
1087 
1088 	stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
1089 
1090 	ret = stm32h7_adc_enable(indio_dev);
1091 	if (ret)
1092 		goto ch_disable;
1093 
1094 	/* Either restore or read calibration result for future reference */
1095 	if (calib)
1096 		ret = stm32h7_adc_restore_selfcalib(indio_dev);
1097 	else
1098 		ret = stm32h7_adc_read_selfcalib(indio_dev);
1099 	if (ret)
1100 		goto disable;
1101 
1102 	stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
1103 
1104 	return 0;
1105 
1106 disable:
1107 	stm32h7_adc_disable(indio_dev);
1108 ch_disable:
1109 	stm32_adc_int_ch_disable(adc);
1110 pwr_dwn:
1111 	stm32h7_adc_enter_pwr_down(adc);
1112 
1113 	return ret;
1114 }
1115 
1116 static void stm32h7_adc_unprepare(struct iio_dev *indio_dev)
1117 {
1118 	struct stm32_adc *adc = iio_priv(indio_dev);
1119 
1120 	stm32_adc_writel(adc, STM32H7_ADC_PCSEL, 0);
1121 	stm32h7_adc_disable(indio_dev);
1122 	stm32_adc_int_ch_disable(adc);
1123 	stm32h7_adc_enter_pwr_down(adc);
1124 }
1125 
1126 /**
1127  * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
1128  * @indio_dev: IIO device
1129  * @scan_mask: channels to be converted
1130  *
1131  * Conversion sequence :
1132  * Apply sampling time settings for all channels.
1133  * Configure ADC scan sequence based on selected channels in scan_mask.
1134  * Add channels to SQR registers, from scan_mask LSB to MSB, then
1135  * program sequence len.
1136  */
1137 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
1138 				   const unsigned long *scan_mask)
1139 {
1140 	struct stm32_adc *adc = iio_priv(indio_dev);
1141 	const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
1142 	const struct iio_chan_spec *chan;
1143 	u32 val, bit;
1144 	int i = 0;
1145 
1146 	/* Apply sampling time settings */
1147 	stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
1148 	stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
1149 
1150 	for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
1151 		chan = indio_dev->channels + bit;
1152 		/*
1153 		 * Assign one channel per SQ entry in regular
1154 		 * sequence, starting with SQ1.
1155 		 */
1156 		i++;
1157 		if (i > STM32_ADC_MAX_SQ)
1158 			return -EINVAL;
1159 
1160 		dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
1161 			__func__, chan->channel, i);
1162 
1163 		val = stm32_adc_readl(adc, sqr[i].reg);
1164 		val &= ~sqr[i].mask;
1165 		val |= chan->channel << sqr[i].shift;
1166 		stm32_adc_writel(adc, sqr[i].reg, val);
1167 	}
1168 
1169 	if (!i)
1170 		return -EINVAL;
1171 
1172 	/* Sequence len */
1173 	val = stm32_adc_readl(adc, sqr[0].reg);
1174 	val &= ~sqr[0].mask;
1175 	val |= ((i - 1) << sqr[0].shift);
1176 	stm32_adc_writel(adc, sqr[0].reg, val);
1177 
1178 	return 0;
1179 }
1180 
1181 /**
1182  * stm32_adc_get_trig_extsel() - Get external trigger selection
1183  * @indio_dev: IIO device structure
1184  * @trig: trigger
1185  *
1186  * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1187  */
1188 static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1189 				     struct iio_trigger *trig)
1190 {
1191 	struct stm32_adc *adc = iio_priv(indio_dev);
1192 	int i;
1193 
1194 	/* lookup triggers registered by stm32 timer trigger driver */
1195 	for (i = 0; adc->cfg->trigs[i].name; i++) {
1196 		/**
1197 		 * Checking both stm32 timer trigger type and trig name
1198 		 * should be safe against arbitrary trigger names.
1199 		 */
1200 		if ((is_stm32_timer_trigger(trig) ||
1201 		     is_stm32_lptim_trigger(trig)) &&
1202 		    !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1203 			return adc->cfg->trigs[i].extsel;
1204 		}
1205 	}
1206 
1207 	return -EINVAL;
1208 }
1209 
1210 /**
1211  * stm32_adc_set_trig() - Set a regular trigger
1212  * @indio_dev: IIO device
1213  * @trig: IIO trigger
1214  *
1215  * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1216  * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1217  * - if HW trigger enabled, set source & polarity
1218  */
1219 static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1220 			      struct iio_trigger *trig)
1221 {
1222 	struct stm32_adc *adc = iio_priv(indio_dev);
1223 	u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1224 	unsigned long flags;
1225 	int ret;
1226 
1227 	if (trig) {
1228 		ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1229 		if (ret < 0)
1230 			return ret;
1231 
1232 		/* set trigger source and polarity (default to rising edge) */
1233 		extsel = ret;
1234 		exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1235 	}
1236 
1237 	spin_lock_irqsave(&adc->lock, flags);
1238 	val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1239 	val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1240 	val |= exten << adc->cfg->regs->exten.shift;
1241 	val |= extsel << adc->cfg->regs->extsel.shift;
1242 	stm32_adc_writel(adc,  adc->cfg->regs->exten.reg, val);
1243 	spin_unlock_irqrestore(&adc->lock, flags);
1244 
1245 	return 0;
1246 }
1247 
1248 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1249 				  const struct iio_chan_spec *chan,
1250 				  unsigned int type)
1251 {
1252 	struct stm32_adc *adc = iio_priv(indio_dev);
1253 
1254 	adc->trigger_polarity = type;
1255 
1256 	return 0;
1257 }
1258 
1259 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1260 				  const struct iio_chan_spec *chan)
1261 {
1262 	struct stm32_adc *adc = iio_priv(indio_dev);
1263 
1264 	return adc->trigger_polarity;
1265 }
1266 
1267 static const char * const stm32_trig_pol_items[] = {
1268 	"rising-edge", "falling-edge", "both-edges",
1269 };
1270 
1271 static const struct iio_enum stm32_adc_trig_pol = {
1272 	.items = stm32_trig_pol_items,
1273 	.num_items = ARRAY_SIZE(stm32_trig_pol_items),
1274 	.get = stm32_adc_get_trig_pol,
1275 	.set = stm32_adc_set_trig_pol,
1276 };
1277 
1278 /**
1279  * stm32_adc_single_conv() - Performs a single conversion
1280  * @indio_dev: IIO device
1281  * @chan: IIO channel
1282  * @res: conversion result
1283  *
1284  * The function performs a single conversion on a given channel:
1285  * - Apply sampling time settings
1286  * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1287  * - Use SW trigger
1288  * - Start conversion, then wait for interrupt completion.
1289  */
1290 static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1291 				 const struct iio_chan_spec *chan,
1292 				 int *res)
1293 {
1294 	struct stm32_adc *adc = iio_priv(indio_dev);
1295 	struct device *dev = indio_dev->dev.parent;
1296 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1297 	long timeout;
1298 	u32 val;
1299 	int ret;
1300 
1301 	reinit_completion(&adc->completion);
1302 
1303 	adc->bufi = 0;
1304 
1305 	ret = pm_runtime_resume_and_get(dev);
1306 	if (ret < 0)
1307 		return ret;
1308 
1309 	/* Apply sampling time settings */
1310 	stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1311 	stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1312 
1313 	/* Program chan number in regular sequence (SQ1) */
1314 	val = stm32_adc_readl(adc, regs->sqr[1].reg);
1315 	val &= ~regs->sqr[1].mask;
1316 	val |= chan->channel << regs->sqr[1].shift;
1317 	stm32_adc_writel(adc, regs->sqr[1].reg, val);
1318 
1319 	/* Set regular sequence len (0 for 1 conversion) */
1320 	stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1321 
1322 	/* Trigger detection disabled (conversion can be launched in SW) */
1323 	stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1324 
1325 	stm32_adc_conv_irq_enable(adc);
1326 
1327 	adc->cfg->start_conv(indio_dev, false);
1328 
1329 	timeout = wait_for_completion_interruptible_timeout(
1330 					&adc->completion, STM32_ADC_TIMEOUT);
1331 	if (timeout == 0) {
1332 		ret = -ETIMEDOUT;
1333 	} else if (timeout < 0) {
1334 		ret = timeout;
1335 	} else {
1336 		*res = adc->buffer[0];
1337 		ret = IIO_VAL_INT;
1338 	}
1339 
1340 	adc->cfg->stop_conv(indio_dev);
1341 
1342 	stm32_adc_conv_irq_disable(adc);
1343 
1344 	pm_runtime_mark_last_busy(dev);
1345 	pm_runtime_put_autosuspend(dev);
1346 
1347 	return ret;
1348 }
1349 
1350 static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1351 			      struct iio_chan_spec const *chan,
1352 			      int *val, int *val2, long mask)
1353 {
1354 	struct stm32_adc *adc = iio_priv(indio_dev);
1355 	int ret;
1356 
1357 	switch (mask) {
1358 	case IIO_CHAN_INFO_RAW:
1359 	case IIO_CHAN_INFO_PROCESSED:
1360 		ret = iio_device_claim_direct_mode(indio_dev);
1361 		if (ret)
1362 			return ret;
1363 		if (chan->type == IIO_VOLTAGE)
1364 			ret = stm32_adc_single_conv(indio_dev, chan, val);
1365 		else
1366 			ret = -EINVAL;
1367 
1368 		if (mask == IIO_CHAN_INFO_PROCESSED)
1369 			*val = STM32_ADC_VREFINT_VOLTAGE * adc->vrefint.vrefint_cal / *val;
1370 
1371 		iio_device_release_direct_mode(indio_dev);
1372 		return ret;
1373 
1374 	case IIO_CHAN_INFO_SCALE:
1375 		if (chan->differential) {
1376 			*val = adc->common->vref_mv * 2;
1377 			*val2 = chan->scan_type.realbits;
1378 		} else {
1379 			*val = adc->common->vref_mv;
1380 			*val2 = chan->scan_type.realbits;
1381 		}
1382 		return IIO_VAL_FRACTIONAL_LOG2;
1383 
1384 	case IIO_CHAN_INFO_OFFSET:
1385 		if (chan->differential)
1386 			/* ADC_full_scale / 2 */
1387 			*val = -((1 << chan->scan_type.realbits) / 2);
1388 		else
1389 			*val = 0;
1390 		return IIO_VAL_INT;
1391 
1392 	default:
1393 		return -EINVAL;
1394 	}
1395 }
1396 
1397 static void stm32_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
1398 {
1399 	struct stm32_adc *adc = iio_priv(indio_dev);
1400 
1401 	adc->cfg->irq_clear(indio_dev, msk);
1402 }
1403 
1404 static irqreturn_t stm32_adc_threaded_isr(int irq, void *data)
1405 {
1406 	struct iio_dev *indio_dev = data;
1407 	struct stm32_adc *adc = iio_priv(indio_dev);
1408 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1409 	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1410 
1411 	/* Check ovr status right now, as ovr mask should be already disabled */
1412 	if (status & regs->isr_ovr.mask) {
1413 		/*
1414 		 * Clear ovr bit to avoid subsequent calls to IRQ handler.
1415 		 * This requires to stop ADC first. OVR bit state in ISR,
1416 		 * is propaged to CSR register by hardware.
1417 		 */
1418 		adc->cfg->stop_conv(indio_dev);
1419 		stm32_adc_irq_clear(indio_dev, regs->isr_ovr.mask);
1420 		dev_err(&indio_dev->dev, "Overrun, stopping: restart needed\n");
1421 		return IRQ_HANDLED;
1422 	}
1423 
1424 	return IRQ_NONE;
1425 }
1426 
1427 static irqreturn_t stm32_adc_isr(int irq, void *data)
1428 {
1429 	struct iio_dev *indio_dev = data;
1430 	struct stm32_adc *adc = iio_priv(indio_dev);
1431 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1432 	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1433 
1434 	if (status & regs->isr_ovr.mask) {
1435 		/*
1436 		 * Overrun occurred on regular conversions: data for wrong
1437 		 * channel may be read. Unconditionally disable interrupts
1438 		 * to stop processing data and print error message.
1439 		 * Restarting the capture can be done by disabling, then
1440 		 * re-enabling it (e.g. write 0, then 1 to buffer/enable).
1441 		 */
1442 		stm32_adc_ovr_irq_disable(adc);
1443 		stm32_adc_conv_irq_disable(adc);
1444 		return IRQ_WAKE_THREAD;
1445 	}
1446 
1447 	if (status & regs->isr_eoc.mask) {
1448 		/* Reading DR also clears EOC status flag */
1449 		adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1450 		if (iio_buffer_enabled(indio_dev)) {
1451 			adc->bufi++;
1452 			if (adc->bufi >= adc->num_conv) {
1453 				stm32_adc_conv_irq_disable(adc);
1454 				iio_trigger_poll(indio_dev->trig);
1455 			}
1456 		} else {
1457 			complete(&adc->completion);
1458 		}
1459 		return IRQ_HANDLED;
1460 	}
1461 
1462 	return IRQ_NONE;
1463 }
1464 
1465 /**
1466  * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1467  * @indio_dev: IIO device
1468  * @trig: new trigger
1469  *
1470  * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1471  * driver, -EINVAL otherwise.
1472  */
1473 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1474 				      struct iio_trigger *trig)
1475 {
1476 	return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1477 }
1478 
1479 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1480 {
1481 	struct stm32_adc *adc = iio_priv(indio_dev);
1482 	unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1483 	unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1484 
1485 	/*
1486 	 * dma cyclic transfers are used, buffer is split into two periods.
1487 	 * There should be :
1488 	 * - always one buffer (period) dma is working on
1489 	 * - one buffer (period) driver can push data.
1490 	 */
1491 	watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1492 	adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1493 
1494 	return 0;
1495 }
1496 
1497 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1498 				      const unsigned long *scan_mask)
1499 {
1500 	struct stm32_adc *adc = iio_priv(indio_dev);
1501 	struct device *dev = indio_dev->dev.parent;
1502 	int ret;
1503 
1504 	ret = pm_runtime_resume_and_get(dev);
1505 	if (ret < 0)
1506 		return ret;
1507 
1508 	adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1509 
1510 	ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1511 	pm_runtime_mark_last_busy(dev);
1512 	pm_runtime_put_autosuspend(dev);
1513 
1514 	return ret;
1515 }
1516 
1517 static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1518 			      const struct of_phandle_args *iiospec)
1519 {
1520 	int i;
1521 
1522 	for (i = 0; i < indio_dev->num_channels; i++)
1523 		if (indio_dev->channels[i].channel == iiospec->args[0])
1524 			return i;
1525 
1526 	return -EINVAL;
1527 }
1528 
1529 /**
1530  * stm32_adc_debugfs_reg_access - read or write register value
1531  * @indio_dev: IIO device structure
1532  * @reg: register offset
1533  * @writeval: value to write
1534  * @readval: value to read
1535  *
1536  * To read a value from an ADC register:
1537  *   echo [ADC reg offset] > direct_reg_access
1538  *   cat direct_reg_access
1539  *
1540  * To write a value in a ADC register:
1541  *   echo [ADC_reg_offset] [value] > direct_reg_access
1542  */
1543 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1544 					unsigned reg, unsigned writeval,
1545 					unsigned *readval)
1546 {
1547 	struct stm32_adc *adc = iio_priv(indio_dev);
1548 	struct device *dev = indio_dev->dev.parent;
1549 	int ret;
1550 
1551 	ret = pm_runtime_resume_and_get(dev);
1552 	if (ret < 0)
1553 		return ret;
1554 
1555 	if (!readval)
1556 		stm32_adc_writel(adc, reg, writeval);
1557 	else
1558 		*readval = stm32_adc_readl(adc, reg);
1559 
1560 	pm_runtime_mark_last_busy(dev);
1561 	pm_runtime_put_autosuspend(dev);
1562 
1563 	return 0;
1564 }
1565 
1566 static const struct iio_info stm32_adc_iio_info = {
1567 	.read_raw = stm32_adc_read_raw,
1568 	.validate_trigger = stm32_adc_validate_trigger,
1569 	.hwfifo_set_watermark = stm32_adc_set_watermark,
1570 	.update_scan_mode = stm32_adc_update_scan_mode,
1571 	.debugfs_reg_access = stm32_adc_debugfs_reg_access,
1572 	.of_xlate = stm32_adc_of_xlate,
1573 };
1574 
1575 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1576 {
1577 	struct dma_tx_state state;
1578 	enum dma_status status;
1579 
1580 	status = dmaengine_tx_status(adc->dma_chan,
1581 				     adc->dma_chan->cookie,
1582 				     &state);
1583 	if (status == DMA_IN_PROGRESS) {
1584 		/* Residue is size in bytes from end of buffer */
1585 		unsigned int i = adc->rx_buf_sz - state.residue;
1586 		unsigned int size;
1587 
1588 		/* Return available bytes */
1589 		if (i >= adc->bufi)
1590 			size = i - adc->bufi;
1591 		else
1592 			size = adc->rx_buf_sz + i - adc->bufi;
1593 
1594 		return size;
1595 	}
1596 
1597 	return 0;
1598 }
1599 
1600 static void stm32_adc_dma_buffer_done(void *data)
1601 {
1602 	struct iio_dev *indio_dev = data;
1603 	struct stm32_adc *adc = iio_priv(indio_dev);
1604 	int residue = stm32_adc_dma_residue(adc);
1605 
1606 	/*
1607 	 * In DMA mode the trigger services of IIO are not used
1608 	 * (e.g. no call to iio_trigger_poll).
1609 	 * Calling irq handler associated to the hardware trigger is not
1610 	 * relevant as the conversions have already been done. Data
1611 	 * transfers are performed directly in DMA callback instead.
1612 	 * This implementation avoids to call trigger irq handler that
1613 	 * may sleep, in an atomic context (DMA irq handler context).
1614 	 */
1615 	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1616 
1617 	while (residue >= indio_dev->scan_bytes) {
1618 		u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1619 
1620 		iio_push_to_buffers(indio_dev, buffer);
1621 
1622 		residue -= indio_dev->scan_bytes;
1623 		adc->bufi += indio_dev->scan_bytes;
1624 		if (adc->bufi >= adc->rx_buf_sz)
1625 			adc->bufi = 0;
1626 	}
1627 }
1628 
1629 static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1630 {
1631 	struct stm32_adc *adc = iio_priv(indio_dev);
1632 	struct dma_async_tx_descriptor *desc;
1633 	dma_cookie_t cookie;
1634 	int ret;
1635 
1636 	if (!adc->dma_chan)
1637 		return 0;
1638 
1639 	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1640 		adc->rx_buf_sz, adc->rx_buf_sz / 2);
1641 
1642 	/* Prepare a DMA cyclic transaction */
1643 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1644 					 adc->rx_dma_buf,
1645 					 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1646 					 DMA_DEV_TO_MEM,
1647 					 DMA_PREP_INTERRUPT);
1648 	if (!desc)
1649 		return -EBUSY;
1650 
1651 	desc->callback = stm32_adc_dma_buffer_done;
1652 	desc->callback_param = indio_dev;
1653 
1654 	cookie = dmaengine_submit(desc);
1655 	ret = dma_submit_error(cookie);
1656 	if (ret) {
1657 		dmaengine_terminate_sync(adc->dma_chan);
1658 		return ret;
1659 	}
1660 
1661 	/* Issue pending DMA requests */
1662 	dma_async_issue_pending(adc->dma_chan);
1663 
1664 	return 0;
1665 }
1666 
1667 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1668 {
1669 	struct stm32_adc *adc = iio_priv(indio_dev);
1670 	struct device *dev = indio_dev->dev.parent;
1671 	int ret;
1672 
1673 	ret = pm_runtime_resume_and_get(dev);
1674 	if (ret < 0)
1675 		return ret;
1676 
1677 	ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1678 	if (ret) {
1679 		dev_err(&indio_dev->dev, "Can't set trigger\n");
1680 		goto err_pm_put;
1681 	}
1682 
1683 	ret = stm32_adc_dma_start(indio_dev);
1684 	if (ret) {
1685 		dev_err(&indio_dev->dev, "Can't start dma\n");
1686 		goto err_clr_trig;
1687 	}
1688 
1689 	/* Reset adc buffer index */
1690 	adc->bufi = 0;
1691 
1692 	stm32_adc_ovr_irq_enable(adc);
1693 
1694 	if (!adc->dma_chan)
1695 		stm32_adc_conv_irq_enable(adc);
1696 
1697 	adc->cfg->start_conv(indio_dev, !!adc->dma_chan);
1698 
1699 	return 0;
1700 
1701 err_clr_trig:
1702 	stm32_adc_set_trig(indio_dev, NULL);
1703 err_pm_put:
1704 	pm_runtime_mark_last_busy(dev);
1705 	pm_runtime_put_autosuspend(dev);
1706 
1707 	return ret;
1708 }
1709 
1710 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1711 {
1712 	struct stm32_adc *adc = iio_priv(indio_dev);
1713 	struct device *dev = indio_dev->dev.parent;
1714 
1715 	adc->cfg->stop_conv(indio_dev);
1716 	if (!adc->dma_chan)
1717 		stm32_adc_conv_irq_disable(adc);
1718 
1719 	stm32_adc_ovr_irq_disable(adc);
1720 
1721 	if (adc->dma_chan)
1722 		dmaengine_terminate_sync(adc->dma_chan);
1723 
1724 	if (stm32_adc_set_trig(indio_dev, NULL))
1725 		dev_err(&indio_dev->dev, "Can't clear trigger\n");
1726 
1727 	pm_runtime_mark_last_busy(dev);
1728 	pm_runtime_put_autosuspend(dev);
1729 
1730 	return 0;
1731 }
1732 
1733 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1734 	.postenable = &stm32_adc_buffer_postenable,
1735 	.predisable = &stm32_adc_buffer_predisable,
1736 };
1737 
1738 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1739 {
1740 	struct iio_poll_func *pf = p;
1741 	struct iio_dev *indio_dev = pf->indio_dev;
1742 	struct stm32_adc *adc = iio_priv(indio_dev);
1743 
1744 	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1745 
1746 	/* reset buffer index */
1747 	adc->bufi = 0;
1748 	iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1749 					   pf->timestamp);
1750 	iio_trigger_notify_done(indio_dev->trig);
1751 
1752 	/* re-enable eoc irq */
1753 	stm32_adc_conv_irq_enable(adc);
1754 
1755 	return IRQ_HANDLED;
1756 }
1757 
1758 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1759 	IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1760 	{
1761 		.name = "trigger_polarity_available",
1762 		.shared = IIO_SHARED_BY_ALL,
1763 		.read = iio_enum_available_read,
1764 		.private = (uintptr_t)&stm32_adc_trig_pol,
1765 	},
1766 	{},
1767 };
1768 
1769 static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1770 {
1771 	struct device_node *node = indio_dev->dev.of_node;
1772 	struct stm32_adc *adc = iio_priv(indio_dev);
1773 	unsigned int i;
1774 	u32 res;
1775 
1776 	if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1777 		res = adc->cfg->adc_info->resolutions[0];
1778 
1779 	for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1780 		if (res == adc->cfg->adc_info->resolutions[i])
1781 			break;
1782 	if (i >= adc->cfg->adc_info->num_res) {
1783 		dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1784 		return -EINVAL;
1785 	}
1786 
1787 	dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1788 	adc->res = i;
1789 
1790 	return 0;
1791 }
1792 
1793 static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1794 {
1795 	const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1796 	u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1797 	unsigned int smp, r = smpr->reg;
1798 
1799 	/*
1800 	 * For vrefint channel, ensure that the sampling time cannot
1801 	 * be lower than the one specified in the datasheet
1802 	 */
1803 	if (channel == adc->int_ch[STM32_ADC_INT_CH_VREFINT])
1804 		smp_ns = max(smp_ns, adc->cfg->ts_vrefint_ns);
1805 
1806 	/* Determine sampling time (ADC clock cycles) */
1807 	period_ns = NSEC_PER_SEC / adc->common->rate;
1808 	for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1809 		if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1810 			break;
1811 	if (smp > STM32_ADC_MAX_SMP)
1812 		smp = STM32_ADC_MAX_SMP;
1813 
1814 	/* pre-build sampling time registers (e.g. smpr1, smpr2) */
1815 	adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1816 }
1817 
1818 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1819 				    struct iio_chan_spec *chan, u32 vinp,
1820 				    u32 vinn, int scan_index, bool differential)
1821 {
1822 	struct stm32_adc *adc = iio_priv(indio_dev);
1823 	char *name = adc->chan_name[vinp];
1824 
1825 	chan->type = IIO_VOLTAGE;
1826 	chan->channel = vinp;
1827 	if (differential) {
1828 		chan->differential = 1;
1829 		chan->channel2 = vinn;
1830 		snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1831 	} else {
1832 		snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1833 	}
1834 	chan->datasheet_name = name;
1835 	chan->scan_index = scan_index;
1836 	chan->indexed = 1;
1837 	if (chan->channel == adc->int_ch[STM32_ADC_INT_CH_VREFINT])
1838 		chan->info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED);
1839 	else
1840 		chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1841 	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1842 					 BIT(IIO_CHAN_INFO_OFFSET);
1843 	chan->scan_type.sign = 'u';
1844 	chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1845 	chan->scan_type.storagebits = 16;
1846 	chan->ext_info = stm32_adc_ext_info;
1847 
1848 	/* pre-build selected channels mask */
1849 	adc->pcsel |= BIT(chan->channel);
1850 	if (differential) {
1851 		/* pre-build diff channels mask */
1852 		adc->difsel |= BIT(chan->channel);
1853 		/* Also add negative input to pre-selected channels */
1854 		adc->pcsel |= BIT(chan->channel2);
1855 	}
1856 }
1857 
1858 static int stm32_adc_get_legacy_chan_count(struct iio_dev *indio_dev, struct stm32_adc *adc)
1859 {
1860 	struct device_node *node = indio_dev->dev.of_node;
1861 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1862 	int num_channels = 0, ret;
1863 
1864 	ret = of_property_count_u32_elems(node, "st,adc-channels");
1865 	if (ret > adc_info->max_channels) {
1866 		dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1867 		return -EINVAL;
1868 	} else if (ret > 0) {
1869 		num_channels += ret;
1870 	}
1871 
1872 	ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1873 					      sizeof(struct stm32_adc_diff_channel));
1874 	if (ret > adc_info->max_channels) {
1875 		dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1876 		return -EINVAL;
1877 	} else if (ret > 0) {
1878 		adc->num_diff = ret;
1879 		num_channels += ret;
1880 	}
1881 
1882 	/* Optional sample time is provided either for each, or all channels */
1883 	ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1884 	if (ret > 1 && ret != num_channels) {
1885 		dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1886 		return -EINVAL;
1887 	}
1888 
1889 	return num_channels;
1890 }
1891 
1892 static int stm32_adc_legacy_chan_init(struct iio_dev *indio_dev,
1893 				      struct stm32_adc *adc,
1894 				      struct iio_chan_spec *channels)
1895 {
1896 	struct device_node *node = indio_dev->dev.of_node;
1897 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1898 	struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1899 	u32 num_diff = adc->num_diff;
1900 	int size = num_diff * sizeof(*diff) / sizeof(u32);
1901 	int scan_index = 0, val, ret, i;
1902 	struct property *prop;
1903 	const __be32 *cur;
1904 	u32 smp = 0;
1905 
1906 	if (num_diff) {
1907 		ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1908 						 (u32 *)diff, size);
1909 		if (ret) {
1910 			dev_err(&indio_dev->dev, "Failed to get diff channels %d\n", ret);
1911 			return ret;
1912 		}
1913 
1914 		for (i = 0; i < num_diff; i++) {
1915 			if (diff[i].vinp >= adc_info->max_channels ||
1916 			    diff[i].vinn >= adc_info->max_channels) {
1917 				dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1918 					diff[i].vinp, diff[i].vinn);
1919 				return -EINVAL;
1920 			}
1921 
1922 			stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1923 						diff[i].vinp, diff[i].vinn,
1924 						scan_index, true);
1925 			scan_index++;
1926 		}
1927 	}
1928 
1929 	of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1930 		if (val >= adc_info->max_channels) {
1931 			dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1932 			return -EINVAL;
1933 		}
1934 
1935 		/* Channel can't be configured both as single-ended & diff */
1936 		for (i = 0; i < num_diff; i++) {
1937 			if (val == diff[i].vinp) {
1938 				dev_err(&indio_dev->dev, "channel %d misconfigured\n",	val);
1939 				return -EINVAL;
1940 			}
1941 		}
1942 		stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1943 					0, scan_index, false);
1944 		scan_index++;
1945 	}
1946 
1947 	for (i = 0; i < scan_index; i++) {
1948 		/*
1949 		 * Using of_property_read_u32_index(), smp value will only be
1950 		 * modified if valid u32 value can be decoded. This allows to
1951 		 * get either no value, 1 shared value for all indexes, or one
1952 		 * value per channel.
1953 		 */
1954 		of_property_read_u32_index(node, "st,min-sample-time-nsecs", i, &smp);
1955 
1956 		/* Prepare sampling time settings */
1957 		stm32_adc_smpr_init(adc, channels[i].channel, smp);
1958 	}
1959 
1960 	return scan_index;
1961 }
1962 
1963 static int stm32_adc_populate_int_ch(struct iio_dev *indio_dev, const char *ch_name,
1964 				     int chan)
1965 {
1966 	struct stm32_adc *adc = iio_priv(indio_dev);
1967 	u16 vrefint;
1968 	int i, ret;
1969 
1970 	for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
1971 		if (!strncmp(stm32_adc_ic[i].name, ch_name, STM32_ADC_CH_SZ)) {
1972 			if (stm32_adc_ic[i].idx != STM32_ADC_INT_CH_VREFINT) {
1973 				adc->int_ch[i] = chan;
1974 				break;
1975 			}
1976 
1977 			/* Get calibration data for vrefint channel */
1978 			ret = nvmem_cell_read_u16(&indio_dev->dev, "vrefint", &vrefint);
1979 			if (ret && ret != -ENOENT) {
1980 				return dev_err_probe(indio_dev->dev.parent, ret,
1981 						     "nvmem access error\n");
1982 			}
1983 			if (ret == -ENOENT) {
1984 				dev_dbg(&indio_dev->dev, "vrefint calibration not found. Skip vrefint channel\n");
1985 				return ret;
1986 			} else if (!vrefint) {
1987 				dev_dbg(&indio_dev->dev, "Null vrefint calibration value. Skip vrefint channel\n");
1988 				return -ENOENT;
1989 			}
1990 			adc->int_ch[i] = chan;
1991 			adc->vrefint.vrefint_cal = vrefint;
1992 		}
1993 	}
1994 
1995 	return 0;
1996 }
1997 
1998 static int stm32_adc_generic_chan_init(struct iio_dev *indio_dev,
1999 				       struct stm32_adc *adc,
2000 				       struct iio_chan_spec *channels)
2001 {
2002 	struct device_node *node = indio_dev->dev.of_node;
2003 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
2004 	struct device_node *child;
2005 	const char *name;
2006 	int val, scan_index = 0, ret;
2007 	bool differential;
2008 	u32 vin[2];
2009 
2010 	for_each_available_child_of_node(node, child) {
2011 		ret = of_property_read_u32(child, "reg", &val);
2012 		if (ret) {
2013 			dev_err(&indio_dev->dev, "Missing channel index %d\n", ret);
2014 			goto err;
2015 		}
2016 
2017 		ret = of_property_read_string(child, "label", &name);
2018 		/* label is optional */
2019 		if (!ret) {
2020 			if (strlen(name) >= STM32_ADC_CH_SZ) {
2021 				dev_err(&indio_dev->dev, "Label %s exceeds %d characters\n",
2022 					name, STM32_ADC_CH_SZ);
2023 				ret = -EINVAL;
2024 				goto err;
2025 			}
2026 			strncpy(adc->chan_name[val], name, STM32_ADC_CH_SZ);
2027 			ret = stm32_adc_populate_int_ch(indio_dev, name, val);
2028 			if (ret == -ENOENT)
2029 				continue;
2030 			else if (ret)
2031 				goto err;
2032 		} else if (ret != -EINVAL) {
2033 			dev_err(&indio_dev->dev, "Invalid label %d\n", ret);
2034 			goto err;
2035 		}
2036 
2037 		if (val >= adc_info->max_channels) {
2038 			dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
2039 			ret = -EINVAL;
2040 			goto err;
2041 		}
2042 
2043 		differential = false;
2044 		ret = of_property_read_u32_array(child, "diff-channels", vin, 2);
2045 		/* diff-channels is optional */
2046 		if (!ret) {
2047 			differential = true;
2048 			if (vin[0] != val || vin[1] >= adc_info->max_channels) {
2049 				dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
2050 					vin[0], vin[1]);
2051 				goto err;
2052 			}
2053 		} else if (ret != -EINVAL) {
2054 			dev_err(&indio_dev->dev, "Invalid diff-channels property %d\n", ret);
2055 			goto err;
2056 		}
2057 
2058 		stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
2059 					vin[1], scan_index, differential);
2060 
2061 		ret = of_property_read_u32(child, "st,min-sample-time-ns", &val);
2062 		/* st,min-sample-time-ns is optional */
2063 		if (!ret) {
2064 			stm32_adc_smpr_init(adc, channels[scan_index].channel, val);
2065 			if (differential)
2066 				stm32_adc_smpr_init(adc, vin[1], val);
2067 		} else if (ret != -EINVAL) {
2068 			dev_err(&indio_dev->dev, "Invalid st,min-sample-time-ns property %d\n",
2069 				ret);
2070 			goto err;
2071 		}
2072 
2073 		scan_index++;
2074 	}
2075 
2076 	return scan_index;
2077 
2078 err:
2079 	of_node_put(child);
2080 
2081 	return ret;
2082 }
2083 
2084 static int stm32_adc_chan_of_init(struct iio_dev *indio_dev, bool timestamping)
2085 {
2086 	struct device_node *node = indio_dev->dev.of_node;
2087 	struct stm32_adc *adc = iio_priv(indio_dev);
2088 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
2089 	struct iio_chan_spec *channels;
2090 	int scan_index = 0, num_channels = 0, ret, i;
2091 	bool legacy = false;
2092 
2093 	for (i = 0; i < STM32_ADC_INT_CH_NB; i++)
2094 		adc->int_ch[i] = STM32_ADC_INT_CH_NONE;
2095 
2096 	num_channels = of_get_available_child_count(node);
2097 	/* If no channels have been found, fallback to channels legacy properties. */
2098 	if (!num_channels) {
2099 		legacy = true;
2100 
2101 		ret = stm32_adc_get_legacy_chan_count(indio_dev, adc);
2102 		if (!ret) {
2103 			dev_err(indio_dev->dev.parent, "No channel found\n");
2104 			return -ENODATA;
2105 		} else if (ret < 0) {
2106 			return ret;
2107 		}
2108 
2109 		num_channels = ret;
2110 	}
2111 
2112 	if (num_channels > adc_info->max_channels) {
2113 		dev_err(&indio_dev->dev, "Channel number [%d] exceeds %d\n",
2114 			num_channels, adc_info->max_channels);
2115 		return -EINVAL;
2116 	}
2117 
2118 	if (timestamping)
2119 		num_channels++;
2120 
2121 	channels = devm_kcalloc(&indio_dev->dev, num_channels,
2122 				sizeof(struct iio_chan_spec), GFP_KERNEL);
2123 	if (!channels)
2124 		return -ENOMEM;
2125 
2126 	if (legacy)
2127 		ret = stm32_adc_legacy_chan_init(indio_dev, adc, channels);
2128 	else
2129 		ret = stm32_adc_generic_chan_init(indio_dev, adc, channels);
2130 	if (ret < 0)
2131 		return ret;
2132 	scan_index = ret;
2133 
2134 	if (timestamping) {
2135 		struct iio_chan_spec *timestamp = &channels[scan_index];
2136 
2137 		timestamp->type = IIO_TIMESTAMP;
2138 		timestamp->channel = -1;
2139 		timestamp->scan_index = scan_index;
2140 		timestamp->scan_type.sign = 's';
2141 		timestamp->scan_type.realbits = 64;
2142 		timestamp->scan_type.storagebits = 64;
2143 
2144 		scan_index++;
2145 	}
2146 
2147 	indio_dev->num_channels = scan_index;
2148 	indio_dev->channels = channels;
2149 
2150 	return 0;
2151 }
2152 
2153 static int stm32_adc_dma_request(struct device *dev, struct iio_dev *indio_dev)
2154 {
2155 	struct stm32_adc *adc = iio_priv(indio_dev);
2156 	struct dma_slave_config config;
2157 	int ret;
2158 
2159 	adc->dma_chan = dma_request_chan(dev, "rx");
2160 	if (IS_ERR(adc->dma_chan)) {
2161 		ret = PTR_ERR(adc->dma_chan);
2162 		if (ret != -ENODEV)
2163 			return dev_err_probe(dev, ret,
2164 					     "DMA channel request failed with\n");
2165 
2166 		/* DMA is optional: fall back to IRQ mode */
2167 		adc->dma_chan = NULL;
2168 		return 0;
2169 	}
2170 
2171 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
2172 					 STM32_DMA_BUFFER_SIZE,
2173 					 &adc->rx_dma_buf, GFP_KERNEL);
2174 	if (!adc->rx_buf) {
2175 		ret = -ENOMEM;
2176 		goto err_release;
2177 	}
2178 
2179 	/* Configure DMA channel to read data register */
2180 	memset(&config, 0, sizeof(config));
2181 	config.src_addr = (dma_addr_t)adc->common->phys_base;
2182 	config.src_addr += adc->offset + adc->cfg->regs->dr;
2183 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
2184 
2185 	ret = dmaengine_slave_config(adc->dma_chan, &config);
2186 	if (ret)
2187 		goto err_free;
2188 
2189 	return 0;
2190 
2191 err_free:
2192 	dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
2193 			  adc->rx_buf, adc->rx_dma_buf);
2194 err_release:
2195 	dma_release_channel(adc->dma_chan);
2196 
2197 	return ret;
2198 }
2199 
2200 static int stm32_adc_probe(struct platform_device *pdev)
2201 {
2202 	struct iio_dev *indio_dev;
2203 	struct device *dev = &pdev->dev;
2204 	irqreturn_t (*handler)(int irq, void *p) = NULL;
2205 	struct stm32_adc *adc;
2206 	bool timestamping = false;
2207 	int ret;
2208 
2209 	if (!pdev->dev.of_node)
2210 		return -ENODEV;
2211 
2212 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
2213 	if (!indio_dev)
2214 		return -ENOMEM;
2215 
2216 	adc = iio_priv(indio_dev);
2217 	adc->common = dev_get_drvdata(pdev->dev.parent);
2218 	spin_lock_init(&adc->lock);
2219 	init_completion(&adc->completion);
2220 	adc->cfg = (const struct stm32_adc_cfg *)
2221 		of_match_device(dev->driver->of_match_table, dev)->data;
2222 
2223 	indio_dev->name = dev_name(&pdev->dev);
2224 	indio_dev->dev.of_node = pdev->dev.of_node;
2225 	indio_dev->info = &stm32_adc_iio_info;
2226 	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
2227 
2228 	platform_set_drvdata(pdev, indio_dev);
2229 
2230 	ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
2231 	if (ret != 0) {
2232 		dev_err(&pdev->dev, "missing reg property\n");
2233 		return -EINVAL;
2234 	}
2235 
2236 	adc->irq = platform_get_irq(pdev, 0);
2237 	if (adc->irq < 0)
2238 		return adc->irq;
2239 
2240 	ret = devm_request_threaded_irq(&pdev->dev, adc->irq, stm32_adc_isr,
2241 					stm32_adc_threaded_isr,
2242 					0, pdev->name, indio_dev);
2243 	if (ret) {
2244 		dev_err(&pdev->dev, "failed to request IRQ\n");
2245 		return ret;
2246 	}
2247 
2248 	adc->clk = devm_clk_get(&pdev->dev, NULL);
2249 	if (IS_ERR(adc->clk)) {
2250 		ret = PTR_ERR(adc->clk);
2251 		if (ret == -ENOENT && !adc->cfg->clk_required) {
2252 			adc->clk = NULL;
2253 		} else {
2254 			dev_err(&pdev->dev, "Can't get clock\n");
2255 			return ret;
2256 		}
2257 	}
2258 
2259 	ret = stm32_adc_of_get_resolution(indio_dev);
2260 	if (ret < 0)
2261 		return ret;
2262 
2263 	ret = stm32_adc_dma_request(dev, indio_dev);
2264 	if (ret < 0)
2265 		return ret;
2266 
2267 	if (!adc->dma_chan) {
2268 		/* For PIO mode only, iio_pollfunc_store_time stores a timestamp
2269 		 * in the primary trigger IRQ handler and stm32_adc_trigger_handler
2270 		 * runs in the IRQ thread to push out buffer along with timestamp.
2271 		 */
2272 		handler = &stm32_adc_trigger_handler;
2273 		timestamping = true;
2274 	}
2275 
2276 	ret = stm32_adc_chan_of_init(indio_dev, timestamping);
2277 	if (ret < 0)
2278 		goto err_dma_disable;
2279 
2280 	ret = iio_triggered_buffer_setup(indio_dev,
2281 					 &iio_pollfunc_store_time, handler,
2282 					 &stm32_adc_buffer_setup_ops);
2283 	if (ret) {
2284 		dev_err(&pdev->dev, "buffer setup failed\n");
2285 		goto err_dma_disable;
2286 	}
2287 
2288 	/* Get stm32-adc-core PM online */
2289 	pm_runtime_get_noresume(dev);
2290 	pm_runtime_set_active(dev);
2291 	pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
2292 	pm_runtime_use_autosuspend(dev);
2293 	pm_runtime_enable(dev);
2294 
2295 	ret = stm32_adc_hw_start(dev);
2296 	if (ret)
2297 		goto err_buffer_cleanup;
2298 
2299 	ret = iio_device_register(indio_dev);
2300 	if (ret) {
2301 		dev_err(&pdev->dev, "iio dev register failed\n");
2302 		goto err_hw_stop;
2303 	}
2304 
2305 	pm_runtime_mark_last_busy(dev);
2306 	pm_runtime_put_autosuspend(dev);
2307 
2308 	return 0;
2309 
2310 err_hw_stop:
2311 	stm32_adc_hw_stop(dev);
2312 
2313 err_buffer_cleanup:
2314 	pm_runtime_disable(dev);
2315 	pm_runtime_set_suspended(dev);
2316 	pm_runtime_put_noidle(dev);
2317 	iio_triggered_buffer_cleanup(indio_dev);
2318 
2319 err_dma_disable:
2320 	if (adc->dma_chan) {
2321 		dma_free_coherent(adc->dma_chan->device->dev,
2322 				  STM32_DMA_BUFFER_SIZE,
2323 				  adc->rx_buf, adc->rx_dma_buf);
2324 		dma_release_channel(adc->dma_chan);
2325 	}
2326 
2327 	return ret;
2328 }
2329 
2330 static int stm32_adc_remove(struct platform_device *pdev)
2331 {
2332 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
2333 	struct stm32_adc *adc = iio_priv(indio_dev);
2334 
2335 	pm_runtime_get_sync(&pdev->dev);
2336 	iio_device_unregister(indio_dev);
2337 	stm32_adc_hw_stop(&pdev->dev);
2338 	pm_runtime_disable(&pdev->dev);
2339 	pm_runtime_set_suspended(&pdev->dev);
2340 	pm_runtime_put_noidle(&pdev->dev);
2341 	iio_triggered_buffer_cleanup(indio_dev);
2342 	if (adc->dma_chan) {
2343 		dma_free_coherent(adc->dma_chan->device->dev,
2344 				  STM32_DMA_BUFFER_SIZE,
2345 				  adc->rx_buf, adc->rx_dma_buf);
2346 		dma_release_channel(adc->dma_chan);
2347 	}
2348 
2349 	return 0;
2350 }
2351 
2352 static int stm32_adc_suspend(struct device *dev)
2353 {
2354 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2355 
2356 	if (iio_buffer_enabled(indio_dev))
2357 		stm32_adc_buffer_predisable(indio_dev);
2358 
2359 	return pm_runtime_force_suspend(dev);
2360 }
2361 
2362 static int stm32_adc_resume(struct device *dev)
2363 {
2364 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2365 	int ret;
2366 
2367 	ret = pm_runtime_force_resume(dev);
2368 	if (ret < 0)
2369 		return ret;
2370 
2371 	if (!iio_buffer_enabled(indio_dev))
2372 		return 0;
2373 
2374 	ret = stm32_adc_update_scan_mode(indio_dev,
2375 					 indio_dev->active_scan_mask);
2376 	if (ret < 0)
2377 		return ret;
2378 
2379 	return stm32_adc_buffer_postenable(indio_dev);
2380 }
2381 
2382 static int stm32_adc_runtime_suspend(struct device *dev)
2383 {
2384 	return stm32_adc_hw_stop(dev);
2385 }
2386 
2387 static int stm32_adc_runtime_resume(struct device *dev)
2388 {
2389 	return stm32_adc_hw_start(dev);
2390 }
2391 
2392 static const struct dev_pm_ops stm32_adc_pm_ops = {
2393 	SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
2394 	RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
2395 		       NULL)
2396 };
2397 
2398 static const struct stm32_adc_cfg stm32f4_adc_cfg = {
2399 	.regs = &stm32f4_adc_regspec,
2400 	.adc_info = &stm32f4_adc_info,
2401 	.trigs = stm32f4_adc_trigs,
2402 	.clk_required = true,
2403 	.start_conv = stm32f4_adc_start_conv,
2404 	.stop_conv = stm32f4_adc_stop_conv,
2405 	.smp_cycles = stm32f4_adc_smp_cycles,
2406 	.irq_clear = stm32f4_adc_irq_clear,
2407 };
2408 
2409 static const struct stm32_adc_cfg stm32h7_adc_cfg = {
2410 	.regs = &stm32h7_adc_regspec,
2411 	.adc_info = &stm32h7_adc_info,
2412 	.trigs = stm32h7_adc_trigs,
2413 	.start_conv = stm32h7_adc_start_conv,
2414 	.stop_conv = stm32h7_adc_stop_conv,
2415 	.prepare = stm32h7_adc_prepare,
2416 	.unprepare = stm32h7_adc_unprepare,
2417 	.smp_cycles = stm32h7_adc_smp_cycles,
2418 	.irq_clear = stm32h7_adc_irq_clear,
2419 };
2420 
2421 static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
2422 	.regs = &stm32mp1_adc_regspec,
2423 	.adc_info = &stm32h7_adc_info,
2424 	.trigs = stm32h7_adc_trigs,
2425 	.has_vregready = true,
2426 	.start_conv = stm32h7_adc_start_conv,
2427 	.stop_conv = stm32h7_adc_stop_conv,
2428 	.prepare = stm32h7_adc_prepare,
2429 	.unprepare = stm32h7_adc_unprepare,
2430 	.smp_cycles = stm32h7_adc_smp_cycles,
2431 	.irq_clear = stm32h7_adc_irq_clear,
2432 	.ts_vrefint_ns = 4300,
2433 };
2434 
2435 static const struct of_device_id stm32_adc_of_match[] = {
2436 	{ .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2437 	{ .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2438 	{ .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2439 	{},
2440 };
2441 MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2442 
2443 static struct platform_driver stm32_adc_driver = {
2444 	.probe = stm32_adc_probe,
2445 	.remove = stm32_adc_remove,
2446 	.driver = {
2447 		.name = "stm32-adc",
2448 		.of_match_table = stm32_adc_of_match,
2449 		.pm = pm_ptr(&stm32_adc_pm_ops),
2450 	},
2451 };
2452 module_platform_driver(stm32_adc_driver);
2453 
2454 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2455 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2456 MODULE_LICENSE("GPL v2");
2457 MODULE_ALIAS("platform:stm32-adc");
2458