1 /* 2 * This file is part of STM32 ADC driver 3 * 4 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved 5 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>. 6 * 7 * License type: GPLv2 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License version 2 as published by 11 * the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 15 * or FITNESS FOR A PARTICULAR PURPOSE. 16 * See the GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License along with 19 * this program. If not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include <linux/clk.h> 23 #include <linux/delay.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/dmaengine.h> 26 #include <linux/iio/iio.h> 27 #include <linux/iio/buffer.h> 28 #include <linux/iio/timer/stm32-lptim-trigger.h> 29 #include <linux/iio/timer/stm32-timer-trigger.h> 30 #include <linux/iio/trigger.h> 31 #include <linux/iio/trigger_consumer.h> 32 #include <linux/iio/triggered_buffer.h> 33 #include <linux/interrupt.h> 34 #include <linux/io.h> 35 #include <linux/iopoll.h> 36 #include <linux/module.h> 37 #include <linux/platform_device.h> 38 #include <linux/of.h> 39 #include <linux/of_device.h> 40 41 #include "stm32-adc-core.h" 42 43 /* STM32F4 - Registers for each ADC instance */ 44 #define STM32F4_ADC_SR 0x00 45 #define STM32F4_ADC_CR1 0x04 46 #define STM32F4_ADC_CR2 0x08 47 #define STM32F4_ADC_SMPR1 0x0C 48 #define STM32F4_ADC_SMPR2 0x10 49 #define STM32F4_ADC_HTR 0x24 50 #define STM32F4_ADC_LTR 0x28 51 #define STM32F4_ADC_SQR1 0x2C 52 #define STM32F4_ADC_SQR2 0x30 53 #define STM32F4_ADC_SQR3 0x34 54 #define STM32F4_ADC_JSQR 0x38 55 #define STM32F4_ADC_JDR1 0x3C 56 #define STM32F4_ADC_JDR2 0x40 57 #define STM32F4_ADC_JDR3 0x44 58 #define STM32F4_ADC_JDR4 0x48 59 #define STM32F4_ADC_DR 0x4C 60 61 /* STM32F4_ADC_SR - bit fields */ 62 #define STM32F4_STRT BIT(4) 63 #define STM32F4_EOC BIT(1) 64 65 /* STM32F4_ADC_CR1 - bit fields */ 66 #define STM32F4_RES_SHIFT 24 67 #define STM32F4_RES_MASK GENMASK(25, 24) 68 #define STM32F4_SCAN BIT(8) 69 #define STM32F4_EOCIE BIT(5) 70 71 /* STM32F4_ADC_CR2 - bit fields */ 72 #define STM32F4_SWSTART BIT(30) 73 #define STM32F4_EXTEN_SHIFT 28 74 #define STM32F4_EXTEN_MASK GENMASK(29, 28) 75 #define STM32F4_EXTSEL_SHIFT 24 76 #define STM32F4_EXTSEL_MASK GENMASK(27, 24) 77 #define STM32F4_EOCS BIT(10) 78 #define STM32F4_DDS BIT(9) 79 #define STM32F4_DMA BIT(8) 80 #define STM32F4_ADON BIT(0) 81 82 /* STM32H7 - Registers for each ADC instance */ 83 #define STM32H7_ADC_ISR 0x00 84 #define STM32H7_ADC_IER 0x04 85 #define STM32H7_ADC_CR 0x08 86 #define STM32H7_ADC_CFGR 0x0C 87 #define STM32H7_ADC_SMPR1 0x14 88 #define STM32H7_ADC_SMPR2 0x18 89 #define STM32H7_ADC_PCSEL 0x1C 90 #define STM32H7_ADC_SQR1 0x30 91 #define STM32H7_ADC_SQR2 0x34 92 #define STM32H7_ADC_SQR3 0x38 93 #define STM32H7_ADC_SQR4 0x3C 94 #define STM32H7_ADC_DR 0x40 95 #define STM32H7_ADC_CALFACT 0xC4 96 #define STM32H7_ADC_CALFACT2 0xC8 97 98 /* STM32H7_ADC_ISR - bit fields */ 99 #define STM32H7_EOC BIT(2) 100 #define STM32H7_ADRDY BIT(0) 101 102 /* STM32H7_ADC_IER - bit fields */ 103 #define STM32H7_EOCIE STM32H7_EOC 104 105 /* STM32H7_ADC_CR - bit fields */ 106 #define STM32H7_ADCAL BIT(31) 107 #define STM32H7_ADCALDIF BIT(30) 108 #define STM32H7_DEEPPWD BIT(29) 109 #define STM32H7_ADVREGEN BIT(28) 110 #define STM32H7_LINCALRDYW6 BIT(27) 111 #define STM32H7_LINCALRDYW5 BIT(26) 112 #define STM32H7_LINCALRDYW4 BIT(25) 113 #define STM32H7_LINCALRDYW3 BIT(24) 114 #define STM32H7_LINCALRDYW2 BIT(23) 115 #define STM32H7_LINCALRDYW1 BIT(22) 116 #define STM32H7_ADCALLIN BIT(16) 117 #define STM32H7_BOOST BIT(8) 118 #define STM32H7_ADSTP BIT(4) 119 #define STM32H7_ADSTART BIT(2) 120 #define STM32H7_ADDIS BIT(1) 121 #define STM32H7_ADEN BIT(0) 122 123 /* STM32H7_ADC_CFGR bit fields */ 124 #define STM32H7_EXTEN_SHIFT 10 125 #define STM32H7_EXTEN_MASK GENMASK(11, 10) 126 #define STM32H7_EXTSEL_SHIFT 5 127 #define STM32H7_EXTSEL_MASK GENMASK(9, 5) 128 #define STM32H7_RES_SHIFT 2 129 #define STM32H7_RES_MASK GENMASK(4, 2) 130 #define STM32H7_DMNGT_SHIFT 0 131 #define STM32H7_DMNGT_MASK GENMASK(1, 0) 132 133 enum stm32h7_adc_dmngt { 134 STM32H7_DMNGT_DR_ONLY, /* Regular data in DR only */ 135 STM32H7_DMNGT_DMA_ONESHOT, /* DMA one shot mode */ 136 STM32H7_DMNGT_DFSDM, /* DFSDM mode */ 137 STM32H7_DMNGT_DMA_CIRC, /* DMA circular mode */ 138 }; 139 140 /* STM32H7_ADC_CALFACT - bit fields */ 141 #define STM32H7_CALFACT_D_SHIFT 16 142 #define STM32H7_CALFACT_D_MASK GENMASK(26, 16) 143 #define STM32H7_CALFACT_S_SHIFT 0 144 #define STM32H7_CALFACT_S_MASK GENMASK(10, 0) 145 146 /* STM32H7_ADC_CALFACT2 - bit fields */ 147 #define STM32H7_LINCALFACT_SHIFT 0 148 #define STM32H7_LINCALFACT_MASK GENMASK(29, 0) 149 150 /* Number of linear calibration shadow registers / LINCALRDYW control bits */ 151 #define STM32H7_LINCALFACT_NUM 6 152 153 /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */ 154 #define STM32H7_BOOST_CLKRATE 20000000UL 155 156 #define STM32_ADC_MAX_SQ 16 /* SQ1..SQ16 */ 157 #define STM32_ADC_MAX_SMP 7 /* SMPx range is [0..7] */ 158 #define STM32_ADC_TIMEOUT_US 100000 159 #define STM32_ADC_TIMEOUT (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000)) 160 161 #define STM32_DMA_BUFFER_SIZE PAGE_SIZE 162 163 /* External trigger enable */ 164 enum stm32_adc_exten { 165 STM32_EXTEN_SWTRIG, 166 STM32_EXTEN_HWTRIG_RISING_EDGE, 167 STM32_EXTEN_HWTRIG_FALLING_EDGE, 168 STM32_EXTEN_HWTRIG_BOTH_EDGES, 169 }; 170 171 /* extsel - trigger mux selection value */ 172 enum stm32_adc_extsel { 173 STM32_EXT0, 174 STM32_EXT1, 175 STM32_EXT2, 176 STM32_EXT3, 177 STM32_EXT4, 178 STM32_EXT5, 179 STM32_EXT6, 180 STM32_EXT7, 181 STM32_EXT8, 182 STM32_EXT9, 183 STM32_EXT10, 184 STM32_EXT11, 185 STM32_EXT12, 186 STM32_EXT13, 187 STM32_EXT14, 188 STM32_EXT15, 189 STM32_EXT16, 190 STM32_EXT17, 191 STM32_EXT18, 192 STM32_EXT19, 193 STM32_EXT20, 194 }; 195 196 /** 197 * struct stm32_adc_trig_info - ADC trigger info 198 * @name: name of the trigger, corresponding to its source 199 * @extsel: trigger selection 200 */ 201 struct stm32_adc_trig_info { 202 const char *name; 203 enum stm32_adc_extsel extsel; 204 }; 205 206 /** 207 * struct stm32_adc_calib - optional adc calibration data 208 * @calfact_s: Calibration offset for single ended channels 209 * @calfact_d: Calibration offset in differential 210 * @lincalfact: Linearity calibration factor 211 */ 212 struct stm32_adc_calib { 213 u32 calfact_s; 214 u32 calfact_d; 215 u32 lincalfact[STM32H7_LINCALFACT_NUM]; 216 }; 217 218 /** 219 * stm32_adc_regs - stm32 ADC misc registers & bitfield desc 220 * @reg: register offset 221 * @mask: bitfield mask 222 * @shift: left shift 223 */ 224 struct stm32_adc_regs { 225 int reg; 226 int mask; 227 int shift; 228 }; 229 230 /** 231 * stm32_adc_regspec - stm32 registers definition, compatible dependent data 232 * @dr: data register offset 233 * @ier_eoc: interrupt enable register & eocie bitfield 234 * @isr_eoc: interrupt status register & eoc bitfield 235 * @sqr: reference to sequence registers array 236 * @exten: trigger control register & bitfield 237 * @extsel: trigger selection register & bitfield 238 * @res: resolution selection register & bitfield 239 * @smpr: smpr1 & smpr2 registers offset array 240 * @smp_bits: smpr1 & smpr2 index and bitfields 241 */ 242 struct stm32_adc_regspec { 243 const u32 dr; 244 const struct stm32_adc_regs ier_eoc; 245 const struct stm32_adc_regs isr_eoc; 246 const struct stm32_adc_regs *sqr; 247 const struct stm32_adc_regs exten; 248 const struct stm32_adc_regs extsel; 249 const struct stm32_adc_regs res; 250 const u32 smpr[2]; 251 const struct stm32_adc_regs *smp_bits; 252 }; 253 254 struct stm32_adc; 255 256 /** 257 * stm32_adc_cfg - stm32 compatible configuration data 258 * @regs: registers descriptions 259 * @adc_info: per instance input channels definitions 260 * @trigs: external trigger sources 261 * @clk_required: clock is required 262 * @selfcalib: optional routine for self-calibration 263 * @prepare: optional prepare routine (power-up, enable) 264 * @start_conv: routine to start conversions 265 * @stop_conv: routine to stop conversions 266 * @unprepare: optional unprepare routine (disable, power-down) 267 * @smp_cycles: programmable sampling time (ADC clock cycles) 268 */ 269 struct stm32_adc_cfg { 270 const struct stm32_adc_regspec *regs; 271 const struct stm32_adc_info *adc_info; 272 struct stm32_adc_trig_info *trigs; 273 bool clk_required; 274 int (*selfcalib)(struct stm32_adc *); 275 int (*prepare)(struct stm32_adc *); 276 void (*start_conv)(struct stm32_adc *, bool dma); 277 void (*stop_conv)(struct stm32_adc *); 278 void (*unprepare)(struct stm32_adc *); 279 const unsigned int *smp_cycles; 280 }; 281 282 /** 283 * struct stm32_adc - private data of each ADC IIO instance 284 * @common: reference to ADC block common data 285 * @offset: ADC instance register offset in ADC block 286 * @cfg: compatible configuration data 287 * @completion: end of single conversion completion 288 * @buffer: data buffer 289 * @clk: clock for this adc instance 290 * @irq: interrupt for this adc instance 291 * @lock: spinlock 292 * @bufi: data buffer index 293 * @num_conv: expected number of scan conversions 294 * @res: data resolution (e.g. RES bitfield value) 295 * @trigger_polarity: external trigger polarity (e.g. exten) 296 * @dma_chan: dma channel 297 * @rx_buf: dma rx buffer cpu address 298 * @rx_dma_buf: dma rx buffer bus address 299 * @rx_buf_sz: dma rx buffer size 300 * @pcsel bitmask to preselect channels on some devices 301 * @smpr_val: sampling time settings (e.g. smpr1 / smpr2) 302 * @cal: optional calibration data on some devices 303 */ 304 struct stm32_adc { 305 struct stm32_adc_common *common; 306 u32 offset; 307 const struct stm32_adc_cfg *cfg; 308 struct completion completion; 309 u16 buffer[STM32_ADC_MAX_SQ]; 310 struct clk *clk; 311 int irq; 312 spinlock_t lock; /* interrupt lock */ 313 unsigned int bufi; 314 unsigned int num_conv; 315 u32 res; 316 u32 trigger_polarity; 317 struct dma_chan *dma_chan; 318 u8 *rx_buf; 319 dma_addr_t rx_dma_buf; 320 unsigned int rx_buf_sz; 321 u32 pcsel; 322 u32 smpr_val[2]; 323 struct stm32_adc_calib cal; 324 }; 325 326 /** 327 * struct stm32_adc_chan_spec - specification of stm32 adc channel 328 * @type: IIO channel type 329 * @channel: channel number (single ended) 330 * @name: channel name (single ended) 331 */ 332 struct stm32_adc_chan_spec { 333 enum iio_chan_type type; 334 int channel; 335 const char *name; 336 }; 337 338 /** 339 * struct stm32_adc_info - stm32 ADC, per instance config data 340 * @channels: Reference to stm32 channels spec 341 * @max_channels: Number of channels 342 * @resolutions: available resolutions 343 * @num_res: number of available resolutions 344 */ 345 struct stm32_adc_info { 346 const struct stm32_adc_chan_spec *channels; 347 int max_channels; 348 const unsigned int *resolutions; 349 const unsigned int num_res; 350 }; 351 352 /* 353 * Input definitions common for all instances: 354 * stm32f4 can have up to 16 channels 355 * stm32h7 can have up to 20 channels 356 */ 357 static const struct stm32_adc_chan_spec stm32_adc_channels[] = { 358 { IIO_VOLTAGE, 0, "in0" }, 359 { IIO_VOLTAGE, 1, "in1" }, 360 { IIO_VOLTAGE, 2, "in2" }, 361 { IIO_VOLTAGE, 3, "in3" }, 362 { IIO_VOLTAGE, 4, "in4" }, 363 { IIO_VOLTAGE, 5, "in5" }, 364 { IIO_VOLTAGE, 6, "in6" }, 365 { IIO_VOLTAGE, 7, "in7" }, 366 { IIO_VOLTAGE, 8, "in8" }, 367 { IIO_VOLTAGE, 9, "in9" }, 368 { IIO_VOLTAGE, 10, "in10" }, 369 { IIO_VOLTAGE, 11, "in11" }, 370 { IIO_VOLTAGE, 12, "in12" }, 371 { IIO_VOLTAGE, 13, "in13" }, 372 { IIO_VOLTAGE, 14, "in14" }, 373 { IIO_VOLTAGE, 15, "in15" }, 374 { IIO_VOLTAGE, 16, "in16" }, 375 { IIO_VOLTAGE, 17, "in17" }, 376 { IIO_VOLTAGE, 18, "in18" }, 377 { IIO_VOLTAGE, 19, "in19" }, 378 }; 379 380 static const unsigned int stm32f4_adc_resolutions[] = { 381 /* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */ 382 12, 10, 8, 6, 383 }; 384 385 static const struct stm32_adc_info stm32f4_adc_info = { 386 .channels = stm32_adc_channels, 387 .max_channels = 16, 388 .resolutions = stm32f4_adc_resolutions, 389 .num_res = ARRAY_SIZE(stm32f4_adc_resolutions), 390 }; 391 392 static const unsigned int stm32h7_adc_resolutions[] = { 393 /* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */ 394 16, 14, 12, 10, 8, 395 }; 396 397 static const struct stm32_adc_info stm32h7_adc_info = { 398 .channels = stm32_adc_channels, 399 .max_channels = 20, 400 .resolutions = stm32h7_adc_resolutions, 401 .num_res = ARRAY_SIZE(stm32h7_adc_resolutions), 402 }; 403 404 /** 405 * stm32f4_sq - describe regular sequence registers 406 * - L: sequence len (register & bit field) 407 * - SQ1..SQ16: sequence entries (register & bit field) 408 */ 409 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = { 410 /* L: len bit field description to be kept as first element */ 411 { STM32F4_ADC_SQR1, GENMASK(23, 20), 20 }, 412 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */ 413 { STM32F4_ADC_SQR3, GENMASK(4, 0), 0 }, 414 { STM32F4_ADC_SQR3, GENMASK(9, 5), 5 }, 415 { STM32F4_ADC_SQR3, GENMASK(14, 10), 10 }, 416 { STM32F4_ADC_SQR3, GENMASK(19, 15), 15 }, 417 { STM32F4_ADC_SQR3, GENMASK(24, 20), 20 }, 418 { STM32F4_ADC_SQR3, GENMASK(29, 25), 25 }, 419 { STM32F4_ADC_SQR2, GENMASK(4, 0), 0 }, 420 { STM32F4_ADC_SQR2, GENMASK(9, 5), 5 }, 421 { STM32F4_ADC_SQR2, GENMASK(14, 10), 10 }, 422 { STM32F4_ADC_SQR2, GENMASK(19, 15), 15 }, 423 { STM32F4_ADC_SQR2, GENMASK(24, 20), 20 }, 424 { STM32F4_ADC_SQR2, GENMASK(29, 25), 25 }, 425 { STM32F4_ADC_SQR1, GENMASK(4, 0), 0 }, 426 { STM32F4_ADC_SQR1, GENMASK(9, 5), 5 }, 427 { STM32F4_ADC_SQR1, GENMASK(14, 10), 10 }, 428 { STM32F4_ADC_SQR1, GENMASK(19, 15), 15 }, 429 }; 430 431 /* STM32F4 external trigger sources for all instances */ 432 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = { 433 { TIM1_CH1, STM32_EXT0 }, 434 { TIM1_CH2, STM32_EXT1 }, 435 { TIM1_CH3, STM32_EXT2 }, 436 { TIM2_CH2, STM32_EXT3 }, 437 { TIM2_CH3, STM32_EXT4 }, 438 { TIM2_CH4, STM32_EXT5 }, 439 { TIM2_TRGO, STM32_EXT6 }, 440 { TIM3_CH1, STM32_EXT7 }, 441 { TIM3_TRGO, STM32_EXT8 }, 442 { TIM4_CH4, STM32_EXT9 }, 443 { TIM5_CH1, STM32_EXT10 }, 444 { TIM5_CH2, STM32_EXT11 }, 445 { TIM5_CH3, STM32_EXT12 }, 446 { TIM8_CH1, STM32_EXT13 }, 447 { TIM8_TRGO, STM32_EXT14 }, 448 {}, /* sentinel */ 449 }; 450 451 /** 452 * stm32f4_smp_bits[] - describe sampling time register index & bit fields 453 * Sorted so it can be indexed by channel number. 454 */ 455 static const struct stm32_adc_regs stm32f4_smp_bits[] = { 456 /* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */ 457 { 1, GENMASK(2, 0), 0 }, 458 { 1, GENMASK(5, 3), 3 }, 459 { 1, GENMASK(8, 6), 6 }, 460 { 1, GENMASK(11, 9), 9 }, 461 { 1, GENMASK(14, 12), 12 }, 462 { 1, GENMASK(17, 15), 15 }, 463 { 1, GENMASK(20, 18), 18 }, 464 { 1, GENMASK(23, 21), 21 }, 465 { 1, GENMASK(26, 24), 24 }, 466 { 1, GENMASK(29, 27), 27 }, 467 /* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */ 468 { 0, GENMASK(2, 0), 0 }, 469 { 0, GENMASK(5, 3), 3 }, 470 { 0, GENMASK(8, 6), 6 }, 471 { 0, GENMASK(11, 9), 9 }, 472 { 0, GENMASK(14, 12), 12 }, 473 { 0, GENMASK(17, 15), 15 }, 474 { 0, GENMASK(20, 18), 18 }, 475 { 0, GENMASK(23, 21), 21 }, 476 { 0, GENMASK(26, 24), 24 }, 477 }; 478 479 /* STM32F4 programmable sampling time (ADC clock cycles) */ 480 static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = { 481 3, 15, 28, 56, 84, 112, 144, 480, 482 }; 483 484 static const struct stm32_adc_regspec stm32f4_adc_regspec = { 485 .dr = STM32F4_ADC_DR, 486 .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE }, 487 .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC }, 488 .sqr = stm32f4_sq, 489 .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT }, 490 .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK, 491 STM32F4_EXTSEL_SHIFT }, 492 .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT }, 493 .smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 }, 494 .smp_bits = stm32f4_smp_bits, 495 }; 496 497 static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = { 498 /* L: len bit field description to be kept as first element */ 499 { STM32H7_ADC_SQR1, GENMASK(3, 0), 0 }, 500 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */ 501 { STM32H7_ADC_SQR1, GENMASK(10, 6), 6 }, 502 { STM32H7_ADC_SQR1, GENMASK(16, 12), 12 }, 503 { STM32H7_ADC_SQR1, GENMASK(22, 18), 18 }, 504 { STM32H7_ADC_SQR1, GENMASK(28, 24), 24 }, 505 { STM32H7_ADC_SQR2, GENMASK(4, 0), 0 }, 506 { STM32H7_ADC_SQR2, GENMASK(10, 6), 6 }, 507 { STM32H7_ADC_SQR2, GENMASK(16, 12), 12 }, 508 { STM32H7_ADC_SQR2, GENMASK(22, 18), 18 }, 509 { STM32H7_ADC_SQR2, GENMASK(28, 24), 24 }, 510 { STM32H7_ADC_SQR3, GENMASK(4, 0), 0 }, 511 { STM32H7_ADC_SQR3, GENMASK(10, 6), 6 }, 512 { STM32H7_ADC_SQR3, GENMASK(16, 12), 12 }, 513 { STM32H7_ADC_SQR3, GENMASK(22, 18), 18 }, 514 { STM32H7_ADC_SQR3, GENMASK(28, 24), 24 }, 515 { STM32H7_ADC_SQR4, GENMASK(4, 0), 0 }, 516 { STM32H7_ADC_SQR4, GENMASK(10, 6), 6 }, 517 }; 518 519 /* STM32H7 external trigger sources for all instances */ 520 static struct stm32_adc_trig_info stm32h7_adc_trigs[] = { 521 { TIM1_CH1, STM32_EXT0 }, 522 { TIM1_CH2, STM32_EXT1 }, 523 { TIM1_CH3, STM32_EXT2 }, 524 { TIM2_CH2, STM32_EXT3 }, 525 { TIM3_TRGO, STM32_EXT4 }, 526 { TIM4_CH4, STM32_EXT5 }, 527 { TIM8_TRGO, STM32_EXT7 }, 528 { TIM8_TRGO2, STM32_EXT8 }, 529 { TIM1_TRGO, STM32_EXT9 }, 530 { TIM1_TRGO2, STM32_EXT10 }, 531 { TIM2_TRGO, STM32_EXT11 }, 532 { TIM4_TRGO, STM32_EXT12 }, 533 { TIM6_TRGO, STM32_EXT13 }, 534 { TIM3_CH4, STM32_EXT15 }, 535 { LPTIM1_OUT, STM32_EXT18 }, 536 { LPTIM2_OUT, STM32_EXT19 }, 537 { LPTIM3_OUT, STM32_EXT20 }, 538 {}, 539 }; 540 541 /** 542 * stm32h7_smp_bits - describe sampling time register index & bit fields 543 * Sorted so it can be indexed by channel number. 544 */ 545 static const struct stm32_adc_regs stm32h7_smp_bits[] = { 546 /* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */ 547 { 0, GENMASK(2, 0), 0 }, 548 { 0, GENMASK(5, 3), 3 }, 549 { 0, GENMASK(8, 6), 6 }, 550 { 0, GENMASK(11, 9), 9 }, 551 { 0, GENMASK(14, 12), 12 }, 552 { 0, GENMASK(17, 15), 15 }, 553 { 0, GENMASK(20, 18), 18 }, 554 { 0, GENMASK(23, 21), 21 }, 555 { 0, GENMASK(26, 24), 24 }, 556 { 0, GENMASK(29, 27), 27 }, 557 /* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */ 558 { 1, GENMASK(2, 0), 0 }, 559 { 1, GENMASK(5, 3), 3 }, 560 { 1, GENMASK(8, 6), 6 }, 561 { 1, GENMASK(11, 9), 9 }, 562 { 1, GENMASK(14, 12), 12 }, 563 { 1, GENMASK(17, 15), 15 }, 564 { 1, GENMASK(20, 18), 18 }, 565 { 1, GENMASK(23, 21), 21 }, 566 { 1, GENMASK(26, 24), 24 }, 567 { 1, GENMASK(29, 27), 27 }, 568 }; 569 570 /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */ 571 static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = { 572 1, 2, 8, 16, 32, 64, 387, 810, 573 }; 574 575 static const struct stm32_adc_regspec stm32h7_adc_regspec = { 576 .dr = STM32H7_ADC_DR, 577 .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE }, 578 .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC }, 579 .sqr = stm32h7_sq, 580 .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT }, 581 .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK, 582 STM32H7_EXTSEL_SHIFT }, 583 .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT }, 584 .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 }, 585 .smp_bits = stm32h7_smp_bits, 586 }; 587 588 /** 589 * STM32 ADC registers access routines 590 * @adc: stm32 adc instance 591 * @reg: reg offset in adc instance 592 * 593 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp. 594 * for adc1, adc2 and adc3. 595 */ 596 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg) 597 { 598 return readl_relaxed(adc->common->base + adc->offset + reg); 599 } 600 601 #define stm32_adc_readl_addr(addr) stm32_adc_readl(adc, addr) 602 603 #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \ 604 readx_poll_timeout(stm32_adc_readl_addr, reg, val, \ 605 cond, sleep_us, timeout_us) 606 607 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg) 608 { 609 return readw_relaxed(adc->common->base + adc->offset + reg); 610 } 611 612 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val) 613 { 614 writel_relaxed(val, adc->common->base + adc->offset + reg); 615 } 616 617 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits) 618 { 619 unsigned long flags; 620 621 spin_lock_irqsave(&adc->lock, flags); 622 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits); 623 spin_unlock_irqrestore(&adc->lock, flags); 624 } 625 626 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits) 627 { 628 unsigned long flags; 629 630 spin_lock_irqsave(&adc->lock, flags); 631 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits); 632 spin_unlock_irqrestore(&adc->lock, flags); 633 } 634 635 /** 636 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt 637 * @adc: stm32 adc instance 638 */ 639 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc) 640 { 641 stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg, 642 adc->cfg->regs->ier_eoc.mask); 643 }; 644 645 /** 646 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt 647 * @adc: stm32 adc instance 648 */ 649 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc) 650 { 651 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg, 652 adc->cfg->regs->ier_eoc.mask); 653 } 654 655 static void stm32_adc_set_res(struct stm32_adc *adc) 656 { 657 const struct stm32_adc_regs *res = &adc->cfg->regs->res; 658 u32 val; 659 660 val = stm32_adc_readl(adc, res->reg); 661 val = (val & ~res->mask) | (adc->res << res->shift); 662 stm32_adc_writel(adc, res->reg, val); 663 } 664 665 /** 666 * stm32f4_adc_start_conv() - Start conversions for regular channels. 667 * @adc: stm32 adc instance 668 * @dma: use dma to transfer conversion result 669 * 670 * Start conversions for regular channels. 671 * Also take care of normal or DMA mode. Circular DMA may be used for regular 672 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct 673 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA). 674 */ 675 static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma) 676 { 677 stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN); 678 679 if (dma) 680 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, 681 STM32F4_DMA | STM32F4_DDS); 682 683 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON); 684 685 /* Wait for Power-up time (tSTAB from datasheet) */ 686 usleep_range(2, 3); 687 688 /* Software start ? (e.g. trigger detection disabled ?) */ 689 if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK)) 690 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART); 691 } 692 693 static void stm32f4_adc_stop_conv(struct stm32_adc *adc) 694 { 695 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK); 696 stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT); 697 698 stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN); 699 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, 700 STM32F4_ADON | STM32F4_DMA | STM32F4_DDS); 701 } 702 703 static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma) 704 { 705 enum stm32h7_adc_dmngt dmngt; 706 unsigned long flags; 707 u32 val; 708 709 if (dma) 710 dmngt = STM32H7_DMNGT_DMA_CIRC; 711 else 712 dmngt = STM32H7_DMNGT_DR_ONLY; 713 714 spin_lock_irqsave(&adc->lock, flags); 715 val = stm32_adc_readl(adc, STM32H7_ADC_CFGR); 716 val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT); 717 stm32_adc_writel(adc, STM32H7_ADC_CFGR, val); 718 spin_unlock_irqrestore(&adc->lock, flags); 719 720 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART); 721 } 722 723 static void stm32h7_adc_stop_conv(struct stm32_adc *adc) 724 { 725 struct iio_dev *indio_dev = iio_priv_to_dev(adc); 726 int ret; 727 u32 val; 728 729 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP); 730 731 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val, 732 !(val & (STM32H7_ADSTART)), 733 100, STM32_ADC_TIMEOUT_US); 734 if (ret) 735 dev_warn(&indio_dev->dev, "stop failed\n"); 736 737 stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK); 738 } 739 740 static void stm32h7_adc_exit_pwr_down(struct stm32_adc *adc) 741 { 742 /* Exit deep power down, then enable ADC voltage regulator */ 743 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD); 744 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN); 745 746 if (adc->common->rate > STM32H7_BOOST_CLKRATE) 747 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST); 748 749 /* Wait for startup time */ 750 usleep_range(10, 20); 751 } 752 753 static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc) 754 { 755 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST); 756 757 /* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */ 758 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD); 759 } 760 761 static int stm32h7_adc_enable(struct stm32_adc *adc) 762 { 763 struct iio_dev *indio_dev = iio_priv_to_dev(adc); 764 int ret; 765 u32 val; 766 767 /* Clear ADRDY by writing one, then enable ADC */ 768 stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY); 769 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN); 770 771 /* Poll for ADRDY to be set (after adc startup time) */ 772 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val, 773 val & STM32H7_ADRDY, 774 100, STM32_ADC_TIMEOUT_US); 775 if (ret) { 776 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN); 777 dev_err(&indio_dev->dev, "Failed to enable ADC\n"); 778 } 779 780 return ret; 781 } 782 783 static void stm32h7_adc_disable(struct stm32_adc *adc) 784 { 785 struct iio_dev *indio_dev = iio_priv_to_dev(adc); 786 int ret; 787 u32 val; 788 789 /* Disable ADC and wait until it's effectively disabled */ 790 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS); 791 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val, 792 !(val & STM32H7_ADEN), 100, 793 STM32_ADC_TIMEOUT_US); 794 if (ret) 795 dev_warn(&indio_dev->dev, "Failed to disable\n"); 796 } 797 798 /** 799 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result 800 * @adc: stm32 adc instance 801 */ 802 static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc) 803 { 804 struct iio_dev *indio_dev = iio_priv_to_dev(adc); 805 int i, ret; 806 u32 lincalrdyw_mask, val; 807 808 /* Enable adc so LINCALRDYW1..6 bits are writable */ 809 ret = stm32h7_adc_enable(adc); 810 if (ret) 811 return ret; 812 813 /* Read linearity calibration */ 814 lincalrdyw_mask = STM32H7_LINCALRDYW6; 815 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) { 816 /* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */ 817 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask); 818 819 /* Poll: wait calib data to be ready in CALFACT2 register */ 820 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val, 821 !(val & lincalrdyw_mask), 822 100, STM32_ADC_TIMEOUT_US); 823 if (ret) { 824 dev_err(&indio_dev->dev, "Failed to read calfact\n"); 825 goto disable; 826 } 827 828 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2); 829 adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK); 830 adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT; 831 832 lincalrdyw_mask >>= 1; 833 } 834 835 /* Read offset calibration */ 836 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT); 837 adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK); 838 adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT; 839 adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK); 840 adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT; 841 842 disable: 843 stm32h7_adc_disable(adc); 844 845 return ret; 846 } 847 848 /** 849 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result 850 * @adc: stm32 adc instance 851 * Note: ADC must be enabled, with no on-going conversions. 852 */ 853 static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc) 854 { 855 struct iio_dev *indio_dev = iio_priv_to_dev(adc); 856 int i, ret; 857 u32 lincalrdyw_mask, val; 858 859 val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) | 860 (adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT); 861 stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val); 862 863 lincalrdyw_mask = STM32H7_LINCALRDYW6; 864 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) { 865 /* 866 * Write saved calibration data to shadow registers: 867 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger 868 * data write. Then poll to wait for complete transfer. 869 */ 870 val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT; 871 stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val); 872 stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask); 873 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val, 874 val & lincalrdyw_mask, 875 100, STM32_ADC_TIMEOUT_US); 876 if (ret) { 877 dev_err(&indio_dev->dev, "Failed to write calfact\n"); 878 return ret; 879 } 880 881 /* 882 * Read back calibration data, has two effects: 883 * - It ensures bits LINCALRDYW[6..1] are kept cleared 884 * for next time calibration needs to be restored. 885 * - BTW, bit clear triggers a read, then check data has been 886 * correctly written. 887 */ 888 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask); 889 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val, 890 !(val & lincalrdyw_mask), 891 100, STM32_ADC_TIMEOUT_US); 892 if (ret) { 893 dev_err(&indio_dev->dev, "Failed to read calfact\n"); 894 return ret; 895 } 896 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2); 897 if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) { 898 dev_err(&indio_dev->dev, "calfact not consistent\n"); 899 return -EIO; 900 } 901 902 lincalrdyw_mask >>= 1; 903 } 904 905 return 0; 906 } 907 908 /** 909 * Fixed timeout value for ADC calibration. 910 * worst cases: 911 * - low clock frequency 912 * - maximum prescalers 913 * Calibration requires: 914 * - 131,072 ADC clock cycle for the linear calibration 915 * - 20 ADC clock cycle for the offset calibration 916 * 917 * Set to 100ms for now 918 */ 919 #define STM32H7_ADC_CALIB_TIMEOUT_US 100000 920 921 /** 922 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC (from power down) 923 * @adc: stm32 adc instance 924 * Exit from power down, calibrate ADC, then return to power down. 925 */ 926 static int stm32h7_adc_selfcalib(struct stm32_adc *adc) 927 { 928 struct iio_dev *indio_dev = iio_priv_to_dev(adc); 929 int ret; 930 u32 val; 931 932 stm32h7_adc_exit_pwr_down(adc); 933 934 /* 935 * Select calibration mode: 936 * - Offset calibration for single ended inputs 937 * - No linearity calibration (do it later, before reading it) 938 */ 939 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF); 940 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN); 941 942 /* Start calibration, then wait for completion */ 943 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL); 944 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val, 945 !(val & STM32H7_ADCAL), 100, 946 STM32H7_ADC_CALIB_TIMEOUT_US); 947 if (ret) { 948 dev_err(&indio_dev->dev, "calibration failed\n"); 949 goto pwr_dwn; 950 } 951 952 /* 953 * Select calibration mode, then start calibration: 954 * - Offset calibration for differential input 955 * - Linearity calibration (needs to be done only once for single/diff) 956 * will run simultaneously with offset calibration. 957 */ 958 stm32_adc_set_bits(adc, STM32H7_ADC_CR, 959 STM32H7_ADCALDIF | STM32H7_ADCALLIN); 960 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL); 961 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val, 962 !(val & STM32H7_ADCAL), 100, 963 STM32H7_ADC_CALIB_TIMEOUT_US); 964 if (ret) { 965 dev_err(&indio_dev->dev, "calibration failed\n"); 966 goto pwr_dwn; 967 } 968 969 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, 970 STM32H7_ADCALDIF | STM32H7_ADCALLIN); 971 972 /* Read calibration result for future reference */ 973 ret = stm32h7_adc_read_selfcalib(adc); 974 975 pwr_dwn: 976 stm32h7_adc_enter_pwr_down(adc); 977 978 return ret; 979 } 980 981 /** 982 * stm32h7_adc_prepare() - Leave power down mode to enable ADC. 983 * @adc: stm32 adc instance 984 * Leave power down mode. 985 * Enable ADC. 986 * Restore calibration data. 987 * Pre-select channels that may be used in PCSEL (required by input MUX / IO). 988 */ 989 static int stm32h7_adc_prepare(struct stm32_adc *adc) 990 { 991 int ret; 992 993 stm32h7_adc_exit_pwr_down(adc); 994 995 ret = stm32h7_adc_enable(adc); 996 if (ret) 997 goto pwr_dwn; 998 999 ret = stm32h7_adc_restore_selfcalib(adc); 1000 if (ret) 1001 goto disable; 1002 1003 stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel); 1004 1005 return 0; 1006 1007 disable: 1008 stm32h7_adc_disable(adc); 1009 pwr_dwn: 1010 stm32h7_adc_enter_pwr_down(adc); 1011 1012 return ret; 1013 } 1014 1015 static void stm32h7_adc_unprepare(struct stm32_adc *adc) 1016 { 1017 stm32h7_adc_disable(adc); 1018 stm32h7_adc_enter_pwr_down(adc); 1019 } 1020 1021 /** 1022 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence 1023 * @indio_dev: IIO device 1024 * @scan_mask: channels to be converted 1025 * 1026 * Conversion sequence : 1027 * Apply sampling time settings for all channels. 1028 * Configure ADC scan sequence based on selected channels in scan_mask. 1029 * Add channels to SQR registers, from scan_mask LSB to MSB, then 1030 * program sequence len. 1031 */ 1032 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev, 1033 const unsigned long *scan_mask) 1034 { 1035 struct stm32_adc *adc = iio_priv(indio_dev); 1036 const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr; 1037 const struct iio_chan_spec *chan; 1038 u32 val, bit; 1039 int i = 0; 1040 1041 /* Apply sampling time settings */ 1042 stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]); 1043 stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]); 1044 1045 for_each_set_bit(bit, scan_mask, indio_dev->masklength) { 1046 chan = indio_dev->channels + bit; 1047 /* 1048 * Assign one channel per SQ entry in regular 1049 * sequence, starting with SQ1. 1050 */ 1051 i++; 1052 if (i > STM32_ADC_MAX_SQ) 1053 return -EINVAL; 1054 1055 dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n", 1056 __func__, chan->channel, i); 1057 1058 val = stm32_adc_readl(adc, sqr[i].reg); 1059 val &= ~sqr[i].mask; 1060 val |= chan->channel << sqr[i].shift; 1061 stm32_adc_writel(adc, sqr[i].reg, val); 1062 } 1063 1064 if (!i) 1065 return -EINVAL; 1066 1067 /* Sequence len */ 1068 val = stm32_adc_readl(adc, sqr[0].reg); 1069 val &= ~sqr[0].mask; 1070 val |= ((i - 1) << sqr[0].shift); 1071 stm32_adc_writel(adc, sqr[0].reg, val); 1072 1073 return 0; 1074 } 1075 1076 /** 1077 * stm32_adc_get_trig_extsel() - Get external trigger selection 1078 * @trig: trigger 1079 * 1080 * Returns trigger extsel value, if trig matches, -EINVAL otherwise. 1081 */ 1082 static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev, 1083 struct iio_trigger *trig) 1084 { 1085 struct stm32_adc *adc = iio_priv(indio_dev); 1086 int i; 1087 1088 /* lookup triggers registered by stm32 timer trigger driver */ 1089 for (i = 0; adc->cfg->trigs[i].name; i++) { 1090 /** 1091 * Checking both stm32 timer trigger type and trig name 1092 * should be safe against arbitrary trigger names. 1093 */ 1094 if ((is_stm32_timer_trigger(trig) || 1095 is_stm32_lptim_trigger(trig)) && 1096 !strcmp(adc->cfg->trigs[i].name, trig->name)) { 1097 return adc->cfg->trigs[i].extsel; 1098 } 1099 } 1100 1101 return -EINVAL; 1102 } 1103 1104 /** 1105 * stm32_adc_set_trig() - Set a regular trigger 1106 * @indio_dev: IIO device 1107 * @trig: IIO trigger 1108 * 1109 * Set trigger source/polarity (e.g. SW, or HW with polarity) : 1110 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw) 1111 * - if HW trigger enabled, set source & polarity 1112 */ 1113 static int stm32_adc_set_trig(struct iio_dev *indio_dev, 1114 struct iio_trigger *trig) 1115 { 1116 struct stm32_adc *adc = iio_priv(indio_dev); 1117 u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG; 1118 unsigned long flags; 1119 int ret; 1120 1121 if (trig) { 1122 ret = stm32_adc_get_trig_extsel(indio_dev, trig); 1123 if (ret < 0) 1124 return ret; 1125 1126 /* set trigger source and polarity (default to rising edge) */ 1127 extsel = ret; 1128 exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE; 1129 } 1130 1131 spin_lock_irqsave(&adc->lock, flags); 1132 val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg); 1133 val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask); 1134 val |= exten << adc->cfg->regs->exten.shift; 1135 val |= extsel << adc->cfg->regs->extsel.shift; 1136 stm32_adc_writel(adc, adc->cfg->regs->exten.reg, val); 1137 spin_unlock_irqrestore(&adc->lock, flags); 1138 1139 return 0; 1140 } 1141 1142 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev, 1143 const struct iio_chan_spec *chan, 1144 unsigned int type) 1145 { 1146 struct stm32_adc *adc = iio_priv(indio_dev); 1147 1148 adc->trigger_polarity = type; 1149 1150 return 0; 1151 } 1152 1153 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev, 1154 const struct iio_chan_spec *chan) 1155 { 1156 struct stm32_adc *adc = iio_priv(indio_dev); 1157 1158 return adc->trigger_polarity; 1159 } 1160 1161 static const char * const stm32_trig_pol_items[] = { 1162 "rising-edge", "falling-edge", "both-edges", 1163 }; 1164 1165 static const struct iio_enum stm32_adc_trig_pol = { 1166 .items = stm32_trig_pol_items, 1167 .num_items = ARRAY_SIZE(stm32_trig_pol_items), 1168 .get = stm32_adc_get_trig_pol, 1169 .set = stm32_adc_set_trig_pol, 1170 }; 1171 1172 /** 1173 * stm32_adc_single_conv() - Performs a single conversion 1174 * @indio_dev: IIO device 1175 * @chan: IIO channel 1176 * @res: conversion result 1177 * 1178 * The function performs a single conversion on a given channel: 1179 * - Apply sampling time settings 1180 * - Program sequencer with one channel (e.g. in SQ1 with len = 1) 1181 * - Use SW trigger 1182 * - Start conversion, then wait for interrupt completion. 1183 */ 1184 static int stm32_adc_single_conv(struct iio_dev *indio_dev, 1185 const struct iio_chan_spec *chan, 1186 int *res) 1187 { 1188 struct stm32_adc *adc = iio_priv(indio_dev); 1189 const struct stm32_adc_regspec *regs = adc->cfg->regs; 1190 long timeout; 1191 u32 val; 1192 int ret; 1193 1194 reinit_completion(&adc->completion); 1195 1196 adc->bufi = 0; 1197 1198 if (adc->cfg->prepare) { 1199 ret = adc->cfg->prepare(adc); 1200 if (ret) 1201 return ret; 1202 } 1203 1204 /* Apply sampling time settings */ 1205 stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]); 1206 stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]); 1207 1208 /* Program chan number in regular sequence (SQ1) */ 1209 val = stm32_adc_readl(adc, regs->sqr[1].reg); 1210 val &= ~regs->sqr[1].mask; 1211 val |= chan->channel << regs->sqr[1].shift; 1212 stm32_adc_writel(adc, regs->sqr[1].reg, val); 1213 1214 /* Set regular sequence len (0 for 1 conversion) */ 1215 stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask); 1216 1217 /* Trigger detection disabled (conversion can be launched in SW) */ 1218 stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask); 1219 1220 stm32_adc_conv_irq_enable(adc); 1221 1222 adc->cfg->start_conv(adc, false); 1223 1224 timeout = wait_for_completion_interruptible_timeout( 1225 &adc->completion, STM32_ADC_TIMEOUT); 1226 if (timeout == 0) { 1227 ret = -ETIMEDOUT; 1228 } else if (timeout < 0) { 1229 ret = timeout; 1230 } else { 1231 *res = adc->buffer[0]; 1232 ret = IIO_VAL_INT; 1233 } 1234 1235 adc->cfg->stop_conv(adc); 1236 1237 stm32_adc_conv_irq_disable(adc); 1238 1239 if (adc->cfg->unprepare) 1240 adc->cfg->unprepare(adc); 1241 1242 return ret; 1243 } 1244 1245 static int stm32_adc_read_raw(struct iio_dev *indio_dev, 1246 struct iio_chan_spec const *chan, 1247 int *val, int *val2, long mask) 1248 { 1249 struct stm32_adc *adc = iio_priv(indio_dev); 1250 int ret; 1251 1252 switch (mask) { 1253 case IIO_CHAN_INFO_RAW: 1254 ret = iio_device_claim_direct_mode(indio_dev); 1255 if (ret) 1256 return ret; 1257 if (chan->type == IIO_VOLTAGE) 1258 ret = stm32_adc_single_conv(indio_dev, chan, val); 1259 else 1260 ret = -EINVAL; 1261 iio_device_release_direct_mode(indio_dev); 1262 return ret; 1263 1264 case IIO_CHAN_INFO_SCALE: 1265 *val = adc->common->vref_mv; 1266 *val2 = chan->scan_type.realbits; 1267 return IIO_VAL_FRACTIONAL_LOG2; 1268 1269 default: 1270 return -EINVAL; 1271 } 1272 } 1273 1274 static irqreturn_t stm32_adc_isr(int irq, void *data) 1275 { 1276 struct stm32_adc *adc = data; 1277 struct iio_dev *indio_dev = iio_priv_to_dev(adc); 1278 const struct stm32_adc_regspec *regs = adc->cfg->regs; 1279 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg); 1280 1281 if (status & regs->isr_eoc.mask) { 1282 /* Reading DR also clears EOC status flag */ 1283 adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr); 1284 if (iio_buffer_enabled(indio_dev)) { 1285 adc->bufi++; 1286 if (adc->bufi >= adc->num_conv) { 1287 stm32_adc_conv_irq_disable(adc); 1288 iio_trigger_poll(indio_dev->trig); 1289 } 1290 } else { 1291 complete(&adc->completion); 1292 } 1293 return IRQ_HANDLED; 1294 } 1295 1296 return IRQ_NONE; 1297 } 1298 1299 /** 1300 * stm32_adc_validate_trigger() - validate trigger for stm32 adc 1301 * @indio_dev: IIO device 1302 * @trig: new trigger 1303 * 1304 * Returns: 0 if trig matches one of the triggers registered by stm32 adc 1305 * driver, -EINVAL otherwise. 1306 */ 1307 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev, 1308 struct iio_trigger *trig) 1309 { 1310 return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0; 1311 } 1312 1313 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val) 1314 { 1315 struct stm32_adc *adc = iio_priv(indio_dev); 1316 unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2; 1317 1318 /* 1319 * dma cyclic transfers are used, buffer is split into two periods. 1320 * There should be : 1321 * - always one buffer (period) dma is working on 1322 * - one buffer (period) driver can push with iio_trigger_poll(). 1323 */ 1324 watermark = min(watermark, val * (unsigned)(sizeof(u16))); 1325 adc->rx_buf_sz = watermark * 2; 1326 1327 return 0; 1328 } 1329 1330 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev, 1331 const unsigned long *scan_mask) 1332 { 1333 struct stm32_adc *adc = iio_priv(indio_dev); 1334 int ret; 1335 1336 adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength); 1337 1338 ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask); 1339 if (ret) 1340 return ret; 1341 1342 return 0; 1343 } 1344 1345 static int stm32_adc_of_xlate(struct iio_dev *indio_dev, 1346 const struct of_phandle_args *iiospec) 1347 { 1348 int i; 1349 1350 for (i = 0; i < indio_dev->num_channels; i++) 1351 if (indio_dev->channels[i].channel == iiospec->args[0]) 1352 return i; 1353 1354 return -EINVAL; 1355 } 1356 1357 /** 1358 * stm32_adc_debugfs_reg_access - read or write register value 1359 * 1360 * To read a value from an ADC register: 1361 * echo [ADC reg offset] > direct_reg_access 1362 * cat direct_reg_access 1363 * 1364 * To write a value in a ADC register: 1365 * echo [ADC_reg_offset] [value] > direct_reg_access 1366 */ 1367 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev, 1368 unsigned reg, unsigned writeval, 1369 unsigned *readval) 1370 { 1371 struct stm32_adc *adc = iio_priv(indio_dev); 1372 1373 if (!readval) 1374 stm32_adc_writel(adc, reg, writeval); 1375 else 1376 *readval = stm32_adc_readl(adc, reg); 1377 1378 return 0; 1379 } 1380 1381 static const struct iio_info stm32_adc_iio_info = { 1382 .read_raw = stm32_adc_read_raw, 1383 .validate_trigger = stm32_adc_validate_trigger, 1384 .hwfifo_set_watermark = stm32_adc_set_watermark, 1385 .update_scan_mode = stm32_adc_update_scan_mode, 1386 .debugfs_reg_access = stm32_adc_debugfs_reg_access, 1387 .of_xlate = stm32_adc_of_xlate, 1388 .driver_module = THIS_MODULE, 1389 }; 1390 1391 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc) 1392 { 1393 struct dma_tx_state state; 1394 enum dma_status status; 1395 1396 status = dmaengine_tx_status(adc->dma_chan, 1397 adc->dma_chan->cookie, 1398 &state); 1399 if (status == DMA_IN_PROGRESS) { 1400 /* Residue is size in bytes from end of buffer */ 1401 unsigned int i = adc->rx_buf_sz - state.residue; 1402 unsigned int size; 1403 1404 /* Return available bytes */ 1405 if (i >= adc->bufi) 1406 size = i - adc->bufi; 1407 else 1408 size = adc->rx_buf_sz + i - adc->bufi; 1409 1410 return size; 1411 } 1412 1413 return 0; 1414 } 1415 1416 static void stm32_adc_dma_buffer_done(void *data) 1417 { 1418 struct iio_dev *indio_dev = data; 1419 1420 iio_trigger_poll_chained(indio_dev->trig); 1421 } 1422 1423 static int stm32_adc_dma_start(struct iio_dev *indio_dev) 1424 { 1425 struct stm32_adc *adc = iio_priv(indio_dev); 1426 struct dma_async_tx_descriptor *desc; 1427 dma_cookie_t cookie; 1428 int ret; 1429 1430 if (!adc->dma_chan) 1431 return 0; 1432 1433 dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__, 1434 adc->rx_buf_sz, adc->rx_buf_sz / 2); 1435 1436 /* Prepare a DMA cyclic transaction */ 1437 desc = dmaengine_prep_dma_cyclic(adc->dma_chan, 1438 adc->rx_dma_buf, 1439 adc->rx_buf_sz, adc->rx_buf_sz / 2, 1440 DMA_DEV_TO_MEM, 1441 DMA_PREP_INTERRUPT); 1442 if (!desc) 1443 return -EBUSY; 1444 1445 desc->callback = stm32_adc_dma_buffer_done; 1446 desc->callback_param = indio_dev; 1447 1448 cookie = dmaengine_submit(desc); 1449 ret = dma_submit_error(cookie); 1450 if (ret) { 1451 dmaengine_terminate_all(adc->dma_chan); 1452 return ret; 1453 } 1454 1455 /* Issue pending DMA requests */ 1456 dma_async_issue_pending(adc->dma_chan); 1457 1458 return 0; 1459 } 1460 1461 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev) 1462 { 1463 struct stm32_adc *adc = iio_priv(indio_dev); 1464 int ret; 1465 1466 if (adc->cfg->prepare) { 1467 ret = adc->cfg->prepare(adc); 1468 if (ret) 1469 return ret; 1470 } 1471 1472 ret = stm32_adc_set_trig(indio_dev, indio_dev->trig); 1473 if (ret) { 1474 dev_err(&indio_dev->dev, "Can't set trigger\n"); 1475 goto err_unprepare; 1476 } 1477 1478 ret = stm32_adc_dma_start(indio_dev); 1479 if (ret) { 1480 dev_err(&indio_dev->dev, "Can't start dma\n"); 1481 goto err_clr_trig; 1482 } 1483 1484 ret = iio_triggered_buffer_postenable(indio_dev); 1485 if (ret < 0) 1486 goto err_stop_dma; 1487 1488 /* Reset adc buffer index */ 1489 adc->bufi = 0; 1490 1491 if (!adc->dma_chan) 1492 stm32_adc_conv_irq_enable(adc); 1493 1494 adc->cfg->start_conv(adc, !!adc->dma_chan); 1495 1496 return 0; 1497 1498 err_stop_dma: 1499 if (adc->dma_chan) 1500 dmaengine_terminate_all(adc->dma_chan); 1501 err_clr_trig: 1502 stm32_adc_set_trig(indio_dev, NULL); 1503 err_unprepare: 1504 if (adc->cfg->unprepare) 1505 adc->cfg->unprepare(adc); 1506 1507 return ret; 1508 } 1509 1510 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev) 1511 { 1512 struct stm32_adc *adc = iio_priv(indio_dev); 1513 int ret; 1514 1515 adc->cfg->stop_conv(adc); 1516 if (!adc->dma_chan) 1517 stm32_adc_conv_irq_disable(adc); 1518 1519 ret = iio_triggered_buffer_predisable(indio_dev); 1520 if (ret < 0) 1521 dev_err(&indio_dev->dev, "predisable failed\n"); 1522 1523 if (adc->dma_chan) 1524 dmaengine_terminate_all(adc->dma_chan); 1525 1526 if (stm32_adc_set_trig(indio_dev, NULL)) 1527 dev_err(&indio_dev->dev, "Can't clear trigger\n"); 1528 1529 if (adc->cfg->unprepare) 1530 adc->cfg->unprepare(adc); 1531 1532 return ret; 1533 } 1534 1535 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = { 1536 .postenable = &stm32_adc_buffer_postenable, 1537 .predisable = &stm32_adc_buffer_predisable, 1538 }; 1539 1540 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p) 1541 { 1542 struct iio_poll_func *pf = p; 1543 struct iio_dev *indio_dev = pf->indio_dev; 1544 struct stm32_adc *adc = iio_priv(indio_dev); 1545 1546 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi); 1547 1548 if (!adc->dma_chan) { 1549 /* reset buffer index */ 1550 adc->bufi = 0; 1551 iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer, 1552 pf->timestamp); 1553 } else { 1554 int residue = stm32_adc_dma_residue(adc); 1555 1556 while (residue >= indio_dev->scan_bytes) { 1557 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi]; 1558 1559 iio_push_to_buffers_with_timestamp(indio_dev, buffer, 1560 pf->timestamp); 1561 residue -= indio_dev->scan_bytes; 1562 adc->bufi += indio_dev->scan_bytes; 1563 if (adc->bufi >= adc->rx_buf_sz) 1564 adc->bufi = 0; 1565 } 1566 } 1567 1568 iio_trigger_notify_done(indio_dev->trig); 1569 1570 /* re-enable eoc irq */ 1571 if (!adc->dma_chan) 1572 stm32_adc_conv_irq_enable(adc); 1573 1574 return IRQ_HANDLED; 1575 } 1576 1577 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = { 1578 IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol), 1579 { 1580 .name = "trigger_polarity_available", 1581 .shared = IIO_SHARED_BY_ALL, 1582 .read = iio_enum_available_read, 1583 .private = (uintptr_t)&stm32_adc_trig_pol, 1584 }, 1585 {}, 1586 }; 1587 1588 static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev) 1589 { 1590 struct device_node *node = indio_dev->dev.of_node; 1591 struct stm32_adc *adc = iio_priv(indio_dev); 1592 unsigned int i; 1593 u32 res; 1594 1595 if (of_property_read_u32(node, "assigned-resolution-bits", &res)) 1596 res = adc->cfg->adc_info->resolutions[0]; 1597 1598 for (i = 0; i < adc->cfg->adc_info->num_res; i++) 1599 if (res == adc->cfg->adc_info->resolutions[i]) 1600 break; 1601 if (i >= adc->cfg->adc_info->num_res) { 1602 dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res); 1603 return -EINVAL; 1604 } 1605 1606 dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res); 1607 adc->res = i; 1608 1609 return 0; 1610 } 1611 1612 static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns) 1613 { 1614 const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel]; 1615 u32 period_ns, shift = smpr->shift, mask = smpr->mask; 1616 unsigned int smp, r = smpr->reg; 1617 1618 /* Determine sampling time (ADC clock cycles) */ 1619 period_ns = NSEC_PER_SEC / adc->common->rate; 1620 for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++) 1621 if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns) 1622 break; 1623 if (smp > STM32_ADC_MAX_SMP) 1624 smp = STM32_ADC_MAX_SMP; 1625 1626 /* pre-build sampling time registers (e.g. smpr1, smpr2) */ 1627 adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift); 1628 } 1629 1630 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev, 1631 struct iio_chan_spec *chan, 1632 const struct stm32_adc_chan_spec *channel, 1633 int scan_index, u32 smp) 1634 { 1635 struct stm32_adc *adc = iio_priv(indio_dev); 1636 1637 chan->type = channel->type; 1638 chan->channel = channel->channel; 1639 chan->datasheet_name = channel->name; 1640 chan->scan_index = scan_index; 1641 chan->indexed = 1; 1642 chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW); 1643 chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE); 1644 chan->scan_type.sign = 'u'; 1645 chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res]; 1646 chan->scan_type.storagebits = 16; 1647 chan->ext_info = stm32_adc_ext_info; 1648 1649 /* Prepare sampling time settings */ 1650 stm32_adc_smpr_init(adc, chan->channel, smp); 1651 1652 /* pre-build selected channels mask */ 1653 adc->pcsel |= BIT(chan->channel); 1654 } 1655 1656 static int stm32_adc_chan_of_init(struct iio_dev *indio_dev) 1657 { 1658 struct device_node *node = indio_dev->dev.of_node; 1659 struct stm32_adc *adc = iio_priv(indio_dev); 1660 const struct stm32_adc_info *adc_info = adc->cfg->adc_info; 1661 struct property *prop; 1662 const __be32 *cur; 1663 struct iio_chan_spec *channels; 1664 int scan_index = 0, num_channels, ret; 1665 u32 val, smp = 0; 1666 1667 num_channels = of_property_count_u32_elems(node, "st,adc-channels"); 1668 if (num_channels < 0 || 1669 num_channels > adc_info->max_channels) { 1670 dev_err(&indio_dev->dev, "Bad st,adc-channels?\n"); 1671 return num_channels < 0 ? num_channels : -EINVAL; 1672 } 1673 1674 /* Optional sample time is provided either for each, or all channels */ 1675 ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs"); 1676 if (ret > 1 && ret != num_channels) { 1677 dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n"); 1678 return -EINVAL; 1679 } 1680 1681 channels = devm_kcalloc(&indio_dev->dev, num_channels, 1682 sizeof(struct iio_chan_spec), GFP_KERNEL); 1683 if (!channels) 1684 return -ENOMEM; 1685 1686 of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) { 1687 if (val >= adc_info->max_channels) { 1688 dev_err(&indio_dev->dev, "Invalid channel %d\n", val); 1689 return -EINVAL; 1690 } 1691 1692 /* 1693 * Using of_property_read_u32_index(), smp value will only be 1694 * modified if valid u32 value can be decoded. This allows to 1695 * get either no value, 1 shared value for all indexes, or one 1696 * value per channel. 1697 */ 1698 of_property_read_u32_index(node, "st,min-sample-time-nsecs", 1699 scan_index, &smp); 1700 1701 stm32_adc_chan_init_one(indio_dev, &channels[scan_index], 1702 &adc_info->channels[val], 1703 scan_index, smp); 1704 scan_index++; 1705 } 1706 1707 indio_dev->num_channels = scan_index; 1708 indio_dev->channels = channels; 1709 1710 return 0; 1711 } 1712 1713 static int stm32_adc_dma_request(struct iio_dev *indio_dev) 1714 { 1715 struct stm32_adc *adc = iio_priv(indio_dev); 1716 struct dma_slave_config config; 1717 int ret; 1718 1719 adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx"); 1720 if (!adc->dma_chan) 1721 return 0; 1722 1723 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev, 1724 STM32_DMA_BUFFER_SIZE, 1725 &adc->rx_dma_buf, GFP_KERNEL); 1726 if (!adc->rx_buf) { 1727 ret = -ENOMEM; 1728 goto err_release; 1729 } 1730 1731 /* Configure DMA channel to read data register */ 1732 memset(&config, 0, sizeof(config)); 1733 config.src_addr = (dma_addr_t)adc->common->phys_base; 1734 config.src_addr += adc->offset + adc->cfg->regs->dr; 1735 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 1736 1737 ret = dmaengine_slave_config(adc->dma_chan, &config); 1738 if (ret) 1739 goto err_free; 1740 1741 return 0; 1742 1743 err_free: 1744 dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE, 1745 adc->rx_buf, adc->rx_dma_buf); 1746 err_release: 1747 dma_release_channel(adc->dma_chan); 1748 1749 return ret; 1750 } 1751 1752 static int stm32_adc_probe(struct platform_device *pdev) 1753 { 1754 struct iio_dev *indio_dev; 1755 struct device *dev = &pdev->dev; 1756 struct stm32_adc *adc; 1757 int ret; 1758 1759 if (!pdev->dev.of_node) 1760 return -ENODEV; 1761 1762 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc)); 1763 if (!indio_dev) 1764 return -ENOMEM; 1765 1766 adc = iio_priv(indio_dev); 1767 adc->common = dev_get_drvdata(pdev->dev.parent); 1768 spin_lock_init(&adc->lock); 1769 init_completion(&adc->completion); 1770 adc->cfg = (const struct stm32_adc_cfg *) 1771 of_match_device(dev->driver->of_match_table, dev)->data; 1772 1773 indio_dev->name = dev_name(&pdev->dev); 1774 indio_dev->dev.parent = &pdev->dev; 1775 indio_dev->dev.of_node = pdev->dev.of_node; 1776 indio_dev->info = &stm32_adc_iio_info; 1777 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED; 1778 1779 platform_set_drvdata(pdev, adc); 1780 1781 ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset); 1782 if (ret != 0) { 1783 dev_err(&pdev->dev, "missing reg property\n"); 1784 return -EINVAL; 1785 } 1786 1787 adc->irq = platform_get_irq(pdev, 0); 1788 if (adc->irq < 0) { 1789 dev_err(&pdev->dev, "failed to get irq\n"); 1790 return adc->irq; 1791 } 1792 1793 ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr, 1794 0, pdev->name, adc); 1795 if (ret) { 1796 dev_err(&pdev->dev, "failed to request IRQ\n"); 1797 return ret; 1798 } 1799 1800 adc->clk = devm_clk_get(&pdev->dev, NULL); 1801 if (IS_ERR(adc->clk)) { 1802 ret = PTR_ERR(adc->clk); 1803 if (ret == -ENOENT && !adc->cfg->clk_required) { 1804 adc->clk = NULL; 1805 } else { 1806 dev_err(&pdev->dev, "Can't get clock\n"); 1807 return ret; 1808 } 1809 } 1810 1811 if (adc->clk) { 1812 ret = clk_prepare_enable(adc->clk); 1813 if (ret < 0) { 1814 dev_err(&pdev->dev, "clk enable failed\n"); 1815 return ret; 1816 } 1817 } 1818 1819 ret = stm32_adc_of_get_resolution(indio_dev); 1820 if (ret < 0) 1821 goto err_clk_disable; 1822 stm32_adc_set_res(adc); 1823 1824 if (adc->cfg->selfcalib) { 1825 ret = adc->cfg->selfcalib(adc); 1826 if (ret) 1827 goto err_clk_disable; 1828 } 1829 1830 ret = stm32_adc_chan_of_init(indio_dev); 1831 if (ret < 0) 1832 goto err_clk_disable; 1833 1834 ret = stm32_adc_dma_request(indio_dev); 1835 if (ret < 0) 1836 goto err_clk_disable; 1837 1838 ret = iio_triggered_buffer_setup(indio_dev, 1839 &iio_pollfunc_store_time, 1840 &stm32_adc_trigger_handler, 1841 &stm32_adc_buffer_setup_ops); 1842 if (ret) { 1843 dev_err(&pdev->dev, "buffer setup failed\n"); 1844 goto err_dma_disable; 1845 } 1846 1847 ret = iio_device_register(indio_dev); 1848 if (ret) { 1849 dev_err(&pdev->dev, "iio dev register failed\n"); 1850 goto err_buffer_cleanup; 1851 } 1852 1853 return 0; 1854 1855 err_buffer_cleanup: 1856 iio_triggered_buffer_cleanup(indio_dev); 1857 1858 err_dma_disable: 1859 if (adc->dma_chan) { 1860 dma_free_coherent(adc->dma_chan->device->dev, 1861 STM32_DMA_BUFFER_SIZE, 1862 adc->rx_buf, adc->rx_dma_buf); 1863 dma_release_channel(adc->dma_chan); 1864 } 1865 err_clk_disable: 1866 if (adc->clk) 1867 clk_disable_unprepare(adc->clk); 1868 1869 return ret; 1870 } 1871 1872 static int stm32_adc_remove(struct platform_device *pdev) 1873 { 1874 struct stm32_adc *adc = platform_get_drvdata(pdev); 1875 struct iio_dev *indio_dev = iio_priv_to_dev(adc); 1876 1877 iio_device_unregister(indio_dev); 1878 iio_triggered_buffer_cleanup(indio_dev); 1879 if (adc->dma_chan) { 1880 dma_free_coherent(adc->dma_chan->device->dev, 1881 STM32_DMA_BUFFER_SIZE, 1882 adc->rx_buf, adc->rx_dma_buf); 1883 dma_release_channel(adc->dma_chan); 1884 } 1885 if (adc->clk) 1886 clk_disable_unprepare(adc->clk); 1887 1888 return 0; 1889 } 1890 1891 static const struct stm32_adc_cfg stm32f4_adc_cfg = { 1892 .regs = &stm32f4_adc_regspec, 1893 .adc_info = &stm32f4_adc_info, 1894 .trigs = stm32f4_adc_trigs, 1895 .clk_required = true, 1896 .start_conv = stm32f4_adc_start_conv, 1897 .stop_conv = stm32f4_adc_stop_conv, 1898 .smp_cycles = stm32f4_adc_smp_cycles, 1899 }; 1900 1901 static const struct stm32_adc_cfg stm32h7_adc_cfg = { 1902 .regs = &stm32h7_adc_regspec, 1903 .adc_info = &stm32h7_adc_info, 1904 .trigs = stm32h7_adc_trigs, 1905 .selfcalib = stm32h7_adc_selfcalib, 1906 .start_conv = stm32h7_adc_start_conv, 1907 .stop_conv = stm32h7_adc_stop_conv, 1908 .prepare = stm32h7_adc_prepare, 1909 .unprepare = stm32h7_adc_unprepare, 1910 .smp_cycles = stm32h7_adc_smp_cycles, 1911 }; 1912 1913 static const struct of_device_id stm32_adc_of_match[] = { 1914 { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg }, 1915 { .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg }, 1916 {}, 1917 }; 1918 MODULE_DEVICE_TABLE(of, stm32_adc_of_match); 1919 1920 static struct platform_driver stm32_adc_driver = { 1921 .probe = stm32_adc_probe, 1922 .remove = stm32_adc_remove, 1923 .driver = { 1924 .name = "stm32-adc", 1925 .of_match_table = stm32_adc_of_match, 1926 }, 1927 }; 1928 module_platform_driver(stm32_adc_driver); 1929 1930 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>"); 1931 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver"); 1932 MODULE_LICENSE("GPL v2"); 1933 MODULE_ALIAS("platform:stm32-adc"); 1934