xref: /openbmc/linux/drivers/iio/adc/stm32-adc.c (revision a6ca5ac746d104019e76c29e69c2a1fc6dd2b29f)
1 /*
2  * This file is part of STM32 ADC driver
3  *
4  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
5  * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
6  *
7  * License type: GPLv2
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License version 2 as published by
11  * the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.
16  * See the GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program. If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include <linux/clk.h>
23 #include <linux/delay.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dmaengine.h>
26 #include <linux/iio/iio.h>
27 #include <linux/iio/buffer.h>
28 #include <linux/iio/timer/stm32-timer-trigger.h>
29 #include <linux/iio/trigger.h>
30 #include <linux/iio/trigger_consumer.h>
31 #include <linux/iio/triggered_buffer.h>
32 #include <linux/interrupt.h>
33 #include <linux/io.h>
34 #include <linux/module.h>
35 #include <linux/platform_device.h>
36 #include <linux/of.h>
37 
38 #include "stm32-adc-core.h"
39 
40 /* STM32F4 - Registers for each ADC instance */
41 #define STM32F4_ADC_SR			0x00
42 #define STM32F4_ADC_CR1			0x04
43 #define STM32F4_ADC_CR2			0x08
44 #define STM32F4_ADC_SMPR1		0x0C
45 #define STM32F4_ADC_SMPR2		0x10
46 #define STM32F4_ADC_HTR			0x24
47 #define STM32F4_ADC_LTR			0x28
48 #define STM32F4_ADC_SQR1		0x2C
49 #define STM32F4_ADC_SQR2		0x30
50 #define STM32F4_ADC_SQR3		0x34
51 #define STM32F4_ADC_JSQR		0x38
52 #define STM32F4_ADC_JDR1		0x3C
53 #define STM32F4_ADC_JDR2		0x40
54 #define STM32F4_ADC_JDR3		0x44
55 #define STM32F4_ADC_JDR4		0x48
56 #define STM32F4_ADC_DR			0x4C
57 
58 /* STM32F4_ADC_SR - bit fields */
59 #define STM32F4_STRT			BIT(4)
60 #define STM32F4_EOC			BIT(1)
61 
62 /* STM32F4_ADC_CR1 - bit fields */
63 #define STM32F4_RES_SHIFT		24
64 #define STM32F4_RES_MASK		GENMASK(25, 24)
65 #define STM32F4_SCAN			BIT(8)
66 #define STM32F4_EOCIE			BIT(5)
67 
68 /* STM32F4_ADC_CR2 - bit fields */
69 #define STM32F4_SWSTART			BIT(30)
70 #define STM32F4_EXTEN_SHIFT		28
71 #define STM32F4_EXTEN_MASK		GENMASK(29, 28)
72 #define STM32F4_EXTSEL_SHIFT		24
73 #define STM32F4_EXTSEL_MASK		GENMASK(27, 24)
74 #define STM32F4_EOCS			BIT(10)
75 #define STM32F4_DDS			BIT(9)
76 #define STM32F4_DMA			BIT(8)
77 #define STM32F4_ADON			BIT(0)
78 
79 #define STM32_ADC_MAX_SQ		16	/* SQ1..SQ16 */
80 #define STM32_ADC_TIMEOUT_US		100000
81 #define STM32_ADC_TIMEOUT	(msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
82 
83 #define STM32_DMA_BUFFER_SIZE		PAGE_SIZE
84 
85 /* External trigger enable */
86 enum stm32_adc_exten {
87 	STM32_EXTEN_SWTRIG,
88 	STM32_EXTEN_HWTRIG_RISING_EDGE,
89 	STM32_EXTEN_HWTRIG_FALLING_EDGE,
90 	STM32_EXTEN_HWTRIG_BOTH_EDGES,
91 };
92 
93 /* extsel - trigger mux selection value */
94 enum stm32_adc_extsel {
95 	STM32_EXT0,
96 	STM32_EXT1,
97 	STM32_EXT2,
98 	STM32_EXT3,
99 	STM32_EXT4,
100 	STM32_EXT5,
101 	STM32_EXT6,
102 	STM32_EXT7,
103 	STM32_EXT8,
104 	STM32_EXT9,
105 	STM32_EXT10,
106 	STM32_EXT11,
107 	STM32_EXT12,
108 	STM32_EXT13,
109 	STM32_EXT14,
110 	STM32_EXT15,
111 };
112 
113 /**
114  * struct stm32_adc_trig_info - ADC trigger info
115  * @name:		name of the trigger, corresponding to its source
116  * @extsel:		trigger selection
117  */
118 struct stm32_adc_trig_info {
119 	const char *name;
120 	enum stm32_adc_extsel extsel;
121 };
122 
123 /**
124  * stm32_adc_regs - stm32 ADC misc registers & bitfield desc
125  * @reg:		register offset
126  * @mask:		bitfield mask
127  * @shift:		left shift
128  */
129 struct stm32_adc_regs {
130 	int reg;
131 	int mask;
132 	int shift;
133 };
134 
135 /**
136  * struct stm32_adc - private data of each ADC IIO instance
137  * @common:		reference to ADC block common data
138  * @offset:		ADC instance register offset in ADC block
139  * @completion:		end of single conversion completion
140  * @buffer:		data buffer
141  * @clk:		clock for this adc instance
142  * @irq:		interrupt for this adc instance
143  * @lock:		spinlock
144  * @bufi:		data buffer index
145  * @num_conv:		expected number of scan conversions
146  * @res:		data resolution (e.g. RES bitfield value)
147  * @trigger_polarity:	external trigger polarity (e.g. exten)
148  * @dma_chan:		dma channel
149  * @rx_buf:		dma rx buffer cpu address
150  * @rx_dma_buf:		dma rx buffer bus address
151  * @rx_buf_sz:		dma rx buffer size
152  */
153 struct stm32_adc {
154 	struct stm32_adc_common	*common;
155 	u32			offset;
156 	struct completion	completion;
157 	u16			buffer[STM32_ADC_MAX_SQ];
158 	struct clk		*clk;
159 	int			irq;
160 	spinlock_t		lock;		/* interrupt lock */
161 	unsigned int		bufi;
162 	unsigned int		num_conv;
163 	u32			res;
164 	u32			trigger_polarity;
165 	struct dma_chan		*dma_chan;
166 	u8			*rx_buf;
167 	dma_addr_t		rx_dma_buf;
168 	unsigned int		rx_buf_sz;
169 };
170 
171 /**
172  * struct stm32_adc_chan_spec - specification of stm32 adc channel
173  * @type:	IIO channel type
174  * @channel:	channel number (single ended)
175  * @name:	channel name (single ended)
176  */
177 struct stm32_adc_chan_spec {
178 	enum iio_chan_type	type;
179 	int			channel;
180 	const char		*name;
181 };
182 
183 /* Input definitions common for all STM32F4 instances */
184 static const struct stm32_adc_chan_spec stm32f4_adc123_channels[] = {
185 	{ IIO_VOLTAGE, 0, "in0" },
186 	{ IIO_VOLTAGE, 1, "in1" },
187 	{ IIO_VOLTAGE, 2, "in2" },
188 	{ IIO_VOLTAGE, 3, "in3" },
189 	{ IIO_VOLTAGE, 4, "in4" },
190 	{ IIO_VOLTAGE, 5, "in5" },
191 	{ IIO_VOLTAGE, 6, "in6" },
192 	{ IIO_VOLTAGE, 7, "in7" },
193 	{ IIO_VOLTAGE, 8, "in8" },
194 	{ IIO_VOLTAGE, 9, "in9" },
195 	{ IIO_VOLTAGE, 10, "in10" },
196 	{ IIO_VOLTAGE, 11, "in11" },
197 	{ IIO_VOLTAGE, 12, "in12" },
198 	{ IIO_VOLTAGE, 13, "in13" },
199 	{ IIO_VOLTAGE, 14, "in14" },
200 	{ IIO_VOLTAGE, 15, "in15" },
201 };
202 
203 static const unsigned int stm32f4_adc_resolutions[] = {
204 	/* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
205 	12, 10, 8, 6,
206 };
207 
208 /**
209  * stm32f4_sq - describe regular sequence registers
210  * - L: sequence len (register & bit field)
211  * - SQ1..SQ16: sequence entries (register & bit field)
212  */
213 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
214 	/* L: len bit field description to be kept as first element */
215 	{ STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
216 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
217 	{ STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
218 	{ STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
219 	{ STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
220 	{ STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
221 	{ STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
222 	{ STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
223 	{ STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
224 	{ STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
225 	{ STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
226 	{ STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
227 	{ STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
228 	{ STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
229 	{ STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
230 	{ STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
231 	{ STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
232 	{ STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
233 };
234 
235 /* STM32F4 external trigger sources for all instances */
236 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
237 	{ TIM1_CH1, STM32_EXT0 },
238 	{ TIM1_CH2, STM32_EXT1 },
239 	{ TIM1_CH3, STM32_EXT2 },
240 	{ TIM2_CH2, STM32_EXT3 },
241 	{ TIM2_CH3, STM32_EXT4 },
242 	{ TIM2_CH4, STM32_EXT5 },
243 	{ TIM2_TRGO, STM32_EXT6 },
244 	{ TIM3_CH1, STM32_EXT7 },
245 	{ TIM3_TRGO, STM32_EXT8 },
246 	{ TIM4_CH4, STM32_EXT9 },
247 	{ TIM5_CH1, STM32_EXT10 },
248 	{ TIM5_CH2, STM32_EXT11 },
249 	{ TIM5_CH3, STM32_EXT12 },
250 	{ TIM8_CH1, STM32_EXT13 },
251 	{ TIM8_TRGO, STM32_EXT14 },
252 	{}, /* sentinel */
253 };
254 
255 /**
256  * STM32 ADC registers access routines
257  * @adc: stm32 adc instance
258  * @reg: reg offset in adc instance
259  *
260  * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
261  * for adc1, adc2 and adc3.
262  */
263 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
264 {
265 	return readl_relaxed(adc->common->base + adc->offset + reg);
266 }
267 
268 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
269 {
270 	return readw_relaxed(adc->common->base + adc->offset + reg);
271 }
272 
273 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
274 {
275 	writel_relaxed(val, adc->common->base + adc->offset + reg);
276 }
277 
278 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
279 {
280 	unsigned long flags;
281 
282 	spin_lock_irqsave(&adc->lock, flags);
283 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
284 	spin_unlock_irqrestore(&adc->lock, flags);
285 }
286 
287 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
288 {
289 	unsigned long flags;
290 
291 	spin_lock_irqsave(&adc->lock, flags);
292 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
293 	spin_unlock_irqrestore(&adc->lock, flags);
294 }
295 
296 /**
297  * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
298  * @adc: stm32 adc instance
299  */
300 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
301 {
302 	stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_EOCIE);
303 };
304 
305 /**
306  * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
307  * @adc: stm32 adc instance
308  */
309 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
310 {
311 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_EOCIE);
312 }
313 
314 static void stm32_adc_set_res(struct stm32_adc *adc)
315 {
316 	u32 val = stm32_adc_readl(adc, STM32F4_ADC_CR1);
317 
318 	val = (val & ~STM32F4_RES_MASK) | (adc->res << STM32F4_RES_SHIFT);
319 	stm32_adc_writel(adc, STM32F4_ADC_CR1, val);
320 }
321 
322 /**
323  * stm32_adc_start_conv() - Start conversions for regular channels.
324  * @adc: stm32 adc instance
325  * @dma: use dma to transfer conversion result
326  *
327  * Start conversions for regular channels.
328  * Also take care of normal or DMA mode. Circular DMA may be used for regular
329  * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
330  * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
331  */
332 static void stm32_adc_start_conv(struct stm32_adc *adc, bool dma)
333 {
334 	stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
335 
336 	if (dma)
337 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
338 				   STM32F4_DMA | STM32F4_DDS);
339 
340 	stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
341 
342 	/* Wait for Power-up time (tSTAB from datasheet) */
343 	usleep_range(2, 3);
344 
345 	/* Software start ? (e.g. trigger detection disabled ?) */
346 	if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
347 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
348 }
349 
350 static void stm32_adc_stop_conv(struct stm32_adc *adc)
351 {
352 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
353 	stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
354 
355 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
356 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
357 			   STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
358 }
359 
360 /**
361  * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
362  * @indio_dev: IIO device
363  * @scan_mask: channels to be converted
364  *
365  * Conversion sequence :
366  * Configure ADC scan sequence based on selected channels in scan_mask.
367  * Add channels to SQR registers, from scan_mask LSB to MSB, then
368  * program sequence len.
369  */
370 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
371 				   const unsigned long *scan_mask)
372 {
373 	struct stm32_adc *adc = iio_priv(indio_dev);
374 	const struct iio_chan_spec *chan;
375 	u32 val, bit;
376 	int i = 0;
377 
378 	for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
379 		chan = indio_dev->channels + bit;
380 		/*
381 		 * Assign one channel per SQ entry in regular
382 		 * sequence, starting with SQ1.
383 		 */
384 		i++;
385 		if (i > STM32_ADC_MAX_SQ)
386 			return -EINVAL;
387 
388 		dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
389 			__func__, chan->channel, i);
390 
391 		val = stm32_adc_readl(adc, stm32f4_sq[i].reg);
392 		val &= ~stm32f4_sq[i].mask;
393 		val |= chan->channel << stm32f4_sq[i].shift;
394 		stm32_adc_writel(adc, stm32f4_sq[i].reg, val);
395 	}
396 
397 	if (!i)
398 		return -EINVAL;
399 
400 	/* Sequence len */
401 	val = stm32_adc_readl(adc, stm32f4_sq[0].reg);
402 	val &= ~stm32f4_sq[0].mask;
403 	val |= ((i - 1) << stm32f4_sq[0].shift);
404 	stm32_adc_writel(adc, stm32f4_sq[0].reg, val);
405 
406 	return 0;
407 }
408 
409 /**
410  * stm32_adc_get_trig_extsel() - Get external trigger selection
411  * @trig: trigger
412  *
413  * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
414  */
415 static int stm32_adc_get_trig_extsel(struct iio_trigger *trig)
416 {
417 	int i;
418 
419 	/* lookup triggers registered by stm32 timer trigger driver */
420 	for (i = 0; stm32f4_adc_trigs[i].name; i++) {
421 		/**
422 		 * Checking both stm32 timer trigger type and trig name
423 		 * should be safe against arbitrary trigger names.
424 		 */
425 		if (is_stm32_timer_trigger(trig) &&
426 		    !strcmp(stm32f4_adc_trigs[i].name, trig->name)) {
427 			return stm32f4_adc_trigs[i].extsel;
428 		}
429 	}
430 
431 	return -EINVAL;
432 }
433 
434 /**
435  * stm32_adc_set_trig() - Set a regular trigger
436  * @indio_dev: IIO device
437  * @trig: IIO trigger
438  *
439  * Set trigger source/polarity (e.g. SW, or HW with polarity) :
440  * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
441  * - if HW trigger enabled, set source & polarity
442  */
443 static int stm32_adc_set_trig(struct iio_dev *indio_dev,
444 			      struct iio_trigger *trig)
445 {
446 	struct stm32_adc *adc = iio_priv(indio_dev);
447 	u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
448 	unsigned long flags;
449 	int ret;
450 
451 	if (trig) {
452 		ret = stm32_adc_get_trig_extsel(trig);
453 		if (ret < 0)
454 			return ret;
455 
456 		/* set trigger source and polarity (default to rising edge) */
457 		extsel = ret;
458 		exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
459 	}
460 
461 	spin_lock_irqsave(&adc->lock, flags);
462 	val = stm32_adc_readl(adc, STM32F4_ADC_CR2);
463 	val &= ~(STM32F4_EXTEN_MASK | STM32F4_EXTSEL_MASK);
464 	val |= exten << STM32F4_EXTEN_SHIFT;
465 	val |= extsel << STM32F4_EXTSEL_SHIFT;
466 	stm32_adc_writel(adc, STM32F4_ADC_CR2, val);
467 	spin_unlock_irqrestore(&adc->lock, flags);
468 
469 	return 0;
470 }
471 
472 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
473 				  const struct iio_chan_spec *chan,
474 				  unsigned int type)
475 {
476 	struct stm32_adc *adc = iio_priv(indio_dev);
477 
478 	adc->trigger_polarity = type;
479 
480 	return 0;
481 }
482 
483 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
484 				  const struct iio_chan_spec *chan)
485 {
486 	struct stm32_adc *adc = iio_priv(indio_dev);
487 
488 	return adc->trigger_polarity;
489 }
490 
491 static const char * const stm32_trig_pol_items[] = {
492 	"rising-edge", "falling-edge", "both-edges",
493 };
494 
495 static const struct iio_enum stm32_adc_trig_pol = {
496 	.items = stm32_trig_pol_items,
497 	.num_items = ARRAY_SIZE(stm32_trig_pol_items),
498 	.get = stm32_adc_get_trig_pol,
499 	.set = stm32_adc_set_trig_pol,
500 };
501 
502 /**
503  * stm32_adc_single_conv() - Performs a single conversion
504  * @indio_dev: IIO device
505  * @chan: IIO channel
506  * @res: conversion result
507  *
508  * The function performs a single conversion on a given channel:
509  * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
510  * - Use SW trigger
511  * - Start conversion, then wait for interrupt completion.
512  */
513 static int stm32_adc_single_conv(struct iio_dev *indio_dev,
514 				 const struct iio_chan_spec *chan,
515 				 int *res)
516 {
517 	struct stm32_adc *adc = iio_priv(indio_dev);
518 	long timeout;
519 	u32 val;
520 	int ret;
521 
522 	reinit_completion(&adc->completion);
523 
524 	adc->bufi = 0;
525 
526 	/* Program chan number in regular sequence (SQ1) */
527 	val = stm32_adc_readl(adc, stm32f4_sq[1].reg);
528 	val &= ~stm32f4_sq[1].mask;
529 	val |= chan->channel << stm32f4_sq[1].shift;
530 	stm32_adc_writel(adc, stm32f4_sq[1].reg, val);
531 
532 	/* Set regular sequence len (0 for 1 conversion) */
533 	stm32_adc_clr_bits(adc, stm32f4_sq[0].reg, stm32f4_sq[0].mask);
534 
535 	/* Trigger detection disabled (conversion can be launched in SW) */
536 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
537 
538 	stm32_adc_conv_irq_enable(adc);
539 
540 	stm32_adc_start_conv(adc, false);
541 
542 	timeout = wait_for_completion_interruptible_timeout(
543 					&adc->completion, STM32_ADC_TIMEOUT);
544 	if (timeout == 0) {
545 		ret = -ETIMEDOUT;
546 	} else if (timeout < 0) {
547 		ret = timeout;
548 	} else {
549 		*res = adc->buffer[0];
550 		ret = IIO_VAL_INT;
551 	}
552 
553 	stm32_adc_stop_conv(adc);
554 
555 	stm32_adc_conv_irq_disable(adc);
556 
557 	return ret;
558 }
559 
560 static int stm32_adc_read_raw(struct iio_dev *indio_dev,
561 			      struct iio_chan_spec const *chan,
562 			      int *val, int *val2, long mask)
563 {
564 	struct stm32_adc *adc = iio_priv(indio_dev);
565 	int ret;
566 
567 	switch (mask) {
568 	case IIO_CHAN_INFO_RAW:
569 		ret = iio_device_claim_direct_mode(indio_dev);
570 		if (ret)
571 			return ret;
572 		if (chan->type == IIO_VOLTAGE)
573 			ret = stm32_adc_single_conv(indio_dev, chan, val);
574 		else
575 			ret = -EINVAL;
576 		iio_device_release_direct_mode(indio_dev);
577 		return ret;
578 
579 	case IIO_CHAN_INFO_SCALE:
580 		*val = adc->common->vref_mv;
581 		*val2 = chan->scan_type.realbits;
582 		return IIO_VAL_FRACTIONAL_LOG2;
583 
584 	default:
585 		return -EINVAL;
586 	}
587 }
588 
589 static irqreturn_t stm32_adc_isr(int irq, void *data)
590 {
591 	struct stm32_adc *adc = data;
592 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
593 	u32 status = stm32_adc_readl(adc, STM32F4_ADC_SR);
594 
595 	if (status & STM32F4_EOC) {
596 		/* Reading DR also clears EOC status flag */
597 		adc->buffer[adc->bufi] = stm32_adc_readw(adc, STM32F4_ADC_DR);
598 		if (iio_buffer_enabled(indio_dev)) {
599 			adc->bufi++;
600 			if (adc->bufi >= adc->num_conv) {
601 				stm32_adc_conv_irq_disable(adc);
602 				iio_trigger_poll(indio_dev->trig);
603 			}
604 		} else {
605 			complete(&adc->completion);
606 		}
607 		return IRQ_HANDLED;
608 	}
609 
610 	return IRQ_NONE;
611 }
612 
613 /**
614  * stm32_adc_validate_trigger() - validate trigger for stm32 adc
615  * @indio_dev: IIO device
616  * @trig: new trigger
617  *
618  * Returns: 0 if trig matches one of the triggers registered by stm32 adc
619  * driver, -EINVAL otherwise.
620  */
621 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
622 				      struct iio_trigger *trig)
623 {
624 	return stm32_adc_get_trig_extsel(trig) < 0 ? -EINVAL : 0;
625 }
626 
627 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
628 {
629 	struct stm32_adc *adc = iio_priv(indio_dev);
630 	unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
631 
632 	/*
633 	 * dma cyclic transfers are used, buffer is split into two periods.
634 	 * There should be :
635 	 * - always one buffer (period) dma is working on
636 	 * - one buffer (period) driver can push with iio_trigger_poll().
637 	 */
638 	watermark = min(watermark, val * (unsigned)(sizeof(u16)));
639 	adc->rx_buf_sz = watermark * 2;
640 
641 	return 0;
642 }
643 
644 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
645 				      const unsigned long *scan_mask)
646 {
647 	struct stm32_adc *adc = iio_priv(indio_dev);
648 	int ret;
649 
650 	adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
651 
652 	ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
653 	if (ret)
654 		return ret;
655 
656 	return 0;
657 }
658 
659 static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
660 			      const struct of_phandle_args *iiospec)
661 {
662 	int i;
663 
664 	for (i = 0; i < indio_dev->num_channels; i++)
665 		if (indio_dev->channels[i].channel == iiospec->args[0])
666 			return i;
667 
668 	return -EINVAL;
669 }
670 
671 /**
672  * stm32_adc_debugfs_reg_access - read or write register value
673  *
674  * To read a value from an ADC register:
675  *   echo [ADC reg offset] > direct_reg_access
676  *   cat direct_reg_access
677  *
678  * To write a value in a ADC register:
679  *   echo [ADC_reg_offset] [value] > direct_reg_access
680  */
681 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
682 					unsigned reg, unsigned writeval,
683 					unsigned *readval)
684 {
685 	struct stm32_adc *adc = iio_priv(indio_dev);
686 
687 	if (!readval)
688 		stm32_adc_writel(adc, reg, writeval);
689 	else
690 		*readval = stm32_adc_readl(adc, reg);
691 
692 	return 0;
693 }
694 
695 static const struct iio_info stm32_adc_iio_info = {
696 	.read_raw = stm32_adc_read_raw,
697 	.validate_trigger = stm32_adc_validate_trigger,
698 	.hwfifo_set_watermark = stm32_adc_set_watermark,
699 	.update_scan_mode = stm32_adc_update_scan_mode,
700 	.debugfs_reg_access = stm32_adc_debugfs_reg_access,
701 	.of_xlate = stm32_adc_of_xlate,
702 	.driver_module = THIS_MODULE,
703 };
704 
705 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
706 {
707 	struct dma_tx_state state;
708 	enum dma_status status;
709 
710 	status = dmaengine_tx_status(adc->dma_chan,
711 				     adc->dma_chan->cookie,
712 				     &state);
713 	if (status == DMA_IN_PROGRESS) {
714 		/* Residue is size in bytes from end of buffer */
715 		unsigned int i = adc->rx_buf_sz - state.residue;
716 		unsigned int size;
717 
718 		/* Return available bytes */
719 		if (i >= adc->bufi)
720 			size = i - adc->bufi;
721 		else
722 			size = adc->rx_buf_sz + i - adc->bufi;
723 
724 		return size;
725 	}
726 
727 	return 0;
728 }
729 
730 static void stm32_adc_dma_buffer_done(void *data)
731 {
732 	struct iio_dev *indio_dev = data;
733 
734 	iio_trigger_poll_chained(indio_dev->trig);
735 }
736 
737 static int stm32_adc_dma_start(struct iio_dev *indio_dev)
738 {
739 	struct stm32_adc *adc = iio_priv(indio_dev);
740 	struct dma_async_tx_descriptor *desc;
741 	dma_cookie_t cookie;
742 	int ret;
743 
744 	if (!adc->dma_chan)
745 		return 0;
746 
747 	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
748 		adc->rx_buf_sz, adc->rx_buf_sz / 2);
749 
750 	/* Prepare a DMA cyclic transaction */
751 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
752 					 adc->rx_dma_buf,
753 					 adc->rx_buf_sz, adc->rx_buf_sz / 2,
754 					 DMA_DEV_TO_MEM,
755 					 DMA_PREP_INTERRUPT);
756 	if (!desc)
757 		return -EBUSY;
758 
759 	desc->callback = stm32_adc_dma_buffer_done;
760 	desc->callback_param = indio_dev;
761 
762 	cookie = dmaengine_submit(desc);
763 	ret = dma_submit_error(cookie);
764 	if (ret) {
765 		dmaengine_terminate_all(adc->dma_chan);
766 		return ret;
767 	}
768 
769 	/* Issue pending DMA requests */
770 	dma_async_issue_pending(adc->dma_chan);
771 
772 	return 0;
773 }
774 
775 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
776 {
777 	struct stm32_adc *adc = iio_priv(indio_dev);
778 	int ret;
779 
780 	ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
781 	if (ret) {
782 		dev_err(&indio_dev->dev, "Can't set trigger\n");
783 		return ret;
784 	}
785 
786 	ret = stm32_adc_dma_start(indio_dev);
787 	if (ret) {
788 		dev_err(&indio_dev->dev, "Can't start dma\n");
789 		goto err_clr_trig;
790 	}
791 
792 	ret = iio_triggered_buffer_postenable(indio_dev);
793 	if (ret < 0)
794 		goto err_stop_dma;
795 
796 	/* Reset adc buffer index */
797 	adc->bufi = 0;
798 
799 	if (!adc->dma_chan)
800 		stm32_adc_conv_irq_enable(adc);
801 
802 	stm32_adc_start_conv(adc, !!adc->dma_chan);
803 
804 	return 0;
805 
806 err_stop_dma:
807 	if (adc->dma_chan)
808 		dmaengine_terminate_all(adc->dma_chan);
809 err_clr_trig:
810 	stm32_adc_set_trig(indio_dev, NULL);
811 
812 	return ret;
813 }
814 
815 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
816 {
817 	struct stm32_adc *adc = iio_priv(indio_dev);
818 	int ret;
819 
820 	stm32_adc_stop_conv(adc);
821 	if (!adc->dma_chan)
822 		stm32_adc_conv_irq_disable(adc);
823 
824 	ret = iio_triggered_buffer_predisable(indio_dev);
825 	if (ret < 0)
826 		dev_err(&indio_dev->dev, "predisable failed\n");
827 
828 	if (adc->dma_chan)
829 		dmaengine_terminate_all(adc->dma_chan);
830 
831 	if (stm32_adc_set_trig(indio_dev, NULL))
832 		dev_err(&indio_dev->dev, "Can't clear trigger\n");
833 
834 	return ret;
835 }
836 
837 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
838 	.postenable = &stm32_adc_buffer_postenable,
839 	.predisable = &stm32_adc_buffer_predisable,
840 };
841 
842 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
843 {
844 	struct iio_poll_func *pf = p;
845 	struct iio_dev *indio_dev = pf->indio_dev;
846 	struct stm32_adc *adc = iio_priv(indio_dev);
847 
848 	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
849 
850 	if (!adc->dma_chan) {
851 		/* reset buffer index */
852 		adc->bufi = 0;
853 		iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
854 						   pf->timestamp);
855 	} else {
856 		int residue = stm32_adc_dma_residue(adc);
857 
858 		while (residue >= indio_dev->scan_bytes) {
859 			u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
860 
861 			iio_push_to_buffers_with_timestamp(indio_dev, buffer,
862 							   pf->timestamp);
863 			residue -= indio_dev->scan_bytes;
864 			adc->bufi += indio_dev->scan_bytes;
865 			if (adc->bufi >= adc->rx_buf_sz)
866 				adc->bufi = 0;
867 		}
868 	}
869 
870 	iio_trigger_notify_done(indio_dev->trig);
871 
872 	/* re-enable eoc irq */
873 	if (!adc->dma_chan)
874 		stm32_adc_conv_irq_enable(adc);
875 
876 	return IRQ_HANDLED;
877 }
878 
879 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
880 	IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
881 	{
882 		.name = "trigger_polarity_available",
883 		.shared = IIO_SHARED_BY_ALL,
884 		.read = iio_enum_available_read,
885 		.private = (uintptr_t)&stm32_adc_trig_pol,
886 	},
887 	{},
888 };
889 
890 static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
891 {
892 	struct device_node *node = indio_dev->dev.of_node;
893 	struct stm32_adc *adc = iio_priv(indio_dev);
894 	unsigned int i;
895 	u32 res;
896 
897 	if (of_property_read_u32(node, "assigned-resolution-bits", &res))
898 		res = stm32f4_adc_resolutions[0];
899 
900 	for (i = 0; i < ARRAY_SIZE(stm32f4_adc_resolutions); i++)
901 		if (res == stm32f4_adc_resolutions[i])
902 			break;
903 	if (i >= ARRAY_SIZE(stm32f4_adc_resolutions)) {
904 		dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
905 		return -EINVAL;
906 	}
907 
908 	dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
909 	adc->res = i;
910 
911 	return 0;
912 }
913 
914 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
915 				    struct iio_chan_spec *chan,
916 				    const struct stm32_adc_chan_spec *channel,
917 				    int scan_index)
918 {
919 	struct stm32_adc *adc = iio_priv(indio_dev);
920 
921 	chan->type = channel->type;
922 	chan->channel = channel->channel;
923 	chan->datasheet_name = channel->name;
924 	chan->scan_index = scan_index;
925 	chan->indexed = 1;
926 	chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
927 	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
928 	chan->scan_type.sign = 'u';
929 	chan->scan_type.realbits = stm32f4_adc_resolutions[adc->res];
930 	chan->scan_type.storagebits = 16;
931 	chan->ext_info = stm32_adc_ext_info;
932 }
933 
934 static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
935 {
936 	struct device_node *node = indio_dev->dev.of_node;
937 	struct property *prop;
938 	const __be32 *cur;
939 	struct iio_chan_spec *channels;
940 	int scan_index = 0, num_channels;
941 	u32 val;
942 
943 	num_channels = of_property_count_u32_elems(node, "st,adc-channels");
944 	if (num_channels < 0 ||
945 	    num_channels >= ARRAY_SIZE(stm32f4_adc123_channels)) {
946 		dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
947 		return num_channels < 0 ? num_channels : -EINVAL;
948 	}
949 
950 	channels = devm_kcalloc(&indio_dev->dev, num_channels,
951 				sizeof(struct iio_chan_spec), GFP_KERNEL);
952 	if (!channels)
953 		return -ENOMEM;
954 
955 	of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
956 		if (val >= ARRAY_SIZE(stm32f4_adc123_channels)) {
957 			dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
958 			return -EINVAL;
959 		}
960 		stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
961 					&stm32f4_adc123_channels[val],
962 					scan_index);
963 		scan_index++;
964 	}
965 
966 	indio_dev->num_channels = scan_index;
967 	indio_dev->channels = channels;
968 
969 	return 0;
970 }
971 
972 static int stm32_adc_dma_request(struct iio_dev *indio_dev)
973 {
974 	struct stm32_adc *adc = iio_priv(indio_dev);
975 	struct dma_slave_config config;
976 	int ret;
977 
978 	adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
979 	if (!adc->dma_chan)
980 		return 0;
981 
982 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
983 					 STM32_DMA_BUFFER_SIZE,
984 					 &adc->rx_dma_buf, GFP_KERNEL);
985 	if (!adc->rx_buf) {
986 		ret = -ENOMEM;
987 		goto err_release;
988 	}
989 
990 	/* Configure DMA channel to read data register */
991 	memset(&config, 0, sizeof(config));
992 	config.src_addr = (dma_addr_t)adc->common->phys_base;
993 	config.src_addr += adc->offset + STM32F4_ADC_DR;
994 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
995 
996 	ret = dmaengine_slave_config(adc->dma_chan, &config);
997 	if (ret)
998 		goto err_free;
999 
1000 	return 0;
1001 
1002 err_free:
1003 	dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1004 			  adc->rx_buf, adc->rx_dma_buf);
1005 err_release:
1006 	dma_release_channel(adc->dma_chan);
1007 
1008 	return ret;
1009 }
1010 
1011 static int stm32_adc_probe(struct platform_device *pdev)
1012 {
1013 	struct iio_dev *indio_dev;
1014 	struct stm32_adc *adc;
1015 	int ret;
1016 
1017 	if (!pdev->dev.of_node)
1018 		return -ENODEV;
1019 
1020 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1021 	if (!indio_dev)
1022 		return -ENOMEM;
1023 
1024 	adc = iio_priv(indio_dev);
1025 	adc->common = dev_get_drvdata(pdev->dev.parent);
1026 	spin_lock_init(&adc->lock);
1027 	init_completion(&adc->completion);
1028 
1029 	indio_dev->name = dev_name(&pdev->dev);
1030 	indio_dev->dev.parent = &pdev->dev;
1031 	indio_dev->dev.of_node = pdev->dev.of_node;
1032 	indio_dev->info = &stm32_adc_iio_info;
1033 	indio_dev->modes = INDIO_DIRECT_MODE;
1034 
1035 	platform_set_drvdata(pdev, adc);
1036 
1037 	ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1038 	if (ret != 0) {
1039 		dev_err(&pdev->dev, "missing reg property\n");
1040 		return -EINVAL;
1041 	}
1042 
1043 	adc->irq = platform_get_irq(pdev, 0);
1044 	if (adc->irq < 0) {
1045 		dev_err(&pdev->dev, "failed to get irq\n");
1046 		return adc->irq;
1047 	}
1048 
1049 	ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1050 			       0, pdev->name, adc);
1051 	if (ret) {
1052 		dev_err(&pdev->dev, "failed to request IRQ\n");
1053 		return ret;
1054 	}
1055 
1056 	adc->clk = devm_clk_get(&pdev->dev, NULL);
1057 	if (IS_ERR(adc->clk)) {
1058 		dev_err(&pdev->dev, "Can't get clock\n");
1059 		return PTR_ERR(adc->clk);
1060 	}
1061 
1062 	ret = clk_prepare_enable(adc->clk);
1063 	if (ret < 0) {
1064 		dev_err(&pdev->dev, "clk enable failed\n");
1065 		return ret;
1066 	}
1067 
1068 	ret = stm32_adc_of_get_resolution(indio_dev);
1069 	if (ret < 0)
1070 		goto err_clk_disable;
1071 	stm32_adc_set_res(adc);
1072 
1073 	ret = stm32_adc_chan_of_init(indio_dev);
1074 	if (ret < 0)
1075 		goto err_clk_disable;
1076 
1077 	ret = stm32_adc_dma_request(indio_dev);
1078 	if (ret < 0)
1079 		goto err_clk_disable;
1080 
1081 	ret = iio_triggered_buffer_setup(indio_dev,
1082 					 &iio_pollfunc_store_time,
1083 					 &stm32_adc_trigger_handler,
1084 					 &stm32_adc_buffer_setup_ops);
1085 	if (ret) {
1086 		dev_err(&pdev->dev, "buffer setup failed\n");
1087 		goto err_dma_disable;
1088 	}
1089 
1090 	ret = iio_device_register(indio_dev);
1091 	if (ret) {
1092 		dev_err(&pdev->dev, "iio dev register failed\n");
1093 		goto err_buffer_cleanup;
1094 	}
1095 
1096 	return 0;
1097 
1098 err_buffer_cleanup:
1099 	iio_triggered_buffer_cleanup(indio_dev);
1100 
1101 err_dma_disable:
1102 	if (adc->dma_chan) {
1103 		dma_free_coherent(adc->dma_chan->device->dev,
1104 				  STM32_DMA_BUFFER_SIZE,
1105 				  adc->rx_buf, adc->rx_dma_buf);
1106 		dma_release_channel(adc->dma_chan);
1107 	}
1108 err_clk_disable:
1109 	clk_disable_unprepare(adc->clk);
1110 
1111 	return ret;
1112 }
1113 
1114 static int stm32_adc_remove(struct platform_device *pdev)
1115 {
1116 	struct stm32_adc *adc = platform_get_drvdata(pdev);
1117 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1118 
1119 	iio_device_unregister(indio_dev);
1120 	iio_triggered_buffer_cleanup(indio_dev);
1121 	if (adc->dma_chan) {
1122 		dma_free_coherent(adc->dma_chan->device->dev,
1123 				  STM32_DMA_BUFFER_SIZE,
1124 				  adc->rx_buf, adc->rx_dma_buf);
1125 		dma_release_channel(adc->dma_chan);
1126 	}
1127 	clk_disable_unprepare(adc->clk);
1128 
1129 	return 0;
1130 }
1131 
1132 static const struct of_device_id stm32_adc_of_match[] = {
1133 	{ .compatible = "st,stm32f4-adc" },
1134 	{},
1135 };
1136 MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
1137 
1138 static struct platform_driver stm32_adc_driver = {
1139 	.probe = stm32_adc_probe,
1140 	.remove = stm32_adc_remove,
1141 	.driver = {
1142 		.name = "stm32-adc",
1143 		.of_match_table = stm32_adc_of_match,
1144 	},
1145 };
1146 module_platform_driver(stm32_adc_driver);
1147 
1148 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
1149 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
1150 MODULE_LICENSE("GPL v2");
1151 MODULE_ALIAS("platform:stm32-adc");
1152