xref: /openbmc/linux/drivers/iio/adc/stm32-adc.c (revision 4f6cce39)
1 /*
2  * This file is part of STM32 ADC driver
3  *
4  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
5  * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
6  *
7  * License type: GPLv2
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License version 2 as published by
11  * the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.
16  * See the GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program. If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include <linux/clk.h>
23 #include <linux/delay.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dmaengine.h>
26 #include <linux/iio/iio.h>
27 #include <linux/iio/buffer.h>
28 #include <linux/iio/timer/stm32-timer-trigger.h>
29 #include <linux/iio/trigger.h>
30 #include <linux/iio/trigger_consumer.h>
31 #include <linux/iio/triggered_buffer.h>
32 #include <linux/interrupt.h>
33 #include <linux/io.h>
34 #include <linux/module.h>
35 #include <linux/platform_device.h>
36 #include <linux/of.h>
37 
38 #include "stm32-adc-core.h"
39 
40 /* STM32F4 - Registers for each ADC instance */
41 #define STM32F4_ADC_SR			0x00
42 #define STM32F4_ADC_CR1			0x04
43 #define STM32F4_ADC_CR2			0x08
44 #define STM32F4_ADC_SMPR1		0x0C
45 #define STM32F4_ADC_SMPR2		0x10
46 #define STM32F4_ADC_HTR			0x24
47 #define STM32F4_ADC_LTR			0x28
48 #define STM32F4_ADC_SQR1		0x2C
49 #define STM32F4_ADC_SQR2		0x30
50 #define STM32F4_ADC_SQR3		0x34
51 #define STM32F4_ADC_JSQR		0x38
52 #define STM32F4_ADC_JDR1		0x3C
53 #define STM32F4_ADC_JDR2		0x40
54 #define STM32F4_ADC_JDR3		0x44
55 #define STM32F4_ADC_JDR4		0x48
56 #define STM32F4_ADC_DR			0x4C
57 
58 /* STM32F4_ADC_SR - bit fields */
59 #define STM32F4_STRT			BIT(4)
60 #define STM32F4_EOC			BIT(1)
61 
62 /* STM32F4_ADC_CR1 - bit fields */
63 #define STM32F4_SCAN			BIT(8)
64 #define STM32F4_EOCIE			BIT(5)
65 
66 /* STM32F4_ADC_CR2 - bit fields */
67 #define STM32F4_SWSTART			BIT(30)
68 #define STM32F4_EXTEN_SHIFT		28
69 #define STM32F4_EXTEN_MASK		GENMASK(29, 28)
70 #define STM32F4_EXTSEL_SHIFT		24
71 #define STM32F4_EXTSEL_MASK		GENMASK(27, 24)
72 #define STM32F4_EOCS			BIT(10)
73 #define STM32F4_DDS			BIT(9)
74 #define STM32F4_DMA			BIT(8)
75 #define STM32F4_ADON			BIT(0)
76 
77 #define STM32_ADC_MAX_SQ		16	/* SQ1..SQ16 */
78 #define STM32_ADC_TIMEOUT_US		100000
79 #define STM32_ADC_TIMEOUT	(msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
80 
81 #define STM32_DMA_BUFFER_SIZE		PAGE_SIZE
82 
83 /* External trigger enable */
84 enum stm32_adc_exten {
85 	STM32_EXTEN_SWTRIG,
86 	STM32_EXTEN_HWTRIG_RISING_EDGE,
87 	STM32_EXTEN_HWTRIG_FALLING_EDGE,
88 	STM32_EXTEN_HWTRIG_BOTH_EDGES,
89 };
90 
91 /* extsel - trigger mux selection value */
92 enum stm32_adc_extsel {
93 	STM32_EXT0,
94 	STM32_EXT1,
95 	STM32_EXT2,
96 	STM32_EXT3,
97 	STM32_EXT4,
98 	STM32_EXT5,
99 	STM32_EXT6,
100 	STM32_EXT7,
101 	STM32_EXT8,
102 	STM32_EXT9,
103 	STM32_EXT10,
104 	STM32_EXT11,
105 	STM32_EXT12,
106 	STM32_EXT13,
107 	STM32_EXT14,
108 	STM32_EXT15,
109 };
110 
111 /**
112  * struct stm32_adc_trig_info - ADC trigger info
113  * @name:		name of the trigger, corresponding to its source
114  * @extsel:		trigger selection
115  */
116 struct stm32_adc_trig_info {
117 	const char *name;
118 	enum stm32_adc_extsel extsel;
119 };
120 
121 /**
122  * stm32_adc_regs - stm32 ADC misc registers & bitfield desc
123  * @reg:		register offset
124  * @mask:		bitfield mask
125  * @shift:		left shift
126  */
127 struct stm32_adc_regs {
128 	int reg;
129 	int mask;
130 	int shift;
131 };
132 
133 /**
134  * struct stm32_adc - private data of each ADC IIO instance
135  * @common:		reference to ADC block common data
136  * @offset:		ADC instance register offset in ADC block
137  * @completion:		end of single conversion completion
138  * @buffer:		data buffer
139  * @clk:		clock for this adc instance
140  * @irq:		interrupt for this adc instance
141  * @lock:		spinlock
142  * @bufi:		data buffer index
143  * @num_conv:		expected number of scan conversions
144  * @trigger_polarity:	external trigger polarity (e.g. exten)
145  * @dma_chan:		dma channel
146  * @rx_buf:		dma rx buffer cpu address
147  * @rx_dma_buf:		dma rx buffer bus address
148  * @rx_buf_sz:		dma rx buffer size
149  */
150 struct stm32_adc {
151 	struct stm32_adc_common	*common;
152 	u32			offset;
153 	struct completion	completion;
154 	u16			buffer[STM32_ADC_MAX_SQ];
155 	struct clk		*clk;
156 	int			irq;
157 	spinlock_t		lock;		/* interrupt lock */
158 	unsigned int		bufi;
159 	unsigned int		num_conv;
160 	u32			trigger_polarity;
161 	struct dma_chan		*dma_chan;
162 	u8			*rx_buf;
163 	dma_addr_t		rx_dma_buf;
164 	unsigned int		rx_buf_sz;
165 };
166 
167 /**
168  * struct stm32_adc_chan_spec - specification of stm32 adc channel
169  * @type:	IIO channel type
170  * @channel:	channel number (single ended)
171  * @name:	channel name (single ended)
172  */
173 struct stm32_adc_chan_spec {
174 	enum iio_chan_type	type;
175 	int			channel;
176 	const char		*name;
177 };
178 
179 /* Input definitions common for all STM32F4 instances */
180 static const struct stm32_adc_chan_spec stm32f4_adc123_channels[] = {
181 	{ IIO_VOLTAGE, 0, "in0" },
182 	{ IIO_VOLTAGE, 1, "in1" },
183 	{ IIO_VOLTAGE, 2, "in2" },
184 	{ IIO_VOLTAGE, 3, "in3" },
185 	{ IIO_VOLTAGE, 4, "in4" },
186 	{ IIO_VOLTAGE, 5, "in5" },
187 	{ IIO_VOLTAGE, 6, "in6" },
188 	{ IIO_VOLTAGE, 7, "in7" },
189 	{ IIO_VOLTAGE, 8, "in8" },
190 	{ IIO_VOLTAGE, 9, "in9" },
191 	{ IIO_VOLTAGE, 10, "in10" },
192 	{ IIO_VOLTAGE, 11, "in11" },
193 	{ IIO_VOLTAGE, 12, "in12" },
194 	{ IIO_VOLTAGE, 13, "in13" },
195 	{ IIO_VOLTAGE, 14, "in14" },
196 	{ IIO_VOLTAGE, 15, "in15" },
197 };
198 
199 /**
200  * stm32f4_sq - describe regular sequence registers
201  * - L: sequence len (register & bit field)
202  * - SQ1..SQ16: sequence entries (register & bit field)
203  */
204 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
205 	/* L: len bit field description to be kept as first element */
206 	{ STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
207 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
208 	{ STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
209 	{ STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
210 	{ STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
211 	{ STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
212 	{ STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
213 	{ STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
214 	{ STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
215 	{ STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
216 	{ STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
217 	{ STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
218 	{ STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
219 	{ STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
220 	{ STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
221 	{ STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
222 	{ STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
223 	{ STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
224 };
225 
226 /* STM32F4 external trigger sources for all instances */
227 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
228 	{ TIM1_CH1, STM32_EXT0 },
229 	{ TIM1_CH2, STM32_EXT1 },
230 	{ TIM1_CH3, STM32_EXT2 },
231 	{ TIM2_CH2, STM32_EXT3 },
232 	{ TIM2_CH3, STM32_EXT4 },
233 	{ TIM2_CH4, STM32_EXT5 },
234 	{ TIM2_TRGO, STM32_EXT6 },
235 	{ TIM3_CH1, STM32_EXT7 },
236 	{ TIM3_TRGO, STM32_EXT8 },
237 	{ TIM4_CH4, STM32_EXT9 },
238 	{ TIM5_CH1, STM32_EXT10 },
239 	{ TIM5_CH2, STM32_EXT11 },
240 	{ TIM5_CH3, STM32_EXT12 },
241 	{ TIM8_CH1, STM32_EXT13 },
242 	{ TIM8_TRGO, STM32_EXT14 },
243 	{}, /* sentinel */
244 };
245 
246 /**
247  * STM32 ADC registers access routines
248  * @adc: stm32 adc instance
249  * @reg: reg offset in adc instance
250  *
251  * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
252  * for adc1, adc2 and adc3.
253  */
254 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
255 {
256 	return readl_relaxed(adc->common->base + adc->offset + reg);
257 }
258 
259 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
260 {
261 	return readw_relaxed(adc->common->base + adc->offset + reg);
262 }
263 
264 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
265 {
266 	writel_relaxed(val, adc->common->base + adc->offset + reg);
267 }
268 
269 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
270 {
271 	unsigned long flags;
272 
273 	spin_lock_irqsave(&adc->lock, flags);
274 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
275 	spin_unlock_irqrestore(&adc->lock, flags);
276 }
277 
278 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
279 {
280 	unsigned long flags;
281 
282 	spin_lock_irqsave(&adc->lock, flags);
283 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
284 	spin_unlock_irqrestore(&adc->lock, flags);
285 }
286 
287 /**
288  * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
289  * @adc: stm32 adc instance
290  */
291 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
292 {
293 	stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_EOCIE);
294 };
295 
296 /**
297  * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
298  * @adc: stm32 adc instance
299  */
300 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
301 {
302 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_EOCIE);
303 }
304 
305 /**
306  * stm32_adc_start_conv() - Start conversions for regular channels.
307  * @adc: stm32 adc instance
308  * @dma: use dma to transfer conversion result
309  *
310  * Start conversions for regular channels.
311  * Also take care of normal or DMA mode. Circular DMA may be used for regular
312  * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
313  * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
314  */
315 static void stm32_adc_start_conv(struct stm32_adc *adc, bool dma)
316 {
317 	stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
318 
319 	if (dma)
320 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
321 				   STM32F4_DMA | STM32F4_DDS);
322 
323 	stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
324 
325 	/* Wait for Power-up time (tSTAB from datasheet) */
326 	usleep_range(2, 3);
327 
328 	/* Software start ? (e.g. trigger detection disabled ?) */
329 	if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
330 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
331 }
332 
333 static void stm32_adc_stop_conv(struct stm32_adc *adc)
334 {
335 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
336 	stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
337 
338 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
339 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
340 			   STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
341 }
342 
343 /**
344  * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
345  * @indio_dev: IIO device
346  * @scan_mask: channels to be converted
347  *
348  * Conversion sequence :
349  * Configure ADC scan sequence based on selected channels in scan_mask.
350  * Add channels to SQR registers, from scan_mask LSB to MSB, then
351  * program sequence len.
352  */
353 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
354 				   const unsigned long *scan_mask)
355 {
356 	struct stm32_adc *adc = iio_priv(indio_dev);
357 	const struct iio_chan_spec *chan;
358 	u32 val, bit;
359 	int i = 0;
360 
361 	for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
362 		chan = indio_dev->channels + bit;
363 		/*
364 		 * Assign one channel per SQ entry in regular
365 		 * sequence, starting with SQ1.
366 		 */
367 		i++;
368 		if (i > STM32_ADC_MAX_SQ)
369 			return -EINVAL;
370 
371 		dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
372 			__func__, chan->channel, i);
373 
374 		val = stm32_adc_readl(adc, stm32f4_sq[i].reg);
375 		val &= ~stm32f4_sq[i].mask;
376 		val |= chan->channel << stm32f4_sq[i].shift;
377 		stm32_adc_writel(adc, stm32f4_sq[i].reg, val);
378 	}
379 
380 	if (!i)
381 		return -EINVAL;
382 
383 	/* Sequence len */
384 	val = stm32_adc_readl(adc, stm32f4_sq[0].reg);
385 	val &= ~stm32f4_sq[0].mask;
386 	val |= ((i - 1) << stm32f4_sq[0].shift);
387 	stm32_adc_writel(adc, stm32f4_sq[0].reg, val);
388 
389 	return 0;
390 }
391 
392 /**
393  * stm32_adc_get_trig_extsel() - Get external trigger selection
394  * @trig: trigger
395  *
396  * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
397  */
398 static int stm32_adc_get_trig_extsel(struct iio_trigger *trig)
399 {
400 	int i;
401 
402 	/* lookup triggers registered by stm32 timer trigger driver */
403 	for (i = 0; stm32f4_adc_trigs[i].name; i++) {
404 		/**
405 		 * Checking both stm32 timer trigger type and trig name
406 		 * should be safe against arbitrary trigger names.
407 		 */
408 		if (is_stm32_timer_trigger(trig) &&
409 		    !strcmp(stm32f4_adc_trigs[i].name, trig->name)) {
410 			return stm32f4_adc_trigs[i].extsel;
411 		}
412 	}
413 
414 	return -EINVAL;
415 }
416 
417 /**
418  * stm32_adc_set_trig() - Set a regular trigger
419  * @indio_dev: IIO device
420  * @trig: IIO trigger
421  *
422  * Set trigger source/polarity (e.g. SW, or HW with polarity) :
423  * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
424  * - if HW trigger enabled, set source & polarity
425  */
426 static int stm32_adc_set_trig(struct iio_dev *indio_dev,
427 			      struct iio_trigger *trig)
428 {
429 	struct stm32_adc *adc = iio_priv(indio_dev);
430 	u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
431 	unsigned long flags;
432 	int ret;
433 
434 	if (trig) {
435 		ret = stm32_adc_get_trig_extsel(trig);
436 		if (ret < 0)
437 			return ret;
438 
439 		/* set trigger source and polarity (default to rising edge) */
440 		extsel = ret;
441 		exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
442 	}
443 
444 	spin_lock_irqsave(&adc->lock, flags);
445 	val = stm32_adc_readl(adc, STM32F4_ADC_CR2);
446 	val &= ~(STM32F4_EXTEN_MASK | STM32F4_EXTSEL_MASK);
447 	val |= exten << STM32F4_EXTEN_SHIFT;
448 	val |= extsel << STM32F4_EXTSEL_SHIFT;
449 	stm32_adc_writel(adc, STM32F4_ADC_CR2, val);
450 	spin_unlock_irqrestore(&adc->lock, flags);
451 
452 	return 0;
453 }
454 
455 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
456 				  const struct iio_chan_spec *chan,
457 				  unsigned int type)
458 {
459 	struct stm32_adc *adc = iio_priv(indio_dev);
460 
461 	adc->trigger_polarity = type;
462 
463 	return 0;
464 }
465 
466 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
467 				  const struct iio_chan_spec *chan)
468 {
469 	struct stm32_adc *adc = iio_priv(indio_dev);
470 
471 	return adc->trigger_polarity;
472 }
473 
474 static const char * const stm32_trig_pol_items[] = {
475 	"rising-edge", "falling-edge", "both-edges",
476 };
477 
478 static const struct iio_enum stm32_adc_trig_pol = {
479 	.items = stm32_trig_pol_items,
480 	.num_items = ARRAY_SIZE(stm32_trig_pol_items),
481 	.get = stm32_adc_get_trig_pol,
482 	.set = stm32_adc_set_trig_pol,
483 };
484 
485 /**
486  * stm32_adc_single_conv() - Performs a single conversion
487  * @indio_dev: IIO device
488  * @chan: IIO channel
489  * @res: conversion result
490  *
491  * The function performs a single conversion on a given channel:
492  * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
493  * - Use SW trigger
494  * - Start conversion, then wait for interrupt completion.
495  */
496 static int stm32_adc_single_conv(struct iio_dev *indio_dev,
497 				 const struct iio_chan_spec *chan,
498 				 int *res)
499 {
500 	struct stm32_adc *adc = iio_priv(indio_dev);
501 	long timeout;
502 	u32 val;
503 	int ret;
504 
505 	reinit_completion(&adc->completion);
506 
507 	adc->bufi = 0;
508 
509 	/* Program chan number in regular sequence (SQ1) */
510 	val = stm32_adc_readl(adc, stm32f4_sq[1].reg);
511 	val &= ~stm32f4_sq[1].mask;
512 	val |= chan->channel << stm32f4_sq[1].shift;
513 	stm32_adc_writel(adc, stm32f4_sq[1].reg, val);
514 
515 	/* Set regular sequence len (0 for 1 conversion) */
516 	stm32_adc_clr_bits(adc, stm32f4_sq[0].reg, stm32f4_sq[0].mask);
517 
518 	/* Trigger detection disabled (conversion can be launched in SW) */
519 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
520 
521 	stm32_adc_conv_irq_enable(adc);
522 
523 	stm32_adc_start_conv(adc, false);
524 
525 	timeout = wait_for_completion_interruptible_timeout(
526 					&adc->completion, STM32_ADC_TIMEOUT);
527 	if (timeout == 0) {
528 		ret = -ETIMEDOUT;
529 	} else if (timeout < 0) {
530 		ret = timeout;
531 	} else {
532 		*res = adc->buffer[0];
533 		ret = IIO_VAL_INT;
534 	}
535 
536 	stm32_adc_stop_conv(adc);
537 
538 	stm32_adc_conv_irq_disable(adc);
539 
540 	return ret;
541 }
542 
543 static int stm32_adc_read_raw(struct iio_dev *indio_dev,
544 			      struct iio_chan_spec const *chan,
545 			      int *val, int *val2, long mask)
546 {
547 	struct stm32_adc *adc = iio_priv(indio_dev);
548 	int ret;
549 
550 	switch (mask) {
551 	case IIO_CHAN_INFO_RAW:
552 		ret = iio_device_claim_direct_mode(indio_dev);
553 		if (ret)
554 			return ret;
555 		if (chan->type == IIO_VOLTAGE)
556 			ret = stm32_adc_single_conv(indio_dev, chan, val);
557 		else
558 			ret = -EINVAL;
559 		iio_device_release_direct_mode(indio_dev);
560 		return ret;
561 
562 	case IIO_CHAN_INFO_SCALE:
563 		*val = adc->common->vref_mv;
564 		*val2 = chan->scan_type.realbits;
565 		return IIO_VAL_FRACTIONAL_LOG2;
566 
567 	default:
568 		return -EINVAL;
569 	}
570 }
571 
572 static irqreturn_t stm32_adc_isr(int irq, void *data)
573 {
574 	struct stm32_adc *adc = data;
575 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
576 	u32 status = stm32_adc_readl(adc, STM32F4_ADC_SR);
577 
578 	if (status & STM32F4_EOC) {
579 		/* Reading DR also clears EOC status flag */
580 		adc->buffer[adc->bufi] = stm32_adc_readw(adc, STM32F4_ADC_DR);
581 		if (iio_buffer_enabled(indio_dev)) {
582 			adc->bufi++;
583 			if (adc->bufi >= adc->num_conv) {
584 				stm32_adc_conv_irq_disable(adc);
585 				iio_trigger_poll(indio_dev->trig);
586 			}
587 		} else {
588 			complete(&adc->completion);
589 		}
590 		return IRQ_HANDLED;
591 	}
592 
593 	return IRQ_NONE;
594 }
595 
596 /**
597  * stm32_adc_validate_trigger() - validate trigger for stm32 adc
598  * @indio_dev: IIO device
599  * @trig: new trigger
600  *
601  * Returns: 0 if trig matches one of the triggers registered by stm32 adc
602  * driver, -EINVAL otherwise.
603  */
604 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
605 				      struct iio_trigger *trig)
606 {
607 	return stm32_adc_get_trig_extsel(trig) < 0 ? -EINVAL : 0;
608 }
609 
610 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
611 {
612 	struct stm32_adc *adc = iio_priv(indio_dev);
613 	unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
614 
615 	/*
616 	 * dma cyclic transfers are used, buffer is split into two periods.
617 	 * There should be :
618 	 * - always one buffer (period) dma is working on
619 	 * - one buffer (period) driver can push with iio_trigger_poll().
620 	 */
621 	watermark = min(watermark, val * (unsigned)(sizeof(u16)));
622 	adc->rx_buf_sz = watermark * 2;
623 
624 	return 0;
625 }
626 
627 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
628 				      const unsigned long *scan_mask)
629 {
630 	struct stm32_adc *adc = iio_priv(indio_dev);
631 	int ret;
632 
633 	adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
634 
635 	ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
636 	if (ret)
637 		return ret;
638 
639 	return 0;
640 }
641 
642 static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
643 			      const struct of_phandle_args *iiospec)
644 {
645 	int i;
646 
647 	for (i = 0; i < indio_dev->num_channels; i++)
648 		if (indio_dev->channels[i].channel == iiospec->args[0])
649 			return i;
650 
651 	return -EINVAL;
652 }
653 
654 /**
655  * stm32_adc_debugfs_reg_access - read or write register value
656  *
657  * To read a value from an ADC register:
658  *   echo [ADC reg offset] > direct_reg_access
659  *   cat direct_reg_access
660  *
661  * To write a value in a ADC register:
662  *   echo [ADC_reg_offset] [value] > direct_reg_access
663  */
664 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
665 					unsigned reg, unsigned writeval,
666 					unsigned *readval)
667 {
668 	struct stm32_adc *adc = iio_priv(indio_dev);
669 
670 	if (!readval)
671 		stm32_adc_writel(adc, reg, writeval);
672 	else
673 		*readval = stm32_adc_readl(adc, reg);
674 
675 	return 0;
676 }
677 
678 static const struct iio_info stm32_adc_iio_info = {
679 	.read_raw = stm32_adc_read_raw,
680 	.validate_trigger = stm32_adc_validate_trigger,
681 	.hwfifo_set_watermark = stm32_adc_set_watermark,
682 	.update_scan_mode = stm32_adc_update_scan_mode,
683 	.debugfs_reg_access = stm32_adc_debugfs_reg_access,
684 	.of_xlate = stm32_adc_of_xlate,
685 	.driver_module = THIS_MODULE,
686 };
687 
688 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
689 {
690 	struct dma_tx_state state;
691 	enum dma_status status;
692 
693 	status = dmaengine_tx_status(adc->dma_chan,
694 				     adc->dma_chan->cookie,
695 				     &state);
696 	if (status == DMA_IN_PROGRESS) {
697 		/* Residue is size in bytes from end of buffer */
698 		unsigned int i = adc->rx_buf_sz - state.residue;
699 		unsigned int size;
700 
701 		/* Return available bytes */
702 		if (i >= adc->bufi)
703 			size = i - adc->bufi;
704 		else
705 			size = adc->rx_buf_sz + i - adc->bufi;
706 
707 		return size;
708 	}
709 
710 	return 0;
711 }
712 
713 static void stm32_adc_dma_buffer_done(void *data)
714 {
715 	struct iio_dev *indio_dev = data;
716 
717 	iio_trigger_poll_chained(indio_dev->trig);
718 }
719 
720 static int stm32_adc_dma_start(struct iio_dev *indio_dev)
721 {
722 	struct stm32_adc *adc = iio_priv(indio_dev);
723 	struct dma_async_tx_descriptor *desc;
724 	dma_cookie_t cookie;
725 	int ret;
726 
727 	if (!adc->dma_chan)
728 		return 0;
729 
730 	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
731 		adc->rx_buf_sz, adc->rx_buf_sz / 2);
732 
733 	/* Prepare a DMA cyclic transaction */
734 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
735 					 adc->rx_dma_buf,
736 					 adc->rx_buf_sz, adc->rx_buf_sz / 2,
737 					 DMA_DEV_TO_MEM,
738 					 DMA_PREP_INTERRUPT);
739 	if (!desc)
740 		return -EBUSY;
741 
742 	desc->callback = stm32_adc_dma_buffer_done;
743 	desc->callback_param = indio_dev;
744 
745 	cookie = dmaengine_submit(desc);
746 	ret = dma_submit_error(cookie);
747 	if (ret) {
748 		dmaengine_terminate_all(adc->dma_chan);
749 		return ret;
750 	}
751 
752 	/* Issue pending DMA requests */
753 	dma_async_issue_pending(adc->dma_chan);
754 
755 	return 0;
756 }
757 
758 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
759 {
760 	struct stm32_adc *adc = iio_priv(indio_dev);
761 	int ret;
762 
763 	ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
764 	if (ret) {
765 		dev_err(&indio_dev->dev, "Can't set trigger\n");
766 		return ret;
767 	}
768 
769 	ret = stm32_adc_dma_start(indio_dev);
770 	if (ret) {
771 		dev_err(&indio_dev->dev, "Can't start dma\n");
772 		goto err_clr_trig;
773 	}
774 
775 	ret = iio_triggered_buffer_postenable(indio_dev);
776 	if (ret < 0)
777 		goto err_stop_dma;
778 
779 	/* Reset adc buffer index */
780 	adc->bufi = 0;
781 
782 	if (!adc->dma_chan)
783 		stm32_adc_conv_irq_enable(adc);
784 
785 	stm32_adc_start_conv(adc, !!adc->dma_chan);
786 
787 	return 0;
788 
789 err_stop_dma:
790 	if (adc->dma_chan)
791 		dmaengine_terminate_all(adc->dma_chan);
792 err_clr_trig:
793 	stm32_adc_set_trig(indio_dev, NULL);
794 
795 	return ret;
796 }
797 
798 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
799 {
800 	struct stm32_adc *adc = iio_priv(indio_dev);
801 	int ret;
802 
803 	stm32_adc_stop_conv(adc);
804 	if (!adc->dma_chan)
805 		stm32_adc_conv_irq_disable(adc);
806 
807 	ret = iio_triggered_buffer_predisable(indio_dev);
808 	if (ret < 0)
809 		dev_err(&indio_dev->dev, "predisable failed\n");
810 
811 	if (adc->dma_chan)
812 		dmaengine_terminate_all(adc->dma_chan);
813 
814 	if (stm32_adc_set_trig(indio_dev, NULL))
815 		dev_err(&indio_dev->dev, "Can't clear trigger\n");
816 
817 	return ret;
818 }
819 
820 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
821 	.postenable = &stm32_adc_buffer_postenable,
822 	.predisable = &stm32_adc_buffer_predisable,
823 };
824 
825 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
826 {
827 	struct iio_poll_func *pf = p;
828 	struct iio_dev *indio_dev = pf->indio_dev;
829 	struct stm32_adc *adc = iio_priv(indio_dev);
830 
831 	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
832 
833 	if (!adc->dma_chan) {
834 		/* reset buffer index */
835 		adc->bufi = 0;
836 		iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
837 						   pf->timestamp);
838 	} else {
839 		int residue = stm32_adc_dma_residue(adc);
840 
841 		while (residue >= indio_dev->scan_bytes) {
842 			u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
843 
844 			iio_push_to_buffers_with_timestamp(indio_dev, buffer,
845 							   pf->timestamp);
846 			residue -= indio_dev->scan_bytes;
847 			adc->bufi += indio_dev->scan_bytes;
848 			if (adc->bufi >= adc->rx_buf_sz)
849 				adc->bufi = 0;
850 		}
851 	}
852 
853 	iio_trigger_notify_done(indio_dev->trig);
854 
855 	/* re-enable eoc irq */
856 	if (!adc->dma_chan)
857 		stm32_adc_conv_irq_enable(adc);
858 
859 	return IRQ_HANDLED;
860 }
861 
862 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
863 	IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
864 	{
865 		.name = "trigger_polarity_available",
866 		.shared = IIO_SHARED_BY_ALL,
867 		.read = iio_enum_available_read,
868 		.private = (uintptr_t)&stm32_adc_trig_pol,
869 	},
870 	{},
871 };
872 
873 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
874 				    struct iio_chan_spec *chan,
875 				    const struct stm32_adc_chan_spec *channel,
876 				    int scan_index)
877 {
878 	chan->type = channel->type;
879 	chan->channel = channel->channel;
880 	chan->datasheet_name = channel->name;
881 	chan->scan_index = scan_index;
882 	chan->indexed = 1;
883 	chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
884 	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
885 	chan->scan_type.sign = 'u';
886 	chan->scan_type.realbits = 12;
887 	chan->scan_type.storagebits = 16;
888 	chan->ext_info = stm32_adc_ext_info;
889 }
890 
891 static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
892 {
893 	struct device_node *node = indio_dev->dev.of_node;
894 	struct property *prop;
895 	const __be32 *cur;
896 	struct iio_chan_spec *channels;
897 	int scan_index = 0, num_channels;
898 	u32 val;
899 
900 	num_channels = of_property_count_u32_elems(node, "st,adc-channels");
901 	if (num_channels < 0 ||
902 	    num_channels >= ARRAY_SIZE(stm32f4_adc123_channels)) {
903 		dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
904 		return num_channels < 0 ? num_channels : -EINVAL;
905 	}
906 
907 	channels = devm_kcalloc(&indio_dev->dev, num_channels,
908 				sizeof(struct iio_chan_spec), GFP_KERNEL);
909 	if (!channels)
910 		return -ENOMEM;
911 
912 	of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
913 		if (val >= ARRAY_SIZE(stm32f4_adc123_channels)) {
914 			dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
915 			return -EINVAL;
916 		}
917 		stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
918 					&stm32f4_adc123_channels[val],
919 					scan_index);
920 		scan_index++;
921 	}
922 
923 	indio_dev->num_channels = scan_index;
924 	indio_dev->channels = channels;
925 
926 	return 0;
927 }
928 
929 static int stm32_adc_dma_request(struct iio_dev *indio_dev)
930 {
931 	struct stm32_adc *adc = iio_priv(indio_dev);
932 	struct dma_slave_config config;
933 	int ret;
934 
935 	adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
936 	if (!adc->dma_chan)
937 		return 0;
938 
939 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
940 					 STM32_DMA_BUFFER_SIZE,
941 					 &adc->rx_dma_buf, GFP_KERNEL);
942 	if (!adc->rx_buf) {
943 		ret = -ENOMEM;
944 		goto err_release;
945 	}
946 
947 	/* Configure DMA channel to read data register */
948 	memset(&config, 0, sizeof(config));
949 	config.src_addr = (dma_addr_t)adc->common->phys_base;
950 	config.src_addr += adc->offset + STM32F4_ADC_DR;
951 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
952 
953 	ret = dmaengine_slave_config(adc->dma_chan, &config);
954 	if (ret)
955 		goto err_free;
956 
957 	return 0;
958 
959 err_free:
960 	dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
961 			  adc->rx_buf, adc->rx_dma_buf);
962 err_release:
963 	dma_release_channel(adc->dma_chan);
964 
965 	return ret;
966 }
967 
968 static int stm32_adc_probe(struct platform_device *pdev)
969 {
970 	struct iio_dev *indio_dev;
971 	struct stm32_adc *adc;
972 	int ret;
973 
974 	if (!pdev->dev.of_node)
975 		return -ENODEV;
976 
977 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
978 	if (!indio_dev)
979 		return -ENOMEM;
980 
981 	adc = iio_priv(indio_dev);
982 	adc->common = dev_get_drvdata(pdev->dev.parent);
983 	spin_lock_init(&adc->lock);
984 	init_completion(&adc->completion);
985 
986 	indio_dev->name = dev_name(&pdev->dev);
987 	indio_dev->dev.parent = &pdev->dev;
988 	indio_dev->dev.of_node = pdev->dev.of_node;
989 	indio_dev->info = &stm32_adc_iio_info;
990 	indio_dev->modes = INDIO_DIRECT_MODE;
991 
992 	platform_set_drvdata(pdev, adc);
993 
994 	ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
995 	if (ret != 0) {
996 		dev_err(&pdev->dev, "missing reg property\n");
997 		return -EINVAL;
998 	}
999 
1000 	adc->irq = platform_get_irq(pdev, 0);
1001 	if (adc->irq < 0) {
1002 		dev_err(&pdev->dev, "failed to get irq\n");
1003 		return adc->irq;
1004 	}
1005 
1006 	ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1007 			       0, pdev->name, adc);
1008 	if (ret) {
1009 		dev_err(&pdev->dev, "failed to request IRQ\n");
1010 		return ret;
1011 	}
1012 
1013 	adc->clk = devm_clk_get(&pdev->dev, NULL);
1014 	if (IS_ERR(adc->clk)) {
1015 		dev_err(&pdev->dev, "Can't get clock\n");
1016 		return PTR_ERR(adc->clk);
1017 	}
1018 
1019 	ret = clk_prepare_enable(adc->clk);
1020 	if (ret < 0) {
1021 		dev_err(&pdev->dev, "clk enable failed\n");
1022 		return ret;
1023 	}
1024 
1025 	ret = stm32_adc_chan_of_init(indio_dev);
1026 	if (ret < 0)
1027 		goto err_clk_disable;
1028 
1029 	ret = stm32_adc_dma_request(indio_dev);
1030 	if (ret < 0)
1031 		goto err_clk_disable;
1032 
1033 	ret = iio_triggered_buffer_setup(indio_dev,
1034 					 &iio_pollfunc_store_time,
1035 					 &stm32_adc_trigger_handler,
1036 					 &stm32_adc_buffer_setup_ops);
1037 	if (ret) {
1038 		dev_err(&pdev->dev, "buffer setup failed\n");
1039 		goto err_dma_disable;
1040 	}
1041 
1042 	ret = iio_device_register(indio_dev);
1043 	if (ret) {
1044 		dev_err(&pdev->dev, "iio dev register failed\n");
1045 		goto err_buffer_cleanup;
1046 	}
1047 
1048 	return 0;
1049 
1050 err_buffer_cleanup:
1051 	iio_triggered_buffer_cleanup(indio_dev);
1052 
1053 err_dma_disable:
1054 	if (adc->dma_chan) {
1055 		dma_free_coherent(adc->dma_chan->device->dev,
1056 				  STM32_DMA_BUFFER_SIZE,
1057 				  adc->rx_buf, adc->rx_dma_buf);
1058 		dma_release_channel(adc->dma_chan);
1059 	}
1060 err_clk_disable:
1061 	clk_disable_unprepare(adc->clk);
1062 
1063 	return ret;
1064 }
1065 
1066 static int stm32_adc_remove(struct platform_device *pdev)
1067 {
1068 	struct stm32_adc *adc = platform_get_drvdata(pdev);
1069 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1070 
1071 	iio_device_unregister(indio_dev);
1072 	iio_triggered_buffer_cleanup(indio_dev);
1073 	if (adc->dma_chan) {
1074 		dma_free_coherent(adc->dma_chan->device->dev,
1075 				  STM32_DMA_BUFFER_SIZE,
1076 				  adc->rx_buf, adc->rx_dma_buf);
1077 		dma_release_channel(adc->dma_chan);
1078 	}
1079 	clk_disable_unprepare(adc->clk);
1080 
1081 	return 0;
1082 }
1083 
1084 static const struct of_device_id stm32_adc_of_match[] = {
1085 	{ .compatible = "st,stm32f4-adc" },
1086 	{},
1087 };
1088 MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
1089 
1090 static struct platform_driver stm32_adc_driver = {
1091 	.probe = stm32_adc_probe,
1092 	.remove = stm32_adc_remove,
1093 	.driver = {
1094 		.name = "stm32-adc",
1095 		.of_match_table = stm32_adc_of_match,
1096 	},
1097 };
1098 module_platform_driver(stm32_adc_driver);
1099 
1100 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
1101 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
1102 MODULE_LICENSE("GPL v2");
1103 MODULE_ALIAS("platform:stm32-adc");
1104