xref: /openbmc/linux/drivers/iio/adc/stm32-adc.c (revision 4da722ca)
1 /*
2  * This file is part of STM32 ADC driver
3  *
4  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
5  * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
6  *
7  * License type: GPLv2
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License version 2 as published by
11  * the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.
16  * See the GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program. If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include <linux/clk.h>
23 #include <linux/delay.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dmaengine.h>
26 #include <linux/iio/iio.h>
27 #include <linux/iio/buffer.h>
28 #include <linux/iio/timer/stm32-timer-trigger.h>
29 #include <linux/iio/trigger.h>
30 #include <linux/iio/trigger_consumer.h>
31 #include <linux/iio/triggered_buffer.h>
32 #include <linux/interrupt.h>
33 #include <linux/io.h>
34 #include <linux/iopoll.h>
35 #include <linux/module.h>
36 #include <linux/platform_device.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39 
40 #include "stm32-adc-core.h"
41 
42 /* STM32F4 - Registers for each ADC instance */
43 #define STM32F4_ADC_SR			0x00
44 #define STM32F4_ADC_CR1			0x04
45 #define STM32F4_ADC_CR2			0x08
46 #define STM32F4_ADC_SMPR1		0x0C
47 #define STM32F4_ADC_SMPR2		0x10
48 #define STM32F4_ADC_HTR			0x24
49 #define STM32F4_ADC_LTR			0x28
50 #define STM32F4_ADC_SQR1		0x2C
51 #define STM32F4_ADC_SQR2		0x30
52 #define STM32F4_ADC_SQR3		0x34
53 #define STM32F4_ADC_JSQR		0x38
54 #define STM32F4_ADC_JDR1		0x3C
55 #define STM32F4_ADC_JDR2		0x40
56 #define STM32F4_ADC_JDR3		0x44
57 #define STM32F4_ADC_JDR4		0x48
58 #define STM32F4_ADC_DR			0x4C
59 
60 /* STM32F4_ADC_SR - bit fields */
61 #define STM32F4_STRT			BIT(4)
62 #define STM32F4_EOC			BIT(1)
63 
64 /* STM32F4_ADC_CR1 - bit fields */
65 #define STM32F4_RES_SHIFT		24
66 #define STM32F4_RES_MASK		GENMASK(25, 24)
67 #define STM32F4_SCAN			BIT(8)
68 #define STM32F4_EOCIE			BIT(5)
69 
70 /* STM32F4_ADC_CR2 - bit fields */
71 #define STM32F4_SWSTART			BIT(30)
72 #define STM32F4_EXTEN_SHIFT		28
73 #define STM32F4_EXTEN_MASK		GENMASK(29, 28)
74 #define STM32F4_EXTSEL_SHIFT		24
75 #define STM32F4_EXTSEL_MASK		GENMASK(27, 24)
76 #define STM32F4_EOCS			BIT(10)
77 #define STM32F4_DDS			BIT(9)
78 #define STM32F4_DMA			BIT(8)
79 #define STM32F4_ADON			BIT(0)
80 
81 /* STM32H7 - Registers for each ADC instance */
82 #define STM32H7_ADC_ISR			0x00
83 #define STM32H7_ADC_IER			0x04
84 #define STM32H7_ADC_CR			0x08
85 #define STM32H7_ADC_CFGR		0x0C
86 #define STM32H7_ADC_PCSEL		0x1C
87 #define STM32H7_ADC_SQR1		0x30
88 #define STM32H7_ADC_SQR2		0x34
89 #define STM32H7_ADC_SQR3		0x38
90 #define STM32H7_ADC_SQR4		0x3C
91 #define STM32H7_ADC_DR			0x40
92 #define STM32H7_ADC_CALFACT		0xC4
93 #define STM32H7_ADC_CALFACT2		0xC8
94 
95 /* STM32H7_ADC_ISR - bit fields */
96 #define STM32H7_EOC			BIT(2)
97 #define STM32H7_ADRDY			BIT(0)
98 
99 /* STM32H7_ADC_IER - bit fields */
100 #define STM32H7_EOCIE			STM32H7_EOC
101 
102 /* STM32H7_ADC_CR - bit fields */
103 #define STM32H7_ADCAL			BIT(31)
104 #define STM32H7_ADCALDIF		BIT(30)
105 #define STM32H7_DEEPPWD			BIT(29)
106 #define STM32H7_ADVREGEN		BIT(28)
107 #define STM32H7_LINCALRDYW6		BIT(27)
108 #define STM32H7_LINCALRDYW5		BIT(26)
109 #define STM32H7_LINCALRDYW4		BIT(25)
110 #define STM32H7_LINCALRDYW3		BIT(24)
111 #define STM32H7_LINCALRDYW2		BIT(23)
112 #define STM32H7_LINCALRDYW1		BIT(22)
113 #define STM32H7_ADCALLIN		BIT(16)
114 #define STM32H7_BOOST			BIT(8)
115 #define STM32H7_ADSTP			BIT(4)
116 #define STM32H7_ADSTART			BIT(2)
117 #define STM32H7_ADDIS			BIT(1)
118 #define STM32H7_ADEN			BIT(0)
119 
120 /* STM32H7_ADC_CFGR bit fields */
121 #define STM32H7_EXTEN_SHIFT		10
122 #define STM32H7_EXTEN_MASK		GENMASK(11, 10)
123 #define STM32H7_EXTSEL_SHIFT		5
124 #define STM32H7_EXTSEL_MASK		GENMASK(9, 5)
125 #define STM32H7_RES_SHIFT		2
126 #define STM32H7_RES_MASK		GENMASK(4, 2)
127 #define STM32H7_DMNGT_SHIFT		0
128 #define STM32H7_DMNGT_MASK		GENMASK(1, 0)
129 
130 enum stm32h7_adc_dmngt {
131 	STM32H7_DMNGT_DR_ONLY,		/* Regular data in DR only */
132 	STM32H7_DMNGT_DMA_ONESHOT,	/* DMA one shot mode */
133 	STM32H7_DMNGT_DFSDM,		/* DFSDM mode */
134 	STM32H7_DMNGT_DMA_CIRC,		/* DMA circular mode */
135 };
136 
137 /* STM32H7_ADC_CALFACT - bit fields */
138 #define STM32H7_CALFACT_D_SHIFT		16
139 #define STM32H7_CALFACT_D_MASK		GENMASK(26, 16)
140 #define STM32H7_CALFACT_S_SHIFT		0
141 #define STM32H7_CALFACT_S_MASK		GENMASK(10, 0)
142 
143 /* STM32H7_ADC_CALFACT2 - bit fields */
144 #define STM32H7_LINCALFACT_SHIFT	0
145 #define STM32H7_LINCALFACT_MASK		GENMASK(29, 0)
146 
147 /* Number of linear calibration shadow registers / LINCALRDYW control bits */
148 #define STM32H7_LINCALFACT_NUM		6
149 
150 /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
151 #define STM32H7_BOOST_CLKRATE		20000000UL
152 
153 #define STM32_ADC_MAX_SQ		16	/* SQ1..SQ16 */
154 #define STM32_ADC_TIMEOUT_US		100000
155 #define STM32_ADC_TIMEOUT	(msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
156 
157 #define STM32_DMA_BUFFER_SIZE		PAGE_SIZE
158 
159 /* External trigger enable */
160 enum stm32_adc_exten {
161 	STM32_EXTEN_SWTRIG,
162 	STM32_EXTEN_HWTRIG_RISING_EDGE,
163 	STM32_EXTEN_HWTRIG_FALLING_EDGE,
164 	STM32_EXTEN_HWTRIG_BOTH_EDGES,
165 };
166 
167 /* extsel - trigger mux selection value */
168 enum stm32_adc_extsel {
169 	STM32_EXT0,
170 	STM32_EXT1,
171 	STM32_EXT2,
172 	STM32_EXT3,
173 	STM32_EXT4,
174 	STM32_EXT5,
175 	STM32_EXT6,
176 	STM32_EXT7,
177 	STM32_EXT8,
178 	STM32_EXT9,
179 	STM32_EXT10,
180 	STM32_EXT11,
181 	STM32_EXT12,
182 	STM32_EXT13,
183 	STM32_EXT14,
184 	STM32_EXT15,
185 };
186 
187 /**
188  * struct stm32_adc_trig_info - ADC trigger info
189  * @name:		name of the trigger, corresponding to its source
190  * @extsel:		trigger selection
191  */
192 struct stm32_adc_trig_info {
193 	const char *name;
194 	enum stm32_adc_extsel extsel;
195 };
196 
197 /**
198  * struct stm32_adc_calib - optional adc calibration data
199  * @calfact_s: Calibration offset for single ended channels
200  * @calfact_d: Calibration offset in differential
201  * @lincalfact: Linearity calibration factor
202  */
203 struct stm32_adc_calib {
204 	u32			calfact_s;
205 	u32			calfact_d;
206 	u32			lincalfact[STM32H7_LINCALFACT_NUM];
207 };
208 
209 /**
210  * stm32_adc_regs - stm32 ADC misc registers & bitfield desc
211  * @reg:		register offset
212  * @mask:		bitfield mask
213  * @shift:		left shift
214  */
215 struct stm32_adc_regs {
216 	int reg;
217 	int mask;
218 	int shift;
219 };
220 
221 /**
222  * stm32_adc_regspec - stm32 registers definition, compatible dependent data
223  * @dr:			data register offset
224  * @ier_eoc:		interrupt enable register & eocie bitfield
225  * @isr_eoc:		interrupt status register & eoc bitfield
226  * @sqr:		reference to sequence registers array
227  * @exten:		trigger control register & bitfield
228  * @extsel:		trigger selection register & bitfield
229  * @res:		resolution selection register & bitfield
230  */
231 struct stm32_adc_regspec {
232 	const u32 dr;
233 	const struct stm32_adc_regs ier_eoc;
234 	const struct stm32_adc_regs isr_eoc;
235 	const struct stm32_adc_regs *sqr;
236 	const struct stm32_adc_regs exten;
237 	const struct stm32_adc_regs extsel;
238 	const struct stm32_adc_regs res;
239 };
240 
241 struct stm32_adc;
242 
243 /**
244  * stm32_adc_cfg - stm32 compatible configuration data
245  * @regs:		registers descriptions
246  * @adc_info:		per instance input channels definitions
247  * @trigs:		external trigger sources
248  * @clk_required:	clock is required
249  * @selfcalib:		optional routine for self-calibration
250  * @prepare:		optional prepare routine (power-up, enable)
251  * @start_conv:		routine to start conversions
252  * @stop_conv:		routine to stop conversions
253  * @unprepare:		optional unprepare routine (disable, power-down)
254  */
255 struct stm32_adc_cfg {
256 	const struct stm32_adc_regspec	*regs;
257 	const struct stm32_adc_info	*adc_info;
258 	struct stm32_adc_trig_info	*trigs;
259 	bool clk_required;
260 	int (*selfcalib)(struct stm32_adc *);
261 	int (*prepare)(struct stm32_adc *);
262 	void (*start_conv)(struct stm32_adc *, bool dma);
263 	void (*stop_conv)(struct stm32_adc *);
264 	void (*unprepare)(struct stm32_adc *);
265 };
266 
267 /**
268  * struct stm32_adc - private data of each ADC IIO instance
269  * @common:		reference to ADC block common data
270  * @offset:		ADC instance register offset in ADC block
271  * @cfg:		compatible configuration data
272  * @completion:		end of single conversion completion
273  * @buffer:		data buffer
274  * @clk:		clock for this adc instance
275  * @irq:		interrupt for this adc instance
276  * @lock:		spinlock
277  * @bufi:		data buffer index
278  * @num_conv:		expected number of scan conversions
279  * @res:		data resolution (e.g. RES bitfield value)
280  * @trigger_polarity:	external trigger polarity (e.g. exten)
281  * @dma_chan:		dma channel
282  * @rx_buf:		dma rx buffer cpu address
283  * @rx_dma_buf:		dma rx buffer bus address
284  * @rx_buf_sz:		dma rx buffer size
285  * @pcsel		bitmask to preselect channels on some devices
286  * @cal:		optional calibration data on some devices
287  */
288 struct stm32_adc {
289 	struct stm32_adc_common	*common;
290 	u32			offset;
291 	const struct stm32_adc_cfg	*cfg;
292 	struct completion	completion;
293 	u16			buffer[STM32_ADC_MAX_SQ];
294 	struct clk		*clk;
295 	int			irq;
296 	spinlock_t		lock;		/* interrupt lock */
297 	unsigned int		bufi;
298 	unsigned int		num_conv;
299 	u32			res;
300 	u32			trigger_polarity;
301 	struct dma_chan		*dma_chan;
302 	u8			*rx_buf;
303 	dma_addr_t		rx_dma_buf;
304 	unsigned int		rx_buf_sz;
305 	u32			pcsel;
306 	struct stm32_adc_calib	cal;
307 };
308 
309 /**
310  * struct stm32_adc_chan_spec - specification of stm32 adc channel
311  * @type:	IIO channel type
312  * @channel:	channel number (single ended)
313  * @name:	channel name (single ended)
314  */
315 struct stm32_adc_chan_spec {
316 	enum iio_chan_type	type;
317 	int			channel;
318 	const char		*name;
319 };
320 
321 /**
322  * struct stm32_adc_info - stm32 ADC, per instance config data
323  * @channels:		Reference to stm32 channels spec
324  * @max_channels:	Number of channels
325  * @resolutions:	available resolutions
326  * @num_res:		number of available resolutions
327  */
328 struct stm32_adc_info {
329 	const struct stm32_adc_chan_spec *channels;
330 	int max_channels;
331 	const unsigned int *resolutions;
332 	const unsigned int num_res;
333 };
334 
335 /*
336  * Input definitions common for all instances:
337  * stm32f4 can have up to 16 channels
338  * stm32h7 can have up to 20 channels
339  */
340 static const struct stm32_adc_chan_spec stm32_adc_channels[] = {
341 	{ IIO_VOLTAGE, 0, "in0" },
342 	{ IIO_VOLTAGE, 1, "in1" },
343 	{ IIO_VOLTAGE, 2, "in2" },
344 	{ IIO_VOLTAGE, 3, "in3" },
345 	{ IIO_VOLTAGE, 4, "in4" },
346 	{ IIO_VOLTAGE, 5, "in5" },
347 	{ IIO_VOLTAGE, 6, "in6" },
348 	{ IIO_VOLTAGE, 7, "in7" },
349 	{ IIO_VOLTAGE, 8, "in8" },
350 	{ IIO_VOLTAGE, 9, "in9" },
351 	{ IIO_VOLTAGE, 10, "in10" },
352 	{ IIO_VOLTAGE, 11, "in11" },
353 	{ IIO_VOLTAGE, 12, "in12" },
354 	{ IIO_VOLTAGE, 13, "in13" },
355 	{ IIO_VOLTAGE, 14, "in14" },
356 	{ IIO_VOLTAGE, 15, "in15" },
357 	{ IIO_VOLTAGE, 16, "in16" },
358 	{ IIO_VOLTAGE, 17, "in17" },
359 	{ IIO_VOLTAGE, 18, "in18" },
360 	{ IIO_VOLTAGE, 19, "in19" },
361 };
362 
363 static const unsigned int stm32f4_adc_resolutions[] = {
364 	/* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
365 	12, 10, 8, 6,
366 };
367 
368 static const struct stm32_adc_info stm32f4_adc_info = {
369 	.channels = stm32_adc_channels,
370 	.max_channels = 16,
371 	.resolutions = stm32f4_adc_resolutions,
372 	.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
373 };
374 
375 static const unsigned int stm32h7_adc_resolutions[] = {
376 	/* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
377 	16, 14, 12, 10, 8,
378 };
379 
380 static const struct stm32_adc_info stm32h7_adc_info = {
381 	.channels = stm32_adc_channels,
382 	.max_channels = 20,
383 	.resolutions = stm32h7_adc_resolutions,
384 	.num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
385 };
386 
387 /**
388  * stm32f4_sq - describe regular sequence registers
389  * - L: sequence len (register & bit field)
390  * - SQ1..SQ16: sequence entries (register & bit field)
391  */
392 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
393 	/* L: len bit field description to be kept as first element */
394 	{ STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
395 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
396 	{ STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
397 	{ STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
398 	{ STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
399 	{ STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
400 	{ STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
401 	{ STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
402 	{ STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
403 	{ STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
404 	{ STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
405 	{ STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
406 	{ STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
407 	{ STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
408 	{ STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
409 	{ STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
410 	{ STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
411 	{ STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
412 };
413 
414 /* STM32F4 external trigger sources for all instances */
415 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
416 	{ TIM1_CH1, STM32_EXT0 },
417 	{ TIM1_CH2, STM32_EXT1 },
418 	{ TIM1_CH3, STM32_EXT2 },
419 	{ TIM2_CH2, STM32_EXT3 },
420 	{ TIM2_CH3, STM32_EXT4 },
421 	{ TIM2_CH4, STM32_EXT5 },
422 	{ TIM2_TRGO, STM32_EXT6 },
423 	{ TIM3_CH1, STM32_EXT7 },
424 	{ TIM3_TRGO, STM32_EXT8 },
425 	{ TIM4_CH4, STM32_EXT9 },
426 	{ TIM5_CH1, STM32_EXT10 },
427 	{ TIM5_CH2, STM32_EXT11 },
428 	{ TIM5_CH3, STM32_EXT12 },
429 	{ TIM8_CH1, STM32_EXT13 },
430 	{ TIM8_TRGO, STM32_EXT14 },
431 	{}, /* sentinel */
432 };
433 
434 static const struct stm32_adc_regspec stm32f4_adc_regspec = {
435 	.dr = STM32F4_ADC_DR,
436 	.ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
437 	.isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
438 	.sqr = stm32f4_sq,
439 	.exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
440 	.extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
441 		    STM32F4_EXTSEL_SHIFT },
442 	.res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
443 };
444 
445 static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
446 	/* L: len bit field description to be kept as first element */
447 	{ STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
448 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
449 	{ STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
450 	{ STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
451 	{ STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
452 	{ STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
453 	{ STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
454 	{ STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
455 	{ STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
456 	{ STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
457 	{ STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
458 	{ STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
459 	{ STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
460 	{ STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
461 	{ STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
462 	{ STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
463 	{ STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
464 	{ STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
465 };
466 
467 /* STM32H7 external trigger sources for all instances */
468 static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
469 	{ TIM1_CH1, STM32_EXT0 },
470 	{ TIM1_CH2, STM32_EXT1 },
471 	{ TIM1_CH3, STM32_EXT2 },
472 	{ TIM2_CH2, STM32_EXT3 },
473 	{ TIM3_TRGO, STM32_EXT4 },
474 	{ TIM4_CH4, STM32_EXT5 },
475 	{ TIM8_TRGO, STM32_EXT7 },
476 	{ TIM8_TRGO2, STM32_EXT8 },
477 	{ TIM1_TRGO, STM32_EXT9 },
478 	{ TIM1_TRGO2, STM32_EXT10 },
479 	{ TIM2_TRGO, STM32_EXT11 },
480 	{ TIM4_TRGO, STM32_EXT12 },
481 	{ TIM6_TRGO, STM32_EXT13 },
482 	{ TIM3_CH4, STM32_EXT15 },
483 	{},
484 };
485 
486 static const struct stm32_adc_regspec stm32h7_adc_regspec = {
487 	.dr = STM32H7_ADC_DR,
488 	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
489 	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
490 	.sqr = stm32h7_sq,
491 	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
492 	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
493 		    STM32H7_EXTSEL_SHIFT },
494 	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
495 };
496 
497 /**
498  * STM32 ADC registers access routines
499  * @adc: stm32 adc instance
500  * @reg: reg offset in adc instance
501  *
502  * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
503  * for adc1, adc2 and adc3.
504  */
505 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
506 {
507 	return readl_relaxed(adc->common->base + adc->offset + reg);
508 }
509 
510 #define stm32_adc_readl_addr(addr)	stm32_adc_readl(adc, addr)
511 
512 #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
513 	readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
514 			   cond, sleep_us, timeout_us)
515 
516 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
517 {
518 	return readw_relaxed(adc->common->base + adc->offset + reg);
519 }
520 
521 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
522 {
523 	writel_relaxed(val, adc->common->base + adc->offset + reg);
524 }
525 
526 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
527 {
528 	unsigned long flags;
529 
530 	spin_lock_irqsave(&adc->lock, flags);
531 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
532 	spin_unlock_irqrestore(&adc->lock, flags);
533 }
534 
535 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
536 {
537 	unsigned long flags;
538 
539 	spin_lock_irqsave(&adc->lock, flags);
540 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
541 	spin_unlock_irqrestore(&adc->lock, flags);
542 }
543 
544 /**
545  * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
546  * @adc: stm32 adc instance
547  */
548 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
549 {
550 	stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
551 			   adc->cfg->regs->ier_eoc.mask);
552 };
553 
554 /**
555  * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
556  * @adc: stm32 adc instance
557  */
558 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
559 {
560 	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
561 			   adc->cfg->regs->ier_eoc.mask);
562 }
563 
564 static void stm32_adc_set_res(struct stm32_adc *adc)
565 {
566 	const struct stm32_adc_regs *res = &adc->cfg->regs->res;
567 	u32 val;
568 
569 	val = stm32_adc_readl(adc, res->reg);
570 	val = (val & ~res->mask) | (adc->res << res->shift);
571 	stm32_adc_writel(adc, res->reg, val);
572 }
573 
574 /**
575  * stm32f4_adc_start_conv() - Start conversions for regular channels.
576  * @adc: stm32 adc instance
577  * @dma: use dma to transfer conversion result
578  *
579  * Start conversions for regular channels.
580  * Also take care of normal or DMA mode. Circular DMA may be used for regular
581  * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
582  * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
583  */
584 static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
585 {
586 	stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
587 
588 	if (dma)
589 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
590 				   STM32F4_DMA | STM32F4_DDS);
591 
592 	stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
593 
594 	/* Wait for Power-up time (tSTAB from datasheet) */
595 	usleep_range(2, 3);
596 
597 	/* Software start ? (e.g. trigger detection disabled ?) */
598 	if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
599 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
600 }
601 
602 static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
603 {
604 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
605 	stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
606 
607 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
608 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
609 			   STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
610 }
611 
612 static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma)
613 {
614 	enum stm32h7_adc_dmngt dmngt;
615 	unsigned long flags;
616 	u32 val;
617 
618 	if (dma)
619 		dmngt = STM32H7_DMNGT_DMA_CIRC;
620 	else
621 		dmngt = STM32H7_DMNGT_DR_ONLY;
622 
623 	spin_lock_irqsave(&adc->lock, flags);
624 	val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
625 	val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
626 	stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
627 	spin_unlock_irqrestore(&adc->lock, flags);
628 
629 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
630 }
631 
632 static void stm32h7_adc_stop_conv(struct stm32_adc *adc)
633 {
634 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
635 	int ret;
636 	u32 val;
637 
638 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
639 
640 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
641 					   !(val & (STM32H7_ADSTART)),
642 					   100, STM32_ADC_TIMEOUT_US);
643 	if (ret)
644 		dev_warn(&indio_dev->dev, "stop failed\n");
645 
646 	stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
647 }
648 
649 static void stm32h7_adc_exit_pwr_down(struct stm32_adc *adc)
650 {
651 	/* Exit deep power down, then enable ADC voltage regulator */
652 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
653 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
654 
655 	if (adc->common->rate > STM32H7_BOOST_CLKRATE)
656 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
657 
658 	/* Wait for startup time */
659 	usleep_range(10, 20);
660 }
661 
662 static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
663 {
664 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
665 
666 	/* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
667 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
668 }
669 
670 static int stm32h7_adc_enable(struct stm32_adc *adc)
671 {
672 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
673 	int ret;
674 	u32 val;
675 
676 	/* Clear ADRDY by writing one, then enable ADC */
677 	stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
678 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
679 
680 	/* Poll for ADRDY to be set (after adc startup time) */
681 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
682 					   val & STM32H7_ADRDY,
683 					   100, STM32_ADC_TIMEOUT_US);
684 	if (ret) {
685 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
686 		dev_err(&indio_dev->dev, "Failed to enable ADC\n");
687 	}
688 
689 	return ret;
690 }
691 
692 static void stm32h7_adc_disable(struct stm32_adc *adc)
693 {
694 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
695 	int ret;
696 	u32 val;
697 
698 	/* Disable ADC and wait until it's effectively disabled */
699 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
700 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
701 					   !(val & STM32H7_ADEN), 100,
702 					   STM32_ADC_TIMEOUT_US);
703 	if (ret)
704 		dev_warn(&indio_dev->dev, "Failed to disable\n");
705 }
706 
707 /**
708  * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
709  * @adc: stm32 adc instance
710  */
711 static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc)
712 {
713 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
714 	int i, ret;
715 	u32 lincalrdyw_mask, val;
716 
717 	/* Enable adc so LINCALRDYW1..6 bits are writable */
718 	ret = stm32h7_adc_enable(adc);
719 	if (ret)
720 		return ret;
721 
722 	/* Read linearity calibration */
723 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
724 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
725 		/* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
726 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
727 
728 		/* Poll: wait calib data to be ready in CALFACT2 register */
729 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
730 						   !(val & lincalrdyw_mask),
731 						   100, STM32_ADC_TIMEOUT_US);
732 		if (ret) {
733 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
734 			goto disable;
735 		}
736 
737 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
738 		adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
739 		adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
740 
741 		lincalrdyw_mask >>= 1;
742 	}
743 
744 	/* Read offset calibration */
745 	val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
746 	adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
747 	adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
748 	adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
749 	adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
750 
751 disable:
752 	stm32h7_adc_disable(adc);
753 
754 	return ret;
755 }
756 
757 /**
758  * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
759  * @adc: stm32 adc instance
760  * Note: ADC must be enabled, with no on-going conversions.
761  */
762 static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc)
763 {
764 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
765 	int i, ret;
766 	u32 lincalrdyw_mask, val;
767 
768 	val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
769 		(adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
770 	stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
771 
772 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
773 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
774 		/*
775 		 * Write saved calibration data to shadow registers:
776 		 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
777 		 * data write. Then poll to wait for complete transfer.
778 		 */
779 		val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
780 		stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
781 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
782 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
783 						   val & lincalrdyw_mask,
784 						   100, STM32_ADC_TIMEOUT_US);
785 		if (ret) {
786 			dev_err(&indio_dev->dev, "Failed to write calfact\n");
787 			return ret;
788 		}
789 
790 		/*
791 		 * Read back calibration data, has two effects:
792 		 * - It ensures bits LINCALRDYW[6..1] are kept cleared
793 		 *   for next time calibration needs to be restored.
794 		 * - BTW, bit clear triggers a read, then check data has been
795 		 *   correctly written.
796 		 */
797 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
798 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
799 						   !(val & lincalrdyw_mask),
800 						   100, STM32_ADC_TIMEOUT_US);
801 		if (ret) {
802 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
803 			return ret;
804 		}
805 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
806 		if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
807 			dev_err(&indio_dev->dev, "calfact not consistent\n");
808 			return -EIO;
809 		}
810 
811 		lincalrdyw_mask >>= 1;
812 	}
813 
814 	return 0;
815 }
816 
817 /**
818  * Fixed timeout value for ADC calibration.
819  * worst cases:
820  * - low clock frequency
821  * - maximum prescalers
822  * Calibration requires:
823  * - 131,072 ADC clock cycle for the linear calibration
824  * - 20 ADC clock cycle for the offset calibration
825  *
826  * Set to 100ms for now
827  */
828 #define STM32H7_ADC_CALIB_TIMEOUT_US		100000
829 
830 /**
831  * stm32h7_adc_selfcalib() - Procedure to calibrate ADC (from power down)
832  * @adc: stm32 adc instance
833  * Exit from power down, calibrate ADC, then return to power down.
834  */
835 static int stm32h7_adc_selfcalib(struct stm32_adc *adc)
836 {
837 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
838 	int ret;
839 	u32 val;
840 
841 	stm32h7_adc_exit_pwr_down(adc);
842 
843 	/*
844 	 * Select calibration mode:
845 	 * - Offset calibration for single ended inputs
846 	 * - No linearity calibration (do it later, before reading it)
847 	 */
848 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
849 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
850 
851 	/* Start calibration, then wait for completion */
852 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
853 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
854 					   !(val & STM32H7_ADCAL), 100,
855 					   STM32H7_ADC_CALIB_TIMEOUT_US);
856 	if (ret) {
857 		dev_err(&indio_dev->dev, "calibration failed\n");
858 		goto pwr_dwn;
859 	}
860 
861 	/*
862 	 * Select calibration mode, then start calibration:
863 	 * - Offset calibration for differential input
864 	 * - Linearity calibration (needs to be done only once for single/diff)
865 	 *   will run simultaneously with offset calibration.
866 	 */
867 	stm32_adc_set_bits(adc, STM32H7_ADC_CR,
868 			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
869 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
870 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
871 					   !(val & STM32H7_ADCAL), 100,
872 					   STM32H7_ADC_CALIB_TIMEOUT_US);
873 	if (ret) {
874 		dev_err(&indio_dev->dev, "calibration failed\n");
875 		goto pwr_dwn;
876 	}
877 
878 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
879 			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
880 
881 	/* Read calibration result for future reference */
882 	ret = stm32h7_adc_read_selfcalib(adc);
883 
884 pwr_dwn:
885 	stm32h7_adc_enter_pwr_down(adc);
886 
887 	return ret;
888 }
889 
890 /**
891  * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
892  * @adc: stm32 adc instance
893  * Leave power down mode.
894  * Enable ADC.
895  * Restore calibration data.
896  * Pre-select channels that may be used in PCSEL (required by input MUX / IO).
897  */
898 static int stm32h7_adc_prepare(struct stm32_adc *adc)
899 {
900 	int ret;
901 
902 	stm32h7_adc_exit_pwr_down(adc);
903 
904 	ret = stm32h7_adc_enable(adc);
905 	if (ret)
906 		goto pwr_dwn;
907 
908 	ret = stm32h7_adc_restore_selfcalib(adc);
909 	if (ret)
910 		goto disable;
911 
912 	stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
913 
914 	return 0;
915 
916 disable:
917 	stm32h7_adc_disable(adc);
918 pwr_dwn:
919 	stm32h7_adc_enter_pwr_down(adc);
920 
921 	return ret;
922 }
923 
924 static void stm32h7_adc_unprepare(struct stm32_adc *adc)
925 {
926 	stm32h7_adc_disable(adc);
927 	stm32h7_adc_enter_pwr_down(adc);
928 }
929 
930 /**
931  * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
932  * @indio_dev: IIO device
933  * @scan_mask: channels to be converted
934  *
935  * Conversion sequence :
936  * Configure ADC scan sequence based on selected channels in scan_mask.
937  * Add channels to SQR registers, from scan_mask LSB to MSB, then
938  * program sequence len.
939  */
940 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
941 				   const unsigned long *scan_mask)
942 {
943 	struct stm32_adc *adc = iio_priv(indio_dev);
944 	const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
945 	const struct iio_chan_spec *chan;
946 	u32 val, bit;
947 	int i = 0;
948 
949 	for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
950 		chan = indio_dev->channels + bit;
951 		/*
952 		 * Assign one channel per SQ entry in regular
953 		 * sequence, starting with SQ1.
954 		 */
955 		i++;
956 		if (i > STM32_ADC_MAX_SQ)
957 			return -EINVAL;
958 
959 		dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
960 			__func__, chan->channel, i);
961 
962 		val = stm32_adc_readl(adc, sqr[i].reg);
963 		val &= ~sqr[i].mask;
964 		val |= chan->channel << sqr[i].shift;
965 		stm32_adc_writel(adc, sqr[i].reg, val);
966 	}
967 
968 	if (!i)
969 		return -EINVAL;
970 
971 	/* Sequence len */
972 	val = stm32_adc_readl(adc, sqr[0].reg);
973 	val &= ~sqr[0].mask;
974 	val |= ((i - 1) << sqr[0].shift);
975 	stm32_adc_writel(adc, sqr[0].reg, val);
976 
977 	return 0;
978 }
979 
980 /**
981  * stm32_adc_get_trig_extsel() - Get external trigger selection
982  * @trig: trigger
983  *
984  * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
985  */
986 static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
987 				     struct iio_trigger *trig)
988 {
989 	struct stm32_adc *adc = iio_priv(indio_dev);
990 	int i;
991 
992 	/* lookup triggers registered by stm32 timer trigger driver */
993 	for (i = 0; adc->cfg->trigs[i].name; i++) {
994 		/**
995 		 * Checking both stm32 timer trigger type and trig name
996 		 * should be safe against arbitrary trigger names.
997 		 */
998 		if (is_stm32_timer_trigger(trig) &&
999 		    !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1000 			return adc->cfg->trigs[i].extsel;
1001 		}
1002 	}
1003 
1004 	return -EINVAL;
1005 }
1006 
1007 /**
1008  * stm32_adc_set_trig() - Set a regular trigger
1009  * @indio_dev: IIO device
1010  * @trig: IIO trigger
1011  *
1012  * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1013  * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1014  * - if HW trigger enabled, set source & polarity
1015  */
1016 static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1017 			      struct iio_trigger *trig)
1018 {
1019 	struct stm32_adc *adc = iio_priv(indio_dev);
1020 	u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1021 	unsigned long flags;
1022 	int ret;
1023 
1024 	if (trig) {
1025 		ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1026 		if (ret < 0)
1027 			return ret;
1028 
1029 		/* set trigger source and polarity (default to rising edge) */
1030 		extsel = ret;
1031 		exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1032 	}
1033 
1034 	spin_lock_irqsave(&adc->lock, flags);
1035 	val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1036 	val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1037 	val |= exten << adc->cfg->regs->exten.shift;
1038 	val |= extsel << adc->cfg->regs->extsel.shift;
1039 	stm32_adc_writel(adc,  adc->cfg->regs->exten.reg, val);
1040 	spin_unlock_irqrestore(&adc->lock, flags);
1041 
1042 	return 0;
1043 }
1044 
1045 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1046 				  const struct iio_chan_spec *chan,
1047 				  unsigned int type)
1048 {
1049 	struct stm32_adc *adc = iio_priv(indio_dev);
1050 
1051 	adc->trigger_polarity = type;
1052 
1053 	return 0;
1054 }
1055 
1056 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1057 				  const struct iio_chan_spec *chan)
1058 {
1059 	struct stm32_adc *adc = iio_priv(indio_dev);
1060 
1061 	return adc->trigger_polarity;
1062 }
1063 
1064 static const char * const stm32_trig_pol_items[] = {
1065 	"rising-edge", "falling-edge", "both-edges",
1066 };
1067 
1068 static const struct iio_enum stm32_adc_trig_pol = {
1069 	.items = stm32_trig_pol_items,
1070 	.num_items = ARRAY_SIZE(stm32_trig_pol_items),
1071 	.get = stm32_adc_get_trig_pol,
1072 	.set = stm32_adc_set_trig_pol,
1073 };
1074 
1075 /**
1076  * stm32_adc_single_conv() - Performs a single conversion
1077  * @indio_dev: IIO device
1078  * @chan: IIO channel
1079  * @res: conversion result
1080  *
1081  * The function performs a single conversion on a given channel:
1082  * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1083  * - Use SW trigger
1084  * - Start conversion, then wait for interrupt completion.
1085  */
1086 static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1087 				 const struct iio_chan_spec *chan,
1088 				 int *res)
1089 {
1090 	struct stm32_adc *adc = iio_priv(indio_dev);
1091 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1092 	long timeout;
1093 	u32 val;
1094 	int ret;
1095 
1096 	reinit_completion(&adc->completion);
1097 
1098 	adc->bufi = 0;
1099 
1100 	if (adc->cfg->prepare) {
1101 		ret = adc->cfg->prepare(adc);
1102 		if (ret)
1103 			return ret;
1104 	}
1105 
1106 	/* Program chan number in regular sequence (SQ1) */
1107 	val = stm32_adc_readl(adc, regs->sqr[1].reg);
1108 	val &= ~regs->sqr[1].mask;
1109 	val |= chan->channel << regs->sqr[1].shift;
1110 	stm32_adc_writel(adc, regs->sqr[1].reg, val);
1111 
1112 	/* Set regular sequence len (0 for 1 conversion) */
1113 	stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1114 
1115 	/* Trigger detection disabled (conversion can be launched in SW) */
1116 	stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1117 
1118 	stm32_adc_conv_irq_enable(adc);
1119 
1120 	adc->cfg->start_conv(adc, false);
1121 
1122 	timeout = wait_for_completion_interruptible_timeout(
1123 					&adc->completion, STM32_ADC_TIMEOUT);
1124 	if (timeout == 0) {
1125 		ret = -ETIMEDOUT;
1126 	} else if (timeout < 0) {
1127 		ret = timeout;
1128 	} else {
1129 		*res = adc->buffer[0];
1130 		ret = IIO_VAL_INT;
1131 	}
1132 
1133 	adc->cfg->stop_conv(adc);
1134 
1135 	stm32_adc_conv_irq_disable(adc);
1136 
1137 	if (adc->cfg->unprepare)
1138 		adc->cfg->unprepare(adc);
1139 
1140 	return ret;
1141 }
1142 
1143 static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1144 			      struct iio_chan_spec const *chan,
1145 			      int *val, int *val2, long mask)
1146 {
1147 	struct stm32_adc *adc = iio_priv(indio_dev);
1148 	int ret;
1149 
1150 	switch (mask) {
1151 	case IIO_CHAN_INFO_RAW:
1152 		ret = iio_device_claim_direct_mode(indio_dev);
1153 		if (ret)
1154 			return ret;
1155 		if (chan->type == IIO_VOLTAGE)
1156 			ret = stm32_adc_single_conv(indio_dev, chan, val);
1157 		else
1158 			ret = -EINVAL;
1159 		iio_device_release_direct_mode(indio_dev);
1160 		return ret;
1161 
1162 	case IIO_CHAN_INFO_SCALE:
1163 		*val = adc->common->vref_mv;
1164 		*val2 = chan->scan_type.realbits;
1165 		return IIO_VAL_FRACTIONAL_LOG2;
1166 
1167 	default:
1168 		return -EINVAL;
1169 	}
1170 }
1171 
1172 static irqreturn_t stm32_adc_isr(int irq, void *data)
1173 {
1174 	struct stm32_adc *adc = data;
1175 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1176 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1177 	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1178 
1179 	if (status & regs->isr_eoc.mask) {
1180 		/* Reading DR also clears EOC status flag */
1181 		adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1182 		if (iio_buffer_enabled(indio_dev)) {
1183 			adc->bufi++;
1184 			if (adc->bufi >= adc->num_conv) {
1185 				stm32_adc_conv_irq_disable(adc);
1186 				iio_trigger_poll(indio_dev->trig);
1187 			}
1188 		} else {
1189 			complete(&adc->completion);
1190 		}
1191 		return IRQ_HANDLED;
1192 	}
1193 
1194 	return IRQ_NONE;
1195 }
1196 
1197 /**
1198  * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1199  * @indio_dev: IIO device
1200  * @trig: new trigger
1201  *
1202  * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1203  * driver, -EINVAL otherwise.
1204  */
1205 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1206 				      struct iio_trigger *trig)
1207 {
1208 	return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1209 }
1210 
1211 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1212 {
1213 	struct stm32_adc *adc = iio_priv(indio_dev);
1214 	unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1215 
1216 	/*
1217 	 * dma cyclic transfers are used, buffer is split into two periods.
1218 	 * There should be :
1219 	 * - always one buffer (period) dma is working on
1220 	 * - one buffer (period) driver can push with iio_trigger_poll().
1221 	 */
1222 	watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1223 	adc->rx_buf_sz = watermark * 2;
1224 
1225 	return 0;
1226 }
1227 
1228 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1229 				      const unsigned long *scan_mask)
1230 {
1231 	struct stm32_adc *adc = iio_priv(indio_dev);
1232 	int ret;
1233 
1234 	adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1235 
1236 	ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1237 	if (ret)
1238 		return ret;
1239 
1240 	return 0;
1241 }
1242 
1243 static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1244 			      const struct of_phandle_args *iiospec)
1245 {
1246 	int i;
1247 
1248 	for (i = 0; i < indio_dev->num_channels; i++)
1249 		if (indio_dev->channels[i].channel == iiospec->args[0])
1250 			return i;
1251 
1252 	return -EINVAL;
1253 }
1254 
1255 /**
1256  * stm32_adc_debugfs_reg_access - read or write register value
1257  *
1258  * To read a value from an ADC register:
1259  *   echo [ADC reg offset] > direct_reg_access
1260  *   cat direct_reg_access
1261  *
1262  * To write a value in a ADC register:
1263  *   echo [ADC_reg_offset] [value] > direct_reg_access
1264  */
1265 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1266 					unsigned reg, unsigned writeval,
1267 					unsigned *readval)
1268 {
1269 	struct stm32_adc *adc = iio_priv(indio_dev);
1270 
1271 	if (!readval)
1272 		stm32_adc_writel(adc, reg, writeval);
1273 	else
1274 		*readval = stm32_adc_readl(adc, reg);
1275 
1276 	return 0;
1277 }
1278 
1279 static const struct iio_info stm32_adc_iio_info = {
1280 	.read_raw = stm32_adc_read_raw,
1281 	.validate_trigger = stm32_adc_validate_trigger,
1282 	.hwfifo_set_watermark = stm32_adc_set_watermark,
1283 	.update_scan_mode = stm32_adc_update_scan_mode,
1284 	.debugfs_reg_access = stm32_adc_debugfs_reg_access,
1285 	.of_xlate = stm32_adc_of_xlate,
1286 	.driver_module = THIS_MODULE,
1287 };
1288 
1289 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1290 {
1291 	struct dma_tx_state state;
1292 	enum dma_status status;
1293 
1294 	status = dmaengine_tx_status(adc->dma_chan,
1295 				     adc->dma_chan->cookie,
1296 				     &state);
1297 	if (status == DMA_IN_PROGRESS) {
1298 		/* Residue is size in bytes from end of buffer */
1299 		unsigned int i = adc->rx_buf_sz - state.residue;
1300 		unsigned int size;
1301 
1302 		/* Return available bytes */
1303 		if (i >= adc->bufi)
1304 			size = i - adc->bufi;
1305 		else
1306 			size = adc->rx_buf_sz + i - adc->bufi;
1307 
1308 		return size;
1309 	}
1310 
1311 	return 0;
1312 }
1313 
1314 static void stm32_adc_dma_buffer_done(void *data)
1315 {
1316 	struct iio_dev *indio_dev = data;
1317 
1318 	iio_trigger_poll_chained(indio_dev->trig);
1319 }
1320 
1321 static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1322 {
1323 	struct stm32_adc *adc = iio_priv(indio_dev);
1324 	struct dma_async_tx_descriptor *desc;
1325 	dma_cookie_t cookie;
1326 	int ret;
1327 
1328 	if (!adc->dma_chan)
1329 		return 0;
1330 
1331 	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1332 		adc->rx_buf_sz, adc->rx_buf_sz / 2);
1333 
1334 	/* Prepare a DMA cyclic transaction */
1335 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1336 					 adc->rx_dma_buf,
1337 					 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1338 					 DMA_DEV_TO_MEM,
1339 					 DMA_PREP_INTERRUPT);
1340 	if (!desc)
1341 		return -EBUSY;
1342 
1343 	desc->callback = stm32_adc_dma_buffer_done;
1344 	desc->callback_param = indio_dev;
1345 
1346 	cookie = dmaengine_submit(desc);
1347 	ret = dma_submit_error(cookie);
1348 	if (ret) {
1349 		dmaengine_terminate_all(adc->dma_chan);
1350 		return ret;
1351 	}
1352 
1353 	/* Issue pending DMA requests */
1354 	dma_async_issue_pending(adc->dma_chan);
1355 
1356 	return 0;
1357 }
1358 
1359 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1360 {
1361 	struct stm32_adc *adc = iio_priv(indio_dev);
1362 	int ret;
1363 
1364 	if (adc->cfg->prepare) {
1365 		ret = adc->cfg->prepare(adc);
1366 		if (ret)
1367 			return ret;
1368 	}
1369 
1370 	ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1371 	if (ret) {
1372 		dev_err(&indio_dev->dev, "Can't set trigger\n");
1373 		goto err_unprepare;
1374 	}
1375 
1376 	ret = stm32_adc_dma_start(indio_dev);
1377 	if (ret) {
1378 		dev_err(&indio_dev->dev, "Can't start dma\n");
1379 		goto err_clr_trig;
1380 	}
1381 
1382 	ret = iio_triggered_buffer_postenable(indio_dev);
1383 	if (ret < 0)
1384 		goto err_stop_dma;
1385 
1386 	/* Reset adc buffer index */
1387 	adc->bufi = 0;
1388 
1389 	if (!adc->dma_chan)
1390 		stm32_adc_conv_irq_enable(adc);
1391 
1392 	adc->cfg->start_conv(adc, !!adc->dma_chan);
1393 
1394 	return 0;
1395 
1396 err_stop_dma:
1397 	if (adc->dma_chan)
1398 		dmaengine_terminate_all(adc->dma_chan);
1399 err_clr_trig:
1400 	stm32_adc_set_trig(indio_dev, NULL);
1401 err_unprepare:
1402 	if (adc->cfg->unprepare)
1403 		adc->cfg->unprepare(adc);
1404 
1405 	return ret;
1406 }
1407 
1408 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1409 {
1410 	struct stm32_adc *adc = iio_priv(indio_dev);
1411 	int ret;
1412 
1413 	adc->cfg->stop_conv(adc);
1414 	if (!adc->dma_chan)
1415 		stm32_adc_conv_irq_disable(adc);
1416 
1417 	ret = iio_triggered_buffer_predisable(indio_dev);
1418 	if (ret < 0)
1419 		dev_err(&indio_dev->dev, "predisable failed\n");
1420 
1421 	if (adc->dma_chan)
1422 		dmaengine_terminate_all(adc->dma_chan);
1423 
1424 	if (stm32_adc_set_trig(indio_dev, NULL))
1425 		dev_err(&indio_dev->dev, "Can't clear trigger\n");
1426 
1427 	if (adc->cfg->unprepare)
1428 		adc->cfg->unprepare(adc);
1429 
1430 	return ret;
1431 }
1432 
1433 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1434 	.postenable = &stm32_adc_buffer_postenable,
1435 	.predisable = &stm32_adc_buffer_predisable,
1436 };
1437 
1438 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1439 {
1440 	struct iio_poll_func *pf = p;
1441 	struct iio_dev *indio_dev = pf->indio_dev;
1442 	struct stm32_adc *adc = iio_priv(indio_dev);
1443 
1444 	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1445 
1446 	if (!adc->dma_chan) {
1447 		/* reset buffer index */
1448 		adc->bufi = 0;
1449 		iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1450 						   pf->timestamp);
1451 	} else {
1452 		int residue = stm32_adc_dma_residue(adc);
1453 
1454 		while (residue >= indio_dev->scan_bytes) {
1455 			u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1456 
1457 			iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1458 							   pf->timestamp);
1459 			residue -= indio_dev->scan_bytes;
1460 			adc->bufi += indio_dev->scan_bytes;
1461 			if (adc->bufi >= adc->rx_buf_sz)
1462 				adc->bufi = 0;
1463 		}
1464 	}
1465 
1466 	iio_trigger_notify_done(indio_dev->trig);
1467 
1468 	/* re-enable eoc irq */
1469 	if (!adc->dma_chan)
1470 		stm32_adc_conv_irq_enable(adc);
1471 
1472 	return IRQ_HANDLED;
1473 }
1474 
1475 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1476 	IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1477 	{
1478 		.name = "trigger_polarity_available",
1479 		.shared = IIO_SHARED_BY_ALL,
1480 		.read = iio_enum_available_read,
1481 		.private = (uintptr_t)&stm32_adc_trig_pol,
1482 	},
1483 	{},
1484 };
1485 
1486 static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1487 {
1488 	struct device_node *node = indio_dev->dev.of_node;
1489 	struct stm32_adc *adc = iio_priv(indio_dev);
1490 	unsigned int i;
1491 	u32 res;
1492 
1493 	if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1494 		res = adc->cfg->adc_info->resolutions[0];
1495 
1496 	for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1497 		if (res == adc->cfg->adc_info->resolutions[i])
1498 			break;
1499 	if (i >= adc->cfg->adc_info->num_res) {
1500 		dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1501 		return -EINVAL;
1502 	}
1503 
1504 	dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1505 	adc->res = i;
1506 
1507 	return 0;
1508 }
1509 
1510 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1511 				    struct iio_chan_spec *chan,
1512 				    const struct stm32_adc_chan_spec *channel,
1513 				    int scan_index)
1514 {
1515 	struct stm32_adc *adc = iio_priv(indio_dev);
1516 
1517 	chan->type = channel->type;
1518 	chan->channel = channel->channel;
1519 	chan->datasheet_name = channel->name;
1520 	chan->scan_index = scan_index;
1521 	chan->indexed = 1;
1522 	chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1523 	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
1524 	chan->scan_type.sign = 'u';
1525 	chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1526 	chan->scan_type.storagebits = 16;
1527 	chan->ext_info = stm32_adc_ext_info;
1528 
1529 	/* pre-build selected channels mask */
1530 	adc->pcsel |= BIT(chan->channel);
1531 }
1532 
1533 static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1534 {
1535 	struct device_node *node = indio_dev->dev.of_node;
1536 	struct stm32_adc *adc = iio_priv(indio_dev);
1537 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1538 	struct property *prop;
1539 	const __be32 *cur;
1540 	struct iio_chan_spec *channels;
1541 	int scan_index = 0, num_channels;
1542 	u32 val;
1543 
1544 	num_channels = of_property_count_u32_elems(node, "st,adc-channels");
1545 	if (num_channels < 0 ||
1546 	    num_channels >= adc_info->max_channels) {
1547 		dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1548 		return num_channels < 0 ? num_channels : -EINVAL;
1549 	}
1550 
1551 	channels = devm_kcalloc(&indio_dev->dev, num_channels,
1552 				sizeof(struct iio_chan_spec), GFP_KERNEL);
1553 	if (!channels)
1554 		return -ENOMEM;
1555 
1556 	of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1557 		if (val >= adc_info->max_channels) {
1558 			dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1559 			return -EINVAL;
1560 		}
1561 		stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1562 					&adc_info->channels[val],
1563 					scan_index);
1564 		scan_index++;
1565 	}
1566 
1567 	indio_dev->num_channels = scan_index;
1568 	indio_dev->channels = channels;
1569 
1570 	return 0;
1571 }
1572 
1573 static int stm32_adc_dma_request(struct iio_dev *indio_dev)
1574 {
1575 	struct stm32_adc *adc = iio_priv(indio_dev);
1576 	struct dma_slave_config config;
1577 	int ret;
1578 
1579 	adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
1580 	if (!adc->dma_chan)
1581 		return 0;
1582 
1583 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1584 					 STM32_DMA_BUFFER_SIZE,
1585 					 &adc->rx_dma_buf, GFP_KERNEL);
1586 	if (!adc->rx_buf) {
1587 		ret = -ENOMEM;
1588 		goto err_release;
1589 	}
1590 
1591 	/* Configure DMA channel to read data register */
1592 	memset(&config, 0, sizeof(config));
1593 	config.src_addr = (dma_addr_t)adc->common->phys_base;
1594 	config.src_addr += adc->offset + adc->cfg->regs->dr;
1595 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1596 
1597 	ret = dmaengine_slave_config(adc->dma_chan, &config);
1598 	if (ret)
1599 		goto err_free;
1600 
1601 	return 0;
1602 
1603 err_free:
1604 	dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1605 			  adc->rx_buf, adc->rx_dma_buf);
1606 err_release:
1607 	dma_release_channel(adc->dma_chan);
1608 
1609 	return ret;
1610 }
1611 
1612 static int stm32_adc_probe(struct platform_device *pdev)
1613 {
1614 	struct iio_dev *indio_dev;
1615 	struct device *dev = &pdev->dev;
1616 	struct stm32_adc *adc;
1617 	int ret;
1618 
1619 	if (!pdev->dev.of_node)
1620 		return -ENODEV;
1621 
1622 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1623 	if (!indio_dev)
1624 		return -ENOMEM;
1625 
1626 	adc = iio_priv(indio_dev);
1627 	adc->common = dev_get_drvdata(pdev->dev.parent);
1628 	spin_lock_init(&adc->lock);
1629 	init_completion(&adc->completion);
1630 	adc->cfg = (const struct stm32_adc_cfg *)
1631 		of_match_device(dev->driver->of_match_table, dev)->data;
1632 
1633 	indio_dev->name = dev_name(&pdev->dev);
1634 	indio_dev->dev.parent = &pdev->dev;
1635 	indio_dev->dev.of_node = pdev->dev.of_node;
1636 	indio_dev->info = &stm32_adc_iio_info;
1637 	indio_dev->modes = INDIO_DIRECT_MODE;
1638 
1639 	platform_set_drvdata(pdev, adc);
1640 
1641 	ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1642 	if (ret != 0) {
1643 		dev_err(&pdev->dev, "missing reg property\n");
1644 		return -EINVAL;
1645 	}
1646 
1647 	adc->irq = platform_get_irq(pdev, 0);
1648 	if (adc->irq < 0) {
1649 		dev_err(&pdev->dev, "failed to get irq\n");
1650 		return adc->irq;
1651 	}
1652 
1653 	ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1654 			       0, pdev->name, adc);
1655 	if (ret) {
1656 		dev_err(&pdev->dev, "failed to request IRQ\n");
1657 		return ret;
1658 	}
1659 
1660 	adc->clk = devm_clk_get(&pdev->dev, NULL);
1661 	if (IS_ERR(adc->clk)) {
1662 		ret = PTR_ERR(adc->clk);
1663 		if (ret == -ENOENT && !adc->cfg->clk_required) {
1664 			adc->clk = NULL;
1665 		} else {
1666 			dev_err(&pdev->dev, "Can't get clock\n");
1667 			return ret;
1668 		}
1669 	}
1670 
1671 	if (adc->clk) {
1672 		ret = clk_prepare_enable(adc->clk);
1673 		if (ret < 0) {
1674 			dev_err(&pdev->dev, "clk enable failed\n");
1675 			return ret;
1676 		}
1677 	}
1678 
1679 	ret = stm32_adc_of_get_resolution(indio_dev);
1680 	if (ret < 0)
1681 		goto err_clk_disable;
1682 	stm32_adc_set_res(adc);
1683 
1684 	if (adc->cfg->selfcalib) {
1685 		ret = adc->cfg->selfcalib(adc);
1686 		if (ret)
1687 			goto err_clk_disable;
1688 	}
1689 
1690 	ret = stm32_adc_chan_of_init(indio_dev);
1691 	if (ret < 0)
1692 		goto err_clk_disable;
1693 
1694 	ret = stm32_adc_dma_request(indio_dev);
1695 	if (ret < 0)
1696 		goto err_clk_disable;
1697 
1698 	ret = iio_triggered_buffer_setup(indio_dev,
1699 					 &iio_pollfunc_store_time,
1700 					 &stm32_adc_trigger_handler,
1701 					 &stm32_adc_buffer_setup_ops);
1702 	if (ret) {
1703 		dev_err(&pdev->dev, "buffer setup failed\n");
1704 		goto err_dma_disable;
1705 	}
1706 
1707 	ret = iio_device_register(indio_dev);
1708 	if (ret) {
1709 		dev_err(&pdev->dev, "iio dev register failed\n");
1710 		goto err_buffer_cleanup;
1711 	}
1712 
1713 	return 0;
1714 
1715 err_buffer_cleanup:
1716 	iio_triggered_buffer_cleanup(indio_dev);
1717 
1718 err_dma_disable:
1719 	if (adc->dma_chan) {
1720 		dma_free_coherent(adc->dma_chan->device->dev,
1721 				  STM32_DMA_BUFFER_SIZE,
1722 				  adc->rx_buf, adc->rx_dma_buf);
1723 		dma_release_channel(adc->dma_chan);
1724 	}
1725 err_clk_disable:
1726 	if (adc->clk)
1727 		clk_disable_unprepare(adc->clk);
1728 
1729 	return ret;
1730 }
1731 
1732 static int stm32_adc_remove(struct platform_device *pdev)
1733 {
1734 	struct stm32_adc *adc = platform_get_drvdata(pdev);
1735 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1736 
1737 	iio_device_unregister(indio_dev);
1738 	iio_triggered_buffer_cleanup(indio_dev);
1739 	if (adc->dma_chan) {
1740 		dma_free_coherent(adc->dma_chan->device->dev,
1741 				  STM32_DMA_BUFFER_SIZE,
1742 				  adc->rx_buf, adc->rx_dma_buf);
1743 		dma_release_channel(adc->dma_chan);
1744 	}
1745 	if (adc->clk)
1746 		clk_disable_unprepare(adc->clk);
1747 
1748 	return 0;
1749 }
1750 
1751 static const struct stm32_adc_cfg stm32f4_adc_cfg = {
1752 	.regs = &stm32f4_adc_regspec,
1753 	.adc_info = &stm32f4_adc_info,
1754 	.trigs = stm32f4_adc_trigs,
1755 	.clk_required = true,
1756 	.start_conv = stm32f4_adc_start_conv,
1757 	.stop_conv = stm32f4_adc_stop_conv,
1758 };
1759 
1760 static const struct stm32_adc_cfg stm32h7_adc_cfg = {
1761 	.regs = &stm32h7_adc_regspec,
1762 	.adc_info = &stm32h7_adc_info,
1763 	.trigs = stm32h7_adc_trigs,
1764 	.selfcalib = stm32h7_adc_selfcalib,
1765 	.start_conv = stm32h7_adc_start_conv,
1766 	.stop_conv = stm32h7_adc_stop_conv,
1767 	.prepare = stm32h7_adc_prepare,
1768 	.unprepare = stm32h7_adc_unprepare,
1769 };
1770 
1771 static const struct of_device_id stm32_adc_of_match[] = {
1772 	{ .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
1773 	{ .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
1774 	{},
1775 };
1776 MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
1777 
1778 static struct platform_driver stm32_adc_driver = {
1779 	.probe = stm32_adc_probe,
1780 	.remove = stm32_adc_remove,
1781 	.driver = {
1782 		.name = "stm32-adc",
1783 		.of_match_table = stm32_adc_of_match,
1784 	},
1785 };
1786 module_platform_driver(stm32_adc_driver);
1787 
1788 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
1789 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
1790 MODULE_LICENSE("GPL v2");
1791 MODULE_ALIAS("platform:stm32-adc");
1792