xref: /openbmc/linux/drivers/iio/adc/stm32-adc.c (revision 45cc842d5b75ba8f9a958f2dd12b95c6dd0452bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is part of STM32 ADC driver
4  *
5  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6  * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/iio/iio.h>
14 #include <linux/iio/buffer.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/iopoll.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27 
28 #include "stm32-adc-core.h"
29 
30 /* STM32F4 - Registers for each ADC instance */
31 #define STM32F4_ADC_SR			0x00
32 #define STM32F4_ADC_CR1			0x04
33 #define STM32F4_ADC_CR2			0x08
34 #define STM32F4_ADC_SMPR1		0x0C
35 #define STM32F4_ADC_SMPR2		0x10
36 #define STM32F4_ADC_HTR			0x24
37 #define STM32F4_ADC_LTR			0x28
38 #define STM32F4_ADC_SQR1		0x2C
39 #define STM32F4_ADC_SQR2		0x30
40 #define STM32F4_ADC_SQR3		0x34
41 #define STM32F4_ADC_JSQR		0x38
42 #define STM32F4_ADC_JDR1		0x3C
43 #define STM32F4_ADC_JDR2		0x40
44 #define STM32F4_ADC_JDR3		0x44
45 #define STM32F4_ADC_JDR4		0x48
46 #define STM32F4_ADC_DR			0x4C
47 
48 /* STM32F4_ADC_SR - bit fields */
49 #define STM32F4_STRT			BIT(4)
50 #define STM32F4_EOC			BIT(1)
51 
52 /* STM32F4_ADC_CR1 - bit fields */
53 #define STM32F4_RES_SHIFT		24
54 #define STM32F4_RES_MASK		GENMASK(25, 24)
55 #define STM32F4_SCAN			BIT(8)
56 #define STM32F4_EOCIE			BIT(5)
57 
58 /* STM32F4_ADC_CR2 - bit fields */
59 #define STM32F4_SWSTART			BIT(30)
60 #define STM32F4_EXTEN_SHIFT		28
61 #define STM32F4_EXTEN_MASK		GENMASK(29, 28)
62 #define STM32F4_EXTSEL_SHIFT		24
63 #define STM32F4_EXTSEL_MASK		GENMASK(27, 24)
64 #define STM32F4_EOCS			BIT(10)
65 #define STM32F4_DDS			BIT(9)
66 #define STM32F4_DMA			BIT(8)
67 #define STM32F4_ADON			BIT(0)
68 
69 /* STM32H7 - Registers for each ADC instance */
70 #define STM32H7_ADC_ISR			0x00
71 #define STM32H7_ADC_IER			0x04
72 #define STM32H7_ADC_CR			0x08
73 #define STM32H7_ADC_CFGR		0x0C
74 #define STM32H7_ADC_SMPR1		0x14
75 #define STM32H7_ADC_SMPR2		0x18
76 #define STM32H7_ADC_PCSEL		0x1C
77 #define STM32H7_ADC_SQR1		0x30
78 #define STM32H7_ADC_SQR2		0x34
79 #define STM32H7_ADC_SQR3		0x38
80 #define STM32H7_ADC_SQR4		0x3C
81 #define STM32H7_ADC_DR			0x40
82 #define STM32H7_ADC_DIFSEL		0xC0
83 #define STM32H7_ADC_CALFACT		0xC4
84 #define STM32H7_ADC_CALFACT2		0xC8
85 
86 /* STM32H7_ADC_ISR - bit fields */
87 #define STM32H7_EOC			BIT(2)
88 #define STM32H7_ADRDY			BIT(0)
89 
90 /* STM32H7_ADC_IER - bit fields */
91 #define STM32H7_EOCIE			STM32H7_EOC
92 
93 /* STM32H7_ADC_CR - bit fields */
94 #define STM32H7_ADCAL			BIT(31)
95 #define STM32H7_ADCALDIF		BIT(30)
96 #define STM32H7_DEEPPWD			BIT(29)
97 #define STM32H7_ADVREGEN		BIT(28)
98 #define STM32H7_LINCALRDYW6		BIT(27)
99 #define STM32H7_LINCALRDYW5		BIT(26)
100 #define STM32H7_LINCALRDYW4		BIT(25)
101 #define STM32H7_LINCALRDYW3		BIT(24)
102 #define STM32H7_LINCALRDYW2		BIT(23)
103 #define STM32H7_LINCALRDYW1		BIT(22)
104 #define STM32H7_ADCALLIN		BIT(16)
105 #define STM32H7_BOOST			BIT(8)
106 #define STM32H7_ADSTP			BIT(4)
107 #define STM32H7_ADSTART			BIT(2)
108 #define STM32H7_ADDIS			BIT(1)
109 #define STM32H7_ADEN			BIT(0)
110 
111 /* STM32H7_ADC_CFGR bit fields */
112 #define STM32H7_EXTEN_SHIFT		10
113 #define STM32H7_EXTEN_MASK		GENMASK(11, 10)
114 #define STM32H7_EXTSEL_SHIFT		5
115 #define STM32H7_EXTSEL_MASK		GENMASK(9, 5)
116 #define STM32H7_RES_SHIFT		2
117 #define STM32H7_RES_MASK		GENMASK(4, 2)
118 #define STM32H7_DMNGT_SHIFT		0
119 #define STM32H7_DMNGT_MASK		GENMASK(1, 0)
120 
121 enum stm32h7_adc_dmngt {
122 	STM32H7_DMNGT_DR_ONLY,		/* Regular data in DR only */
123 	STM32H7_DMNGT_DMA_ONESHOT,	/* DMA one shot mode */
124 	STM32H7_DMNGT_DFSDM,		/* DFSDM mode */
125 	STM32H7_DMNGT_DMA_CIRC,		/* DMA circular mode */
126 };
127 
128 /* STM32H7_ADC_CALFACT - bit fields */
129 #define STM32H7_CALFACT_D_SHIFT		16
130 #define STM32H7_CALFACT_D_MASK		GENMASK(26, 16)
131 #define STM32H7_CALFACT_S_SHIFT		0
132 #define STM32H7_CALFACT_S_MASK		GENMASK(10, 0)
133 
134 /* STM32H7_ADC_CALFACT2 - bit fields */
135 #define STM32H7_LINCALFACT_SHIFT	0
136 #define STM32H7_LINCALFACT_MASK		GENMASK(29, 0)
137 
138 /* Number of linear calibration shadow registers / LINCALRDYW control bits */
139 #define STM32H7_LINCALFACT_NUM		6
140 
141 /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
142 #define STM32H7_BOOST_CLKRATE		20000000UL
143 
144 #define STM32_ADC_CH_MAX		20	/* max number of channels */
145 #define STM32_ADC_CH_SZ			10	/* max channel name size */
146 #define STM32_ADC_MAX_SQ		16	/* SQ1..SQ16 */
147 #define STM32_ADC_MAX_SMP		7	/* SMPx range is [0..7] */
148 #define STM32_ADC_TIMEOUT_US		100000
149 #define STM32_ADC_TIMEOUT	(msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
150 
151 #define STM32_DMA_BUFFER_SIZE		PAGE_SIZE
152 
153 /* External trigger enable */
154 enum stm32_adc_exten {
155 	STM32_EXTEN_SWTRIG,
156 	STM32_EXTEN_HWTRIG_RISING_EDGE,
157 	STM32_EXTEN_HWTRIG_FALLING_EDGE,
158 	STM32_EXTEN_HWTRIG_BOTH_EDGES,
159 };
160 
161 /* extsel - trigger mux selection value */
162 enum stm32_adc_extsel {
163 	STM32_EXT0,
164 	STM32_EXT1,
165 	STM32_EXT2,
166 	STM32_EXT3,
167 	STM32_EXT4,
168 	STM32_EXT5,
169 	STM32_EXT6,
170 	STM32_EXT7,
171 	STM32_EXT8,
172 	STM32_EXT9,
173 	STM32_EXT10,
174 	STM32_EXT11,
175 	STM32_EXT12,
176 	STM32_EXT13,
177 	STM32_EXT14,
178 	STM32_EXT15,
179 	STM32_EXT16,
180 	STM32_EXT17,
181 	STM32_EXT18,
182 	STM32_EXT19,
183 	STM32_EXT20,
184 };
185 
186 /**
187  * struct stm32_adc_trig_info - ADC trigger info
188  * @name:		name of the trigger, corresponding to its source
189  * @extsel:		trigger selection
190  */
191 struct stm32_adc_trig_info {
192 	const char *name;
193 	enum stm32_adc_extsel extsel;
194 };
195 
196 /**
197  * struct stm32_adc_calib - optional adc calibration data
198  * @calfact_s: Calibration offset for single ended channels
199  * @calfact_d: Calibration offset in differential
200  * @lincalfact: Linearity calibration factor
201  */
202 struct stm32_adc_calib {
203 	u32			calfact_s;
204 	u32			calfact_d;
205 	u32			lincalfact[STM32H7_LINCALFACT_NUM];
206 };
207 
208 /**
209  * stm32_adc_regs - stm32 ADC misc registers & bitfield desc
210  * @reg:		register offset
211  * @mask:		bitfield mask
212  * @shift:		left shift
213  */
214 struct stm32_adc_regs {
215 	int reg;
216 	int mask;
217 	int shift;
218 };
219 
220 /**
221  * stm32_adc_regspec - stm32 registers definition, compatible dependent data
222  * @dr:			data register offset
223  * @ier_eoc:		interrupt enable register & eocie bitfield
224  * @isr_eoc:		interrupt status register & eoc bitfield
225  * @sqr:		reference to sequence registers array
226  * @exten:		trigger control register & bitfield
227  * @extsel:		trigger selection register & bitfield
228  * @res:		resolution selection register & bitfield
229  * @smpr:		smpr1 & smpr2 registers offset array
230  * @smp_bits:		smpr1 & smpr2 index and bitfields
231  */
232 struct stm32_adc_regspec {
233 	const u32 dr;
234 	const struct stm32_adc_regs ier_eoc;
235 	const struct stm32_adc_regs isr_eoc;
236 	const struct stm32_adc_regs *sqr;
237 	const struct stm32_adc_regs exten;
238 	const struct stm32_adc_regs extsel;
239 	const struct stm32_adc_regs res;
240 	const u32 smpr[2];
241 	const struct stm32_adc_regs *smp_bits;
242 };
243 
244 struct stm32_adc;
245 
246 /**
247  * stm32_adc_cfg - stm32 compatible configuration data
248  * @regs:		registers descriptions
249  * @adc_info:		per instance input channels definitions
250  * @trigs:		external trigger sources
251  * @clk_required:	clock is required
252  * @selfcalib:		optional routine for self-calibration
253  * @prepare:		optional prepare routine (power-up, enable)
254  * @start_conv:		routine to start conversions
255  * @stop_conv:		routine to stop conversions
256  * @unprepare:		optional unprepare routine (disable, power-down)
257  * @smp_cycles:		programmable sampling time (ADC clock cycles)
258  */
259 struct stm32_adc_cfg {
260 	const struct stm32_adc_regspec	*regs;
261 	const struct stm32_adc_info	*adc_info;
262 	struct stm32_adc_trig_info	*trigs;
263 	bool clk_required;
264 	int (*selfcalib)(struct stm32_adc *);
265 	int (*prepare)(struct stm32_adc *);
266 	void (*start_conv)(struct stm32_adc *, bool dma);
267 	void (*stop_conv)(struct stm32_adc *);
268 	void (*unprepare)(struct stm32_adc *);
269 	const unsigned int *smp_cycles;
270 };
271 
272 /**
273  * struct stm32_adc - private data of each ADC IIO instance
274  * @common:		reference to ADC block common data
275  * @offset:		ADC instance register offset in ADC block
276  * @cfg:		compatible configuration data
277  * @completion:		end of single conversion completion
278  * @buffer:		data buffer
279  * @clk:		clock for this adc instance
280  * @irq:		interrupt for this adc instance
281  * @lock:		spinlock
282  * @bufi:		data buffer index
283  * @num_conv:		expected number of scan conversions
284  * @res:		data resolution (e.g. RES bitfield value)
285  * @trigger_polarity:	external trigger polarity (e.g. exten)
286  * @dma_chan:		dma channel
287  * @rx_buf:		dma rx buffer cpu address
288  * @rx_dma_buf:		dma rx buffer bus address
289  * @rx_buf_sz:		dma rx buffer size
290  * @difsel		bitmask to set single-ended/differential channel
291  * @pcsel		bitmask to preselect channels on some devices
292  * @smpr_val:		sampling time settings (e.g. smpr1 / smpr2)
293  * @cal:		optional calibration data on some devices
294  * @chan_name:		channel name array
295  */
296 struct stm32_adc {
297 	struct stm32_adc_common	*common;
298 	u32			offset;
299 	const struct stm32_adc_cfg	*cfg;
300 	struct completion	completion;
301 	u16			buffer[STM32_ADC_MAX_SQ];
302 	struct clk		*clk;
303 	int			irq;
304 	spinlock_t		lock;		/* interrupt lock */
305 	unsigned int		bufi;
306 	unsigned int		num_conv;
307 	u32			res;
308 	u32			trigger_polarity;
309 	struct dma_chan		*dma_chan;
310 	u8			*rx_buf;
311 	dma_addr_t		rx_dma_buf;
312 	unsigned int		rx_buf_sz;
313 	u32			difsel;
314 	u32			pcsel;
315 	u32			smpr_val[2];
316 	struct stm32_adc_calib	cal;
317 	char			chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
318 };
319 
320 struct stm32_adc_diff_channel {
321 	u32 vinp;
322 	u32 vinn;
323 };
324 
325 /**
326  * struct stm32_adc_info - stm32 ADC, per instance config data
327  * @max_channels:	Number of channels
328  * @resolutions:	available resolutions
329  * @num_res:		number of available resolutions
330  */
331 struct stm32_adc_info {
332 	int max_channels;
333 	const unsigned int *resolutions;
334 	const unsigned int num_res;
335 };
336 
337 static const unsigned int stm32f4_adc_resolutions[] = {
338 	/* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
339 	12, 10, 8, 6,
340 };
341 
342 /* stm32f4 can have up to 16 channels */
343 static const struct stm32_adc_info stm32f4_adc_info = {
344 	.max_channels = 16,
345 	.resolutions = stm32f4_adc_resolutions,
346 	.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
347 };
348 
349 static const unsigned int stm32h7_adc_resolutions[] = {
350 	/* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
351 	16, 14, 12, 10, 8,
352 };
353 
354 /* stm32h7 can have up to 20 channels */
355 static const struct stm32_adc_info stm32h7_adc_info = {
356 	.max_channels = STM32_ADC_CH_MAX,
357 	.resolutions = stm32h7_adc_resolutions,
358 	.num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
359 };
360 
361 /**
362  * stm32f4_sq - describe regular sequence registers
363  * - L: sequence len (register & bit field)
364  * - SQ1..SQ16: sequence entries (register & bit field)
365  */
366 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
367 	/* L: len bit field description to be kept as first element */
368 	{ STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
369 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
370 	{ STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
371 	{ STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
372 	{ STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
373 	{ STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
374 	{ STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
375 	{ STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
376 	{ STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
377 	{ STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
378 	{ STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
379 	{ STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
380 	{ STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
381 	{ STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
382 	{ STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
383 	{ STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
384 	{ STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
385 	{ STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
386 };
387 
388 /* STM32F4 external trigger sources for all instances */
389 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
390 	{ TIM1_CH1, STM32_EXT0 },
391 	{ TIM1_CH2, STM32_EXT1 },
392 	{ TIM1_CH3, STM32_EXT2 },
393 	{ TIM2_CH2, STM32_EXT3 },
394 	{ TIM2_CH3, STM32_EXT4 },
395 	{ TIM2_CH4, STM32_EXT5 },
396 	{ TIM2_TRGO, STM32_EXT6 },
397 	{ TIM3_CH1, STM32_EXT7 },
398 	{ TIM3_TRGO, STM32_EXT8 },
399 	{ TIM4_CH4, STM32_EXT9 },
400 	{ TIM5_CH1, STM32_EXT10 },
401 	{ TIM5_CH2, STM32_EXT11 },
402 	{ TIM5_CH3, STM32_EXT12 },
403 	{ TIM8_CH1, STM32_EXT13 },
404 	{ TIM8_TRGO, STM32_EXT14 },
405 	{}, /* sentinel */
406 };
407 
408 /**
409  * stm32f4_smp_bits[] - describe sampling time register index & bit fields
410  * Sorted so it can be indexed by channel number.
411  */
412 static const struct stm32_adc_regs stm32f4_smp_bits[] = {
413 	/* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
414 	{ 1, GENMASK(2, 0), 0 },
415 	{ 1, GENMASK(5, 3), 3 },
416 	{ 1, GENMASK(8, 6), 6 },
417 	{ 1, GENMASK(11, 9), 9 },
418 	{ 1, GENMASK(14, 12), 12 },
419 	{ 1, GENMASK(17, 15), 15 },
420 	{ 1, GENMASK(20, 18), 18 },
421 	{ 1, GENMASK(23, 21), 21 },
422 	{ 1, GENMASK(26, 24), 24 },
423 	{ 1, GENMASK(29, 27), 27 },
424 	/* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
425 	{ 0, GENMASK(2, 0), 0 },
426 	{ 0, GENMASK(5, 3), 3 },
427 	{ 0, GENMASK(8, 6), 6 },
428 	{ 0, GENMASK(11, 9), 9 },
429 	{ 0, GENMASK(14, 12), 12 },
430 	{ 0, GENMASK(17, 15), 15 },
431 	{ 0, GENMASK(20, 18), 18 },
432 	{ 0, GENMASK(23, 21), 21 },
433 	{ 0, GENMASK(26, 24), 24 },
434 };
435 
436 /* STM32F4 programmable sampling time (ADC clock cycles) */
437 static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
438 	3, 15, 28, 56, 84, 112, 144, 480,
439 };
440 
441 static const struct stm32_adc_regspec stm32f4_adc_regspec = {
442 	.dr = STM32F4_ADC_DR,
443 	.ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
444 	.isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
445 	.sqr = stm32f4_sq,
446 	.exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
447 	.extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
448 		    STM32F4_EXTSEL_SHIFT },
449 	.res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
450 	.smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
451 	.smp_bits = stm32f4_smp_bits,
452 };
453 
454 static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
455 	/* L: len bit field description to be kept as first element */
456 	{ STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
457 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
458 	{ STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
459 	{ STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
460 	{ STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
461 	{ STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
462 	{ STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
463 	{ STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
464 	{ STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
465 	{ STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
466 	{ STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
467 	{ STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
468 	{ STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
469 	{ STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
470 	{ STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
471 	{ STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
472 	{ STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
473 	{ STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
474 };
475 
476 /* STM32H7 external trigger sources for all instances */
477 static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
478 	{ TIM1_CH1, STM32_EXT0 },
479 	{ TIM1_CH2, STM32_EXT1 },
480 	{ TIM1_CH3, STM32_EXT2 },
481 	{ TIM2_CH2, STM32_EXT3 },
482 	{ TIM3_TRGO, STM32_EXT4 },
483 	{ TIM4_CH4, STM32_EXT5 },
484 	{ TIM8_TRGO, STM32_EXT7 },
485 	{ TIM8_TRGO2, STM32_EXT8 },
486 	{ TIM1_TRGO, STM32_EXT9 },
487 	{ TIM1_TRGO2, STM32_EXT10 },
488 	{ TIM2_TRGO, STM32_EXT11 },
489 	{ TIM4_TRGO, STM32_EXT12 },
490 	{ TIM6_TRGO, STM32_EXT13 },
491 	{ TIM15_TRGO, STM32_EXT14 },
492 	{ TIM3_CH4, STM32_EXT15 },
493 	{ LPTIM1_OUT, STM32_EXT18 },
494 	{ LPTIM2_OUT, STM32_EXT19 },
495 	{ LPTIM3_OUT, STM32_EXT20 },
496 	{},
497 };
498 
499 /**
500  * stm32h7_smp_bits - describe sampling time register index & bit fields
501  * Sorted so it can be indexed by channel number.
502  */
503 static const struct stm32_adc_regs stm32h7_smp_bits[] = {
504 	/* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
505 	{ 0, GENMASK(2, 0), 0 },
506 	{ 0, GENMASK(5, 3), 3 },
507 	{ 0, GENMASK(8, 6), 6 },
508 	{ 0, GENMASK(11, 9), 9 },
509 	{ 0, GENMASK(14, 12), 12 },
510 	{ 0, GENMASK(17, 15), 15 },
511 	{ 0, GENMASK(20, 18), 18 },
512 	{ 0, GENMASK(23, 21), 21 },
513 	{ 0, GENMASK(26, 24), 24 },
514 	{ 0, GENMASK(29, 27), 27 },
515 	/* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
516 	{ 1, GENMASK(2, 0), 0 },
517 	{ 1, GENMASK(5, 3), 3 },
518 	{ 1, GENMASK(8, 6), 6 },
519 	{ 1, GENMASK(11, 9), 9 },
520 	{ 1, GENMASK(14, 12), 12 },
521 	{ 1, GENMASK(17, 15), 15 },
522 	{ 1, GENMASK(20, 18), 18 },
523 	{ 1, GENMASK(23, 21), 21 },
524 	{ 1, GENMASK(26, 24), 24 },
525 	{ 1, GENMASK(29, 27), 27 },
526 };
527 
528 /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
529 static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
530 	1, 2, 8, 16, 32, 64, 387, 810,
531 };
532 
533 static const struct stm32_adc_regspec stm32h7_adc_regspec = {
534 	.dr = STM32H7_ADC_DR,
535 	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
536 	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
537 	.sqr = stm32h7_sq,
538 	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
539 	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
540 		    STM32H7_EXTSEL_SHIFT },
541 	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
542 	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
543 	.smp_bits = stm32h7_smp_bits,
544 };
545 
546 /**
547  * STM32 ADC registers access routines
548  * @adc: stm32 adc instance
549  * @reg: reg offset in adc instance
550  *
551  * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
552  * for adc1, adc2 and adc3.
553  */
554 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
555 {
556 	return readl_relaxed(adc->common->base + adc->offset + reg);
557 }
558 
559 #define stm32_adc_readl_addr(addr)	stm32_adc_readl(adc, addr)
560 
561 #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
562 	readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
563 			   cond, sleep_us, timeout_us)
564 
565 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
566 {
567 	return readw_relaxed(adc->common->base + adc->offset + reg);
568 }
569 
570 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
571 {
572 	writel_relaxed(val, adc->common->base + adc->offset + reg);
573 }
574 
575 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
576 {
577 	unsigned long flags;
578 
579 	spin_lock_irqsave(&adc->lock, flags);
580 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
581 	spin_unlock_irqrestore(&adc->lock, flags);
582 }
583 
584 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
585 {
586 	unsigned long flags;
587 
588 	spin_lock_irqsave(&adc->lock, flags);
589 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
590 	spin_unlock_irqrestore(&adc->lock, flags);
591 }
592 
593 /**
594  * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
595  * @adc: stm32 adc instance
596  */
597 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
598 {
599 	stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
600 			   adc->cfg->regs->ier_eoc.mask);
601 };
602 
603 /**
604  * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
605  * @adc: stm32 adc instance
606  */
607 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
608 {
609 	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
610 			   adc->cfg->regs->ier_eoc.mask);
611 }
612 
613 static void stm32_adc_set_res(struct stm32_adc *adc)
614 {
615 	const struct stm32_adc_regs *res = &adc->cfg->regs->res;
616 	u32 val;
617 
618 	val = stm32_adc_readl(adc, res->reg);
619 	val = (val & ~res->mask) | (adc->res << res->shift);
620 	stm32_adc_writel(adc, res->reg, val);
621 }
622 
623 /**
624  * stm32f4_adc_start_conv() - Start conversions for regular channels.
625  * @adc: stm32 adc instance
626  * @dma: use dma to transfer conversion result
627  *
628  * Start conversions for regular channels.
629  * Also take care of normal or DMA mode. Circular DMA may be used for regular
630  * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
631  * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
632  */
633 static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
634 {
635 	stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
636 
637 	if (dma)
638 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
639 				   STM32F4_DMA | STM32F4_DDS);
640 
641 	stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
642 
643 	/* Wait for Power-up time (tSTAB from datasheet) */
644 	usleep_range(2, 3);
645 
646 	/* Software start ? (e.g. trigger detection disabled ?) */
647 	if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
648 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
649 }
650 
651 static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
652 {
653 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
654 	stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
655 
656 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
657 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
658 			   STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
659 }
660 
661 static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma)
662 {
663 	enum stm32h7_adc_dmngt dmngt;
664 	unsigned long flags;
665 	u32 val;
666 
667 	if (dma)
668 		dmngt = STM32H7_DMNGT_DMA_CIRC;
669 	else
670 		dmngt = STM32H7_DMNGT_DR_ONLY;
671 
672 	spin_lock_irqsave(&adc->lock, flags);
673 	val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
674 	val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
675 	stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
676 	spin_unlock_irqrestore(&adc->lock, flags);
677 
678 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
679 }
680 
681 static void stm32h7_adc_stop_conv(struct stm32_adc *adc)
682 {
683 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
684 	int ret;
685 	u32 val;
686 
687 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
688 
689 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
690 					   !(val & (STM32H7_ADSTART)),
691 					   100, STM32_ADC_TIMEOUT_US);
692 	if (ret)
693 		dev_warn(&indio_dev->dev, "stop failed\n");
694 
695 	stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
696 }
697 
698 static void stm32h7_adc_exit_pwr_down(struct stm32_adc *adc)
699 {
700 	/* Exit deep power down, then enable ADC voltage regulator */
701 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
702 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
703 
704 	if (adc->common->rate > STM32H7_BOOST_CLKRATE)
705 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
706 
707 	/* Wait for startup time */
708 	usleep_range(10, 20);
709 }
710 
711 static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
712 {
713 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
714 
715 	/* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
716 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
717 }
718 
719 static int stm32h7_adc_enable(struct stm32_adc *adc)
720 {
721 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
722 	int ret;
723 	u32 val;
724 
725 	/* Clear ADRDY by writing one, then enable ADC */
726 	stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
727 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
728 
729 	/* Poll for ADRDY to be set (after adc startup time) */
730 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
731 					   val & STM32H7_ADRDY,
732 					   100, STM32_ADC_TIMEOUT_US);
733 	if (ret) {
734 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
735 		dev_err(&indio_dev->dev, "Failed to enable ADC\n");
736 	}
737 
738 	return ret;
739 }
740 
741 static void stm32h7_adc_disable(struct stm32_adc *adc)
742 {
743 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
744 	int ret;
745 	u32 val;
746 
747 	/* Disable ADC and wait until it's effectively disabled */
748 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
749 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
750 					   !(val & STM32H7_ADEN), 100,
751 					   STM32_ADC_TIMEOUT_US);
752 	if (ret)
753 		dev_warn(&indio_dev->dev, "Failed to disable\n");
754 }
755 
756 /**
757  * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
758  * @adc: stm32 adc instance
759  */
760 static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc)
761 {
762 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
763 	int i, ret;
764 	u32 lincalrdyw_mask, val;
765 
766 	/* Enable adc so LINCALRDYW1..6 bits are writable */
767 	ret = stm32h7_adc_enable(adc);
768 	if (ret)
769 		return ret;
770 
771 	/* Read linearity calibration */
772 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
773 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
774 		/* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
775 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
776 
777 		/* Poll: wait calib data to be ready in CALFACT2 register */
778 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
779 						   !(val & lincalrdyw_mask),
780 						   100, STM32_ADC_TIMEOUT_US);
781 		if (ret) {
782 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
783 			goto disable;
784 		}
785 
786 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
787 		adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
788 		adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
789 
790 		lincalrdyw_mask >>= 1;
791 	}
792 
793 	/* Read offset calibration */
794 	val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
795 	adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
796 	adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
797 	adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
798 	adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
799 
800 disable:
801 	stm32h7_adc_disable(adc);
802 
803 	return ret;
804 }
805 
806 /**
807  * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
808  * @adc: stm32 adc instance
809  * Note: ADC must be enabled, with no on-going conversions.
810  */
811 static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc)
812 {
813 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
814 	int i, ret;
815 	u32 lincalrdyw_mask, val;
816 
817 	val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
818 		(adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
819 	stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
820 
821 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
822 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
823 		/*
824 		 * Write saved calibration data to shadow registers:
825 		 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
826 		 * data write. Then poll to wait for complete transfer.
827 		 */
828 		val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
829 		stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
830 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
831 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
832 						   val & lincalrdyw_mask,
833 						   100, STM32_ADC_TIMEOUT_US);
834 		if (ret) {
835 			dev_err(&indio_dev->dev, "Failed to write calfact\n");
836 			return ret;
837 		}
838 
839 		/*
840 		 * Read back calibration data, has two effects:
841 		 * - It ensures bits LINCALRDYW[6..1] are kept cleared
842 		 *   for next time calibration needs to be restored.
843 		 * - BTW, bit clear triggers a read, then check data has been
844 		 *   correctly written.
845 		 */
846 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
847 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
848 						   !(val & lincalrdyw_mask),
849 						   100, STM32_ADC_TIMEOUT_US);
850 		if (ret) {
851 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
852 			return ret;
853 		}
854 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
855 		if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
856 			dev_err(&indio_dev->dev, "calfact not consistent\n");
857 			return -EIO;
858 		}
859 
860 		lincalrdyw_mask >>= 1;
861 	}
862 
863 	return 0;
864 }
865 
866 /**
867  * Fixed timeout value for ADC calibration.
868  * worst cases:
869  * - low clock frequency
870  * - maximum prescalers
871  * Calibration requires:
872  * - 131,072 ADC clock cycle for the linear calibration
873  * - 20 ADC clock cycle for the offset calibration
874  *
875  * Set to 100ms for now
876  */
877 #define STM32H7_ADC_CALIB_TIMEOUT_US		100000
878 
879 /**
880  * stm32h7_adc_selfcalib() - Procedure to calibrate ADC (from power down)
881  * @adc: stm32 adc instance
882  * Exit from power down, calibrate ADC, then return to power down.
883  */
884 static int stm32h7_adc_selfcalib(struct stm32_adc *adc)
885 {
886 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
887 	int ret;
888 	u32 val;
889 
890 	stm32h7_adc_exit_pwr_down(adc);
891 
892 	/*
893 	 * Select calibration mode:
894 	 * - Offset calibration for single ended inputs
895 	 * - No linearity calibration (do it later, before reading it)
896 	 */
897 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
898 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
899 
900 	/* Start calibration, then wait for completion */
901 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
902 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
903 					   !(val & STM32H7_ADCAL), 100,
904 					   STM32H7_ADC_CALIB_TIMEOUT_US);
905 	if (ret) {
906 		dev_err(&indio_dev->dev, "calibration failed\n");
907 		goto pwr_dwn;
908 	}
909 
910 	/*
911 	 * Select calibration mode, then start calibration:
912 	 * - Offset calibration for differential input
913 	 * - Linearity calibration (needs to be done only once for single/diff)
914 	 *   will run simultaneously with offset calibration.
915 	 */
916 	stm32_adc_set_bits(adc, STM32H7_ADC_CR,
917 			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
918 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
919 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
920 					   !(val & STM32H7_ADCAL), 100,
921 					   STM32H7_ADC_CALIB_TIMEOUT_US);
922 	if (ret) {
923 		dev_err(&indio_dev->dev, "calibration failed\n");
924 		goto pwr_dwn;
925 	}
926 
927 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
928 			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
929 
930 	/* Read calibration result for future reference */
931 	ret = stm32h7_adc_read_selfcalib(adc);
932 
933 pwr_dwn:
934 	stm32h7_adc_enter_pwr_down(adc);
935 
936 	return ret;
937 }
938 
939 /**
940  * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
941  * @adc: stm32 adc instance
942  * Leave power down mode.
943  * Configure channels as single ended or differential before enabling ADC.
944  * Enable ADC.
945  * Restore calibration data.
946  * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
947  * - Only one input is selected for single ended (e.g. 'vinp')
948  * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
949  */
950 static int stm32h7_adc_prepare(struct stm32_adc *adc)
951 {
952 	int ret;
953 
954 	stm32h7_adc_exit_pwr_down(adc);
955 	stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
956 
957 	ret = stm32h7_adc_enable(adc);
958 	if (ret)
959 		goto pwr_dwn;
960 
961 	ret = stm32h7_adc_restore_selfcalib(adc);
962 	if (ret)
963 		goto disable;
964 
965 	stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
966 
967 	return 0;
968 
969 disable:
970 	stm32h7_adc_disable(adc);
971 pwr_dwn:
972 	stm32h7_adc_enter_pwr_down(adc);
973 
974 	return ret;
975 }
976 
977 static void stm32h7_adc_unprepare(struct stm32_adc *adc)
978 {
979 	stm32h7_adc_disable(adc);
980 	stm32h7_adc_enter_pwr_down(adc);
981 }
982 
983 /**
984  * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
985  * @indio_dev: IIO device
986  * @scan_mask: channels to be converted
987  *
988  * Conversion sequence :
989  * Apply sampling time settings for all channels.
990  * Configure ADC scan sequence based on selected channels in scan_mask.
991  * Add channels to SQR registers, from scan_mask LSB to MSB, then
992  * program sequence len.
993  */
994 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
995 				   const unsigned long *scan_mask)
996 {
997 	struct stm32_adc *adc = iio_priv(indio_dev);
998 	const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
999 	const struct iio_chan_spec *chan;
1000 	u32 val, bit;
1001 	int i = 0;
1002 
1003 	/* Apply sampling time settings */
1004 	stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
1005 	stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
1006 
1007 	for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
1008 		chan = indio_dev->channels + bit;
1009 		/*
1010 		 * Assign one channel per SQ entry in regular
1011 		 * sequence, starting with SQ1.
1012 		 */
1013 		i++;
1014 		if (i > STM32_ADC_MAX_SQ)
1015 			return -EINVAL;
1016 
1017 		dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
1018 			__func__, chan->channel, i);
1019 
1020 		val = stm32_adc_readl(adc, sqr[i].reg);
1021 		val &= ~sqr[i].mask;
1022 		val |= chan->channel << sqr[i].shift;
1023 		stm32_adc_writel(adc, sqr[i].reg, val);
1024 	}
1025 
1026 	if (!i)
1027 		return -EINVAL;
1028 
1029 	/* Sequence len */
1030 	val = stm32_adc_readl(adc, sqr[0].reg);
1031 	val &= ~sqr[0].mask;
1032 	val |= ((i - 1) << sqr[0].shift);
1033 	stm32_adc_writel(adc, sqr[0].reg, val);
1034 
1035 	return 0;
1036 }
1037 
1038 /**
1039  * stm32_adc_get_trig_extsel() - Get external trigger selection
1040  * @trig: trigger
1041  *
1042  * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1043  */
1044 static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1045 				     struct iio_trigger *trig)
1046 {
1047 	struct stm32_adc *adc = iio_priv(indio_dev);
1048 	int i;
1049 
1050 	/* lookup triggers registered by stm32 timer trigger driver */
1051 	for (i = 0; adc->cfg->trigs[i].name; i++) {
1052 		/**
1053 		 * Checking both stm32 timer trigger type and trig name
1054 		 * should be safe against arbitrary trigger names.
1055 		 */
1056 		if ((is_stm32_timer_trigger(trig) ||
1057 		     is_stm32_lptim_trigger(trig)) &&
1058 		    !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1059 			return adc->cfg->trigs[i].extsel;
1060 		}
1061 	}
1062 
1063 	return -EINVAL;
1064 }
1065 
1066 /**
1067  * stm32_adc_set_trig() - Set a regular trigger
1068  * @indio_dev: IIO device
1069  * @trig: IIO trigger
1070  *
1071  * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1072  * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1073  * - if HW trigger enabled, set source & polarity
1074  */
1075 static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1076 			      struct iio_trigger *trig)
1077 {
1078 	struct stm32_adc *adc = iio_priv(indio_dev);
1079 	u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1080 	unsigned long flags;
1081 	int ret;
1082 
1083 	if (trig) {
1084 		ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1085 		if (ret < 0)
1086 			return ret;
1087 
1088 		/* set trigger source and polarity (default to rising edge) */
1089 		extsel = ret;
1090 		exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1091 	}
1092 
1093 	spin_lock_irqsave(&adc->lock, flags);
1094 	val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1095 	val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1096 	val |= exten << adc->cfg->regs->exten.shift;
1097 	val |= extsel << adc->cfg->regs->extsel.shift;
1098 	stm32_adc_writel(adc,  adc->cfg->regs->exten.reg, val);
1099 	spin_unlock_irqrestore(&adc->lock, flags);
1100 
1101 	return 0;
1102 }
1103 
1104 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1105 				  const struct iio_chan_spec *chan,
1106 				  unsigned int type)
1107 {
1108 	struct stm32_adc *adc = iio_priv(indio_dev);
1109 
1110 	adc->trigger_polarity = type;
1111 
1112 	return 0;
1113 }
1114 
1115 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1116 				  const struct iio_chan_spec *chan)
1117 {
1118 	struct stm32_adc *adc = iio_priv(indio_dev);
1119 
1120 	return adc->trigger_polarity;
1121 }
1122 
1123 static const char * const stm32_trig_pol_items[] = {
1124 	"rising-edge", "falling-edge", "both-edges",
1125 };
1126 
1127 static const struct iio_enum stm32_adc_trig_pol = {
1128 	.items = stm32_trig_pol_items,
1129 	.num_items = ARRAY_SIZE(stm32_trig_pol_items),
1130 	.get = stm32_adc_get_trig_pol,
1131 	.set = stm32_adc_set_trig_pol,
1132 };
1133 
1134 /**
1135  * stm32_adc_single_conv() - Performs a single conversion
1136  * @indio_dev: IIO device
1137  * @chan: IIO channel
1138  * @res: conversion result
1139  *
1140  * The function performs a single conversion on a given channel:
1141  * - Apply sampling time settings
1142  * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1143  * - Use SW trigger
1144  * - Start conversion, then wait for interrupt completion.
1145  */
1146 static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1147 				 const struct iio_chan_spec *chan,
1148 				 int *res)
1149 {
1150 	struct stm32_adc *adc = iio_priv(indio_dev);
1151 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1152 	long timeout;
1153 	u32 val;
1154 	int ret;
1155 
1156 	reinit_completion(&adc->completion);
1157 
1158 	adc->bufi = 0;
1159 
1160 	if (adc->cfg->prepare) {
1161 		ret = adc->cfg->prepare(adc);
1162 		if (ret)
1163 			return ret;
1164 	}
1165 
1166 	/* Apply sampling time settings */
1167 	stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1168 	stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1169 
1170 	/* Program chan number in regular sequence (SQ1) */
1171 	val = stm32_adc_readl(adc, regs->sqr[1].reg);
1172 	val &= ~regs->sqr[1].mask;
1173 	val |= chan->channel << regs->sqr[1].shift;
1174 	stm32_adc_writel(adc, regs->sqr[1].reg, val);
1175 
1176 	/* Set regular sequence len (0 for 1 conversion) */
1177 	stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1178 
1179 	/* Trigger detection disabled (conversion can be launched in SW) */
1180 	stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1181 
1182 	stm32_adc_conv_irq_enable(adc);
1183 
1184 	adc->cfg->start_conv(adc, false);
1185 
1186 	timeout = wait_for_completion_interruptible_timeout(
1187 					&adc->completion, STM32_ADC_TIMEOUT);
1188 	if (timeout == 0) {
1189 		ret = -ETIMEDOUT;
1190 	} else if (timeout < 0) {
1191 		ret = timeout;
1192 	} else {
1193 		*res = adc->buffer[0];
1194 		ret = IIO_VAL_INT;
1195 	}
1196 
1197 	adc->cfg->stop_conv(adc);
1198 
1199 	stm32_adc_conv_irq_disable(adc);
1200 
1201 	if (adc->cfg->unprepare)
1202 		adc->cfg->unprepare(adc);
1203 
1204 	return ret;
1205 }
1206 
1207 static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1208 			      struct iio_chan_spec const *chan,
1209 			      int *val, int *val2, long mask)
1210 {
1211 	struct stm32_adc *adc = iio_priv(indio_dev);
1212 	int ret;
1213 
1214 	switch (mask) {
1215 	case IIO_CHAN_INFO_RAW:
1216 		ret = iio_device_claim_direct_mode(indio_dev);
1217 		if (ret)
1218 			return ret;
1219 		if (chan->type == IIO_VOLTAGE)
1220 			ret = stm32_adc_single_conv(indio_dev, chan, val);
1221 		else
1222 			ret = -EINVAL;
1223 		iio_device_release_direct_mode(indio_dev);
1224 		return ret;
1225 
1226 	case IIO_CHAN_INFO_SCALE:
1227 		if (chan->differential) {
1228 			*val = adc->common->vref_mv * 2;
1229 			*val2 = chan->scan_type.realbits;
1230 		} else {
1231 			*val = adc->common->vref_mv;
1232 			*val2 = chan->scan_type.realbits;
1233 		}
1234 		return IIO_VAL_FRACTIONAL_LOG2;
1235 
1236 	case IIO_CHAN_INFO_OFFSET:
1237 		if (chan->differential)
1238 			/* ADC_full_scale / 2 */
1239 			*val = -((1 << chan->scan_type.realbits) / 2);
1240 		else
1241 			*val = 0;
1242 		return IIO_VAL_INT;
1243 
1244 	default:
1245 		return -EINVAL;
1246 	}
1247 }
1248 
1249 static irqreturn_t stm32_adc_isr(int irq, void *data)
1250 {
1251 	struct stm32_adc *adc = data;
1252 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1253 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
1254 	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1255 
1256 	if (status & regs->isr_eoc.mask) {
1257 		/* Reading DR also clears EOC status flag */
1258 		adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1259 		if (iio_buffer_enabled(indio_dev)) {
1260 			adc->bufi++;
1261 			if (adc->bufi >= adc->num_conv) {
1262 				stm32_adc_conv_irq_disable(adc);
1263 				iio_trigger_poll(indio_dev->trig);
1264 			}
1265 		} else {
1266 			complete(&adc->completion);
1267 		}
1268 		return IRQ_HANDLED;
1269 	}
1270 
1271 	return IRQ_NONE;
1272 }
1273 
1274 /**
1275  * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1276  * @indio_dev: IIO device
1277  * @trig: new trigger
1278  *
1279  * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1280  * driver, -EINVAL otherwise.
1281  */
1282 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1283 				      struct iio_trigger *trig)
1284 {
1285 	return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1286 }
1287 
1288 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1289 {
1290 	struct stm32_adc *adc = iio_priv(indio_dev);
1291 	unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1292 	unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1293 
1294 	/*
1295 	 * dma cyclic transfers are used, buffer is split into two periods.
1296 	 * There should be :
1297 	 * - always one buffer (period) dma is working on
1298 	 * - one buffer (period) driver can push with iio_trigger_poll().
1299 	 */
1300 	watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1301 	adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1302 
1303 	return 0;
1304 }
1305 
1306 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1307 				      const unsigned long *scan_mask)
1308 {
1309 	struct stm32_adc *adc = iio_priv(indio_dev);
1310 	int ret;
1311 
1312 	adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1313 
1314 	ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1315 	if (ret)
1316 		return ret;
1317 
1318 	return 0;
1319 }
1320 
1321 static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1322 			      const struct of_phandle_args *iiospec)
1323 {
1324 	int i;
1325 
1326 	for (i = 0; i < indio_dev->num_channels; i++)
1327 		if (indio_dev->channels[i].channel == iiospec->args[0])
1328 			return i;
1329 
1330 	return -EINVAL;
1331 }
1332 
1333 /**
1334  * stm32_adc_debugfs_reg_access - read or write register value
1335  *
1336  * To read a value from an ADC register:
1337  *   echo [ADC reg offset] > direct_reg_access
1338  *   cat direct_reg_access
1339  *
1340  * To write a value in a ADC register:
1341  *   echo [ADC_reg_offset] [value] > direct_reg_access
1342  */
1343 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1344 					unsigned reg, unsigned writeval,
1345 					unsigned *readval)
1346 {
1347 	struct stm32_adc *adc = iio_priv(indio_dev);
1348 
1349 	if (!readval)
1350 		stm32_adc_writel(adc, reg, writeval);
1351 	else
1352 		*readval = stm32_adc_readl(adc, reg);
1353 
1354 	return 0;
1355 }
1356 
1357 static const struct iio_info stm32_adc_iio_info = {
1358 	.read_raw = stm32_adc_read_raw,
1359 	.validate_trigger = stm32_adc_validate_trigger,
1360 	.hwfifo_set_watermark = stm32_adc_set_watermark,
1361 	.update_scan_mode = stm32_adc_update_scan_mode,
1362 	.debugfs_reg_access = stm32_adc_debugfs_reg_access,
1363 	.of_xlate = stm32_adc_of_xlate,
1364 };
1365 
1366 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1367 {
1368 	struct dma_tx_state state;
1369 	enum dma_status status;
1370 
1371 	status = dmaengine_tx_status(adc->dma_chan,
1372 				     adc->dma_chan->cookie,
1373 				     &state);
1374 	if (status == DMA_IN_PROGRESS) {
1375 		/* Residue is size in bytes from end of buffer */
1376 		unsigned int i = adc->rx_buf_sz - state.residue;
1377 		unsigned int size;
1378 
1379 		/* Return available bytes */
1380 		if (i >= adc->bufi)
1381 			size = i - adc->bufi;
1382 		else
1383 			size = adc->rx_buf_sz + i - adc->bufi;
1384 
1385 		return size;
1386 	}
1387 
1388 	return 0;
1389 }
1390 
1391 static void stm32_adc_dma_buffer_done(void *data)
1392 {
1393 	struct iio_dev *indio_dev = data;
1394 
1395 	iio_trigger_poll_chained(indio_dev->trig);
1396 }
1397 
1398 static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1399 {
1400 	struct stm32_adc *adc = iio_priv(indio_dev);
1401 	struct dma_async_tx_descriptor *desc;
1402 	dma_cookie_t cookie;
1403 	int ret;
1404 
1405 	if (!adc->dma_chan)
1406 		return 0;
1407 
1408 	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1409 		adc->rx_buf_sz, adc->rx_buf_sz / 2);
1410 
1411 	/* Prepare a DMA cyclic transaction */
1412 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1413 					 adc->rx_dma_buf,
1414 					 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1415 					 DMA_DEV_TO_MEM,
1416 					 DMA_PREP_INTERRUPT);
1417 	if (!desc)
1418 		return -EBUSY;
1419 
1420 	desc->callback = stm32_adc_dma_buffer_done;
1421 	desc->callback_param = indio_dev;
1422 
1423 	cookie = dmaengine_submit(desc);
1424 	ret = dma_submit_error(cookie);
1425 	if (ret) {
1426 		dmaengine_terminate_all(adc->dma_chan);
1427 		return ret;
1428 	}
1429 
1430 	/* Issue pending DMA requests */
1431 	dma_async_issue_pending(adc->dma_chan);
1432 
1433 	return 0;
1434 }
1435 
1436 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1437 {
1438 	struct stm32_adc *adc = iio_priv(indio_dev);
1439 	int ret;
1440 
1441 	if (adc->cfg->prepare) {
1442 		ret = adc->cfg->prepare(adc);
1443 		if (ret)
1444 			return ret;
1445 	}
1446 
1447 	ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1448 	if (ret) {
1449 		dev_err(&indio_dev->dev, "Can't set trigger\n");
1450 		goto err_unprepare;
1451 	}
1452 
1453 	ret = stm32_adc_dma_start(indio_dev);
1454 	if (ret) {
1455 		dev_err(&indio_dev->dev, "Can't start dma\n");
1456 		goto err_clr_trig;
1457 	}
1458 
1459 	ret = iio_triggered_buffer_postenable(indio_dev);
1460 	if (ret < 0)
1461 		goto err_stop_dma;
1462 
1463 	/* Reset adc buffer index */
1464 	adc->bufi = 0;
1465 
1466 	if (!adc->dma_chan)
1467 		stm32_adc_conv_irq_enable(adc);
1468 
1469 	adc->cfg->start_conv(adc, !!adc->dma_chan);
1470 
1471 	return 0;
1472 
1473 err_stop_dma:
1474 	if (adc->dma_chan)
1475 		dmaengine_terminate_all(adc->dma_chan);
1476 err_clr_trig:
1477 	stm32_adc_set_trig(indio_dev, NULL);
1478 err_unprepare:
1479 	if (adc->cfg->unprepare)
1480 		adc->cfg->unprepare(adc);
1481 
1482 	return ret;
1483 }
1484 
1485 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1486 {
1487 	struct stm32_adc *adc = iio_priv(indio_dev);
1488 	int ret;
1489 
1490 	adc->cfg->stop_conv(adc);
1491 	if (!adc->dma_chan)
1492 		stm32_adc_conv_irq_disable(adc);
1493 
1494 	ret = iio_triggered_buffer_predisable(indio_dev);
1495 	if (ret < 0)
1496 		dev_err(&indio_dev->dev, "predisable failed\n");
1497 
1498 	if (adc->dma_chan)
1499 		dmaengine_terminate_all(adc->dma_chan);
1500 
1501 	if (stm32_adc_set_trig(indio_dev, NULL))
1502 		dev_err(&indio_dev->dev, "Can't clear trigger\n");
1503 
1504 	if (adc->cfg->unprepare)
1505 		adc->cfg->unprepare(adc);
1506 
1507 	return ret;
1508 }
1509 
1510 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1511 	.postenable = &stm32_adc_buffer_postenable,
1512 	.predisable = &stm32_adc_buffer_predisable,
1513 };
1514 
1515 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1516 {
1517 	struct iio_poll_func *pf = p;
1518 	struct iio_dev *indio_dev = pf->indio_dev;
1519 	struct stm32_adc *adc = iio_priv(indio_dev);
1520 
1521 	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1522 
1523 	if (!adc->dma_chan) {
1524 		/* reset buffer index */
1525 		adc->bufi = 0;
1526 		iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1527 						   pf->timestamp);
1528 	} else {
1529 		int residue = stm32_adc_dma_residue(adc);
1530 
1531 		while (residue >= indio_dev->scan_bytes) {
1532 			u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1533 
1534 			iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1535 							   pf->timestamp);
1536 			residue -= indio_dev->scan_bytes;
1537 			adc->bufi += indio_dev->scan_bytes;
1538 			if (adc->bufi >= adc->rx_buf_sz)
1539 				adc->bufi = 0;
1540 		}
1541 	}
1542 
1543 	iio_trigger_notify_done(indio_dev->trig);
1544 
1545 	/* re-enable eoc irq */
1546 	if (!adc->dma_chan)
1547 		stm32_adc_conv_irq_enable(adc);
1548 
1549 	return IRQ_HANDLED;
1550 }
1551 
1552 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1553 	IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1554 	{
1555 		.name = "trigger_polarity_available",
1556 		.shared = IIO_SHARED_BY_ALL,
1557 		.read = iio_enum_available_read,
1558 		.private = (uintptr_t)&stm32_adc_trig_pol,
1559 	},
1560 	{},
1561 };
1562 
1563 static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1564 {
1565 	struct device_node *node = indio_dev->dev.of_node;
1566 	struct stm32_adc *adc = iio_priv(indio_dev);
1567 	unsigned int i;
1568 	u32 res;
1569 
1570 	if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1571 		res = adc->cfg->adc_info->resolutions[0];
1572 
1573 	for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1574 		if (res == adc->cfg->adc_info->resolutions[i])
1575 			break;
1576 	if (i >= adc->cfg->adc_info->num_res) {
1577 		dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1578 		return -EINVAL;
1579 	}
1580 
1581 	dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1582 	adc->res = i;
1583 
1584 	return 0;
1585 }
1586 
1587 static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1588 {
1589 	const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1590 	u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1591 	unsigned int smp, r = smpr->reg;
1592 
1593 	/* Determine sampling time (ADC clock cycles) */
1594 	period_ns = NSEC_PER_SEC / adc->common->rate;
1595 	for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1596 		if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1597 			break;
1598 	if (smp > STM32_ADC_MAX_SMP)
1599 		smp = STM32_ADC_MAX_SMP;
1600 
1601 	/* pre-build sampling time registers (e.g. smpr1, smpr2) */
1602 	adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1603 }
1604 
1605 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1606 				    struct iio_chan_spec *chan, u32 vinp,
1607 				    u32 vinn, int scan_index, bool differential)
1608 {
1609 	struct stm32_adc *adc = iio_priv(indio_dev);
1610 	char *name = adc->chan_name[vinp];
1611 
1612 	chan->type = IIO_VOLTAGE;
1613 	chan->channel = vinp;
1614 	if (differential) {
1615 		chan->differential = 1;
1616 		chan->channel2 = vinn;
1617 		snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1618 	} else {
1619 		snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1620 	}
1621 	chan->datasheet_name = name;
1622 	chan->scan_index = scan_index;
1623 	chan->indexed = 1;
1624 	chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1625 	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1626 					 BIT(IIO_CHAN_INFO_OFFSET);
1627 	chan->scan_type.sign = 'u';
1628 	chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1629 	chan->scan_type.storagebits = 16;
1630 	chan->ext_info = stm32_adc_ext_info;
1631 
1632 	/* pre-build selected channels mask */
1633 	adc->pcsel |= BIT(chan->channel);
1634 	if (differential) {
1635 		/* pre-build diff channels mask */
1636 		adc->difsel |= BIT(chan->channel);
1637 		/* Also add negative input to pre-selected channels */
1638 		adc->pcsel |= BIT(chan->channel2);
1639 	}
1640 }
1641 
1642 static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1643 {
1644 	struct device_node *node = indio_dev->dev.of_node;
1645 	struct stm32_adc *adc = iio_priv(indio_dev);
1646 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1647 	struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1648 	struct property *prop;
1649 	const __be32 *cur;
1650 	struct iio_chan_spec *channels;
1651 	int scan_index = 0, num_channels = 0, num_diff = 0, ret, i;
1652 	u32 val, smp = 0;
1653 
1654 	ret = of_property_count_u32_elems(node, "st,adc-channels");
1655 	if (ret > adc_info->max_channels) {
1656 		dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1657 		return -EINVAL;
1658 	} else if (ret > 0) {
1659 		num_channels += ret;
1660 	}
1661 
1662 	ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1663 					      sizeof(*diff));
1664 	if (ret > adc_info->max_channels) {
1665 		dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1666 		return -EINVAL;
1667 	} else if (ret > 0) {
1668 		int size = ret * sizeof(*diff) / sizeof(u32);
1669 
1670 		num_diff = ret;
1671 		num_channels += ret;
1672 		ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1673 						 (u32 *)diff, size);
1674 		if (ret)
1675 			return ret;
1676 	}
1677 
1678 	if (!num_channels) {
1679 		dev_err(&indio_dev->dev, "No channels configured\n");
1680 		return -ENODATA;
1681 	}
1682 
1683 	/* Optional sample time is provided either for each, or all channels */
1684 	ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1685 	if (ret > 1 && ret != num_channels) {
1686 		dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1687 		return -EINVAL;
1688 	}
1689 
1690 	channels = devm_kcalloc(&indio_dev->dev, num_channels,
1691 				sizeof(struct iio_chan_spec), GFP_KERNEL);
1692 	if (!channels)
1693 		return -ENOMEM;
1694 
1695 	of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1696 		if (val >= adc_info->max_channels) {
1697 			dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1698 			return -EINVAL;
1699 		}
1700 
1701 		/* Channel can't be configured both as single-ended & diff */
1702 		for (i = 0; i < num_diff; i++) {
1703 			if (val == diff[i].vinp) {
1704 				dev_err(&indio_dev->dev,
1705 					"channel %d miss-configured\n",	val);
1706 				return -EINVAL;
1707 			}
1708 		}
1709 		stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1710 					0, scan_index, false);
1711 		scan_index++;
1712 	}
1713 
1714 	for (i = 0; i < num_diff; i++) {
1715 		if (diff[i].vinp >= adc_info->max_channels ||
1716 		    diff[i].vinn >= adc_info->max_channels) {
1717 			dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1718 				diff[i].vinp, diff[i].vinn);
1719 			return -EINVAL;
1720 		}
1721 		stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1722 					diff[i].vinp, diff[i].vinn, scan_index,
1723 					true);
1724 		scan_index++;
1725 	}
1726 
1727 	for (i = 0; i < scan_index; i++) {
1728 		/*
1729 		 * Using of_property_read_u32_index(), smp value will only be
1730 		 * modified if valid u32 value can be decoded. This allows to
1731 		 * get either no value, 1 shared value for all indexes, or one
1732 		 * value per channel.
1733 		 */
1734 		of_property_read_u32_index(node, "st,min-sample-time-nsecs",
1735 					   i, &smp);
1736 		/* Prepare sampling time settings */
1737 		stm32_adc_smpr_init(adc, channels[i].channel, smp);
1738 	}
1739 
1740 	indio_dev->num_channels = scan_index;
1741 	indio_dev->channels = channels;
1742 
1743 	return 0;
1744 }
1745 
1746 static int stm32_adc_dma_request(struct iio_dev *indio_dev)
1747 {
1748 	struct stm32_adc *adc = iio_priv(indio_dev);
1749 	struct dma_slave_config config;
1750 	int ret;
1751 
1752 	adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
1753 	if (!adc->dma_chan)
1754 		return 0;
1755 
1756 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1757 					 STM32_DMA_BUFFER_SIZE,
1758 					 &adc->rx_dma_buf, GFP_KERNEL);
1759 	if (!adc->rx_buf) {
1760 		ret = -ENOMEM;
1761 		goto err_release;
1762 	}
1763 
1764 	/* Configure DMA channel to read data register */
1765 	memset(&config, 0, sizeof(config));
1766 	config.src_addr = (dma_addr_t)adc->common->phys_base;
1767 	config.src_addr += adc->offset + adc->cfg->regs->dr;
1768 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1769 
1770 	ret = dmaengine_slave_config(adc->dma_chan, &config);
1771 	if (ret)
1772 		goto err_free;
1773 
1774 	return 0;
1775 
1776 err_free:
1777 	dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1778 			  adc->rx_buf, adc->rx_dma_buf);
1779 err_release:
1780 	dma_release_channel(adc->dma_chan);
1781 
1782 	return ret;
1783 }
1784 
1785 static int stm32_adc_probe(struct platform_device *pdev)
1786 {
1787 	struct iio_dev *indio_dev;
1788 	struct device *dev = &pdev->dev;
1789 	struct stm32_adc *adc;
1790 	int ret;
1791 
1792 	if (!pdev->dev.of_node)
1793 		return -ENODEV;
1794 
1795 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1796 	if (!indio_dev)
1797 		return -ENOMEM;
1798 
1799 	adc = iio_priv(indio_dev);
1800 	adc->common = dev_get_drvdata(pdev->dev.parent);
1801 	spin_lock_init(&adc->lock);
1802 	init_completion(&adc->completion);
1803 	adc->cfg = (const struct stm32_adc_cfg *)
1804 		of_match_device(dev->driver->of_match_table, dev)->data;
1805 
1806 	indio_dev->name = dev_name(&pdev->dev);
1807 	indio_dev->dev.parent = &pdev->dev;
1808 	indio_dev->dev.of_node = pdev->dev.of_node;
1809 	indio_dev->info = &stm32_adc_iio_info;
1810 	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
1811 
1812 	platform_set_drvdata(pdev, adc);
1813 
1814 	ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1815 	if (ret != 0) {
1816 		dev_err(&pdev->dev, "missing reg property\n");
1817 		return -EINVAL;
1818 	}
1819 
1820 	adc->irq = platform_get_irq(pdev, 0);
1821 	if (adc->irq < 0) {
1822 		dev_err(&pdev->dev, "failed to get irq\n");
1823 		return adc->irq;
1824 	}
1825 
1826 	ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1827 			       0, pdev->name, adc);
1828 	if (ret) {
1829 		dev_err(&pdev->dev, "failed to request IRQ\n");
1830 		return ret;
1831 	}
1832 
1833 	adc->clk = devm_clk_get(&pdev->dev, NULL);
1834 	if (IS_ERR(adc->clk)) {
1835 		ret = PTR_ERR(adc->clk);
1836 		if (ret == -ENOENT && !adc->cfg->clk_required) {
1837 			adc->clk = NULL;
1838 		} else {
1839 			dev_err(&pdev->dev, "Can't get clock\n");
1840 			return ret;
1841 		}
1842 	}
1843 
1844 	if (adc->clk) {
1845 		ret = clk_prepare_enable(adc->clk);
1846 		if (ret < 0) {
1847 			dev_err(&pdev->dev, "clk enable failed\n");
1848 			return ret;
1849 		}
1850 	}
1851 
1852 	ret = stm32_adc_of_get_resolution(indio_dev);
1853 	if (ret < 0)
1854 		goto err_clk_disable;
1855 	stm32_adc_set_res(adc);
1856 
1857 	if (adc->cfg->selfcalib) {
1858 		ret = adc->cfg->selfcalib(adc);
1859 		if (ret)
1860 			goto err_clk_disable;
1861 	}
1862 
1863 	ret = stm32_adc_chan_of_init(indio_dev);
1864 	if (ret < 0)
1865 		goto err_clk_disable;
1866 
1867 	ret = stm32_adc_dma_request(indio_dev);
1868 	if (ret < 0)
1869 		goto err_clk_disable;
1870 
1871 	ret = iio_triggered_buffer_setup(indio_dev,
1872 					 &iio_pollfunc_store_time,
1873 					 &stm32_adc_trigger_handler,
1874 					 &stm32_adc_buffer_setup_ops);
1875 	if (ret) {
1876 		dev_err(&pdev->dev, "buffer setup failed\n");
1877 		goto err_dma_disable;
1878 	}
1879 
1880 	ret = iio_device_register(indio_dev);
1881 	if (ret) {
1882 		dev_err(&pdev->dev, "iio dev register failed\n");
1883 		goto err_buffer_cleanup;
1884 	}
1885 
1886 	return 0;
1887 
1888 err_buffer_cleanup:
1889 	iio_triggered_buffer_cleanup(indio_dev);
1890 
1891 err_dma_disable:
1892 	if (adc->dma_chan) {
1893 		dma_free_coherent(adc->dma_chan->device->dev,
1894 				  STM32_DMA_BUFFER_SIZE,
1895 				  adc->rx_buf, adc->rx_dma_buf);
1896 		dma_release_channel(adc->dma_chan);
1897 	}
1898 err_clk_disable:
1899 	if (adc->clk)
1900 		clk_disable_unprepare(adc->clk);
1901 
1902 	return ret;
1903 }
1904 
1905 static int stm32_adc_remove(struct platform_device *pdev)
1906 {
1907 	struct stm32_adc *adc = platform_get_drvdata(pdev);
1908 	struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1909 
1910 	iio_device_unregister(indio_dev);
1911 	iio_triggered_buffer_cleanup(indio_dev);
1912 	if (adc->dma_chan) {
1913 		dma_free_coherent(adc->dma_chan->device->dev,
1914 				  STM32_DMA_BUFFER_SIZE,
1915 				  adc->rx_buf, adc->rx_dma_buf);
1916 		dma_release_channel(adc->dma_chan);
1917 	}
1918 	if (adc->clk)
1919 		clk_disable_unprepare(adc->clk);
1920 
1921 	return 0;
1922 }
1923 
1924 static const struct stm32_adc_cfg stm32f4_adc_cfg = {
1925 	.regs = &stm32f4_adc_regspec,
1926 	.adc_info = &stm32f4_adc_info,
1927 	.trigs = stm32f4_adc_trigs,
1928 	.clk_required = true,
1929 	.start_conv = stm32f4_adc_start_conv,
1930 	.stop_conv = stm32f4_adc_stop_conv,
1931 	.smp_cycles = stm32f4_adc_smp_cycles,
1932 };
1933 
1934 static const struct stm32_adc_cfg stm32h7_adc_cfg = {
1935 	.regs = &stm32h7_adc_regspec,
1936 	.adc_info = &stm32h7_adc_info,
1937 	.trigs = stm32h7_adc_trigs,
1938 	.selfcalib = stm32h7_adc_selfcalib,
1939 	.start_conv = stm32h7_adc_start_conv,
1940 	.stop_conv = stm32h7_adc_stop_conv,
1941 	.prepare = stm32h7_adc_prepare,
1942 	.unprepare = stm32h7_adc_unprepare,
1943 	.smp_cycles = stm32h7_adc_smp_cycles,
1944 };
1945 
1946 static const struct of_device_id stm32_adc_of_match[] = {
1947 	{ .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
1948 	{ .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
1949 	{},
1950 };
1951 MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
1952 
1953 static struct platform_driver stm32_adc_driver = {
1954 	.probe = stm32_adc_probe,
1955 	.remove = stm32_adc_remove,
1956 	.driver = {
1957 		.name = "stm32-adc",
1958 		.of_match_table = stm32_adc_of_match,
1959 	},
1960 };
1961 module_platform_driver(stm32_adc_driver);
1962 
1963 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
1964 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
1965 MODULE_LICENSE("GPL v2");
1966 MODULE_ALIAS("platform:stm32-adc");
1967