1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file is part of STM32 ADC driver 4 * 5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved 6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>. 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/delay.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/iio/iio.h> 14 #include <linux/iio/buffer.h> 15 #include <linux/iio/timer/stm32-lptim-trigger.h> 16 #include <linux/iio/timer/stm32-timer-trigger.h> 17 #include <linux/iio/trigger.h> 18 #include <linux/iio/trigger_consumer.h> 19 #include <linux/iio/triggered_buffer.h> 20 #include <linux/interrupt.h> 21 #include <linux/io.h> 22 #include <linux/iopoll.h> 23 #include <linux/module.h> 24 #include <linux/platform_device.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/of.h> 27 #include <linux/of_device.h> 28 29 #include "stm32-adc-core.h" 30 31 /* Number of linear calibration shadow registers / LINCALRDYW control bits */ 32 #define STM32H7_LINCALFACT_NUM 6 33 34 /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */ 35 #define STM32H7_BOOST_CLKRATE 20000000UL 36 37 #define STM32_ADC_CH_MAX 20 /* max number of channels */ 38 #define STM32_ADC_CH_SZ 10 /* max channel name size */ 39 #define STM32_ADC_MAX_SQ 16 /* SQ1..SQ16 */ 40 #define STM32_ADC_MAX_SMP 7 /* SMPx range is [0..7] */ 41 #define STM32_ADC_TIMEOUT_US 100000 42 #define STM32_ADC_TIMEOUT (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000)) 43 #define STM32_ADC_HW_STOP_DELAY_MS 100 44 45 #define STM32_DMA_BUFFER_SIZE PAGE_SIZE 46 47 /* External trigger enable */ 48 enum stm32_adc_exten { 49 STM32_EXTEN_SWTRIG, 50 STM32_EXTEN_HWTRIG_RISING_EDGE, 51 STM32_EXTEN_HWTRIG_FALLING_EDGE, 52 STM32_EXTEN_HWTRIG_BOTH_EDGES, 53 }; 54 55 /* extsel - trigger mux selection value */ 56 enum stm32_adc_extsel { 57 STM32_EXT0, 58 STM32_EXT1, 59 STM32_EXT2, 60 STM32_EXT3, 61 STM32_EXT4, 62 STM32_EXT5, 63 STM32_EXT6, 64 STM32_EXT7, 65 STM32_EXT8, 66 STM32_EXT9, 67 STM32_EXT10, 68 STM32_EXT11, 69 STM32_EXT12, 70 STM32_EXT13, 71 STM32_EXT14, 72 STM32_EXT15, 73 STM32_EXT16, 74 STM32_EXT17, 75 STM32_EXT18, 76 STM32_EXT19, 77 STM32_EXT20, 78 }; 79 80 /** 81 * struct stm32_adc_trig_info - ADC trigger info 82 * @name: name of the trigger, corresponding to its source 83 * @extsel: trigger selection 84 */ 85 struct stm32_adc_trig_info { 86 const char *name; 87 enum stm32_adc_extsel extsel; 88 }; 89 90 /** 91 * struct stm32_adc_calib - optional adc calibration data 92 * @calfact_s: Calibration offset for single ended channels 93 * @calfact_d: Calibration offset in differential 94 * @lincalfact: Linearity calibration factor 95 * @calibrated: Indicates calibration status 96 */ 97 struct stm32_adc_calib { 98 u32 calfact_s; 99 u32 calfact_d; 100 u32 lincalfact[STM32H7_LINCALFACT_NUM]; 101 bool calibrated; 102 }; 103 104 /** 105 * struct stm32_adc_regs - stm32 ADC misc registers & bitfield desc 106 * @reg: register offset 107 * @mask: bitfield mask 108 * @shift: left shift 109 */ 110 struct stm32_adc_regs { 111 int reg; 112 int mask; 113 int shift; 114 }; 115 116 /** 117 * struct stm32_adc_regspec - stm32 registers definition 118 * @dr: data register offset 119 * @ier_eoc: interrupt enable register & eocie bitfield 120 * @ier_ovr: interrupt enable register & overrun bitfield 121 * @isr_eoc: interrupt status register & eoc bitfield 122 * @isr_ovr: interrupt status register & overrun bitfield 123 * @sqr: reference to sequence registers array 124 * @exten: trigger control register & bitfield 125 * @extsel: trigger selection register & bitfield 126 * @res: resolution selection register & bitfield 127 * @smpr: smpr1 & smpr2 registers offset array 128 * @smp_bits: smpr1 & smpr2 index and bitfields 129 */ 130 struct stm32_adc_regspec { 131 const u32 dr; 132 const struct stm32_adc_regs ier_eoc; 133 const struct stm32_adc_regs ier_ovr; 134 const struct stm32_adc_regs isr_eoc; 135 const struct stm32_adc_regs isr_ovr; 136 const struct stm32_adc_regs *sqr; 137 const struct stm32_adc_regs exten; 138 const struct stm32_adc_regs extsel; 139 const struct stm32_adc_regs res; 140 const u32 smpr[2]; 141 const struct stm32_adc_regs *smp_bits; 142 }; 143 144 struct stm32_adc; 145 146 /** 147 * struct stm32_adc_cfg - stm32 compatible configuration data 148 * @regs: registers descriptions 149 * @adc_info: per instance input channels definitions 150 * @trigs: external trigger sources 151 * @clk_required: clock is required 152 * @has_vregready: vregready status flag presence 153 * @prepare: optional prepare routine (power-up, enable) 154 * @start_conv: routine to start conversions 155 * @stop_conv: routine to stop conversions 156 * @unprepare: optional unprepare routine (disable, power-down) 157 * @smp_cycles: programmable sampling time (ADC clock cycles) 158 */ 159 struct stm32_adc_cfg { 160 const struct stm32_adc_regspec *regs; 161 const struct stm32_adc_info *adc_info; 162 struct stm32_adc_trig_info *trigs; 163 bool clk_required; 164 bool has_vregready; 165 int (*prepare)(struct iio_dev *); 166 void (*start_conv)(struct iio_dev *, bool dma); 167 void (*stop_conv)(struct iio_dev *); 168 void (*unprepare)(struct iio_dev *); 169 const unsigned int *smp_cycles; 170 }; 171 172 /** 173 * struct stm32_adc - private data of each ADC IIO instance 174 * @common: reference to ADC block common data 175 * @offset: ADC instance register offset in ADC block 176 * @cfg: compatible configuration data 177 * @completion: end of single conversion completion 178 * @buffer: data buffer 179 * @clk: clock for this adc instance 180 * @irq: interrupt for this adc instance 181 * @lock: spinlock 182 * @bufi: data buffer index 183 * @num_conv: expected number of scan conversions 184 * @res: data resolution (e.g. RES bitfield value) 185 * @trigger_polarity: external trigger polarity (e.g. exten) 186 * @dma_chan: dma channel 187 * @rx_buf: dma rx buffer cpu address 188 * @rx_dma_buf: dma rx buffer bus address 189 * @rx_buf_sz: dma rx buffer size 190 * @difsel: bitmask to set single-ended/differential channel 191 * @pcsel: bitmask to preselect channels on some devices 192 * @smpr_val: sampling time settings (e.g. smpr1 / smpr2) 193 * @cal: optional calibration data on some devices 194 * @chan_name: channel name array 195 */ 196 struct stm32_adc { 197 struct stm32_adc_common *common; 198 u32 offset; 199 const struct stm32_adc_cfg *cfg; 200 struct completion completion; 201 u16 buffer[STM32_ADC_MAX_SQ]; 202 struct clk *clk; 203 int irq; 204 spinlock_t lock; /* interrupt lock */ 205 unsigned int bufi; 206 unsigned int num_conv; 207 u32 res; 208 u32 trigger_polarity; 209 struct dma_chan *dma_chan; 210 u8 *rx_buf; 211 dma_addr_t rx_dma_buf; 212 unsigned int rx_buf_sz; 213 u32 difsel; 214 u32 pcsel; 215 u32 smpr_val[2]; 216 struct stm32_adc_calib cal; 217 char chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ]; 218 }; 219 220 struct stm32_adc_diff_channel { 221 u32 vinp; 222 u32 vinn; 223 }; 224 225 /** 226 * struct stm32_adc_info - stm32 ADC, per instance config data 227 * @max_channels: Number of channels 228 * @resolutions: available resolutions 229 * @num_res: number of available resolutions 230 */ 231 struct stm32_adc_info { 232 int max_channels; 233 const unsigned int *resolutions; 234 const unsigned int num_res; 235 }; 236 237 static const unsigned int stm32f4_adc_resolutions[] = { 238 /* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */ 239 12, 10, 8, 6, 240 }; 241 242 /* stm32f4 can have up to 16 channels */ 243 static const struct stm32_adc_info stm32f4_adc_info = { 244 .max_channels = 16, 245 .resolutions = stm32f4_adc_resolutions, 246 .num_res = ARRAY_SIZE(stm32f4_adc_resolutions), 247 }; 248 249 static const unsigned int stm32h7_adc_resolutions[] = { 250 /* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */ 251 16, 14, 12, 10, 8, 252 }; 253 254 /* stm32h7 can have up to 20 channels */ 255 static const struct stm32_adc_info stm32h7_adc_info = { 256 .max_channels = STM32_ADC_CH_MAX, 257 .resolutions = stm32h7_adc_resolutions, 258 .num_res = ARRAY_SIZE(stm32h7_adc_resolutions), 259 }; 260 261 /* 262 * stm32f4_sq - describe regular sequence registers 263 * - L: sequence len (register & bit field) 264 * - SQ1..SQ16: sequence entries (register & bit field) 265 */ 266 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = { 267 /* L: len bit field description to be kept as first element */ 268 { STM32F4_ADC_SQR1, GENMASK(23, 20), 20 }, 269 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */ 270 { STM32F4_ADC_SQR3, GENMASK(4, 0), 0 }, 271 { STM32F4_ADC_SQR3, GENMASK(9, 5), 5 }, 272 { STM32F4_ADC_SQR3, GENMASK(14, 10), 10 }, 273 { STM32F4_ADC_SQR3, GENMASK(19, 15), 15 }, 274 { STM32F4_ADC_SQR3, GENMASK(24, 20), 20 }, 275 { STM32F4_ADC_SQR3, GENMASK(29, 25), 25 }, 276 { STM32F4_ADC_SQR2, GENMASK(4, 0), 0 }, 277 { STM32F4_ADC_SQR2, GENMASK(9, 5), 5 }, 278 { STM32F4_ADC_SQR2, GENMASK(14, 10), 10 }, 279 { STM32F4_ADC_SQR2, GENMASK(19, 15), 15 }, 280 { STM32F4_ADC_SQR2, GENMASK(24, 20), 20 }, 281 { STM32F4_ADC_SQR2, GENMASK(29, 25), 25 }, 282 { STM32F4_ADC_SQR1, GENMASK(4, 0), 0 }, 283 { STM32F4_ADC_SQR1, GENMASK(9, 5), 5 }, 284 { STM32F4_ADC_SQR1, GENMASK(14, 10), 10 }, 285 { STM32F4_ADC_SQR1, GENMASK(19, 15), 15 }, 286 }; 287 288 /* STM32F4 external trigger sources for all instances */ 289 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = { 290 { TIM1_CH1, STM32_EXT0 }, 291 { TIM1_CH2, STM32_EXT1 }, 292 { TIM1_CH3, STM32_EXT2 }, 293 { TIM2_CH2, STM32_EXT3 }, 294 { TIM2_CH3, STM32_EXT4 }, 295 { TIM2_CH4, STM32_EXT5 }, 296 { TIM2_TRGO, STM32_EXT6 }, 297 { TIM3_CH1, STM32_EXT7 }, 298 { TIM3_TRGO, STM32_EXT8 }, 299 { TIM4_CH4, STM32_EXT9 }, 300 { TIM5_CH1, STM32_EXT10 }, 301 { TIM5_CH2, STM32_EXT11 }, 302 { TIM5_CH3, STM32_EXT12 }, 303 { TIM8_CH1, STM32_EXT13 }, 304 { TIM8_TRGO, STM32_EXT14 }, 305 {}, /* sentinel */ 306 }; 307 308 /* 309 * stm32f4_smp_bits[] - describe sampling time register index & bit fields 310 * Sorted so it can be indexed by channel number. 311 */ 312 static const struct stm32_adc_regs stm32f4_smp_bits[] = { 313 /* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */ 314 { 1, GENMASK(2, 0), 0 }, 315 { 1, GENMASK(5, 3), 3 }, 316 { 1, GENMASK(8, 6), 6 }, 317 { 1, GENMASK(11, 9), 9 }, 318 { 1, GENMASK(14, 12), 12 }, 319 { 1, GENMASK(17, 15), 15 }, 320 { 1, GENMASK(20, 18), 18 }, 321 { 1, GENMASK(23, 21), 21 }, 322 { 1, GENMASK(26, 24), 24 }, 323 { 1, GENMASK(29, 27), 27 }, 324 /* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */ 325 { 0, GENMASK(2, 0), 0 }, 326 { 0, GENMASK(5, 3), 3 }, 327 { 0, GENMASK(8, 6), 6 }, 328 { 0, GENMASK(11, 9), 9 }, 329 { 0, GENMASK(14, 12), 12 }, 330 { 0, GENMASK(17, 15), 15 }, 331 { 0, GENMASK(20, 18), 18 }, 332 { 0, GENMASK(23, 21), 21 }, 333 { 0, GENMASK(26, 24), 24 }, 334 }; 335 336 /* STM32F4 programmable sampling time (ADC clock cycles) */ 337 static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = { 338 3, 15, 28, 56, 84, 112, 144, 480, 339 }; 340 341 static const struct stm32_adc_regspec stm32f4_adc_regspec = { 342 .dr = STM32F4_ADC_DR, 343 .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE }, 344 .ier_ovr = { STM32F4_ADC_CR1, STM32F4_OVRIE }, 345 .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC }, 346 .isr_ovr = { STM32F4_ADC_SR, STM32F4_OVR }, 347 .sqr = stm32f4_sq, 348 .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT }, 349 .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK, 350 STM32F4_EXTSEL_SHIFT }, 351 .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT }, 352 .smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 }, 353 .smp_bits = stm32f4_smp_bits, 354 }; 355 356 static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = { 357 /* L: len bit field description to be kept as first element */ 358 { STM32H7_ADC_SQR1, GENMASK(3, 0), 0 }, 359 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */ 360 { STM32H7_ADC_SQR1, GENMASK(10, 6), 6 }, 361 { STM32H7_ADC_SQR1, GENMASK(16, 12), 12 }, 362 { STM32H7_ADC_SQR1, GENMASK(22, 18), 18 }, 363 { STM32H7_ADC_SQR1, GENMASK(28, 24), 24 }, 364 { STM32H7_ADC_SQR2, GENMASK(4, 0), 0 }, 365 { STM32H7_ADC_SQR2, GENMASK(10, 6), 6 }, 366 { STM32H7_ADC_SQR2, GENMASK(16, 12), 12 }, 367 { STM32H7_ADC_SQR2, GENMASK(22, 18), 18 }, 368 { STM32H7_ADC_SQR2, GENMASK(28, 24), 24 }, 369 { STM32H7_ADC_SQR3, GENMASK(4, 0), 0 }, 370 { STM32H7_ADC_SQR3, GENMASK(10, 6), 6 }, 371 { STM32H7_ADC_SQR3, GENMASK(16, 12), 12 }, 372 { STM32H7_ADC_SQR3, GENMASK(22, 18), 18 }, 373 { STM32H7_ADC_SQR3, GENMASK(28, 24), 24 }, 374 { STM32H7_ADC_SQR4, GENMASK(4, 0), 0 }, 375 { STM32H7_ADC_SQR4, GENMASK(10, 6), 6 }, 376 }; 377 378 /* STM32H7 external trigger sources for all instances */ 379 static struct stm32_adc_trig_info stm32h7_adc_trigs[] = { 380 { TIM1_CH1, STM32_EXT0 }, 381 { TIM1_CH2, STM32_EXT1 }, 382 { TIM1_CH3, STM32_EXT2 }, 383 { TIM2_CH2, STM32_EXT3 }, 384 { TIM3_TRGO, STM32_EXT4 }, 385 { TIM4_CH4, STM32_EXT5 }, 386 { TIM8_TRGO, STM32_EXT7 }, 387 { TIM8_TRGO2, STM32_EXT8 }, 388 { TIM1_TRGO, STM32_EXT9 }, 389 { TIM1_TRGO2, STM32_EXT10 }, 390 { TIM2_TRGO, STM32_EXT11 }, 391 { TIM4_TRGO, STM32_EXT12 }, 392 { TIM6_TRGO, STM32_EXT13 }, 393 { TIM15_TRGO, STM32_EXT14 }, 394 { TIM3_CH4, STM32_EXT15 }, 395 { LPTIM1_OUT, STM32_EXT18 }, 396 { LPTIM2_OUT, STM32_EXT19 }, 397 { LPTIM3_OUT, STM32_EXT20 }, 398 {}, 399 }; 400 401 /* 402 * stm32h7_smp_bits - describe sampling time register index & bit fields 403 * Sorted so it can be indexed by channel number. 404 */ 405 static const struct stm32_adc_regs stm32h7_smp_bits[] = { 406 /* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */ 407 { 0, GENMASK(2, 0), 0 }, 408 { 0, GENMASK(5, 3), 3 }, 409 { 0, GENMASK(8, 6), 6 }, 410 { 0, GENMASK(11, 9), 9 }, 411 { 0, GENMASK(14, 12), 12 }, 412 { 0, GENMASK(17, 15), 15 }, 413 { 0, GENMASK(20, 18), 18 }, 414 { 0, GENMASK(23, 21), 21 }, 415 { 0, GENMASK(26, 24), 24 }, 416 { 0, GENMASK(29, 27), 27 }, 417 /* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */ 418 { 1, GENMASK(2, 0), 0 }, 419 { 1, GENMASK(5, 3), 3 }, 420 { 1, GENMASK(8, 6), 6 }, 421 { 1, GENMASK(11, 9), 9 }, 422 { 1, GENMASK(14, 12), 12 }, 423 { 1, GENMASK(17, 15), 15 }, 424 { 1, GENMASK(20, 18), 18 }, 425 { 1, GENMASK(23, 21), 21 }, 426 { 1, GENMASK(26, 24), 24 }, 427 { 1, GENMASK(29, 27), 27 }, 428 }; 429 430 /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */ 431 static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = { 432 1, 2, 8, 16, 32, 64, 387, 810, 433 }; 434 435 static const struct stm32_adc_regspec stm32h7_adc_regspec = { 436 .dr = STM32H7_ADC_DR, 437 .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE }, 438 .ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE }, 439 .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC }, 440 .isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR }, 441 .sqr = stm32h7_sq, 442 .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT }, 443 .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK, 444 STM32H7_EXTSEL_SHIFT }, 445 .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT }, 446 .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 }, 447 .smp_bits = stm32h7_smp_bits, 448 }; 449 450 /** 451 * STM32 ADC registers access routines 452 * @adc: stm32 adc instance 453 * @reg: reg offset in adc instance 454 * 455 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp. 456 * for adc1, adc2 and adc3. 457 */ 458 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg) 459 { 460 return readl_relaxed(adc->common->base + adc->offset + reg); 461 } 462 463 #define stm32_adc_readl_addr(addr) stm32_adc_readl(adc, addr) 464 465 #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \ 466 readx_poll_timeout(stm32_adc_readl_addr, reg, val, \ 467 cond, sleep_us, timeout_us) 468 469 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg) 470 { 471 return readw_relaxed(adc->common->base + adc->offset + reg); 472 } 473 474 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val) 475 { 476 writel_relaxed(val, adc->common->base + adc->offset + reg); 477 } 478 479 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits) 480 { 481 unsigned long flags; 482 483 spin_lock_irqsave(&adc->lock, flags); 484 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits); 485 spin_unlock_irqrestore(&adc->lock, flags); 486 } 487 488 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits) 489 { 490 unsigned long flags; 491 492 spin_lock_irqsave(&adc->lock, flags); 493 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits); 494 spin_unlock_irqrestore(&adc->lock, flags); 495 } 496 497 /** 498 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt 499 * @adc: stm32 adc instance 500 */ 501 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc) 502 { 503 stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg, 504 adc->cfg->regs->ier_eoc.mask); 505 }; 506 507 /** 508 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt 509 * @adc: stm32 adc instance 510 */ 511 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc) 512 { 513 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg, 514 adc->cfg->regs->ier_eoc.mask); 515 } 516 517 static void stm32_adc_ovr_irq_enable(struct stm32_adc *adc) 518 { 519 stm32_adc_set_bits(adc, adc->cfg->regs->ier_ovr.reg, 520 adc->cfg->regs->ier_ovr.mask); 521 } 522 523 static void stm32_adc_ovr_irq_disable(struct stm32_adc *adc) 524 { 525 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_ovr.reg, 526 adc->cfg->regs->ier_ovr.mask); 527 } 528 529 static void stm32_adc_set_res(struct stm32_adc *adc) 530 { 531 const struct stm32_adc_regs *res = &adc->cfg->regs->res; 532 u32 val; 533 534 val = stm32_adc_readl(adc, res->reg); 535 val = (val & ~res->mask) | (adc->res << res->shift); 536 stm32_adc_writel(adc, res->reg, val); 537 } 538 539 static int stm32_adc_hw_stop(struct device *dev) 540 { 541 struct iio_dev *indio_dev = dev_get_drvdata(dev); 542 struct stm32_adc *adc = iio_priv(indio_dev); 543 544 if (adc->cfg->unprepare) 545 adc->cfg->unprepare(indio_dev); 546 547 if (adc->clk) 548 clk_disable_unprepare(adc->clk); 549 550 return 0; 551 } 552 553 static int stm32_adc_hw_start(struct device *dev) 554 { 555 struct iio_dev *indio_dev = dev_get_drvdata(dev); 556 struct stm32_adc *adc = iio_priv(indio_dev); 557 int ret; 558 559 if (adc->clk) { 560 ret = clk_prepare_enable(adc->clk); 561 if (ret) 562 return ret; 563 } 564 565 stm32_adc_set_res(adc); 566 567 if (adc->cfg->prepare) { 568 ret = adc->cfg->prepare(indio_dev); 569 if (ret) 570 goto err_clk_dis; 571 } 572 573 return 0; 574 575 err_clk_dis: 576 if (adc->clk) 577 clk_disable_unprepare(adc->clk); 578 579 return ret; 580 } 581 582 /** 583 * stm32f4_adc_start_conv() - Start conversions for regular channels. 584 * @indio_dev: IIO device instance 585 * @dma: use dma to transfer conversion result 586 * 587 * Start conversions for regular channels. 588 * Also take care of normal or DMA mode. Circular DMA may be used for regular 589 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct 590 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA). 591 */ 592 static void stm32f4_adc_start_conv(struct iio_dev *indio_dev, bool dma) 593 { 594 struct stm32_adc *adc = iio_priv(indio_dev); 595 596 stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN); 597 598 if (dma) 599 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, 600 STM32F4_DMA | STM32F4_DDS); 601 602 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON); 603 604 /* Wait for Power-up time (tSTAB from datasheet) */ 605 usleep_range(2, 3); 606 607 /* Software start ? (e.g. trigger detection disabled ?) */ 608 if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK)) 609 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART); 610 } 611 612 static void stm32f4_adc_stop_conv(struct iio_dev *indio_dev) 613 { 614 struct stm32_adc *adc = iio_priv(indio_dev); 615 616 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK); 617 stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT); 618 619 stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN); 620 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, 621 STM32F4_ADON | STM32F4_DMA | STM32F4_DDS); 622 } 623 624 static void stm32h7_adc_start_conv(struct iio_dev *indio_dev, bool dma) 625 { 626 struct stm32_adc *adc = iio_priv(indio_dev); 627 enum stm32h7_adc_dmngt dmngt; 628 unsigned long flags; 629 u32 val; 630 631 if (dma) 632 dmngt = STM32H7_DMNGT_DMA_CIRC; 633 else 634 dmngt = STM32H7_DMNGT_DR_ONLY; 635 636 spin_lock_irqsave(&adc->lock, flags); 637 val = stm32_adc_readl(adc, STM32H7_ADC_CFGR); 638 val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT); 639 stm32_adc_writel(adc, STM32H7_ADC_CFGR, val); 640 spin_unlock_irqrestore(&adc->lock, flags); 641 642 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART); 643 } 644 645 static void stm32h7_adc_stop_conv(struct iio_dev *indio_dev) 646 { 647 struct stm32_adc *adc = iio_priv(indio_dev); 648 int ret; 649 u32 val; 650 651 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP); 652 653 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val, 654 !(val & (STM32H7_ADSTART)), 655 100, STM32_ADC_TIMEOUT_US); 656 if (ret) 657 dev_warn(&indio_dev->dev, "stop failed\n"); 658 659 stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK); 660 } 661 662 static int stm32h7_adc_exit_pwr_down(struct iio_dev *indio_dev) 663 { 664 struct stm32_adc *adc = iio_priv(indio_dev); 665 int ret; 666 u32 val; 667 668 /* Exit deep power down, then enable ADC voltage regulator */ 669 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD); 670 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN); 671 672 if (adc->common->rate > STM32H7_BOOST_CLKRATE) 673 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST); 674 675 /* Wait for startup time */ 676 if (!adc->cfg->has_vregready) { 677 usleep_range(10, 20); 678 return 0; 679 } 680 681 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val, 682 val & STM32MP1_VREGREADY, 100, 683 STM32_ADC_TIMEOUT_US); 684 if (ret) { 685 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD); 686 dev_err(&indio_dev->dev, "Failed to exit power down\n"); 687 } 688 689 return ret; 690 } 691 692 static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc) 693 { 694 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST); 695 696 /* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */ 697 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD); 698 } 699 700 static int stm32h7_adc_enable(struct iio_dev *indio_dev) 701 { 702 struct stm32_adc *adc = iio_priv(indio_dev); 703 int ret; 704 u32 val; 705 706 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN); 707 708 /* Poll for ADRDY to be set (after adc startup time) */ 709 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val, 710 val & STM32H7_ADRDY, 711 100, STM32_ADC_TIMEOUT_US); 712 if (ret) { 713 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS); 714 dev_err(&indio_dev->dev, "Failed to enable ADC\n"); 715 } else { 716 /* Clear ADRDY by writing one */ 717 stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY); 718 } 719 720 return ret; 721 } 722 723 static void stm32h7_adc_disable(struct iio_dev *indio_dev) 724 { 725 struct stm32_adc *adc = iio_priv(indio_dev); 726 int ret; 727 u32 val; 728 729 /* Disable ADC and wait until it's effectively disabled */ 730 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS); 731 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val, 732 !(val & STM32H7_ADEN), 100, 733 STM32_ADC_TIMEOUT_US); 734 if (ret) 735 dev_warn(&indio_dev->dev, "Failed to disable\n"); 736 } 737 738 /** 739 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result 740 * @indio_dev: IIO device instance 741 * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable 742 */ 743 static int stm32h7_adc_read_selfcalib(struct iio_dev *indio_dev) 744 { 745 struct stm32_adc *adc = iio_priv(indio_dev); 746 int i, ret; 747 u32 lincalrdyw_mask, val; 748 749 /* Read linearity calibration */ 750 lincalrdyw_mask = STM32H7_LINCALRDYW6; 751 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) { 752 /* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */ 753 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask); 754 755 /* Poll: wait calib data to be ready in CALFACT2 register */ 756 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val, 757 !(val & lincalrdyw_mask), 758 100, STM32_ADC_TIMEOUT_US); 759 if (ret) { 760 dev_err(&indio_dev->dev, "Failed to read calfact\n"); 761 return ret; 762 } 763 764 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2); 765 adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK); 766 adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT; 767 768 lincalrdyw_mask >>= 1; 769 } 770 771 /* Read offset calibration */ 772 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT); 773 adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK); 774 adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT; 775 adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK); 776 adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT; 777 adc->cal.calibrated = true; 778 779 return 0; 780 } 781 782 /** 783 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result 784 * @indio_dev: IIO device instance 785 * Note: ADC must be enabled, with no on-going conversions. 786 */ 787 static int stm32h7_adc_restore_selfcalib(struct iio_dev *indio_dev) 788 { 789 struct stm32_adc *adc = iio_priv(indio_dev); 790 int i, ret; 791 u32 lincalrdyw_mask, val; 792 793 val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) | 794 (adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT); 795 stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val); 796 797 lincalrdyw_mask = STM32H7_LINCALRDYW6; 798 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) { 799 /* 800 * Write saved calibration data to shadow registers: 801 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger 802 * data write. Then poll to wait for complete transfer. 803 */ 804 val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT; 805 stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val); 806 stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask); 807 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val, 808 val & lincalrdyw_mask, 809 100, STM32_ADC_TIMEOUT_US); 810 if (ret) { 811 dev_err(&indio_dev->dev, "Failed to write calfact\n"); 812 return ret; 813 } 814 815 /* 816 * Read back calibration data, has two effects: 817 * - It ensures bits LINCALRDYW[6..1] are kept cleared 818 * for next time calibration needs to be restored. 819 * - BTW, bit clear triggers a read, then check data has been 820 * correctly written. 821 */ 822 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask); 823 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val, 824 !(val & lincalrdyw_mask), 825 100, STM32_ADC_TIMEOUT_US); 826 if (ret) { 827 dev_err(&indio_dev->dev, "Failed to read calfact\n"); 828 return ret; 829 } 830 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2); 831 if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) { 832 dev_err(&indio_dev->dev, "calfact not consistent\n"); 833 return -EIO; 834 } 835 836 lincalrdyw_mask >>= 1; 837 } 838 839 return 0; 840 } 841 842 /** 843 * Fixed timeout value for ADC calibration. 844 * worst cases: 845 * - low clock frequency 846 * - maximum prescalers 847 * Calibration requires: 848 * - 131,072 ADC clock cycle for the linear calibration 849 * - 20 ADC clock cycle for the offset calibration 850 * 851 * Set to 100ms for now 852 */ 853 #define STM32H7_ADC_CALIB_TIMEOUT_US 100000 854 855 /** 856 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC 857 * @indio_dev: IIO device instance 858 * Note: Must be called once ADC is out of power down. 859 */ 860 static int stm32h7_adc_selfcalib(struct iio_dev *indio_dev) 861 { 862 struct stm32_adc *adc = iio_priv(indio_dev); 863 int ret; 864 u32 val; 865 866 if (adc->cal.calibrated) 867 return true; 868 869 /* 870 * Select calibration mode: 871 * - Offset calibration for single ended inputs 872 * - No linearity calibration (do it later, before reading it) 873 */ 874 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF); 875 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN); 876 877 /* Start calibration, then wait for completion */ 878 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL); 879 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val, 880 !(val & STM32H7_ADCAL), 100, 881 STM32H7_ADC_CALIB_TIMEOUT_US); 882 if (ret) { 883 dev_err(&indio_dev->dev, "calibration failed\n"); 884 goto out; 885 } 886 887 /* 888 * Select calibration mode, then start calibration: 889 * - Offset calibration for differential input 890 * - Linearity calibration (needs to be done only once for single/diff) 891 * will run simultaneously with offset calibration. 892 */ 893 stm32_adc_set_bits(adc, STM32H7_ADC_CR, 894 STM32H7_ADCALDIF | STM32H7_ADCALLIN); 895 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL); 896 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val, 897 !(val & STM32H7_ADCAL), 100, 898 STM32H7_ADC_CALIB_TIMEOUT_US); 899 if (ret) { 900 dev_err(&indio_dev->dev, "calibration failed\n"); 901 goto out; 902 } 903 904 out: 905 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, 906 STM32H7_ADCALDIF | STM32H7_ADCALLIN); 907 908 return ret; 909 } 910 911 /** 912 * stm32h7_adc_prepare() - Leave power down mode to enable ADC. 913 * @indio_dev: IIO device instance 914 * Leave power down mode. 915 * Configure channels as single ended or differential before enabling ADC. 916 * Enable ADC. 917 * Restore calibration data. 918 * Pre-select channels that may be used in PCSEL (required by input MUX / IO): 919 * - Only one input is selected for single ended (e.g. 'vinp') 920 * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn') 921 */ 922 static int stm32h7_adc_prepare(struct iio_dev *indio_dev) 923 { 924 struct stm32_adc *adc = iio_priv(indio_dev); 925 int calib, ret; 926 927 ret = stm32h7_adc_exit_pwr_down(indio_dev); 928 if (ret) 929 return ret; 930 931 ret = stm32h7_adc_selfcalib(indio_dev); 932 if (ret < 0) 933 goto pwr_dwn; 934 calib = ret; 935 936 stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel); 937 938 ret = stm32h7_adc_enable(indio_dev); 939 if (ret) 940 goto pwr_dwn; 941 942 /* Either restore or read calibration result for future reference */ 943 if (calib) 944 ret = stm32h7_adc_restore_selfcalib(indio_dev); 945 else 946 ret = stm32h7_adc_read_selfcalib(indio_dev); 947 if (ret) 948 goto disable; 949 950 stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel); 951 952 return 0; 953 954 disable: 955 stm32h7_adc_disable(indio_dev); 956 pwr_dwn: 957 stm32h7_adc_enter_pwr_down(adc); 958 959 return ret; 960 } 961 962 static void stm32h7_adc_unprepare(struct iio_dev *indio_dev) 963 { 964 struct stm32_adc *adc = iio_priv(indio_dev); 965 966 stm32h7_adc_disable(indio_dev); 967 stm32h7_adc_enter_pwr_down(adc); 968 } 969 970 /** 971 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence 972 * @indio_dev: IIO device 973 * @scan_mask: channels to be converted 974 * 975 * Conversion sequence : 976 * Apply sampling time settings for all channels. 977 * Configure ADC scan sequence based on selected channels in scan_mask. 978 * Add channels to SQR registers, from scan_mask LSB to MSB, then 979 * program sequence len. 980 */ 981 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev, 982 const unsigned long *scan_mask) 983 { 984 struct stm32_adc *adc = iio_priv(indio_dev); 985 const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr; 986 const struct iio_chan_spec *chan; 987 u32 val, bit; 988 int i = 0; 989 990 /* Apply sampling time settings */ 991 stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]); 992 stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]); 993 994 for_each_set_bit(bit, scan_mask, indio_dev->masklength) { 995 chan = indio_dev->channels + bit; 996 /* 997 * Assign one channel per SQ entry in regular 998 * sequence, starting with SQ1. 999 */ 1000 i++; 1001 if (i > STM32_ADC_MAX_SQ) 1002 return -EINVAL; 1003 1004 dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n", 1005 __func__, chan->channel, i); 1006 1007 val = stm32_adc_readl(adc, sqr[i].reg); 1008 val &= ~sqr[i].mask; 1009 val |= chan->channel << sqr[i].shift; 1010 stm32_adc_writel(adc, sqr[i].reg, val); 1011 } 1012 1013 if (!i) 1014 return -EINVAL; 1015 1016 /* Sequence len */ 1017 val = stm32_adc_readl(adc, sqr[0].reg); 1018 val &= ~sqr[0].mask; 1019 val |= ((i - 1) << sqr[0].shift); 1020 stm32_adc_writel(adc, sqr[0].reg, val); 1021 1022 return 0; 1023 } 1024 1025 /** 1026 * stm32_adc_get_trig_extsel() - Get external trigger selection 1027 * @indio_dev: IIO device structure 1028 * @trig: trigger 1029 * 1030 * Returns trigger extsel value, if trig matches, -EINVAL otherwise. 1031 */ 1032 static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev, 1033 struct iio_trigger *trig) 1034 { 1035 struct stm32_adc *adc = iio_priv(indio_dev); 1036 int i; 1037 1038 /* lookup triggers registered by stm32 timer trigger driver */ 1039 for (i = 0; adc->cfg->trigs[i].name; i++) { 1040 /** 1041 * Checking both stm32 timer trigger type and trig name 1042 * should be safe against arbitrary trigger names. 1043 */ 1044 if ((is_stm32_timer_trigger(trig) || 1045 is_stm32_lptim_trigger(trig)) && 1046 !strcmp(adc->cfg->trigs[i].name, trig->name)) { 1047 return adc->cfg->trigs[i].extsel; 1048 } 1049 } 1050 1051 return -EINVAL; 1052 } 1053 1054 /** 1055 * stm32_adc_set_trig() - Set a regular trigger 1056 * @indio_dev: IIO device 1057 * @trig: IIO trigger 1058 * 1059 * Set trigger source/polarity (e.g. SW, or HW with polarity) : 1060 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw) 1061 * - if HW trigger enabled, set source & polarity 1062 */ 1063 static int stm32_adc_set_trig(struct iio_dev *indio_dev, 1064 struct iio_trigger *trig) 1065 { 1066 struct stm32_adc *adc = iio_priv(indio_dev); 1067 u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG; 1068 unsigned long flags; 1069 int ret; 1070 1071 if (trig) { 1072 ret = stm32_adc_get_trig_extsel(indio_dev, trig); 1073 if (ret < 0) 1074 return ret; 1075 1076 /* set trigger source and polarity (default to rising edge) */ 1077 extsel = ret; 1078 exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE; 1079 } 1080 1081 spin_lock_irqsave(&adc->lock, flags); 1082 val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg); 1083 val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask); 1084 val |= exten << adc->cfg->regs->exten.shift; 1085 val |= extsel << adc->cfg->regs->extsel.shift; 1086 stm32_adc_writel(adc, adc->cfg->regs->exten.reg, val); 1087 spin_unlock_irqrestore(&adc->lock, flags); 1088 1089 return 0; 1090 } 1091 1092 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev, 1093 const struct iio_chan_spec *chan, 1094 unsigned int type) 1095 { 1096 struct stm32_adc *adc = iio_priv(indio_dev); 1097 1098 adc->trigger_polarity = type; 1099 1100 return 0; 1101 } 1102 1103 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev, 1104 const struct iio_chan_spec *chan) 1105 { 1106 struct stm32_adc *adc = iio_priv(indio_dev); 1107 1108 return adc->trigger_polarity; 1109 } 1110 1111 static const char * const stm32_trig_pol_items[] = { 1112 "rising-edge", "falling-edge", "both-edges", 1113 }; 1114 1115 static const struct iio_enum stm32_adc_trig_pol = { 1116 .items = stm32_trig_pol_items, 1117 .num_items = ARRAY_SIZE(stm32_trig_pol_items), 1118 .get = stm32_adc_get_trig_pol, 1119 .set = stm32_adc_set_trig_pol, 1120 }; 1121 1122 /** 1123 * stm32_adc_single_conv() - Performs a single conversion 1124 * @indio_dev: IIO device 1125 * @chan: IIO channel 1126 * @res: conversion result 1127 * 1128 * The function performs a single conversion on a given channel: 1129 * - Apply sampling time settings 1130 * - Program sequencer with one channel (e.g. in SQ1 with len = 1) 1131 * - Use SW trigger 1132 * - Start conversion, then wait for interrupt completion. 1133 */ 1134 static int stm32_adc_single_conv(struct iio_dev *indio_dev, 1135 const struct iio_chan_spec *chan, 1136 int *res) 1137 { 1138 struct stm32_adc *adc = iio_priv(indio_dev); 1139 struct device *dev = indio_dev->dev.parent; 1140 const struct stm32_adc_regspec *regs = adc->cfg->regs; 1141 long timeout; 1142 u32 val; 1143 int ret; 1144 1145 reinit_completion(&adc->completion); 1146 1147 adc->bufi = 0; 1148 1149 ret = pm_runtime_get_sync(dev); 1150 if (ret < 0) { 1151 pm_runtime_put_noidle(dev); 1152 return ret; 1153 } 1154 1155 /* Apply sampling time settings */ 1156 stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]); 1157 stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]); 1158 1159 /* Program chan number in regular sequence (SQ1) */ 1160 val = stm32_adc_readl(adc, regs->sqr[1].reg); 1161 val &= ~regs->sqr[1].mask; 1162 val |= chan->channel << regs->sqr[1].shift; 1163 stm32_adc_writel(adc, regs->sqr[1].reg, val); 1164 1165 /* Set regular sequence len (0 for 1 conversion) */ 1166 stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask); 1167 1168 /* Trigger detection disabled (conversion can be launched in SW) */ 1169 stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask); 1170 1171 stm32_adc_conv_irq_enable(adc); 1172 1173 adc->cfg->start_conv(indio_dev, false); 1174 1175 timeout = wait_for_completion_interruptible_timeout( 1176 &adc->completion, STM32_ADC_TIMEOUT); 1177 if (timeout == 0) { 1178 ret = -ETIMEDOUT; 1179 } else if (timeout < 0) { 1180 ret = timeout; 1181 } else { 1182 *res = adc->buffer[0]; 1183 ret = IIO_VAL_INT; 1184 } 1185 1186 adc->cfg->stop_conv(indio_dev); 1187 1188 stm32_adc_conv_irq_disable(adc); 1189 1190 pm_runtime_mark_last_busy(dev); 1191 pm_runtime_put_autosuspend(dev); 1192 1193 return ret; 1194 } 1195 1196 static int stm32_adc_read_raw(struct iio_dev *indio_dev, 1197 struct iio_chan_spec const *chan, 1198 int *val, int *val2, long mask) 1199 { 1200 struct stm32_adc *adc = iio_priv(indio_dev); 1201 int ret; 1202 1203 switch (mask) { 1204 case IIO_CHAN_INFO_RAW: 1205 ret = iio_device_claim_direct_mode(indio_dev); 1206 if (ret) 1207 return ret; 1208 if (chan->type == IIO_VOLTAGE) 1209 ret = stm32_adc_single_conv(indio_dev, chan, val); 1210 else 1211 ret = -EINVAL; 1212 iio_device_release_direct_mode(indio_dev); 1213 return ret; 1214 1215 case IIO_CHAN_INFO_SCALE: 1216 if (chan->differential) { 1217 *val = adc->common->vref_mv * 2; 1218 *val2 = chan->scan_type.realbits; 1219 } else { 1220 *val = adc->common->vref_mv; 1221 *val2 = chan->scan_type.realbits; 1222 } 1223 return IIO_VAL_FRACTIONAL_LOG2; 1224 1225 case IIO_CHAN_INFO_OFFSET: 1226 if (chan->differential) 1227 /* ADC_full_scale / 2 */ 1228 *val = -((1 << chan->scan_type.realbits) / 2); 1229 else 1230 *val = 0; 1231 return IIO_VAL_INT; 1232 1233 default: 1234 return -EINVAL; 1235 } 1236 } 1237 1238 static irqreturn_t stm32_adc_threaded_isr(int irq, void *data) 1239 { 1240 struct iio_dev *indio_dev = data; 1241 struct stm32_adc *adc = iio_priv(indio_dev); 1242 const struct stm32_adc_regspec *regs = adc->cfg->regs; 1243 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg); 1244 1245 if (status & regs->isr_ovr.mask) 1246 dev_err(&indio_dev->dev, "Overrun, stopping: restart needed\n"); 1247 1248 return IRQ_HANDLED; 1249 } 1250 1251 static irqreturn_t stm32_adc_isr(int irq, void *data) 1252 { 1253 struct iio_dev *indio_dev = data; 1254 struct stm32_adc *adc = iio_priv(indio_dev); 1255 const struct stm32_adc_regspec *regs = adc->cfg->regs; 1256 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg); 1257 1258 if (status & regs->isr_ovr.mask) { 1259 /* 1260 * Overrun occurred on regular conversions: data for wrong 1261 * channel may be read. Unconditionally disable interrupts 1262 * to stop processing data and print error message. 1263 * Restarting the capture can be done by disabling, then 1264 * re-enabling it (e.g. write 0, then 1 to buffer/enable). 1265 */ 1266 stm32_adc_ovr_irq_disable(adc); 1267 stm32_adc_conv_irq_disable(adc); 1268 return IRQ_WAKE_THREAD; 1269 } 1270 1271 if (status & regs->isr_eoc.mask) { 1272 /* Reading DR also clears EOC status flag */ 1273 adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr); 1274 if (iio_buffer_enabled(indio_dev)) { 1275 adc->bufi++; 1276 if (adc->bufi >= adc->num_conv) { 1277 stm32_adc_conv_irq_disable(adc); 1278 iio_trigger_poll(indio_dev->trig); 1279 } 1280 } else { 1281 complete(&adc->completion); 1282 } 1283 return IRQ_HANDLED; 1284 } 1285 1286 return IRQ_NONE; 1287 } 1288 1289 /** 1290 * stm32_adc_validate_trigger() - validate trigger for stm32 adc 1291 * @indio_dev: IIO device 1292 * @trig: new trigger 1293 * 1294 * Returns: 0 if trig matches one of the triggers registered by stm32 adc 1295 * driver, -EINVAL otherwise. 1296 */ 1297 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev, 1298 struct iio_trigger *trig) 1299 { 1300 return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0; 1301 } 1302 1303 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val) 1304 { 1305 struct stm32_adc *adc = iio_priv(indio_dev); 1306 unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2; 1307 unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE; 1308 1309 /* 1310 * dma cyclic transfers are used, buffer is split into two periods. 1311 * There should be : 1312 * - always one buffer (period) dma is working on 1313 * - one buffer (period) driver can push with iio_trigger_poll(). 1314 */ 1315 watermark = min(watermark, val * (unsigned)(sizeof(u16))); 1316 adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv); 1317 1318 return 0; 1319 } 1320 1321 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev, 1322 const unsigned long *scan_mask) 1323 { 1324 struct stm32_adc *adc = iio_priv(indio_dev); 1325 struct device *dev = indio_dev->dev.parent; 1326 int ret; 1327 1328 ret = pm_runtime_get_sync(dev); 1329 if (ret < 0) { 1330 pm_runtime_put_noidle(dev); 1331 return ret; 1332 } 1333 1334 adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength); 1335 1336 ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask); 1337 pm_runtime_mark_last_busy(dev); 1338 pm_runtime_put_autosuspend(dev); 1339 1340 return ret; 1341 } 1342 1343 static int stm32_adc_of_xlate(struct iio_dev *indio_dev, 1344 const struct of_phandle_args *iiospec) 1345 { 1346 int i; 1347 1348 for (i = 0; i < indio_dev->num_channels; i++) 1349 if (indio_dev->channels[i].channel == iiospec->args[0]) 1350 return i; 1351 1352 return -EINVAL; 1353 } 1354 1355 /** 1356 * stm32_adc_debugfs_reg_access - read or write register value 1357 * @indio_dev: IIO device structure 1358 * @reg: register offset 1359 * @writeval: value to write 1360 * @readval: value to read 1361 * 1362 * To read a value from an ADC register: 1363 * echo [ADC reg offset] > direct_reg_access 1364 * cat direct_reg_access 1365 * 1366 * To write a value in a ADC register: 1367 * echo [ADC_reg_offset] [value] > direct_reg_access 1368 */ 1369 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev, 1370 unsigned reg, unsigned writeval, 1371 unsigned *readval) 1372 { 1373 struct stm32_adc *adc = iio_priv(indio_dev); 1374 struct device *dev = indio_dev->dev.parent; 1375 int ret; 1376 1377 ret = pm_runtime_get_sync(dev); 1378 if (ret < 0) { 1379 pm_runtime_put_noidle(dev); 1380 return ret; 1381 } 1382 1383 if (!readval) 1384 stm32_adc_writel(adc, reg, writeval); 1385 else 1386 *readval = stm32_adc_readl(adc, reg); 1387 1388 pm_runtime_mark_last_busy(dev); 1389 pm_runtime_put_autosuspend(dev); 1390 1391 return 0; 1392 } 1393 1394 static const struct iio_info stm32_adc_iio_info = { 1395 .read_raw = stm32_adc_read_raw, 1396 .validate_trigger = stm32_adc_validate_trigger, 1397 .hwfifo_set_watermark = stm32_adc_set_watermark, 1398 .update_scan_mode = stm32_adc_update_scan_mode, 1399 .debugfs_reg_access = stm32_adc_debugfs_reg_access, 1400 .of_xlate = stm32_adc_of_xlate, 1401 }; 1402 1403 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc) 1404 { 1405 struct dma_tx_state state; 1406 enum dma_status status; 1407 1408 status = dmaengine_tx_status(adc->dma_chan, 1409 adc->dma_chan->cookie, 1410 &state); 1411 if (status == DMA_IN_PROGRESS) { 1412 /* Residue is size in bytes from end of buffer */ 1413 unsigned int i = adc->rx_buf_sz - state.residue; 1414 unsigned int size; 1415 1416 /* Return available bytes */ 1417 if (i >= adc->bufi) 1418 size = i - adc->bufi; 1419 else 1420 size = adc->rx_buf_sz + i - adc->bufi; 1421 1422 return size; 1423 } 1424 1425 return 0; 1426 } 1427 1428 static void stm32_adc_dma_buffer_done(void *data) 1429 { 1430 struct iio_dev *indio_dev = data; 1431 struct stm32_adc *adc = iio_priv(indio_dev); 1432 int residue = stm32_adc_dma_residue(adc); 1433 1434 /* 1435 * In DMA mode the trigger services of IIO are not used 1436 * (e.g. no call to iio_trigger_poll). 1437 * Calling irq handler associated to the hardware trigger is not 1438 * relevant as the conversions have already been done. Data 1439 * transfers are performed directly in DMA callback instead. 1440 * This implementation avoids to call trigger irq handler that 1441 * may sleep, in an atomic context (DMA irq handler context). 1442 */ 1443 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi); 1444 1445 while (residue >= indio_dev->scan_bytes) { 1446 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi]; 1447 1448 iio_push_to_buffers(indio_dev, buffer); 1449 1450 residue -= indio_dev->scan_bytes; 1451 adc->bufi += indio_dev->scan_bytes; 1452 if (adc->bufi >= adc->rx_buf_sz) 1453 adc->bufi = 0; 1454 } 1455 } 1456 1457 static int stm32_adc_dma_start(struct iio_dev *indio_dev) 1458 { 1459 struct stm32_adc *adc = iio_priv(indio_dev); 1460 struct dma_async_tx_descriptor *desc; 1461 dma_cookie_t cookie; 1462 int ret; 1463 1464 if (!adc->dma_chan) 1465 return 0; 1466 1467 dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__, 1468 adc->rx_buf_sz, adc->rx_buf_sz / 2); 1469 1470 /* Prepare a DMA cyclic transaction */ 1471 desc = dmaengine_prep_dma_cyclic(adc->dma_chan, 1472 adc->rx_dma_buf, 1473 adc->rx_buf_sz, adc->rx_buf_sz / 2, 1474 DMA_DEV_TO_MEM, 1475 DMA_PREP_INTERRUPT); 1476 if (!desc) 1477 return -EBUSY; 1478 1479 desc->callback = stm32_adc_dma_buffer_done; 1480 desc->callback_param = indio_dev; 1481 1482 cookie = dmaengine_submit(desc); 1483 ret = dma_submit_error(cookie); 1484 if (ret) { 1485 dmaengine_terminate_sync(adc->dma_chan); 1486 return ret; 1487 } 1488 1489 /* Issue pending DMA requests */ 1490 dma_async_issue_pending(adc->dma_chan); 1491 1492 return 0; 1493 } 1494 1495 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev) 1496 { 1497 struct stm32_adc *adc = iio_priv(indio_dev); 1498 struct device *dev = indio_dev->dev.parent; 1499 int ret; 1500 1501 ret = pm_runtime_get_sync(dev); 1502 if (ret < 0) { 1503 pm_runtime_put_noidle(dev); 1504 return ret; 1505 } 1506 1507 ret = stm32_adc_set_trig(indio_dev, indio_dev->trig); 1508 if (ret) { 1509 dev_err(&indio_dev->dev, "Can't set trigger\n"); 1510 goto err_pm_put; 1511 } 1512 1513 ret = stm32_adc_dma_start(indio_dev); 1514 if (ret) { 1515 dev_err(&indio_dev->dev, "Can't start dma\n"); 1516 goto err_clr_trig; 1517 } 1518 1519 /* Reset adc buffer index */ 1520 adc->bufi = 0; 1521 1522 stm32_adc_ovr_irq_enable(adc); 1523 1524 if (!adc->dma_chan) 1525 stm32_adc_conv_irq_enable(adc); 1526 1527 adc->cfg->start_conv(indio_dev, !!adc->dma_chan); 1528 1529 return 0; 1530 1531 err_clr_trig: 1532 stm32_adc_set_trig(indio_dev, NULL); 1533 err_pm_put: 1534 pm_runtime_mark_last_busy(dev); 1535 pm_runtime_put_autosuspend(dev); 1536 1537 return ret; 1538 } 1539 1540 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev) 1541 { 1542 struct stm32_adc *adc = iio_priv(indio_dev); 1543 struct device *dev = indio_dev->dev.parent; 1544 1545 adc->cfg->stop_conv(indio_dev); 1546 if (!adc->dma_chan) 1547 stm32_adc_conv_irq_disable(adc); 1548 1549 stm32_adc_ovr_irq_disable(adc); 1550 1551 if (adc->dma_chan) 1552 dmaengine_terminate_sync(adc->dma_chan); 1553 1554 if (stm32_adc_set_trig(indio_dev, NULL)) 1555 dev_err(&indio_dev->dev, "Can't clear trigger\n"); 1556 1557 pm_runtime_mark_last_busy(dev); 1558 pm_runtime_put_autosuspend(dev); 1559 1560 return 0; 1561 } 1562 1563 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = { 1564 .postenable = &stm32_adc_buffer_postenable, 1565 .predisable = &stm32_adc_buffer_predisable, 1566 }; 1567 1568 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p) 1569 { 1570 struct iio_poll_func *pf = p; 1571 struct iio_dev *indio_dev = pf->indio_dev; 1572 struct stm32_adc *adc = iio_priv(indio_dev); 1573 1574 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi); 1575 1576 if (!adc->dma_chan) { 1577 /* reset buffer index */ 1578 adc->bufi = 0; 1579 iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer, 1580 pf->timestamp); 1581 } else { 1582 int residue = stm32_adc_dma_residue(adc); 1583 1584 while (residue >= indio_dev->scan_bytes) { 1585 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi]; 1586 1587 iio_push_to_buffers_with_timestamp(indio_dev, buffer, 1588 pf->timestamp); 1589 residue -= indio_dev->scan_bytes; 1590 adc->bufi += indio_dev->scan_bytes; 1591 if (adc->bufi >= adc->rx_buf_sz) 1592 adc->bufi = 0; 1593 } 1594 } 1595 1596 iio_trigger_notify_done(indio_dev->trig); 1597 1598 /* re-enable eoc irq */ 1599 if (!adc->dma_chan) 1600 stm32_adc_conv_irq_enable(adc); 1601 1602 return IRQ_HANDLED; 1603 } 1604 1605 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = { 1606 IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol), 1607 { 1608 .name = "trigger_polarity_available", 1609 .shared = IIO_SHARED_BY_ALL, 1610 .read = iio_enum_available_read, 1611 .private = (uintptr_t)&stm32_adc_trig_pol, 1612 }, 1613 {}, 1614 }; 1615 1616 static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev) 1617 { 1618 struct device_node *node = indio_dev->dev.of_node; 1619 struct stm32_adc *adc = iio_priv(indio_dev); 1620 unsigned int i; 1621 u32 res; 1622 1623 if (of_property_read_u32(node, "assigned-resolution-bits", &res)) 1624 res = adc->cfg->adc_info->resolutions[0]; 1625 1626 for (i = 0; i < adc->cfg->adc_info->num_res; i++) 1627 if (res == adc->cfg->adc_info->resolutions[i]) 1628 break; 1629 if (i >= adc->cfg->adc_info->num_res) { 1630 dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res); 1631 return -EINVAL; 1632 } 1633 1634 dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res); 1635 adc->res = i; 1636 1637 return 0; 1638 } 1639 1640 static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns) 1641 { 1642 const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel]; 1643 u32 period_ns, shift = smpr->shift, mask = smpr->mask; 1644 unsigned int smp, r = smpr->reg; 1645 1646 /* Determine sampling time (ADC clock cycles) */ 1647 period_ns = NSEC_PER_SEC / adc->common->rate; 1648 for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++) 1649 if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns) 1650 break; 1651 if (smp > STM32_ADC_MAX_SMP) 1652 smp = STM32_ADC_MAX_SMP; 1653 1654 /* pre-build sampling time registers (e.g. smpr1, smpr2) */ 1655 adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift); 1656 } 1657 1658 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev, 1659 struct iio_chan_spec *chan, u32 vinp, 1660 u32 vinn, int scan_index, bool differential) 1661 { 1662 struct stm32_adc *adc = iio_priv(indio_dev); 1663 char *name = adc->chan_name[vinp]; 1664 1665 chan->type = IIO_VOLTAGE; 1666 chan->channel = vinp; 1667 if (differential) { 1668 chan->differential = 1; 1669 chan->channel2 = vinn; 1670 snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn); 1671 } else { 1672 snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp); 1673 } 1674 chan->datasheet_name = name; 1675 chan->scan_index = scan_index; 1676 chan->indexed = 1; 1677 chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW); 1678 chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | 1679 BIT(IIO_CHAN_INFO_OFFSET); 1680 chan->scan_type.sign = 'u'; 1681 chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res]; 1682 chan->scan_type.storagebits = 16; 1683 chan->ext_info = stm32_adc_ext_info; 1684 1685 /* pre-build selected channels mask */ 1686 adc->pcsel |= BIT(chan->channel); 1687 if (differential) { 1688 /* pre-build diff channels mask */ 1689 adc->difsel |= BIT(chan->channel); 1690 /* Also add negative input to pre-selected channels */ 1691 adc->pcsel |= BIT(chan->channel2); 1692 } 1693 } 1694 1695 static int stm32_adc_chan_of_init(struct iio_dev *indio_dev) 1696 { 1697 struct device_node *node = indio_dev->dev.of_node; 1698 struct stm32_adc *adc = iio_priv(indio_dev); 1699 const struct stm32_adc_info *adc_info = adc->cfg->adc_info; 1700 struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX]; 1701 struct property *prop; 1702 const __be32 *cur; 1703 struct iio_chan_spec *channels; 1704 int scan_index = 0, num_channels = 0, num_diff = 0, ret, i; 1705 u32 val, smp = 0; 1706 1707 ret = of_property_count_u32_elems(node, "st,adc-channels"); 1708 if (ret > adc_info->max_channels) { 1709 dev_err(&indio_dev->dev, "Bad st,adc-channels?\n"); 1710 return -EINVAL; 1711 } else if (ret > 0) { 1712 num_channels += ret; 1713 } 1714 1715 ret = of_property_count_elems_of_size(node, "st,adc-diff-channels", 1716 sizeof(*diff)); 1717 if (ret > adc_info->max_channels) { 1718 dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n"); 1719 return -EINVAL; 1720 } else if (ret > 0) { 1721 int size = ret * sizeof(*diff) / sizeof(u32); 1722 1723 num_diff = ret; 1724 num_channels += ret; 1725 ret = of_property_read_u32_array(node, "st,adc-diff-channels", 1726 (u32 *)diff, size); 1727 if (ret) 1728 return ret; 1729 } 1730 1731 if (!num_channels) { 1732 dev_err(&indio_dev->dev, "No channels configured\n"); 1733 return -ENODATA; 1734 } 1735 1736 /* Optional sample time is provided either for each, or all channels */ 1737 ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs"); 1738 if (ret > 1 && ret != num_channels) { 1739 dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n"); 1740 return -EINVAL; 1741 } 1742 1743 channels = devm_kcalloc(&indio_dev->dev, num_channels, 1744 sizeof(struct iio_chan_spec), GFP_KERNEL); 1745 if (!channels) 1746 return -ENOMEM; 1747 1748 of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) { 1749 if (val >= adc_info->max_channels) { 1750 dev_err(&indio_dev->dev, "Invalid channel %d\n", val); 1751 return -EINVAL; 1752 } 1753 1754 /* Channel can't be configured both as single-ended & diff */ 1755 for (i = 0; i < num_diff; i++) { 1756 if (val == diff[i].vinp) { 1757 dev_err(&indio_dev->dev, 1758 "channel %d miss-configured\n", val); 1759 return -EINVAL; 1760 } 1761 } 1762 stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val, 1763 0, scan_index, false); 1764 scan_index++; 1765 } 1766 1767 for (i = 0; i < num_diff; i++) { 1768 if (diff[i].vinp >= adc_info->max_channels || 1769 diff[i].vinn >= adc_info->max_channels) { 1770 dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n", 1771 diff[i].vinp, diff[i].vinn); 1772 return -EINVAL; 1773 } 1774 stm32_adc_chan_init_one(indio_dev, &channels[scan_index], 1775 diff[i].vinp, diff[i].vinn, scan_index, 1776 true); 1777 scan_index++; 1778 } 1779 1780 for (i = 0; i < scan_index; i++) { 1781 /* 1782 * Using of_property_read_u32_index(), smp value will only be 1783 * modified if valid u32 value can be decoded. This allows to 1784 * get either no value, 1 shared value for all indexes, or one 1785 * value per channel. 1786 */ 1787 of_property_read_u32_index(node, "st,min-sample-time-nsecs", 1788 i, &smp); 1789 /* Prepare sampling time settings */ 1790 stm32_adc_smpr_init(adc, channels[i].channel, smp); 1791 } 1792 1793 indio_dev->num_channels = scan_index; 1794 indio_dev->channels = channels; 1795 1796 return 0; 1797 } 1798 1799 static int stm32_adc_dma_request(struct device *dev, struct iio_dev *indio_dev) 1800 { 1801 struct stm32_adc *adc = iio_priv(indio_dev); 1802 struct dma_slave_config config; 1803 int ret; 1804 1805 adc->dma_chan = dma_request_chan(dev, "rx"); 1806 if (IS_ERR(adc->dma_chan)) { 1807 ret = PTR_ERR(adc->dma_chan); 1808 if (ret != -ENODEV) 1809 return dev_err_probe(dev, ret, 1810 "DMA channel request failed with\n"); 1811 1812 /* DMA is optional: fall back to IRQ mode */ 1813 adc->dma_chan = NULL; 1814 return 0; 1815 } 1816 1817 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev, 1818 STM32_DMA_BUFFER_SIZE, 1819 &adc->rx_dma_buf, GFP_KERNEL); 1820 if (!adc->rx_buf) { 1821 ret = -ENOMEM; 1822 goto err_release; 1823 } 1824 1825 /* Configure DMA channel to read data register */ 1826 memset(&config, 0, sizeof(config)); 1827 config.src_addr = (dma_addr_t)adc->common->phys_base; 1828 config.src_addr += adc->offset + adc->cfg->regs->dr; 1829 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 1830 1831 ret = dmaengine_slave_config(adc->dma_chan, &config); 1832 if (ret) 1833 goto err_free; 1834 1835 return 0; 1836 1837 err_free: 1838 dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE, 1839 adc->rx_buf, adc->rx_dma_buf); 1840 err_release: 1841 dma_release_channel(adc->dma_chan); 1842 1843 return ret; 1844 } 1845 1846 static int stm32_adc_probe(struct platform_device *pdev) 1847 { 1848 struct iio_dev *indio_dev; 1849 struct device *dev = &pdev->dev; 1850 irqreturn_t (*handler)(int irq, void *p) = NULL; 1851 struct stm32_adc *adc; 1852 int ret; 1853 1854 if (!pdev->dev.of_node) 1855 return -ENODEV; 1856 1857 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc)); 1858 if (!indio_dev) 1859 return -ENOMEM; 1860 1861 adc = iio_priv(indio_dev); 1862 adc->common = dev_get_drvdata(pdev->dev.parent); 1863 spin_lock_init(&adc->lock); 1864 init_completion(&adc->completion); 1865 adc->cfg = (const struct stm32_adc_cfg *) 1866 of_match_device(dev->driver->of_match_table, dev)->data; 1867 1868 indio_dev->name = dev_name(&pdev->dev); 1869 indio_dev->dev.of_node = pdev->dev.of_node; 1870 indio_dev->info = &stm32_adc_iio_info; 1871 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED; 1872 1873 platform_set_drvdata(pdev, indio_dev); 1874 1875 ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset); 1876 if (ret != 0) { 1877 dev_err(&pdev->dev, "missing reg property\n"); 1878 return -EINVAL; 1879 } 1880 1881 adc->irq = platform_get_irq(pdev, 0); 1882 if (adc->irq < 0) 1883 return adc->irq; 1884 1885 ret = devm_request_threaded_irq(&pdev->dev, adc->irq, stm32_adc_isr, 1886 stm32_adc_threaded_isr, 1887 0, pdev->name, indio_dev); 1888 if (ret) { 1889 dev_err(&pdev->dev, "failed to request IRQ\n"); 1890 return ret; 1891 } 1892 1893 adc->clk = devm_clk_get(&pdev->dev, NULL); 1894 if (IS_ERR(adc->clk)) { 1895 ret = PTR_ERR(adc->clk); 1896 if (ret == -ENOENT && !adc->cfg->clk_required) { 1897 adc->clk = NULL; 1898 } else { 1899 dev_err(&pdev->dev, "Can't get clock\n"); 1900 return ret; 1901 } 1902 } 1903 1904 ret = stm32_adc_of_get_resolution(indio_dev); 1905 if (ret < 0) 1906 return ret; 1907 1908 ret = stm32_adc_chan_of_init(indio_dev); 1909 if (ret < 0) 1910 return ret; 1911 1912 ret = stm32_adc_dma_request(dev, indio_dev); 1913 if (ret < 0) 1914 return ret; 1915 1916 if (!adc->dma_chan) 1917 handler = &stm32_adc_trigger_handler; 1918 1919 ret = iio_triggered_buffer_setup(indio_dev, 1920 &iio_pollfunc_store_time, handler, 1921 &stm32_adc_buffer_setup_ops); 1922 if (ret) { 1923 dev_err(&pdev->dev, "buffer setup failed\n"); 1924 goto err_dma_disable; 1925 } 1926 1927 /* Get stm32-adc-core PM online */ 1928 pm_runtime_get_noresume(dev); 1929 pm_runtime_set_active(dev); 1930 pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS); 1931 pm_runtime_use_autosuspend(dev); 1932 pm_runtime_enable(dev); 1933 1934 ret = stm32_adc_hw_start(dev); 1935 if (ret) 1936 goto err_buffer_cleanup; 1937 1938 ret = iio_device_register(indio_dev); 1939 if (ret) { 1940 dev_err(&pdev->dev, "iio dev register failed\n"); 1941 goto err_hw_stop; 1942 } 1943 1944 pm_runtime_mark_last_busy(dev); 1945 pm_runtime_put_autosuspend(dev); 1946 1947 return 0; 1948 1949 err_hw_stop: 1950 stm32_adc_hw_stop(dev); 1951 1952 err_buffer_cleanup: 1953 pm_runtime_disable(dev); 1954 pm_runtime_set_suspended(dev); 1955 pm_runtime_put_noidle(dev); 1956 iio_triggered_buffer_cleanup(indio_dev); 1957 1958 err_dma_disable: 1959 if (adc->dma_chan) { 1960 dma_free_coherent(adc->dma_chan->device->dev, 1961 STM32_DMA_BUFFER_SIZE, 1962 adc->rx_buf, adc->rx_dma_buf); 1963 dma_release_channel(adc->dma_chan); 1964 } 1965 1966 return ret; 1967 } 1968 1969 static int stm32_adc_remove(struct platform_device *pdev) 1970 { 1971 struct iio_dev *indio_dev = platform_get_drvdata(pdev); 1972 struct stm32_adc *adc = iio_priv(indio_dev); 1973 1974 pm_runtime_get_sync(&pdev->dev); 1975 iio_device_unregister(indio_dev); 1976 stm32_adc_hw_stop(&pdev->dev); 1977 pm_runtime_disable(&pdev->dev); 1978 pm_runtime_set_suspended(&pdev->dev); 1979 pm_runtime_put_noidle(&pdev->dev); 1980 iio_triggered_buffer_cleanup(indio_dev); 1981 if (adc->dma_chan) { 1982 dma_free_coherent(adc->dma_chan->device->dev, 1983 STM32_DMA_BUFFER_SIZE, 1984 adc->rx_buf, adc->rx_dma_buf); 1985 dma_release_channel(adc->dma_chan); 1986 } 1987 1988 return 0; 1989 } 1990 1991 #if defined(CONFIG_PM_SLEEP) 1992 static int stm32_adc_suspend(struct device *dev) 1993 { 1994 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1995 1996 if (iio_buffer_enabled(indio_dev)) 1997 stm32_adc_buffer_predisable(indio_dev); 1998 1999 return pm_runtime_force_suspend(dev); 2000 } 2001 2002 static int stm32_adc_resume(struct device *dev) 2003 { 2004 struct iio_dev *indio_dev = dev_get_drvdata(dev); 2005 int ret; 2006 2007 ret = pm_runtime_force_resume(dev); 2008 if (ret < 0) 2009 return ret; 2010 2011 if (!iio_buffer_enabled(indio_dev)) 2012 return 0; 2013 2014 ret = stm32_adc_update_scan_mode(indio_dev, 2015 indio_dev->active_scan_mask); 2016 if (ret < 0) 2017 return ret; 2018 2019 return stm32_adc_buffer_postenable(indio_dev); 2020 } 2021 #endif 2022 2023 #if defined(CONFIG_PM) 2024 static int stm32_adc_runtime_suspend(struct device *dev) 2025 { 2026 return stm32_adc_hw_stop(dev); 2027 } 2028 2029 static int stm32_adc_runtime_resume(struct device *dev) 2030 { 2031 return stm32_adc_hw_start(dev); 2032 } 2033 #endif 2034 2035 static const struct dev_pm_ops stm32_adc_pm_ops = { 2036 SET_SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume) 2037 SET_RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume, 2038 NULL) 2039 }; 2040 2041 static const struct stm32_adc_cfg stm32f4_adc_cfg = { 2042 .regs = &stm32f4_adc_regspec, 2043 .adc_info = &stm32f4_adc_info, 2044 .trigs = stm32f4_adc_trigs, 2045 .clk_required = true, 2046 .start_conv = stm32f4_adc_start_conv, 2047 .stop_conv = stm32f4_adc_stop_conv, 2048 .smp_cycles = stm32f4_adc_smp_cycles, 2049 }; 2050 2051 static const struct stm32_adc_cfg stm32h7_adc_cfg = { 2052 .regs = &stm32h7_adc_regspec, 2053 .adc_info = &stm32h7_adc_info, 2054 .trigs = stm32h7_adc_trigs, 2055 .start_conv = stm32h7_adc_start_conv, 2056 .stop_conv = stm32h7_adc_stop_conv, 2057 .prepare = stm32h7_adc_prepare, 2058 .unprepare = stm32h7_adc_unprepare, 2059 .smp_cycles = stm32h7_adc_smp_cycles, 2060 }; 2061 2062 static const struct stm32_adc_cfg stm32mp1_adc_cfg = { 2063 .regs = &stm32h7_adc_regspec, 2064 .adc_info = &stm32h7_adc_info, 2065 .trigs = stm32h7_adc_trigs, 2066 .has_vregready = true, 2067 .start_conv = stm32h7_adc_start_conv, 2068 .stop_conv = stm32h7_adc_stop_conv, 2069 .prepare = stm32h7_adc_prepare, 2070 .unprepare = stm32h7_adc_unprepare, 2071 .smp_cycles = stm32h7_adc_smp_cycles, 2072 }; 2073 2074 static const struct of_device_id stm32_adc_of_match[] = { 2075 { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg }, 2076 { .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg }, 2077 { .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg }, 2078 {}, 2079 }; 2080 MODULE_DEVICE_TABLE(of, stm32_adc_of_match); 2081 2082 static struct platform_driver stm32_adc_driver = { 2083 .probe = stm32_adc_probe, 2084 .remove = stm32_adc_remove, 2085 .driver = { 2086 .name = "stm32-adc", 2087 .of_match_table = stm32_adc_of_match, 2088 .pm = &stm32_adc_pm_ops, 2089 }, 2090 }; 2091 module_platform_driver(stm32_adc_driver); 2092 2093 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>"); 2094 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver"); 2095 MODULE_LICENSE("GPL v2"); 2096 MODULE_ALIAS("platform:stm32-adc"); 2097