1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file is part of STM32 ADC driver 4 * 5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved 6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>. 7 * 8 * Inspired from: fsl-imx25-tsadc 9 * 10 */ 11 12 #include <linux/clk.h> 13 #include <linux/interrupt.h> 14 #include <linux/irqchip/chained_irq.h> 15 #include <linux/irqdesc.h> 16 #include <linux/irqdomain.h> 17 #include <linux/mfd/syscon.h> 18 #include <linux/module.h> 19 #include <linux/of_device.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/regmap.h> 22 #include <linux/regulator/consumer.h> 23 #include <linux/slab.h> 24 25 #include "stm32-adc-core.h" 26 27 #define STM32_ADC_CORE_SLEEP_DELAY_MS 2000 28 29 /* SYSCFG registers */ 30 #define STM32MP1_SYSCFG_PMCSETR 0x04 31 #define STM32MP1_SYSCFG_PMCCLRR 0x44 32 33 /* SYSCFG bit fields */ 34 #define STM32MP1_SYSCFG_ANASWVDD_MASK BIT(9) 35 36 /* SYSCFG capability flags */ 37 #define HAS_VBOOSTER BIT(0) 38 #define HAS_ANASWVDD BIT(1) 39 40 /** 41 * struct stm32_adc_common_regs - stm32 common registers 42 * @csr: common status register offset 43 * @ccr: common control register offset 44 * @eoc_msk: array of eoc (end of conversion flag) masks in csr for adc1..n 45 * @ovr_msk: array of ovr (overrun flag) masks in csr for adc1..n 46 * @ier: interrupt enable register offset for each adc 47 * @eocie_msk: end of conversion interrupt enable mask in @ier 48 */ 49 struct stm32_adc_common_regs { 50 u32 csr; 51 u32 ccr; 52 u32 eoc_msk[STM32_ADC_MAX_ADCS]; 53 u32 ovr_msk[STM32_ADC_MAX_ADCS]; 54 u32 ier; 55 u32 eocie_msk; 56 }; 57 58 struct stm32_adc_priv; 59 60 /** 61 * struct stm32_adc_priv_cfg - stm32 core compatible configuration data 62 * @regs: common registers for all instances 63 * @clk_sel: clock selection routine 64 * @max_clk_rate_hz: maximum analog clock rate (Hz, from datasheet) 65 * @has_syscfg: SYSCFG capability flags 66 * @num_irqs: number of interrupt lines 67 */ 68 struct stm32_adc_priv_cfg { 69 const struct stm32_adc_common_regs *regs; 70 int (*clk_sel)(struct platform_device *, struct stm32_adc_priv *); 71 u32 max_clk_rate_hz; 72 unsigned int has_syscfg; 73 unsigned int num_irqs; 74 }; 75 76 /** 77 * struct stm32_adc_priv - stm32 ADC core private data 78 * @irq: irq(s) for ADC block 79 * @domain: irq domain reference 80 * @aclk: clock reference for the analog circuitry 81 * @bclk: bus clock common for all ADCs, depends on part used 82 * @max_clk_rate: desired maximum clock rate 83 * @booster: booster supply reference 84 * @vdd: vdd supply reference 85 * @vdda: vdda analog supply reference 86 * @vref: regulator reference 87 * @vdd_uv: vdd supply voltage (microvolts) 88 * @vdda_uv: vdda supply voltage (microvolts) 89 * @cfg: compatible configuration data 90 * @common: common data for all ADC instances 91 * @ccr_bak: backup CCR in low power mode 92 * @syscfg: reference to syscon, system control registers 93 */ 94 struct stm32_adc_priv { 95 int irq[STM32_ADC_MAX_ADCS]; 96 struct irq_domain *domain; 97 struct clk *aclk; 98 struct clk *bclk; 99 u32 max_clk_rate; 100 struct regulator *booster; 101 struct regulator *vdd; 102 struct regulator *vdda; 103 struct regulator *vref; 104 int vdd_uv; 105 int vdda_uv; 106 const struct stm32_adc_priv_cfg *cfg; 107 struct stm32_adc_common common; 108 u32 ccr_bak; 109 struct regmap *syscfg; 110 }; 111 112 static struct stm32_adc_priv *to_stm32_adc_priv(struct stm32_adc_common *com) 113 { 114 return container_of(com, struct stm32_adc_priv, common); 115 } 116 117 /* STM32F4 ADC internal common clock prescaler division ratios */ 118 static int stm32f4_pclk_div[] = {2, 4, 6, 8}; 119 120 /** 121 * stm32f4_adc_clk_sel() - Select stm32f4 ADC common clock prescaler 122 * @pdev: platform device 123 * @priv: stm32 ADC core private data 124 * Select clock prescaler used for analog conversions, before using ADC. 125 */ 126 static int stm32f4_adc_clk_sel(struct platform_device *pdev, 127 struct stm32_adc_priv *priv) 128 { 129 unsigned long rate; 130 u32 val; 131 int i; 132 133 /* stm32f4 has one clk input for analog (mandatory), enforce it here */ 134 if (!priv->aclk) { 135 dev_err(&pdev->dev, "No 'adc' clock found\n"); 136 return -ENOENT; 137 } 138 139 rate = clk_get_rate(priv->aclk); 140 if (!rate) { 141 dev_err(&pdev->dev, "Invalid clock rate: 0\n"); 142 return -EINVAL; 143 } 144 145 for (i = 0; i < ARRAY_SIZE(stm32f4_pclk_div); i++) { 146 if ((rate / stm32f4_pclk_div[i]) <= priv->max_clk_rate) 147 break; 148 } 149 if (i >= ARRAY_SIZE(stm32f4_pclk_div)) { 150 dev_err(&pdev->dev, "adc clk selection failed\n"); 151 return -EINVAL; 152 } 153 154 priv->common.rate = rate / stm32f4_pclk_div[i]; 155 val = readl_relaxed(priv->common.base + STM32F4_ADC_CCR); 156 val &= ~STM32F4_ADC_ADCPRE_MASK; 157 val |= i << STM32F4_ADC_ADCPRE_SHIFT; 158 writel_relaxed(val, priv->common.base + STM32F4_ADC_CCR); 159 160 dev_dbg(&pdev->dev, "Using analog clock source at %ld kHz\n", 161 priv->common.rate / 1000); 162 163 return 0; 164 } 165 166 /** 167 * struct stm32h7_adc_ck_spec - specification for stm32h7 adc clock 168 * @ckmode: ADC clock mode, Async or sync with prescaler. 169 * @presc: prescaler bitfield for async clock mode 170 * @div: prescaler division ratio 171 */ 172 struct stm32h7_adc_ck_spec { 173 u32 ckmode; 174 u32 presc; 175 int div; 176 }; 177 178 static const struct stm32h7_adc_ck_spec stm32h7_adc_ckmodes_spec[] = { 179 /* 00: CK_ADC[1..3]: Asynchronous clock modes */ 180 { 0, 0, 1 }, 181 { 0, 1, 2 }, 182 { 0, 2, 4 }, 183 { 0, 3, 6 }, 184 { 0, 4, 8 }, 185 { 0, 5, 10 }, 186 { 0, 6, 12 }, 187 { 0, 7, 16 }, 188 { 0, 8, 32 }, 189 { 0, 9, 64 }, 190 { 0, 10, 128 }, 191 { 0, 11, 256 }, 192 /* HCLK used: Synchronous clock modes (1, 2 or 4 prescaler) */ 193 { 1, 0, 1 }, 194 { 2, 0, 2 }, 195 { 3, 0, 4 }, 196 }; 197 198 static int stm32h7_adc_clk_sel(struct platform_device *pdev, 199 struct stm32_adc_priv *priv) 200 { 201 u32 ckmode, presc, val; 202 unsigned long rate; 203 int i, div; 204 205 /* stm32h7 bus clock is common for all ADC instances (mandatory) */ 206 if (!priv->bclk) { 207 dev_err(&pdev->dev, "No 'bus' clock found\n"); 208 return -ENOENT; 209 } 210 211 /* 212 * stm32h7 can use either 'bus' or 'adc' clock for analog circuitry. 213 * So, choice is to have bus clock mandatory and adc clock optional. 214 * If optional 'adc' clock has been found, then try to use it first. 215 */ 216 if (priv->aclk) { 217 /* 218 * Asynchronous clock modes (e.g. ckmode == 0) 219 * From spec: PLL output musn't exceed max rate 220 */ 221 rate = clk_get_rate(priv->aclk); 222 if (!rate) { 223 dev_err(&pdev->dev, "Invalid adc clock rate: 0\n"); 224 return -EINVAL; 225 } 226 227 for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) { 228 ckmode = stm32h7_adc_ckmodes_spec[i].ckmode; 229 presc = stm32h7_adc_ckmodes_spec[i].presc; 230 div = stm32h7_adc_ckmodes_spec[i].div; 231 232 if (ckmode) 233 continue; 234 235 if ((rate / div) <= priv->max_clk_rate) 236 goto out; 237 } 238 } 239 240 /* Synchronous clock modes (e.g. ckmode is 1, 2 or 3) */ 241 rate = clk_get_rate(priv->bclk); 242 if (!rate) { 243 dev_err(&pdev->dev, "Invalid bus clock rate: 0\n"); 244 return -EINVAL; 245 } 246 247 for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) { 248 ckmode = stm32h7_adc_ckmodes_spec[i].ckmode; 249 presc = stm32h7_adc_ckmodes_spec[i].presc; 250 div = stm32h7_adc_ckmodes_spec[i].div; 251 252 if (!ckmode) 253 continue; 254 255 if ((rate / div) <= priv->max_clk_rate) 256 goto out; 257 } 258 259 dev_err(&pdev->dev, "adc clk selection failed\n"); 260 return -EINVAL; 261 262 out: 263 /* rate used later by each ADC instance to control BOOST mode */ 264 priv->common.rate = rate / div; 265 266 /* Set common clock mode and prescaler */ 267 val = readl_relaxed(priv->common.base + STM32H7_ADC_CCR); 268 val &= ~(STM32H7_CKMODE_MASK | STM32H7_PRESC_MASK); 269 val |= ckmode << STM32H7_CKMODE_SHIFT; 270 val |= presc << STM32H7_PRESC_SHIFT; 271 writel_relaxed(val, priv->common.base + STM32H7_ADC_CCR); 272 273 dev_dbg(&pdev->dev, "Using %s clock/%d source at %ld kHz\n", 274 ckmode ? "bus" : "adc", div, priv->common.rate / 1000); 275 276 return 0; 277 } 278 279 /* STM32F4 common registers definitions */ 280 static const struct stm32_adc_common_regs stm32f4_adc_common_regs = { 281 .csr = STM32F4_ADC_CSR, 282 .ccr = STM32F4_ADC_CCR, 283 .eoc_msk = { STM32F4_EOC1, STM32F4_EOC2, STM32F4_EOC3}, 284 .ovr_msk = { STM32F4_OVR1, STM32F4_OVR2, STM32F4_OVR3}, 285 .ier = STM32F4_ADC_CR1, 286 .eocie_msk = STM32F4_EOCIE, 287 }; 288 289 /* STM32H7 common registers definitions */ 290 static const struct stm32_adc_common_regs stm32h7_adc_common_regs = { 291 .csr = STM32H7_ADC_CSR, 292 .ccr = STM32H7_ADC_CCR, 293 .eoc_msk = { STM32H7_EOC_MST, STM32H7_EOC_SLV}, 294 .ovr_msk = { STM32H7_OVR_MST, STM32H7_OVR_SLV}, 295 .ier = STM32H7_ADC_IER, 296 .eocie_msk = STM32H7_EOCIE, 297 }; 298 299 static const unsigned int stm32_adc_offset[STM32_ADC_MAX_ADCS] = { 300 0, STM32_ADC_OFFSET, STM32_ADC_OFFSET * 2, 301 }; 302 303 static unsigned int stm32_adc_eoc_enabled(struct stm32_adc_priv *priv, 304 unsigned int adc) 305 { 306 u32 ier, offset = stm32_adc_offset[adc]; 307 308 ier = readl_relaxed(priv->common.base + offset + priv->cfg->regs->ier); 309 310 return ier & priv->cfg->regs->eocie_msk; 311 } 312 313 /* ADC common interrupt for all instances */ 314 static void stm32_adc_irq_handler(struct irq_desc *desc) 315 { 316 struct stm32_adc_priv *priv = irq_desc_get_handler_data(desc); 317 struct irq_chip *chip = irq_desc_get_chip(desc); 318 int i; 319 u32 status; 320 321 chained_irq_enter(chip, desc); 322 status = readl_relaxed(priv->common.base + priv->cfg->regs->csr); 323 324 /* 325 * End of conversion may be handled by using IRQ or DMA. There may be a 326 * race here when two conversions complete at the same time on several 327 * ADCs. EOC may be read 'set' for several ADCs, with: 328 * - an ADC configured to use DMA (EOC triggers the DMA request, and 329 * is then automatically cleared by DR read in hardware) 330 * - an ADC configured to use IRQs (EOCIE bit is set. The handler must 331 * be called in this case) 332 * So both EOC status bit in CSR and EOCIE control bit must be checked 333 * before invoking the interrupt handler (e.g. call ISR only for 334 * IRQ-enabled ADCs). 335 */ 336 for (i = 0; i < priv->cfg->num_irqs; i++) { 337 if ((status & priv->cfg->regs->eoc_msk[i] && 338 stm32_adc_eoc_enabled(priv, i)) || 339 (status & priv->cfg->regs->ovr_msk[i])) 340 generic_handle_irq(irq_find_mapping(priv->domain, i)); 341 } 342 343 chained_irq_exit(chip, desc); 344 }; 345 346 static int stm32_adc_domain_map(struct irq_domain *d, unsigned int irq, 347 irq_hw_number_t hwirq) 348 { 349 irq_set_chip_data(irq, d->host_data); 350 irq_set_chip_and_handler(irq, &dummy_irq_chip, handle_level_irq); 351 352 return 0; 353 } 354 355 static void stm32_adc_domain_unmap(struct irq_domain *d, unsigned int irq) 356 { 357 irq_set_chip_and_handler(irq, NULL, NULL); 358 irq_set_chip_data(irq, NULL); 359 } 360 361 static const struct irq_domain_ops stm32_adc_domain_ops = { 362 .map = stm32_adc_domain_map, 363 .unmap = stm32_adc_domain_unmap, 364 .xlate = irq_domain_xlate_onecell, 365 }; 366 367 static int stm32_adc_irq_probe(struct platform_device *pdev, 368 struct stm32_adc_priv *priv) 369 { 370 struct device_node *np = pdev->dev.of_node; 371 unsigned int i; 372 373 /* 374 * Interrupt(s) must be provided, depending on the compatible: 375 * - stm32f4/h7 shares a common interrupt line. 376 * - stm32mp1, has one line per ADC 377 */ 378 for (i = 0; i < priv->cfg->num_irqs; i++) { 379 priv->irq[i] = platform_get_irq(pdev, i); 380 if (priv->irq[i] < 0) 381 return priv->irq[i]; 382 } 383 384 priv->domain = irq_domain_add_simple(np, STM32_ADC_MAX_ADCS, 0, 385 &stm32_adc_domain_ops, 386 priv); 387 if (!priv->domain) { 388 dev_err(&pdev->dev, "Failed to add irq domain\n"); 389 return -ENOMEM; 390 } 391 392 for (i = 0; i < priv->cfg->num_irqs; i++) { 393 irq_set_chained_handler(priv->irq[i], stm32_adc_irq_handler); 394 irq_set_handler_data(priv->irq[i], priv); 395 } 396 397 return 0; 398 } 399 400 static void stm32_adc_irq_remove(struct platform_device *pdev, 401 struct stm32_adc_priv *priv) 402 { 403 int hwirq; 404 unsigned int i; 405 406 for (hwirq = 0; hwirq < STM32_ADC_MAX_ADCS; hwirq++) 407 irq_dispose_mapping(irq_find_mapping(priv->domain, hwirq)); 408 irq_domain_remove(priv->domain); 409 410 for (i = 0; i < priv->cfg->num_irqs; i++) 411 irq_set_chained_handler(priv->irq[i], NULL); 412 } 413 414 static int stm32_adc_core_switches_supply_en(struct stm32_adc_priv *priv, 415 struct device *dev) 416 { 417 int ret; 418 419 /* 420 * On STM32H7 and STM32MP1, the ADC inputs are multiplexed with analog 421 * switches (via PCSEL) which have reduced performances when their 422 * supply is below 2.7V (vdda by default): 423 * - Voltage booster can be used, to get full ADC performances 424 * (increases power consumption). 425 * - Vdd can be used to supply them, if above 2.7V (STM32MP1 only). 426 * 427 * Recommended settings for ANASWVDD and EN_BOOSTER: 428 * - vdda < 2.7V but vdd > 2.7V: ANASWVDD = 1, EN_BOOSTER = 0 (stm32mp1) 429 * - vdda < 2.7V and vdd < 2.7V: ANASWVDD = 0, EN_BOOSTER = 1 430 * - vdda >= 2.7V: ANASWVDD = 0, EN_BOOSTER = 0 (default) 431 */ 432 if (priv->vdda_uv < 2700000) { 433 if (priv->syscfg && priv->vdd_uv > 2700000) { 434 ret = regulator_enable(priv->vdd); 435 if (ret < 0) { 436 dev_err(dev, "vdd enable failed %d\n", ret); 437 return ret; 438 } 439 440 ret = regmap_write(priv->syscfg, 441 STM32MP1_SYSCFG_PMCSETR, 442 STM32MP1_SYSCFG_ANASWVDD_MASK); 443 if (ret < 0) { 444 regulator_disable(priv->vdd); 445 dev_err(dev, "vdd select failed, %d\n", ret); 446 return ret; 447 } 448 dev_dbg(dev, "analog switches supplied by vdd\n"); 449 450 return 0; 451 } 452 453 if (priv->booster) { 454 /* 455 * This is optional, as this is a trade-off between 456 * analog performance and power consumption. 457 */ 458 ret = regulator_enable(priv->booster); 459 if (ret < 0) { 460 dev_err(dev, "booster enable failed %d\n", ret); 461 return ret; 462 } 463 dev_dbg(dev, "analog switches supplied by booster\n"); 464 465 return 0; 466 } 467 } 468 469 /* Fallback using vdda (default), nothing to do */ 470 dev_dbg(dev, "analog switches supplied by vdda (%d uV)\n", 471 priv->vdda_uv); 472 473 return 0; 474 } 475 476 static void stm32_adc_core_switches_supply_dis(struct stm32_adc_priv *priv) 477 { 478 if (priv->vdda_uv < 2700000) { 479 if (priv->syscfg && priv->vdd_uv > 2700000) { 480 regmap_write(priv->syscfg, STM32MP1_SYSCFG_PMCCLRR, 481 STM32MP1_SYSCFG_ANASWVDD_MASK); 482 regulator_disable(priv->vdd); 483 return; 484 } 485 if (priv->booster) 486 regulator_disable(priv->booster); 487 } 488 } 489 490 static int stm32_adc_core_hw_start(struct device *dev) 491 { 492 struct stm32_adc_common *common = dev_get_drvdata(dev); 493 struct stm32_adc_priv *priv = to_stm32_adc_priv(common); 494 int ret; 495 496 ret = regulator_enable(priv->vdda); 497 if (ret < 0) { 498 dev_err(dev, "vdda enable failed %d\n", ret); 499 return ret; 500 } 501 502 ret = regulator_get_voltage(priv->vdda); 503 if (ret < 0) { 504 dev_err(dev, "vdda get voltage failed, %d\n", ret); 505 goto err_vdda_disable; 506 } 507 priv->vdda_uv = ret; 508 509 ret = stm32_adc_core_switches_supply_en(priv, dev); 510 if (ret < 0) 511 goto err_vdda_disable; 512 513 ret = regulator_enable(priv->vref); 514 if (ret < 0) { 515 dev_err(dev, "vref enable failed\n"); 516 goto err_switches_dis; 517 } 518 519 if (priv->bclk) { 520 ret = clk_prepare_enable(priv->bclk); 521 if (ret < 0) { 522 dev_err(dev, "bus clk enable failed\n"); 523 goto err_regulator_disable; 524 } 525 } 526 527 if (priv->aclk) { 528 ret = clk_prepare_enable(priv->aclk); 529 if (ret < 0) { 530 dev_err(dev, "adc clk enable failed\n"); 531 goto err_bclk_disable; 532 } 533 } 534 535 writel_relaxed(priv->ccr_bak, priv->common.base + priv->cfg->regs->ccr); 536 537 return 0; 538 539 err_bclk_disable: 540 if (priv->bclk) 541 clk_disable_unprepare(priv->bclk); 542 err_regulator_disable: 543 regulator_disable(priv->vref); 544 err_switches_dis: 545 stm32_adc_core_switches_supply_dis(priv); 546 err_vdda_disable: 547 regulator_disable(priv->vdda); 548 549 return ret; 550 } 551 552 static void stm32_adc_core_hw_stop(struct device *dev) 553 { 554 struct stm32_adc_common *common = dev_get_drvdata(dev); 555 struct stm32_adc_priv *priv = to_stm32_adc_priv(common); 556 557 /* Backup CCR that may be lost (depends on power state to achieve) */ 558 priv->ccr_bak = readl_relaxed(priv->common.base + priv->cfg->regs->ccr); 559 if (priv->aclk) 560 clk_disable_unprepare(priv->aclk); 561 if (priv->bclk) 562 clk_disable_unprepare(priv->bclk); 563 regulator_disable(priv->vref); 564 stm32_adc_core_switches_supply_dis(priv); 565 regulator_disable(priv->vdda); 566 } 567 568 static int stm32_adc_core_switches_probe(struct device *dev, 569 struct stm32_adc_priv *priv) 570 { 571 struct device_node *np = dev->of_node; 572 int ret; 573 574 /* Analog switches supply can be controlled by syscfg (optional) */ 575 priv->syscfg = syscon_regmap_lookup_by_phandle(np, "st,syscfg"); 576 if (IS_ERR(priv->syscfg)) { 577 ret = PTR_ERR(priv->syscfg); 578 if (ret != -ENODEV) 579 return dev_err_probe(dev, ret, "Can't probe syscfg\n"); 580 581 priv->syscfg = NULL; 582 } 583 584 /* Booster can be used to supply analog switches (optional) */ 585 if (priv->cfg->has_syscfg & HAS_VBOOSTER && 586 of_property_read_bool(np, "booster-supply")) { 587 priv->booster = devm_regulator_get_optional(dev, "booster"); 588 if (IS_ERR(priv->booster)) { 589 ret = PTR_ERR(priv->booster); 590 if (ret != -ENODEV) 591 return dev_err_probe(dev, ret, "can't get booster\n"); 592 593 priv->booster = NULL; 594 } 595 } 596 597 /* Vdd can be used to supply analog switches (optional) */ 598 if (priv->cfg->has_syscfg & HAS_ANASWVDD && 599 of_property_read_bool(np, "vdd-supply")) { 600 priv->vdd = devm_regulator_get_optional(dev, "vdd"); 601 if (IS_ERR(priv->vdd)) { 602 ret = PTR_ERR(priv->vdd); 603 if (ret != -ENODEV) 604 return dev_err_probe(dev, ret, "can't get vdd\n"); 605 606 priv->vdd = NULL; 607 } 608 } 609 610 if (priv->vdd) { 611 ret = regulator_enable(priv->vdd); 612 if (ret < 0) { 613 dev_err(dev, "vdd enable failed %d\n", ret); 614 return ret; 615 } 616 617 ret = regulator_get_voltage(priv->vdd); 618 if (ret < 0) { 619 dev_err(dev, "vdd get voltage failed %d\n", ret); 620 regulator_disable(priv->vdd); 621 return ret; 622 } 623 priv->vdd_uv = ret; 624 625 regulator_disable(priv->vdd); 626 } 627 628 return 0; 629 } 630 631 static int stm32_adc_probe(struct platform_device *pdev) 632 { 633 struct stm32_adc_priv *priv; 634 struct device *dev = &pdev->dev; 635 struct device_node *np = pdev->dev.of_node; 636 struct resource *res; 637 u32 max_rate; 638 int ret; 639 640 if (!pdev->dev.of_node) 641 return -ENODEV; 642 643 priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); 644 if (!priv) 645 return -ENOMEM; 646 platform_set_drvdata(pdev, &priv->common); 647 648 priv->cfg = (const struct stm32_adc_priv_cfg *) 649 of_match_device(dev->driver->of_match_table, dev)->data; 650 651 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 652 priv->common.base = devm_ioremap_resource(&pdev->dev, res); 653 if (IS_ERR(priv->common.base)) 654 return PTR_ERR(priv->common.base); 655 priv->common.phys_base = res->start; 656 657 priv->vdda = devm_regulator_get(&pdev->dev, "vdda"); 658 if (IS_ERR(priv->vdda)) 659 return dev_err_probe(&pdev->dev, PTR_ERR(priv->vdda), 660 "vdda get failed\n"); 661 662 priv->vref = devm_regulator_get(&pdev->dev, "vref"); 663 if (IS_ERR(priv->vref)) 664 return dev_err_probe(&pdev->dev, PTR_ERR(priv->vref), 665 "vref get failed\n"); 666 667 priv->aclk = devm_clk_get_optional(&pdev->dev, "adc"); 668 if (IS_ERR(priv->aclk)) 669 return dev_err_probe(&pdev->dev, PTR_ERR(priv->aclk), 670 "Can't get 'adc' clock\n"); 671 672 priv->bclk = devm_clk_get_optional(&pdev->dev, "bus"); 673 if (IS_ERR(priv->bclk)) 674 return dev_err_probe(&pdev->dev, PTR_ERR(priv->bclk), 675 "Can't get 'bus' clock\n"); 676 677 ret = stm32_adc_core_switches_probe(dev, priv); 678 if (ret) 679 return ret; 680 681 pm_runtime_get_noresume(dev); 682 pm_runtime_set_active(dev); 683 pm_runtime_set_autosuspend_delay(dev, STM32_ADC_CORE_SLEEP_DELAY_MS); 684 pm_runtime_use_autosuspend(dev); 685 pm_runtime_enable(dev); 686 687 ret = stm32_adc_core_hw_start(dev); 688 if (ret) 689 goto err_pm_stop; 690 691 ret = regulator_get_voltage(priv->vref); 692 if (ret < 0) { 693 dev_err(&pdev->dev, "vref get voltage failed, %d\n", ret); 694 goto err_hw_stop; 695 } 696 priv->common.vref_mv = ret / 1000; 697 dev_dbg(&pdev->dev, "vref+=%dmV\n", priv->common.vref_mv); 698 699 ret = of_property_read_u32(pdev->dev.of_node, "st,max-clk-rate-hz", 700 &max_rate); 701 if (!ret) 702 priv->max_clk_rate = min(max_rate, priv->cfg->max_clk_rate_hz); 703 else 704 priv->max_clk_rate = priv->cfg->max_clk_rate_hz; 705 706 ret = priv->cfg->clk_sel(pdev, priv); 707 if (ret < 0) 708 goto err_hw_stop; 709 710 ret = stm32_adc_irq_probe(pdev, priv); 711 if (ret < 0) 712 goto err_hw_stop; 713 714 ret = of_platform_populate(np, NULL, NULL, &pdev->dev); 715 if (ret < 0) { 716 dev_err(&pdev->dev, "failed to populate DT children\n"); 717 goto err_irq_remove; 718 } 719 720 pm_runtime_mark_last_busy(dev); 721 pm_runtime_put_autosuspend(dev); 722 723 return 0; 724 725 err_irq_remove: 726 stm32_adc_irq_remove(pdev, priv); 727 err_hw_stop: 728 stm32_adc_core_hw_stop(dev); 729 err_pm_stop: 730 pm_runtime_disable(dev); 731 pm_runtime_set_suspended(dev); 732 pm_runtime_put_noidle(dev); 733 734 return ret; 735 } 736 737 static int stm32_adc_remove(struct platform_device *pdev) 738 { 739 struct stm32_adc_common *common = platform_get_drvdata(pdev); 740 struct stm32_adc_priv *priv = to_stm32_adc_priv(common); 741 742 pm_runtime_get_sync(&pdev->dev); 743 of_platform_depopulate(&pdev->dev); 744 stm32_adc_irq_remove(pdev, priv); 745 stm32_adc_core_hw_stop(&pdev->dev); 746 pm_runtime_disable(&pdev->dev); 747 pm_runtime_set_suspended(&pdev->dev); 748 pm_runtime_put_noidle(&pdev->dev); 749 750 return 0; 751 } 752 753 #if defined(CONFIG_PM) 754 static int stm32_adc_core_runtime_suspend(struct device *dev) 755 { 756 stm32_adc_core_hw_stop(dev); 757 758 return 0; 759 } 760 761 static int stm32_adc_core_runtime_resume(struct device *dev) 762 { 763 return stm32_adc_core_hw_start(dev); 764 } 765 766 static int stm32_adc_core_runtime_idle(struct device *dev) 767 { 768 pm_runtime_mark_last_busy(dev); 769 770 return 0; 771 } 772 #endif 773 774 static const struct dev_pm_ops stm32_adc_core_pm_ops = { 775 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 776 pm_runtime_force_resume) 777 SET_RUNTIME_PM_OPS(stm32_adc_core_runtime_suspend, 778 stm32_adc_core_runtime_resume, 779 stm32_adc_core_runtime_idle) 780 }; 781 782 static const struct stm32_adc_priv_cfg stm32f4_adc_priv_cfg = { 783 .regs = &stm32f4_adc_common_regs, 784 .clk_sel = stm32f4_adc_clk_sel, 785 .max_clk_rate_hz = 36000000, 786 .num_irqs = 1, 787 }; 788 789 static const struct stm32_adc_priv_cfg stm32h7_adc_priv_cfg = { 790 .regs = &stm32h7_adc_common_regs, 791 .clk_sel = stm32h7_adc_clk_sel, 792 .max_clk_rate_hz = 36000000, 793 .has_syscfg = HAS_VBOOSTER, 794 .num_irqs = 1, 795 }; 796 797 static const struct stm32_adc_priv_cfg stm32mp1_adc_priv_cfg = { 798 .regs = &stm32h7_adc_common_regs, 799 .clk_sel = stm32h7_adc_clk_sel, 800 .max_clk_rate_hz = 40000000, 801 .has_syscfg = HAS_VBOOSTER | HAS_ANASWVDD, 802 .num_irqs = 2, 803 }; 804 805 static const struct of_device_id stm32_adc_of_match[] = { 806 { 807 .compatible = "st,stm32f4-adc-core", 808 .data = (void *)&stm32f4_adc_priv_cfg 809 }, { 810 .compatible = "st,stm32h7-adc-core", 811 .data = (void *)&stm32h7_adc_priv_cfg 812 }, { 813 .compatible = "st,stm32mp1-adc-core", 814 .data = (void *)&stm32mp1_adc_priv_cfg 815 }, { 816 }, 817 }; 818 MODULE_DEVICE_TABLE(of, stm32_adc_of_match); 819 820 static struct platform_driver stm32_adc_driver = { 821 .probe = stm32_adc_probe, 822 .remove = stm32_adc_remove, 823 .driver = { 824 .name = "stm32-adc-core", 825 .of_match_table = stm32_adc_of_match, 826 .pm = &stm32_adc_core_pm_ops, 827 }, 828 }; 829 module_platform_driver(stm32_adc_driver); 830 831 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>"); 832 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC core driver"); 833 MODULE_LICENSE("GPL v2"); 834 MODULE_ALIAS("platform:stm32-adc-core"); 835