1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2018 Spreadtrum Communications Inc.
3
4 #include <linux/hwspinlock.h>
5 #include <linux/iio/iio.h>
6 #include <linux/module.h>
7 #include <linux/mutex.h>
8 #include <linux/nvmem-consumer.h>
9 #include <linux/of.h>
10 #include <linux/platform_device.h>
11 #include <linux/regmap.h>
12 #include <linux/regulator/consumer.h>
13 #include <linux/slab.h>
14
15 /* PMIC global registers definition */
16 #define SC2730_MODULE_EN 0x1808
17 #define SC2731_MODULE_EN 0xc08
18 #define SC27XX_MODULE_ADC_EN BIT(5)
19 #define SC2721_ARM_CLK_EN 0xc0c
20 #define SC2730_ARM_CLK_EN 0x180c
21 #define SC2731_ARM_CLK_EN 0xc10
22 #define SC27XX_CLK_ADC_EN BIT(5)
23 #define SC27XX_CLK_ADC_CLK_EN BIT(6)
24
25 /* ADC controller registers definition */
26 #define SC27XX_ADC_CTL 0x0
27 #define SC27XX_ADC_CH_CFG 0x4
28 #define SC27XX_ADC_DATA 0x4c
29 #define SC27XX_ADC_INT_EN 0x50
30 #define SC27XX_ADC_INT_CLR 0x54
31 #define SC27XX_ADC_INT_STS 0x58
32 #define SC27XX_ADC_INT_RAW 0x5c
33
34 /* Bits and mask definition for SC27XX_ADC_CTL register */
35 #define SC27XX_ADC_EN BIT(0)
36 #define SC27XX_ADC_CHN_RUN BIT(1)
37 #define SC27XX_ADC_12BIT_MODE BIT(2)
38 #define SC27XX_ADC_RUN_NUM_MASK GENMASK(7, 4)
39 #define SC27XX_ADC_RUN_NUM_SHIFT 4
40
41 /* Bits and mask definition for SC27XX_ADC_CH_CFG register */
42 #define SC27XX_ADC_CHN_ID_MASK GENMASK(4, 0)
43 #define SC27XX_ADC_SCALE_MASK GENMASK(10, 9)
44 #define SC2721_ADC_SCALE_MASK BIT(5)
45 #define SC27XX_ADC_SCALE_SHIFT 9
46 #define SC2721_ADC_SCALE_SHIFT 5
47
48 /* Bits definitions for SC27XX_ADC_INT_EN registers */
49 #define SC27XX_ADC_IRQ_EN BIT(0)
50
51 /* Bits definitions for SC27XX_ADC_INT_CLR registers */
52 #define SC27XX_ADC_IRQ_CLR BIT(0)
53
54 /* Bits definitions for SC27XX_ADC_INT_RAW registers */
55 #define SC27XX_ADC_IRQ_RAW BIT(0)
56
57 /* Mask definition for SC27XX_ADC_DATA register */
58 #define SC27XX_ADC_DATA_MASK GENMASK(11, 0)
59
60 /* Timeout (ms) for the trylock of hardware spinlocks */
61 #define SC27XX_ADC_HWLOCK_TIMEOUT 5000
62
63 /* Timeout (us) for ADC data conversion according to ADC datasheet */
64 #define SC27XX_ADC_RDY_TIMEOUT 1000000
65 #define SC27XX_ADC_POLL_RAW_STATUS 500
66
67 /* Maximum ADC channel number */
68 #define SC27XX_ADC_CHANNEL_MAX 32
69
70 /* ADC voltage ratio definition */
71 #define SC27XX_VOLT_RATIO(n, d) \
72 (((n) << SC27XX_RATIO_NUMERATOR_OFFSET) | (d))
73 #define SC27XX_RATIO_NUMERATOR_OFFSET 16
74 #define SC27XX_RATIO_DENOMINATOR_MASK GENMASK(15, 0)
75
76 /* ADC specific channel reference voltage 3.5V */
77 #define SC27XX_ADC_REFVOL_VDD35 3500000
78
79 /* ADC default channel reference voltage is 2.8V */
80 #define SC27XX_ADC_REFVOL_VDD28 2800000
81
82 struct sc27xx_adc_data {
83 struct device *dev;
84 struct regulator *volref;
85 struct regmap *regmap;
86 /* lock to protect against multiple access to the device */
87 struct mutex lock;
88 /*
89 * One hardware spinlock to synchronize between the multiple
90 * subsystems which will access the unique ADC controller.
91 */
92 struct hwspinlock *hwlock;
93 int channel_scale[SC27XX_ADC_CHANNEL_MAX];
94 u32 base;
95 int irq;
96 const struct sc27xx_adc_variant_data *var_data;
97 };
98
99 /*
100 * Since different PMICs of SC27xx series can have different
101 * address and ratio, we should save ratio config and base
102 * in the device data structure.
103 */
104 struct sc27xx_adc_variant_data {
105 u32 module_en;
106 u32 clk_en;
107 u32 scale_shift;
108 u32 scale_mask;
109 const struct sc27xx_adc_linear_graph *bscale_cal;
110 const struct sc27xx_adc_linear_graph *sscale_cal;
111 void (*init_scale)(struct sc27xx_adc_data *data);
112 int (*get_ratio)(int channel, int scale);
113 bool set_volref;
114 };
115
116 struct sc27xx_adc_linear_graph {
117 int volt0;
118 int adc0;
119 int volt1;
120 int adc1;
121 };
122
123 /*
124 * According to the datasheet, we can convert one ADC value to one voltage value
125 * through 2 points in the linear graph. If the voltage is less than 1.2v, we
126 * should use the small-scale graph, and if more than 1.2v, we should use the
127 * big-scale graph.
128 */
129 static struct sc27xx_adc_linear_graph big_scale_graph = {
130 4200, 3310,
131 3600, 2832,
132 };
133
134 static struct sc27xx_adc_linear_graph small_scale_graph = {
135 1000, 3413,
136 100, 341,
137 };
138
139 static const struct sc27xx_adc_linear_graph sc2731_big_scale_graph_calib = {
140 4200, 850,
141 3600, 728,
142 };
143
144 static const struct sc27xx_adc_linear_graph sc2731_small_scale_graph_calib = {
145 1000, 838,
146 100, 84,
147 };
148
149 static const struct sc27xx_adc_linear_graph big_scale_graph_calib = {
150 4200, 856,
151 3600, 733,
152 };
153
154 static const struct sc27xx_adc_linear_graph small_scale_graph_calib = {
155 1000, 833,
156 100, 80,
157 };
158
sc27xx_adc_get_calib_data(u32 calib_data,int calib_adc)159 static int sc27xx_adc_get_calib_data(u32 calib_data, int calib_adc)
160 {
161 return ((calib_data & 0xff) + calib_adc - 128) * 4;
162 }
163
164 /* get the adc nvmem cell calibration data */
adc_nvmem_cell_calib_data(struct sc27xx_adc_data * data,const char * cell_name)165 static int adc_nvmem_cell_calib_data(struct sc27xx_adc_data *data, const char *cell_name)
166 {
167 struct nvmem_cell *cell;
168 void *buf;
169 u32 origin_calib_data = 0;
170 size_t len;
171
172 if (!data)
173 return -EINVAL;
174
175 cell = nvmem_cell_get(data->dev, cell_name);
176 if (IS_ERR(cell))
177 return PTR_ERR(cell);
178
179 buf = nvmem_cell_read(cell, &len);
180 if (IS_ERR(buf)) {
181 nvmem_cell_put(cell);
182 return PTR_ERR(buf);
183 }
184
185 memcpy(&origin_calib_data, buf, min(len, sizeof(u32)));
186
187 kfree(buf);
188 nvmem_cell_put(cell);
189 return origin_calib_data;
190 }
191
sc27xx_adc_scale_calibration(struct sc27xx_adc_data * data,bool big_scale)192 static int sc27xx_adc_scale_calibration(struct sc27xx_adc_data *data,
193 bool big_scale)
194 {
195 const struct sc27xx_adc_linear_graph *calib_graph;
196 struct sc27xx_adc_linear_graph *graph;
197 const char *cell_name;
198 u32 calib_data = 0;
199
200 if (big_scale) {
201 calib_graph = data->var_data->bscale_cal;
202 graph = &big_scale_graph;
203 cell_name = "big_scale_calib";
204 } else {
205 calib_graph = data->var_data->sscale_cal;
206 graph = &small_scale_graph;
207 cell_name = "small_scale_calib";
208 }
209
210 calib_data = adc_nvmem_cell_calib_data(data, cell_name);
211
212 /* Only need to calibrate the adc values in the linear graph. */
213 graph->adc0 = sc27xx_adc_get_calib_data(calib_data, calib_graph->adc0);
214 graph->adc1 = sc27xx_adc_get_calib_data(calib_data >> 8,
215 calib_graph->adc1);
216
217 return 0;
218 }
219
sc2720_adc_get_ratio(int channel,int scale)220 static int sc2720_adc_get_ratio(int channel, int scale)
221 {
222 switch (channel) {
223 case 14:
224 switch (scale) {
225 case 0:
226 return SC27XX_VOLT_RATIO(68, 900);
227 case 1:
228 return SC27XX_VOLT_RATIO(68, 1760);
229 case 2:
230 return SC27XX_VOLT_RATIO(68, 2327);
231 case 3:
232 return SC27XX_VOLT_RATIO(68, 3654);
233 default:
234 return SC27XX_VOLT_RATIO(1, 1);
235 }
236 case 16:
237 switch (scale) {
238 case 0:
239 return SC27XX_VOLT_RATIO(48, 100);
240 case 1:
241 return SC27XX_VOLT_RATIO(480, 1955);
242 case 2:
243 return SC27XX_VOLT_RATIO(480, 2586);
244 case 3:
245 return SC27XX_VOLT_RATIO(48, 406);
246 default:
247 return SC27XX_VOLT_RATIO(1, 1);
248 }
249 case 21:
250 case 22:
251 case 23:
252 switch (scale) {
253 case 0:
254 return SC27XX_VOLT_RATIO(3, 8);
255 case 1:
256 return SC27XX_VOLT_RATIO(375, 1955);
257 case 2:
258 return SC27XX_VOLT_RATIO(375, 2586);
259 case 3:
260 return SC27XX_VOLT_RATIO(300, 3248);
261 default:
262 return SC27XX_VOLT_RATIO(1, 1);
263 }
264 default:
265 switch (scale) {
266 case 0:
267 return SC27XX_VOLT_RATIO(1, 1);
268 case 1:
269 return SC27XX_VOLT_RATIO(1000, 1955);
270 case 2:
271 return SC27XX_VOLT_RATIO(1000, 2586);
272 case 3:
273 return SC27XX_VOLT_RATIO(100, 406);
274 default:
275 return SC27XX_VOLT_RATIO(1, 1);
276 }
277 }
278 return SC27XX_VOLT_RATIO(1, 1);
279 }
280
sc2721_adc_get_ratio(int channel,int scale)281 static int sc2721_adc_get_ratio(int channel, int scale)
282 {
283 switch (channel) {
284 case 1:
285 case 2:
286 case 3:
287 case 4:
288 return scale ? SC27XX_VOLT_RATIO(400, 1025) :
289 SC27XX_VOLT_RATIO(1, 1);
290 case 5:
291 return SC27XX_VOLT_RATIO(7, 29);
292 case 7:
293 case 9:
294 return scale ? SC27XX_VOLT_RATIO(100, 125) :
295 SC27XX_VOLT_RATIO(1, 1);
296 case 14:
297 return SC27XX_VOLT_RATIO(68, 900);
298 case 16:
299 return SC27XX_VOLT_RATIO(48, 100);
300 case 19:
301 return SC27XX_VOLT_RATIO(1, 3);
302 default:
303 return SC27XX_VOLT_RATIO(1, 1);
304 }
305 return SC27XX_VOLT_RATIO(1, 1);
306 }
307
sc2730_adc_get_ratio(int channel,int scale)308 static int sc2730_adc_get_ratio(int channel, int scale)
309 {
310 switch (channel) {
311 case 14:
312 switch (scale) {
313 case 0:
314 return SC27XX_VOLT_RATIO(68, 900);
315 case 1:
316 return SC27XX_VOLT_RATIO(68, 1760);
317 case 2:
318 return SC27XX_VOLT_RATIO(68, 2327);
319 case 3:
320 return SC27XX_VOLT_RATIO(68, 3654);
321 default:
322 return SC27XX_VOLT_RATIO(1, 1);
323 }
324 case 15:
325 switch (scale) {
326 case 0:
327 return SC27XX_VOLT_RATIO(1, 3);
328 case 1:
329 return SC27XX_VOLT_RATIO(1000, 5865);
330 case 2:
331 return SC27XX_VOLT_RATIO(500, 3879);
332 case 3:
333 return SC27XX_VOLT_RATIO(500, 6090);
334 default:
335 return SC27XX_VOLT_RATIO(1, 1);
336 }
337 case 16:
338 switch (scale) {
339 case 0:
340 return SC27XX_VOLT_RATIO(48, 100);
341 case 1:
342 return SC27XX_VOLT_RATIO(480, 1955);
343 case 2:
344 return SC27XX_VOLT_RATIO(480, 2586);
345 case 3:
346 return SC27XX_VOLT_RATIO(48, 406);
347 default:
348 return SC27XX_VOLT_RATIO(1, 1);
349 }
350 case 21:
351 case 22:
352 case 23:
353 switch (scale) {
354 case 0:
355 return SC27XX_VOLT_RATIO(3, 8);
356 case 1:
357 return SC27XX_VOLT_RATIO(375, 1955);
358 case 2:
359 return SC27XX_VOLT_RATIO(375, 2586);
360 case 3:
361 return SC27XX_VOLT_RATIO(300, 3248);
362 default:
363 return SC27XX_VOLT_RATIO(1, 1);
364 }
365 default:
366 switch (scale) {
367 case 0:
368 return SC27XX_VOLT_RATIO(1, 1);
369 case 1:
370 return SC27XX_VOLT_RATIO(1000, 1955);
371 case 2:
372 return SC27XX_VOLT_RATIO(1000, 2586);
373 case 3:
374 return SC27XX_VOLT_RATIO(1000, 4060);
375 default:
376 return SC27XX_VOLT_RATIO(1, 1);
377 }
378 }
379 return SC27XX_VOLT_RATIO(1, 1);
380 }
381
sc2731_adc_get_ratio(int channel,int scale)382 static int sc2731_adc_get_ratio(int channel, int scale)
383 {
384 switch (channel) {
385 case 1:
386 case 2:
387 case 3:
388 case 4:
389 return scale ? SC27XX_VOLT_RATIO(400, 1025) :
390 SC27XX_VOLT_RATIO(1, 1);
391 case 5:
392 return SC27XX_VOLT_RATIO(7, 29);
393 case 6:
394 return SC27XX_VOLT_RATIO(375, 9000);
395 case 7:
396 case 8:
397 return scale ? SC27XX_VOLT_RATIO(100, 125) :
398 SC27XX_VOLT_RATIO(1, 1);
399 case 19:
400 return SC27XX_VOLT_RATIO(1, 3);
401 default:
402 return SC27XX_VOLT_RATIO(1, 1);
403 }
404 return SC27XX_VOLT_RATIO(1, 1);
405 }
406
407 /*
408 * According to the datasheet set specific value on some channel.
409 */
sc2720_adc_scale_init(struct sc27xx_adc_data * data)410 static void sc2720_adc_scale_init(struct sc27xx_adc_data *data)
411 {
412 int i;
413
414 for (i = 0; i < SC27XX_ADC_CHANNEL_MAX; i++) {
415 switch (i) {
416 case 5:
417 data->channel_scale[i] = 3;
418 break;
419 case 7:
420 case 9:
421 data->channel_scale[i] = 2;
422 break;
423 case 13:
424 data->channel_scale[i] = 1;
425 break;
426 case 19:
427 case 30:
428 case 31:
429 data->channel_scale[i] = 3;
430 break;
431 default:
432 data->channel_scale[i] = 0;
433 break;
434 }
435 }
436 }
437
sc2730_adc_scale_init(struct sc27xx_adc_data * data)438 static void sc2730_adc_scale_init(struct sc27xx_adc_data *data)
439 {
440 int i;
441
442 for (i = 0; i < SC27XX_ADC_CHANNEL_MAX; i++) {
443 switch (i) {
444 case 5:
445 case 10:
446 case 19:
447 case 30:
448 case 31:
449 data->channel_scale[i] = 3;
450 break;
451 case 7:
452 case 9:
453 data->channel_scale[i] = 2;
454 break;
455 case 13:
456 data->channel_scale[i] = 1;
457 break;
458 default:
459 data->channel_scale[i] = 0;
460 break;
461 }
462 }
463 }
464
sc2731_adc_scale_init(struct sc27xx_adc_data * data)465 static void sc2731_adc_scale_init(struct sc27xx_adc_data *data)
466 {
467 int i;
468 /*
469 * In the current software design, SC2731 support 2 scales,
470 * channels 5 uses big scale, others use smale.
471 */
472 for (i = 0; i < SC27XX_ADC_CHANNEL_MAX; i++) {
473 switch (i) {
474 case 5:
475 data->channel_scale[i] = 1;
476 break;
477 default:
478 data->channel_scale[i] = 0;
479 break;
480 }
481 }
482 }
483
sc27xx_adc_read(struct sc27xx_adc_data * data,int channel,int scale,int * val)484 static int sc27xx_adc_read(struct sc27xx_adc_data *data, int channel,
485 int scale, int *val)
486 {
487 int ret, ret_volref;
488 u32 tmp, value, status;
489
490 ret = hwspin_lock_timeout_raw(data->hwlock, SC27XX_ADC_HWLOCK_TIMEOUT);
491 if (ret) {
492 dev_err(data->dev, "timeout to get the hwspinlock\n");
493 return ret;
494 }
495
496 /*
497 * According to the sc2721 chip data sheet, the reference voltage of
498 * specific channel 30 and channel 31 in ADC module needs to be set from
499 * the default 2.8v to 3.5v.
500 */
501 if ((data->var_data->set_volref) && (channel == 30 || channel == 31)) {
502 ret = regulator_set_voltage(data->volref,
503 SC27XX_ADC_REFVOL_VDD35,
504 SC27XX_ADC_REFVOL_VDD35);
505 if (ret) {
506 dev_err(data->dev, "failed to set the volref 3.5v\n");
507 goto unlock_adc;
508 }
509 }
510
511 ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL,
512 SC27XX_ADC_EN, SC27XX_ADC_EN);
513 if (ret)
514 goto regulator_restore;
515
516 ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_INT_CLR,
517 SC27XX_ADC_IRQ_CLR, SC27XX_ADC_IRQ_CLR);
518 if (ret)
519 goto disable_adc;
520
521 /* Configure the channel id and scale */
522 tmp = (scale << data->var_data->scale_shift) & data->var_data->scale_mask;
523 tmp |= channel & SC27XX_ADC_CHN_ID_MASK;
524 ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CH_CFG,
525 SC27XX_ADC_CHN_ID_MASK |
526 data->var_data->scale_mask,
527 tmp);
528 if (ret)
529 goto disable_adc;
530
531 /* Select 12bit conversion mode, and only sample 1 time */
532 tmp = SC27XX_ADC_12BIT_MODE;
533 tmp |= (0 << SC27XX_ADC_RUN_NUM_SHIFT) & SC27XX_ADC_RUN_NUM_MASK;
534 ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL,
535 SC27XX_ADC_RUN_NUM_MASK | SC27XX_ADC_12BIT_MODE,
536 tmp);
537 if (ret)
538 goto disable_adc;
539
540 ret = regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL,
541 SC27XX_ADC_CHN_RUN, SC27XX_ADC_CHN_RUN);
542 if (ret)
543 goto disable_adc;
544
545 ret = regmap_read_poll_timeout(data->regmap,
546 data->base + SC27XX_ADC_INT_RAW,
547 status, (status & SC27XX_ADC_IRQ_RAW),
548 SC27XX_ADC_POLL_RAW_STATUS,
549 SC27XX_ADC_RDY_TIMEOUT);
550 if (ret) {
551 dev_err(data->dev, "read adc timeout, status = 0x%x\n", status);
552 goto disable_adc;
553 }
554
555 ret = regmap_read(data->regmap, data->base + SC27XX_ADC_DATA, &value);
556 if (ret)
557 goto disable_adc;
558
559 value &= SC27XX_ADC_DATA_MASK;
560
561 disable_adc:
562 regmap_update_bits(data->regmap, data->base + SC27XX_ADC_CTL,
563 SC27XX_ADC_EN, 0);
564 regulator_restore:
565 if ((data->var_data->set_volref) && (channel == 30 || channel == 31)) {
566 ret_volref = regulator_set_voltage(data->volref,
567 SC27XX_ADC_REFVOL_VDD28,
568 SC27XX_ADC_REFVOL_VDD28);
569 if (ret_volref) {
570 dev_err(data->dev, "failed to set the volref 2.8v,ret_volref = 0x%x\n",
571 ret_volref);
572 ret = ret || ret_volref;
573 }
574 }
575 unlock_adc:
576 hwspin_unlock_raw(data->hwlock);
577
578 if (!ret)
579 *val = value;
580
581 return ret;
582 }
583
sc27xx_adc_volt_ratio(struct sc27xx_adc_data * data,int channel,int scale,struct u32_fract * fract)584 static void sc27xx_adc_volt_ratio(struct sc27xx_adc_data *data, int channel, int scale,
585 struct u32_fract *fract)
586 {
587 u32 ratio;
588
589 ratio = data->var_data->get_ratio(channel, scale);
590 fract->numerator = ratio >> SC27XX_RATIO_NUMERATOR_OFFSET;
591 fract->denominator = ratio & SC27XX_RATIO_DENOMINATOR_MASK;
592 }
593
adc_to_volt(struct sc27xx_adc_linear_graph * graph,int raw_adc)594 static int adc_to_volt(struct sc27xx_adc_linear_graph *graph,
595 int raw_adc)
596 {
597 int tmp;
598
599 tmp = (graph->volt0 - graph->volt1) * (raw_adc - graph->adc1);
600 tmp /= (graph->adc0 - graph->adc1);
601 tmp += graph->volt1;
602
603 return tmp;
604 }
605
sc27xx_adc_to_volt(struct sc27xx_adc_linear_graph * graph,int raw_adc)606 static int sc27xx_adc_to_volt(struct sc27xx_adc_linear_graph *graph,
607 int raw_adc)
608 {
609 int tmp;
610
611 tmp = adc_to_volt(graph, raw_adc);
612
613 return tmp < 0 ? 0 : tmp;
614 }
615
sc27xx_adc_convert_volt(struct sc27xx_adc_data * data,int channel,int scale,int raw_adc)616 static int sc27xx_adc_convert_volt(struct sc27xx_adc_data *data, int channel,
617 int scale, int raw_adc)
618 {
619 struct u32_fract fract;
620 u32 volt;
621
622 /*
623 * Convert ADC values to voltage values according to the linear graph,
624 * and channel 5 and channel 1 has been calibrated, so we can just
625 * return the voltage values calculated by the linear graph. But other
626 * channels need be calculated to the real voltage values with the
627 * voltage ratio.
628 */
629 switch (channel) {
630 case 5:
631 return sc27xx_adc_to_volt(&big_scale_graph, raw_adc);
632
633 case 1:
634 return sc27xx_adc_to_volt(&small_scale_graph, raw_adc);
635
636 default:
637 volt = sc27xx_adc_to_volt(&small_scale_graph, raw_adc);
638 break;
639 }
640
641 sc27xx_adc_volt_ratio(data, channel, scale, &fract);
642
643 return DIV_ROUND_CLOSEST(volt * fract.denominator, fract.numerator);
644 }
645
sc27xx_adc_read_processed(struct sc27xx_adc_data * data,int channel,int scale,int * val)646 static int sc27xx_adc_read_processed(struct sc27xx_adc_data *data,
647 int channel, int scale, int *val)
648 {
649 int ret, raw_adc;
650
651 ret = sc27xx_adc_read(data, channel, scale, &raw_adc);
652 if (ret)
653 return ret;
654
655 *val = sc27xx_adc_convert_volt(data, channel, scale, raw_adc);
656 return 0;
657 }
658
sc27xx_adc_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)659 static int sc27xx_adc_read_raw(struct iio_dev *indio_dev,
660 struct iio_chan_spec const *chan,
661 int *val, int *val2, long mask)
662 {
663 struct sc27xx_adc_data *data = iio_priv(indio_dev);
664 int scale = data->channel_scale[chan->channel];
665 int ret, tmp;
666
667 switch (mask) {
668 case IIO_CHAN_INFO_RAW:
669 mutex_lock(&data->lock);
670 ret = sc27xx_adc_read(data, chan->channel, scale, &tmp);
671 mutex_unlock(&data->lock);
672
673 if (ret)
674 return ret;
675
676 *val = tmp;
677 return IIO_VAL_INT;
678
679 case IIO_CHAN_INFO_PROCESSED:
680 mutex_lock(&data->lock);
681 ret = sc27xx_adc_read_processed(data, chan->channel, scale,
682 &tmp);
683 mutex_unlock(&data->lock);
684
685 if (ret)
686 return ret;
687
688 *val = tmp;
689 return IIO_VAL_INT;
690
691 case IIO_CHAN_INFO_SCALE:
692 *val = scale;
693 return IIO_VAL_INT;
694
695 default:
696 return -EINVAL;
697 }
698 }
699
sc27xx_adc_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)700 static int sc27xx_adc_write_raw(struct iio_dev *indio_dev,
701 struct iio_chan_spec const *chan,
702 int val, int val2, long mask)
703 {
704 struct sc27xx_adc_data *data = iio_priv(indio_dev);
705
706 switch (mask) {
707 case IIO_CHAN_INFO_SCALE:
708 data->channel_scale[chan->channel] = val;
709 return IIO_VAL_INT;
710
711 default:
712 return -EINVAL;
713 }
714 }
715
716 static const struct iio_info sc27xx_info = {
717 .read_raw = &sc27xx_adc_read_raw,
718 .write_raw = &sc27xx_adc_write_raw,
719 };
720
721 #define SC27XX_ADC_CHANNEL(index, mask) { \
722 .type = IIO_VOLTAGE, \
723 .channel = index, \
724 .info_mask_separate = mask | BIT(IIO_CHAN_INFO_SCALE), \
725 .datasheet_name = "CH##index", \
726 .indexed = 1, \
727 }
728
729 static const struct iio_chan_spec sc27xx_channels[] = {
730 SC27XX_ADC_CHANNEL(0, BIT(IIO_CHAN_INFO_PROCESSED)),
731 SC27XX_ADC_CHANNEL(1, BIT(IIO_CHAN_INFO_PROCESSED)),
732 SC27XX_ADC_CHANNEL(2, BIT(IIO_CHAN_INFO_PROCESSED)),
733 SC27XX_ADC_CHANNEL(3, BIT(IIO_CHAN_INFO_PROCESSED)),
734 SC27XX_ADC_CHANNEL(4, BIT(IIO_CHAN_INFO_PROCESSED)),
735 SC27XX_ADC_CHANNEL(5, BIT(IIO_CHAN_INFO_PROCESSED)),
736 SC27XX_ADC_CHANNEL(6, BIT(IIO_CHAN_INFO_PROCESSED)),
737 SC27XX_ADC_CHANNEL(7, BIT(IIO_CHAN_INFO_PROCESSED)),
738 SC27XX_ADC_CHANNEL(8, BIT(IIO_CHAN_INFO_PROCESSED)),
739 SC27XX_ADC_CHANNEL(9, BIT(IIO_CHAN_INFO_PROCESSED)),
740 SC27XX_ADC_CHANNEL(10, BIT(IIO_CHAN_INFO_PROCESSED)),
741 SC27XX_ADC_CHANNEL(11, BIT(IIO_CHAN_INFO_PROCESSED)),
742 SC27XX_ADC_CHANNEL(12, BIT(IIO_CHAN_INFO_PROCESSED)),
743 SC27XX_ADC_CHANNEL(13, BIT(IIO_CHAN_INFO_PROCESSED)),
744 SC27XX_ADC_CHANNEL(14, BIT(IIO_CHAN_INFO_PROCESSED)),
745 SC27XX_ADC_CHANNEL(15, BIT(IIO_CHAN_INFO_PROCESSED)),
746 SC27XX_ADC_CHANNEL(16, BIT(IIO_CHAN_INFO_PROCESSED)),
747 SC27XX_ADC_CHANNEL(17, BIT(IIO_CHAN_INFO_PROCESSED)),
748 SC27XX_ADC_CHANNEL(18, BIT(IIO_CHAN_INFO_PROCESSED)),
749 SC27XX_ADC_CHANNEL(19, BIT(IIO_CHAN_INFO_PROCESSED)),
750 SC27XX_ADC_CHANNEL(20, BIT(IIO_CHAN_INFO_RAW)),
751 SC27XX_ADC_CHANNEL(21, BIT(IIO_CHAN_INFO_PROCESSED)),
752 SC27XX_ADC_CHANNEL(22, BIT(IIO_CHAN_INFO_PROCESSED)),
753 SC27XX_ADC_CHANNEL(23, BIT(IIO_CHAN_INFO_PROCESSED)),
754 SC27XX_ADC_CHANNEL(24, BIT(IIO_CHAN_INFO_PROCESSED)),
755 SC27XX_ADC_CHANNEL(25, BIT(IIO_CHAN_INFO_PROCESSED)),
756 SC27XX_ADC_CHANNEL(26, BIT(IIO_CHAN_INFO_PROCESSED)),
757 SC27XX_ADC_CHANNEL(27, BIT(IIO_CHAN_INFO_PROCESSED)),
758 SC27XX_ADC_CHANNEL(28, BIT(IIO_CHAN_INFO_PROCESSED)),
759 SC27XX_ADC_CHANNEL(29, BIT(IIO_CHAN_INFO_PROCESSED)),
760 SC27XX_ADC_CHANNEL(30, BIT(IIO_CHAN_INFO_PROCESSED)),
761 SC27XX_ADC_CHANNEL(31, BIT(IIO_CHAN_INFO_PROCESSED)),
762 };
763
sc27xx_adc_enable(struct sc27xx_adc_data * data)764 static int sc27xx_adc_enable(struct sc27xx_adc_data *data)
765 {
766 int ret;
767
768 ret = regmap_update_bits(data->regmap, data->var_data->module_en,
769 SC27XX_MODULE_ADC_EN, SC27XX_MODULE_ADC_EN);
770 if (ret)
771 return ret;
772
773 /* Enable ADC work clock and controller clock */
774 ret = regmap_update_bits(data->regmap, data->var_data->clk_en,
775 SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN,
776 SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN);
777 if (ret)
778 goto disable_adc;
779
780 /* ADC channel scales' calibration from nvmem device */
781 ret = sc27xx_adc_scale_calibration(data, true);
782 if (ret)
783 goto disable_clk;
784
785 ret = sc27xx_adc_scale_calibration(data, false);
786 if (ret)
787 goto disable_clk;
788
789 return 0;
790
791 disable_clk:
792 regmap_update_bits(data->regmap, data->var_data->clk_en,
793 SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN, 0);
794 disable_adc:
795 regmap_update_bits(data->regmap, data->var_data->module_en,
796 SC27XX_MODULE_ADC_EN, 0);
797
798 return ret;
799 }
800
sc27xx_adc_disable(void * _data)801 static void sc27xx_adc_disable(void *_data)
802 {
803 struct sc27xx_adc_data *data = _data;
804
805 /* Disable ADC work clock and controller clock */
806 regmap_update_bits(data->regmap, data->var_data->clk_en,
807 SC27XX_CLK_ADC_EN | SC27XX_CLK_ADC_CLK_EN, 0);
808
809 regmap_update_bits(data->regmap, data->var_data->module_en,
810 SC27XX_MODULE_ADC_EN, 0);
811 }
812
813 static const struct sc27xx_adc_variant_data sc2731_data = {
814 .module_en = SC2731_MODULE_EN,
815 .clk_en = SC2731_ARM_CLK_EN,
816 .scale_shift = SC27XX_ADC_SCALE_SHIFT,
817 .scale_mask = SC27XX_ADC_SCALE_MASK,
818 .bscale_cal = &sc2731_big_scale_graph_calib,
819 .sscale_cal = &sc2731_small_scale_graph_calib,
820 .init_scale = sc2731_adc_scale_init,
821 .get_ratio = sc2731_adc_get_ratio,
822 .set_volref = false,
823 };
824
825 static const struct sc27xx_adc_variant_data sc2730_data = {
826 .module_en = SC2730_MODULE_EN,
827 .clk_en = SC2730_ARM_CLK_EN,
828 .scale_shift = SC27XX_ADC_SCALE_SHIFT,
829 .scale_mask = SC27XX_ADC_SCALE_MASK,
830 .bscale_cal = &big_scale_graph_calib,
831 .sscale_cal = &small_scale_graph_calib,
832 .init_scale = sc2730_adc_scale_init,
833 .get_ratio = sc2730_adc_get_ratio,
834 .set_volref = false,
835 };
836
837 static const struct sc27xx_adc_variant_data sc2721_data = {
838 .module_en = SC2731_MODULE_EN,
839 .clk_en = SC2721_ARM_CLK_EN,
840 .scale_shift = SC2721_ADC_SCALE_SHIFT,
841 .scale_mask = SC2721_ADC_SCALE_MASK,
842 .bscale_cal = &sc2731_big_scale_graph_calib,
843 .sscale_cal = &sc2731_small_scale_graph_calib,
844 .init_scale = sc2731_adc_scale_init,
845 .get_ratio = sc2721_adc_get_ratio,
846 .set_volref = true,
847 };
848
849 static const struct sc27xx_adc_variant_data sc2720_data = {
850 .module_en = SC2731_MODULE_EN,
851 .clk_en = SC2721_ARM_CLK_EN,
852 .scale_shift = SC27XX_ADC_SCALE_SHIFT,
853 .scale_mask = SC27XX_ADC_SCALE_MASK,
854 .bscale_cal = &big_scale_graph_calib,
855 .sscale_cal = &small_scale_graph_calib,
856 .init_scale = sc2720_adc_scale_init,
857 .get_ratio = sc2720_adc_get_ratio,
858 .set_volref = false,
859 };
860
sc27xx_adc_probe(struct platform_device * pdev)861 static int sc27xx_adc_probe(struct platform_device *pdev)
862 {
863 struct device *dev = &pdev->dev;
864 struct device_node *np = dev->of_node;
865 struct sc27xx_adc_data *sc27xx_data;
866 const struct sc27xx_adc_variant_data *pdata;
867 struct iio_dev *indio_dev;
868 int ret;
869
870 pdata = of_device_get_match_data(dev);
871 if (!pdata) {
872 dev_err(dev, "No matching driver data found\n");
873 return -EINVAL;
874 }
875
876 indio_dev = devm_iio_device_alloc(dev, sizeof(*sc27xx_data));
877 if (!indio_dev)
878 return -ENOMEM;
879
880 sc27xx_data = iio_priv(indio_dev);
881
882 sc27xx_data->regmap = dev_get_regmap(dev->parent, NULL);
883 if (!sc27xx_data->regmap) {
884 dev_err(dev, "failed to get ADC regmap\n");
885 return -ENODEV;
886 }
887
888 ret = of_property_read_u32(np, "reg", &sc27xx_data->base);
889 if (ret) {
890 dev_err(dev, "failed to get ADC base address\n");
891 return ret;
892 }
893
894 sc27xx_data->irq = platform_get_irq(pdev, 0);
895 if (sc27xx_data->irq < 0)
896 return sc27xx_data->irq;
897
898 ret = of_hwspin_lock_get_id(np, 0);
899 if (ret < 0) {
900 dev_err(dev, "failed to get hwspinlock id\n");
901 return ret;
902 }
903
904 sc27xx_data->hwlock = devm_hwspin_lock_request_specific(dev, ret);
905 if (!sc27xx_data->hwlock) {
906 dev_err(dev, "failed to request hwspinlock\n");
907 return -ENXIO;
908 }
909
910 sc27xx_data->dev = dev;
911 if (pdata->set_volref) {
912 sc27xx_data->volref = devm_regulator_get(dev, "vref");
913 if (IS_ERR(sc27xx_data->volref)) {
914 ret = PTR_ERR(sc27xx_data->volref);
915 return dev_err_probe(dev, ret, "failed to get ADC volref\n");
916 }
917 }
918
919 sc27xx_data->var_data = pdata;
920 sc27xx_data->var_data->init_scale(sc27xx_data);
921
922 ret = sc27xx_adc_enable(sc27xx_data);
923 if (ret) {
924 dev_err(dev, "failed to enable ADC module\n");
925 return ret;
926 }
927
928 ret = devm_add_action_or_reset(dev, sc27xx_adc_disable, sc27xx_data);
929 if (ret) {
930 dev_err(dev, "failed to add ADC disable action\n");
931 return ret;
932 }
933
934 indio_dev->name = dev_name(dev);
935 indio_dev->modes = INDIO_DIRECT_MODE;
936 indio_dev->info = &sc27xx_info;
937 indio_dev->channels = sc27xx_channels;
938 indio_dev->num_channels = ARRAY_SIZE(sc27xx_channels);
939
940 mutex_init(&sc27xx_data->lock);
941
942 ret = devm_iio_device_register(dev, indio_dev);
943 if (ret)
944 dev_err(dev, "could not register iio (ADC)");
945
946 return ret;
947 }
948
949 static const struct of_device_id sc27xx_adc_of_match[] = {
950 { .compatible = "sprd,sc2731-adc", .data = &sc2731_data},
951 { .compatible = "sprd,sc2730-adc", .data = &sc2730_data},
952 { .compatible = "sprd,sc2721-adc", .data = &sc2721_data},
953 { .compatible = "sprd,sc2720-adc", .data = &sc2720_data},
954 { }
955 };
956 MODULE_DEVICE_TABLE(of, sc27xx_adc_of_match);
957
958 static struct platform_driver sc27xx_adc_driver = {
959 .probe = sc27xx_adc_probe,
960 .driver = {
961 .name = "sc27xx-adc",
962 .of_match_table = sc27xx_adc_of_match,
963 },
964 };
965
966 module_platform_driver(sc27xx_adc_driver);
967
968 MODULE_AUTHOR("Freeman Liu <freeman.liu@spreadtrum.com>");
969 MODULE_DESCRIPTION("Spreadtrum SC27XX ADC Driver");
970 MODULE_LICENSE("GPL v2");
971