1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for the Nuvoton NAU7802 ADC 4 * 5 * Copyright 2013 Free Electrons 6 */ 7 8 #include <linux/delay.h> 9 #include <linux/i2c.h> 10 #include <linux/interrupt.h> 11 #include <linux/module.h> 12 #include <linux/wait.h> 13 #include <linux/log2.h> 14 #include <linux/of.h> 15 16 #include <linux/iio/iio.h> 17 #include <linux/iio/sysfs.h> 18 19 #define NAU7802_REG_PUCTRL 0x00 20 #define NAU7802_PUCTRL_RR(x) (x << 0) 21 #define NAU7802_PUCTRL_RR_BIT NAU7802_PUCTRL_RR(1) 22 #define NAU7802_PUCTRL_PUD(x) (x << 1) 23 #define NAU7802_PUCTRL_PUD_BIT NAU7802_PUCTRL_PUD(1) 24 #define NAU7802_PUCTRL_PUA(x) (x << 2) 25 #define NAU7802_PUCTRL_PUA_BIT NAU7802_PUCTRL_PUA(1) 26 #define NAU7802_PUCTRL_PUR(x) (x << 3) 27 #define NAU7802_PUCTRL_PUR_BIT NAU7802_PUCTRL_PUR(1) 28 #define NAU7802_PUCTRL_CS(x) (x << 4) 29 #define NAU7802_PUCTRL_CS_BIT NAU7802_PUCTRL_CS(1) 30 #define NAU7802_PUCTRL_CR(x) (x << 5) 31 #define NAU7802_PUCTRL_CR_BIT NAU7802_PUCTRL_CR(1) 32 #define NAU7802_PUCTRL_AVDDS(x) (x << 7) 33 #define NAU7802_PUCTRL_AVDDS_BIT NAU7802_PUCTRL_AVDDS(1) 34 #define NAU7802_REG_CTRL1 0x01 35 #define NAU7802_CTRL1_VLDO(x) (x << 3) 36 #define NAU7802_CTRL1_GAINS(x) (x) 37 #define NAU7802_CTRL1_GAINS_BITS 0x07 38 #define NAU7802_REG_CTRL2 0x02 39 #define NAU7802_CTRL2_CHS(x) (x << 7) 40 #define NAU7802_CTRL2_CRS(x) (x << 4) 41 #define NAU7802_SAMP_FREQ_320 0x07 42 #define NAU7802_CTRL2_CHS_BIT NAU7802_CTRL2_CHS(1) 43 #define NAU7802_REG_ADC_B2 0x12 44 #define NAU7802_REG_ADC_B1 0x13 45 #define NAU7802_REG_ADC_B0 0x14 46 #define NAU7802_REG_ADC_CTRL 0x15 47 48 #define NAU7802_MIN_CONVERSIONS 6 49 50 struct nau7802_state { 51 struct i2c_client *client; 52 s32 last_value; 53 struct mutex lock; 54 struct mutex data_lock; 55 u32 vref_mv; 56 u32 conversion_count; 57 u32 min_conversions; 58 u8 sample_rate; 59 u32 scale_avail[8]; 60 struct completion value_ok; 61 }; 62 63 #define NAU7802_CHANNEL(chan) { \ 64 .type = IIO_VOLTAGE, \ 65 .indexed = 1, \ 66 .channel = (chan), \ 67 .scan_index = (chan), \ 68 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 69 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ 70 BIT(IIO_CHAN_INFO_SAMP_FREQ) \ 71 } 72 73 static const struct iio_chan_spec nau7802_chan_array[] = { 74 NAU7802_CHANNEL(0), 75 NAU7802_CHANNEL(1), 76 }; 77 78 static const u16 nau7802_sample_freq_avail[] = {10, 20, 40, 80, 79 10, 10, 10, 320}; 80 81 static ssize_t nau7802_show_scales(struct device *dev, 82 struct device_attribute *attr, char *buf) 83 { 84 struct nau7802_state *st = iio_priv(dev_to_iio_dev(dev)); 85 int i, len = 0; 86 87 for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++) 88 len += scnprintf(buf + len, PAGE_SIZE - len, "0.%09d ", 89 st->scale_avail[i]); 90 91 buf[len-1] = '\n'; 92 93 return len; 94 } 95 96 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("10 40 80 320"); 97 98 static IIO_DEVICE_ATTR(in_voltage_scale_available, S_IRUGO, nau7802_show_scales, 99 NULL, 0); 100 101 static struct attribute *nau7802_attributes[] = { 102 &iio_const_attr_sampling_frequency_available.dev_attr.attr, 103 &iio_dev_attr_in_voltage_scale_available.dev_attr.attr, 104 NULL 105 }; 106 107 static const struct attribute_group nau7802_attribute_group = { 108 .attrs = nau7802_attributes, 109 }; 110 111 static int nau7802_set_gain(struct nau7802_state *st, int gain) 112 { 113 int ret; 114 115 mutex_lock(&st->lock); 116 st->conversion_count = 0; 117 118 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1); 119 if (ret < 0) 120 goto nau7802_sysfs_set_gain_out; 121 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1, 122 (ret & (~NAU7802_CTRL1_GAINS_BITS)) | 123 gain); 124 125 nau7802_sysfs_set_gain_out: 126 mutex_unlock(&st->lock); 127 128 return ret; 129 } 130 131 static int nau7802_read_conversion(struct nau7802_state *st) 132 { 133 int data; 134 135 mutex_lock(&st->data_lock); 136 data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B2); 137 if (data < 0) 138 goto nau7802_read_conversion_out; 139 st->last_value = data << 16; 140 141 data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B1); 142 if (data < 0) 143 goto nau7802_read_conversion_out; 144 st->last_value |= data << 8; 145 146 data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B0); 147 if (data < 0) 148 goto nau7802_read_conversion_out; 149 st->last_value |= data; 150 151 st->last_value = sign_extend32(st->last_value, 23); 152 153 nau7802_read_conversion_out: 154 mutex_unlock(&st->data_lock); 155 156 return data; 157 } 158 159 /* 160 * Conversions are synchronised on the rising edge of NAU7802_PUCTRL_CS_BIT 161 */ 162 static int nau7802_sync(struct nau7802_state *st) 163 { 164 int ret; 165 166 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL); 167 if (ret < 0) 168 return ret; 169 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL, 170 ret | NAU7802_PUCTRL_CS_BIT); 171 172 return ret; 173 } 174 175 static irqreturn_t nau7802_eoc_trigger(int irq, void *private) 176 { 177 struct iio_dev *indio_dev = private; 178 struct nau7802_state *st = iio_priv(indio_dev); 179 int status; 180 181 status = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL); 182 if (status < 0) 183 return IRQ_HANDLED; 184 185 if (!(status & NAU7802_PUCTRL_CR_BIT)) 186 return IRQ_NONE; 187 188 if (nau7802_read_conversion(st) < 0) 189 return IRQ_HANDLED; 190 191 /* 192 * Because there is actually only one ADC for both channels, we have to 193 * wait for enough conversions to happen before getting a significant 194 * value when changing channels and the values are far apart. 195 */ 196 if (st->conversion_count < NAU7802_MIN_CONVERSIONS) 197 st->conversion_count++; 198 if (st->conversion_count >= NAU7802_MIN_CONVERSIONS) 199 complete(&st->value_ok); 200 201 return IRQ_HANDLED; 202 } 203 204 static int nau7802_read_irq(struct iio_dev *indio_dev, 205 struct iio_chan_spec const *chan, 206 int *val) 207 { 208 struct nau7802_state *st = iio_priv(indio_dev); 209 int ret; 210 211 reinit_completion(&st->value_ok); 212 enable_irq(st->client->irq); 213 214 nau7802_sync(st); 215 216 /* read registers to ensure we flush everything */ 217 ret = nau7802_read_conversion(st); 218 if (ret < 0) 219 goto read_chan_info_failure; 220 221 /* Wait for a conversion to finish */ 222 ret = wait_for_completion_interruptible_timeout(&st->value_ok, 223 msecs_to_jiffies(1000)); 224 if (ret == 0) 225 ret = -ETIMEDOUT; 226 227 if (ret < 0) 228 goto read_chan_info_failure; 229 230 disable_irq(st->client->irq); 231 232 *val = st->last_value; 233 234 return IIO_VAL_INT; 235 236 read_chan_info_failure: 237 disable_irq(st->client->irq); 238 239 return ret; 240 } 241 242 static int nau7802_read_poll(struct iio_dev *indio_dev, 243 struct iio_chan_spec const *chan, 244 int *val) 245 { 246 struct nau7802_state *st = iio_priv(indio_dev); 247 int ret; 248 249 nau7802_sync(st); 250 251 /* read registers to ensure we flush everything */ 252 ret = nau7802_read_conversion(st); 253 if (ret < 0) 254 return ret; 255 256 /* 257 * Because there is actually only one ADC for both channels, we have to 258 * wait for enough conversions to happen before getting a significant 259 * value when changing channels and the values are far appart. 260 */ 261 do { 262 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL); 263 if (ret < 0) 264 return ret; 265 266 while (!(ret & NAU7802_PUCTRL_CR_BIT)) { 267 if (st->sample_rate != NAU7802_SAMP_FREQ_320) 268 msleep(20); 269 else 270 mdelay(4); 271 ret = i2c_smbus_read_byte_data(st->client, 272 NAU7802_REG_PUCTRL); 273 if (ret < 0) 274 return ret; 275 } 276 277 ret = nau7802_read_conversion(st); 278 if (ret < 0) 279 return ret; 280 if (st->conversion_count < NAU7802_MIN_CONVERSIONS) 281 st->conversion_count++; 282 } while (st->conversion_count < NAU7802_MIN_CONVERSIONS); 283 284 *val = st->last_value; 285 286 return IIO_VAL_INT; 287 } 288 289 static int nau7802_read_raw(struct iio_dev *indio_dev, 290 struct iio_chan_spec const *chan, 291 int *val, int *val2, long mask) 292 { 293 struct nau7802_state *st = iio_priv(indio_dev); 294 int ret; 295 296 switch (mask) { 297 case IIO_CHAN_INFO_RAW: 298 mutex_lock(&st->lock); 299 /* 300 * Select the channel to use 301 * - Channel 1 is value 0 in the CHS register 302 * - Channel 2 is value 1 in the CHS register 303 */ 304 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL2); 305 if (ret < 0) { 306 mutex_unlock(&st->lock); 307 return ret; 308 } 309 310 if (((ret & NAU7802_CTRL2_CHS_BIT) && !chan->channel) || 311 (!(ret & NAU7802_CTRL2_CHS_BIT) && 312 chan->channel)) { 313 st->conversion_count = 0; 314 ret = i2c_smbus_write_byte_data(st->client, 315 NAU7802_REG_CTRL2, 316 NAU7802_CTRL2_CHS(chan->channel) | 317 NAU7802_CTRL2_CRS(st->sample_rate)); 318 319 if (ret < 0) { 320 mutex_unlock(&st->lock); 321 return ret; 322 } 323 } 324 325 if (st->client->irq) 326 ret = nau7802_read_irq(indio_dev, chan, val); 327 else 328 ret = nau7802_read_poll(indio_dev, chan, val); 329 330 mutex_unlock(&st->lock); 331 return ret; 332 333 case IIO_CHAN_INFO_SCALE: 334 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1); 335 if (ret < 0) 336 return ret; 337 338 /* 339 * We have 24 bits of signed data, that means 23 bits of data 340 * plus the sign bit 341 */ 342 *val = st->vref_mv; 343 *val2 = 23 + (ret & NAU7802_CTRL1_GAINS_BITS); 344 345 return IIO_VAL_FRACTIONAL_LOG2; 346 347 case IIO_CHAN_INFO_SAMP_FREQ: 348 *val = nau7802_sample_freq_avail[st->sample_rate]; 349 *val2 = 0; 350 return IIO_VAL_INT; 351 352 default: 353 break; 354 } 355 356 return -EINVAL; 357 } 358 359 static int nau7802_write_raw(struct iio_dev *indio_dev, 360 struct iio_chan_spec const *chan, 361 int val, int val2, long mask) 362 { 363 struct nau7802_state *st = iio_priv(indio_dev); 364 int i, ret; 365 366 switch (mask) { 367 case IIO_CHAN_INFO_SCALE: 368 for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++) 369 if (val2 == st->scale_avail[i]) 370 return nau7802_set_gain(st, i); 371 372 break; 373 374 case IIO_CHAN_INFO_SAMP_FREQ: 375 for (i = 0; i < ARRAY_SIZE(nau7802_sample_freq_avail); i++) 376 if (val == nau7802_sample_freq_avail[i]) { 377 mutex_lock(&st->lock); 378 st->sample_rate = i; 379 st->conversion_count = 0; 380 ret = i2c_smbus_write_byte_data(st->client, 381 NAU7802_REG_CTRL2, 382 NAU7802_CTRL2_CRS(st->sample_rate)); 383 mutex_unlock(&st->lock); 384 return ret; 385 } 386 387 break; 388 389 default: 390 break; 391 } 392 393 return -EINVAL; 394 } 395 396 static int nau7802_write_raw_get_fmt(struct iio_dev *indio_dev, 397 struct iio_chan_spec const *chan, 398 long mask) 399 { 400 return IIO_VAL_INT_PLUS_NANO; 401 } 402 403 static const struct iio_info nau7802_info = { 404 .read_raw = &nau7802_read_raw, 405 .write_raw = &nau7802_write_raw, 406 .write_raw_get_fmt = nau7802_write_raw_get_fmt, 407 .attrs = &nau7802_attribute_group, 408 }; 409 410 static int nau7802_probe(struct i2c_client *client, 411 const struct i2c_device_id *id) 412 { 413 struct iio_dev *indio_dev; 414 struct nau7802_state *st; 415 struct device_node *np = client->dev.of_node; 416 int i, ret; 417 u8 data; 418 u32 tmp = 0; 419 420 if (!client->dev.of_node) { 421 dev_err(&client->dev, "No device tree node available.\n"); 422 return -EINVAL; 423 } 424 425 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*st)); 426 if (indio_dev == NULL) 427 return -ENOMEM; 428 429 st = iio_priv(indio_dev); 430 431 indio_dev->name = dev_name(&client->dev); 432 indio_dev->modes = INDIO_DIRECT_MODE; 433 indio_dev->info = &nau7802_info; 434 435 st->client = client; 436 437 /* Reset the device */ 438 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL, 439 NAU7802_PUCTRL_RR_BIT); 440 if (ret < 0) 441 return ret; 442 443 /* Enter normal operation mode */ 444 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL, 445 NAU7802_PUCTRL_PUD_BIT); 446 if (ret < 0) 447 return ret; 448 449 /* 450 * After about 200 usecs, the device should be ready and then 451 * the Power Up bit will be set to 1. If not, wait for it. 452 */ 453 udelay(210); 454 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL); 455 if (ret < 0) 456 return ret; 457 if (!(ret & NAU7802_PUCTRL_PUR_BIT)) 458 return ret; 459 460 of_property_read_u32(np, "nuvoton,vldo", &tmp); 461 st->vref_mv = tmp; 462 463 data = NAU7802_PUCTRL_PUD_BIT | NAU7802_PUCTRL_PUA_BIT | 464 NAU7802_PUCTRL_CS_BIT; 465 if (tmp >= 2400) 466 data |= NAU7802_PUCTRL_AVDDS_BIT; 467 468 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL, data); 469 if (ret < 0) 470 return ret; 471 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_ADC_CTRL, 0x30); 472 if (ret < 0) 473 return ret; 474 475 if (tmp >= 2400) { 476 data = NAU7802_CTRL1_VLDO((4500 - tmp) / 300); 477 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1, 478 data); 479 if (ret < 0) 480 return ret; 481 } 482 483 /* Populate available ADC input ranges */ 484 for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++) 485 st->scale_avail[i] = (((u64)st->vref_mv) * 1000000000ULL) 486 >> (23 + i); 487 488 init_completion(&st->value_ok); 489 490 /* 491 * The ADC fires continuously and we can't do anything about 492 * it. So we need to have the IRQ disabled by default, and we 493 * will enable them back when we will need them.. 494 */ 495 if (client->irq) { 496 ret = devm_request_threaded_irq(&client->dev, client->irq, 497 NULL, 498 nau7802_eoc_trigger, 499 IRQF_TRIGGER_HIGH | IRQF_ONESHOT | 500 IRQF_NO_AUTOEN, 501 client->dev.driver->name, 502 indio_dev); 503 if (ret) { 504 /* 505 * What may happen here is that our IRQ controller is 506 * not able to get level interrupt but this is required 507 * by this ADC as when going over 40 sample per second, 508 * the interrupt line may stay high between conversions. 509 * So, we continue no matter what but we switch to 510 * polling mode. 511 */ 512 dev_info(&client->dev, 513 "Failed to allocate IRQ, using polling mode\n"); 514 client->irq = 0; 515 } 516 } 517 518 if (!client->irq) { 519 /* 520 * We are polling, use the fastest sample rate by 521 * default 522 */ 523 st->sample_rate = NAU7802_SAMP_FREQ_320; 524 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL2, 525 NAU7802_CTRL2_CRS(st->sample_rate)); 526 if (ret) 527 return ret; 528 } 529 530 /* Setup the ADC channels available on the board */ 531 indio_dev->num_channels = ARRAY_SIZE(nau7802_chan_array); 532 indio_dev->channels = nau7802_chan_array; 533 534 mutex_init(&st->lock); 535 mutex_init(&st->data_lock); 536 537 return devm_iio_device_register(&client->dev, indio_dev); 538 } 539 540 static const struct i2c_device_id nau7802_i2c_id[] = { 541 { "nau7802", 0 }, 542 { } 543 }; 544 MODULE_DEVICE_TABLE(i2c, nau7802_i2c_id); 545 546 static const struct of_device_id nau7802_dt_ids[] = { 547 { .compatible = "nuvoton,nau7802" }, 548 {}, 549 }; 550 MODULE_DEVICE_TABLE(of, nau7802_dt_ids); 551 552 static struct i2c_driver nau7802_driver = { 553 .probe = nau7802_probe, 554 .id_table = nau7802_i2c_id, 555 .driver = { 556 .name = "nau7802", 557 .of_match_table = nau7802_dt_ids, 558 }, 559 }; 560 561 module_i2c_driver(nau7802_driver); 562 563 MODULE_LICENSE("GPL"); 564 MODULE_DESCRIPTION("Nuvoton NAU7802 ADC Driver"); 565 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>"); 566 MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>"); 567