xref: /openbmc/linux/drivers/iio/adc/mxs-lradc-adc.c (revision ba61bb17)
1 /*
2  * Freescale MXS LRADC ADC driver
3  *
4  * Copyright (c) 2012 DENX Software Engineering, GmbH.
5  * Copyright (c) 2017 Ksenija Stanojevic <ksenija.stanojevic@gmail.com>
6  *
7  * Authors:
8  *  Marek Vasut <marex@denx.de>
9  *  Ksenija Stanojevic <ksenija.stanojevic@gmail.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19  * GNU General Public License for more details.
20  */
21 
22 #include <linux/completion.h>
23 #include <linux/device.h>
24 #include <linux/err.h>
25 #include <linux/interrupt.h>
26 #include <linux/mfd/core.h>
27 #include <linux/mfd/mxs-lradc.h>
28 #include <linux/module.h>
29 #include <linux/of_irq.h>
30 #include <linux/platform_device.h>
31 #include <linux/sysfs.h>
32 
33 #include <linux/iio/buffer.h>
34 #include <linux/iio/iio.h>
35 #include <linux/iio/trigger.h>
36 #include <linux/iio/trigger_consumer.h>
37 #include <linux/iio/triggered_buffer.h>
38 #include <linux/iio/sysfs.h>
39 
40 /*
41  * Make this runtime configurable if necessary. Currently, if the buffered mode
42  * is enabled, the LRADC takes LRADC_DELAY_TIMER_LOOP samples of data before
43  * triggering IRQ. The sampling happens every (LRADC_DELAY_TIMER_PER / 2000)
44  * seconds. The result is that the samples arrive every 500mS.
45  */
46 #define LRADC_DELAY_TIMER_PER	200
47 #define LRADC_DELAY_TIMER_LOOP	5
48 
49 #define VREF_MV_BASE 1850
50 
51 static const char *mx23_lradc_adc_irq_names[] = {
52 	"mxs-lradc-channel0",
53 	"mxs-lradc-channel1",
54 	"mxs-lradc-channel2",
55 	"mxs-lradc-channel3",
56 	"mxs-lradc-channel4",
57 	"mxs-lradc-channel5",
58 };
59 
60 static const char *mx28_lradc_adc_irq_names[] = {
61 	"mxs-lradc-thresh0",
62 	"mxs-lradc-thresh1",
63 	"mxs-lradc-channel0",
64 	"mxs-lradc-channel1",
65 	"mxs-lradc-channel2",
66 	"mxs-lradc-channel3",
67 	"mxs-lradc-channel4",
68 	"mxs-lradc-channel5",
69 	"mxs-lradc-button0",
70 	"mxs-lradc-button1",
71 };
72 
73 static const u32 mxs_lradc_adc_vref_mv[][LRADC_MAX_TOTAL_CHANS] = {
74 	[IMX23_LRADC] = {
75 		VREF_MV_BASE,		/* CH0 */
76 		VREF_MV_BASE,		/* CH1 */
77 		VREF_MV_BASE,		/* CH2 */
78 		VREF_MV_BASE,		/* CH3 */
79 		VREF_MV_BASE,		/* CH4 */
80 		VREF_MV_BASE,		/* CH5 */
81 		VREF_MV_BASE * 2,	/* CH6 VDDIO */
82 		VREF_MV_BASE * 4,	/* CH7 VBATT */
83 		VREF_MV_BASE,		/* CH8 Temp sense 0 */
84 		VREF_MV_BASE,		/* CH9 Temp sense 1 */
85 		VREF_MV_BASE,		/* CH10 */
86 		VREF_MV_BASE,		/* CH11 */
87 		VREF_MV_BASE,		/* CH12 USB_DP */
88 		VREF_MV_BASE,		/* CH13 USB_DN */
89 		VREF_MV_BASE,		/* CH14 VBG */
90 		VREF_MV_BASE * 4,	/* CH15 VDD5V */
91 	},
92 	[IMX28_LRADC] = {
93 		VREF_MV_BASE,		/* CH0 */
94 		VREF_MV_BASE,		/* CH1 */
95 		VREF_MV_BASE,		/* CH2 */
96 		VREF_MV_BASE,		/* CH3 */
97 		VREF_MV_BASE,		/* CH4 */
98 		VREF_MV_BASE,		/* CH5 */
99 		VREF_MV_BASE,		/* CH6 */
100 		VREF_MV_BASE * 4,	/* CH7 VBATT */
101 		VREF_MV_BASE,		/* CH8 Temp sense 0 */
102 		VREF_MV_BASE,		/* CH9 Temp sense 1 */
103 		VREF_MV_BASE * 2,	/* CH10 VDDIO */
104 		VREF_MV_BASE,		/* CH11 VTH */
105 		VREF_MV_BASE * 2,	/* CH12 VDDA */
106 		VREF_MV_BASE,		/* CH13 VDDD */
107 		VREF_MV_BASE,		/* CH14 VBG */
108 		VREF_MV_BASE * 4,	/* CH15 VDD5V */
109 	},
110 };
111 
112 enum mxs_lradc_divbytwo {
113 	MXS_LRADC_DIV_DISABLED = 0,
114 	MXS_LRADC_DIV_ENABLED,
115 };
116 
117 struct mxs_lradc_scale {
118 	unsigned int		integer;
119 	unsigned int		nano;
120 };
121 
122 struct mxs_lradc_adc {
123 	struct mxs_lradc	*lradc;
124 	struct device		*dev;
125 
126 	void __iomem		*base;
127 	u32			buffer[10];
128 	struct iio_trigger	*trig;
129 	struct completion	completion;
130 	spinlock_t		lock;
131 
132 	const u32		*vref_mv;
133 	struct mxs_lradc_scale	scale_avail[LRADC_MAX_TOTAL_CHANS][2];
134 	unsigned long		is_divided;
135 };
136 
137 
138 /* Raw I/O operations */
139 static int mxs_lradc_adc_read_single(struct iio_dev *iio_dev, int chan,
140 				     int *val)
141 {
142 	struct mxs_lradc_adc *adc = iio_priv(iio_dev);
143 	struct mxs_lradc *lradc = adc->lradc;
144 	int ret;
145 
146 	/*
147 	 * See if there is no buffered operation in progress. If there is simply
148 	 * bail out. This can be improved to support both buffered and raw IO at
149 	 * the same time, yet the code becomes horribly complicated. Therefore I
150 	 * applied KISS principle here.
151 	 */
152 	ret = iio_device_claim_direct_mode(iio_dev);
153 	if (ret)
154 		return ret;
155 
156 	reinit_completion(&adc->completion);
157 
158 	/*
159 	 * No buffered operation in progress, map the channel and trigger it.
160 	 * Virtual channel 0 is always used here as the others are always not
161 	 * used if doing raw sampling.
162 	 */
163 	if (lradc->soc == IMX28_LRADC)
164 		writel(LRADC_CTRL1_LRADC_IRQ_EN(0),
165 		       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);
166 	writel(0x1, adc->base + LRADC_CTRL0 + STMP_OFFSET_REG_CLR);
167 
168 	/* Enable / disable the divider per requirement */
169 	if (test_bit(chan, &adc->is_divided))
170 		writel(1 << LRADC_CTRL2_DIVIDE_BY_TWO_OFFSET,
171 		       adc->base + LRADC_CTRL2 + STMP_OFFSET_REG_SET);
172 	else
173 		writel(1 << LRADC_CTRL2_DIVIDE_BY_TWO_OFFSET,
174 		       adc->base + LRADC_CTRL2 + STMP_OFFSET_REG_CLR);
175 
176 	/* Clean the slot's previous content, then set new one. */
177 	writel(LRADC_CTRL4_LRADCSELECT_MASK(0),
178 	       adc->base + LRADC_CTRL4 + STMP_OFFSET_REG_CLR);
179 	writel(chan, adc->base + LRADC_CTRL4 + STMP_OFFSET_REG_SET);
180 
181 	writel(0, adc->base + LRADC_CH(0));
182 
183 	/* Enable the IRQ and start sampling the channel. */
184 	writel(LRADC_CTRL1_LRADC_IRQ_EN(0),
185 	       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_SET);
186 	writel(BIT(0), adc->base + LRADC_CTRL0 + STMP_OFFSET_REG_SET);
187 
188 	/* Wait for completion on the channel, 1 second max. */
189 	ret = wait_for_completion_killable_timeout(&adc->completion, HZ);
190 	if (!ret)
191 		ret = -ETIMEDOUT;
192 	if (ret < 0)
193 		goto err;
194 
195 	/* Read the data. */
196 	*val = readl(adc->base + LRADC_CH(0)) & LRADC_CH_VALUE_MASK;
197 	ret = IIO_VAL_INT;
198 
199 err:
200 	writel(LRADC_CTRL1_LRADC_IRQ_EN(0),
201 	       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);
202 
203 	iio_device_release_direct_mode(iio_dev);
204 
205 	return ret;
206 }
207 
208 static int mxs_lradc_adc_read_temp(struct iio_dev *iio_dev, int *val)
209 {
210 	int ret, min, max;
211 
212 	ret = mxs_lradc_adc_read_single(iio_dev, 8, &min);
213 	if (ret != IIO_VAL_INT)
214 		return ret;
215 
216 	ret = mxs_lradc_adc_read_single(iio_dev, 9, &max);
217 	if (ret != IIO_VAL_INT)
218 		return ret;
219 
220 	*val = max - min;
221 
222 	return IIO_VAL_INT;
223 }
224 
225 static int mxs_lradc_adc_read_raw(struct iio_dev *iio_dev,
226 			      const struct iio_chan_spec *chan,
227 			      int *val, int *val2, long m)
228 {
229 	struct mxs_lradc_adc *adc = iio_priv(iio_dev);
230 
231 	switch (m) {
232 	case IIO_CHAN_INFO_RAW:
233 		if (chan->type == IIO_TEMP)
234 			return mxs_lradc_adc_read_temp(iio_dev, val);
235 
236 		return mxs_lradc_adc_read_single(iio_dev, chan->channel, val);
237 
238 	case IIO_CHAN_INFO_SCALE:
239 		if (chan->type == IIO_TEMP) {
240 			/*
241 			 * From the datasheet, we have to multiply by 1.012 and
242 			 * divide by 4
243 			 */
244 			*val = 0;
245 			*val2 = 253000;
246 			return IIO_VAL_INT_PLUS_MICRO;
247 		}
248 
249 		*val = adc->vref_mv[chan->channel];
250 		*val2 = chan->scan_type.realbits -
251 			test_bit(chan->channel, &adc->is_divided);
252 		return IIO_VAL_FRACTIONAL_LOG2;
253 
254 	case IIO_CHAN_INFO_OFFSET:
255 		if (chan->type == IIO_TEMP) {
256 			/*
257 			 * The calculated value from the ADC is in Kelvin, we
258 			 * want Celsius for hwmon so the offset is -273.15
259 			 * The offset is applied before scaling so it is
260 			 * actually -213.15 * 4 / 1.012 = -1079.644268
261 			 */
262 			*val = -1079;
263 			*val2 = 644268;
264 
265 			return IIO_VAL_INT_PLUS_MICRO;
266 		}
267 
268 		return -EINVAL;
269 
270 	default:
271 		break;
272 	}
273 
274 	return -EINVAL;
275 }
276 
277 static int mxs_lradc_adc_write_raw(struct iio_dev *iio_dev,
278 				   const struct iio_chan_spec *chan,
279 				   int val, int val2, long m)
280 {
281 	struct mxs_lradc_adc *adc = iio_priv(iio_dev);
282 	struct mxs_lradc_scale *scale_avail =
283 			adc->scale_avail[chan->channel];
284 	int ret;
285 
286 	ret = iio_device_claim_direct_mode(iio_dev);
287 	if (ret)
288 		return ret;
289 
290 	switch (m) {
291 	case IIO_CHAN_INFO_SCALE:
292 		ret = -EINVAL;
293 		if (val == scale_avail[MXS_LRADC_DIV_DISABLED].integer &&
294 		    val2 == scale_avail[MXS_LRADC_DIV_DISABLED].nano) {
295 			/* divider by two disabled */
296 			clear_bit(chan->channel, &adc->is_divided);
297 			ret = 0;
298 		} else if (val == scale_avail[MXS_LRADC_DIV_ENABLED].integer &&
299 			   val2 == scale_avail[MXS_LRADC_DIV_ENABLED].nano) {
300 			/* divider by two enabled */
301 			set_bit(chan->channel, &adc->is_divided);
302 			ret = 0;
303 		}
304 
305 		break;
306 	default:
307 		ret = -EINVAL;
308 		break;
309 	}
310 
311 	iio_device_release_direct_mode(iio_dev);
312 
313 	return ret;
314 }
315 
316 static int mxs_lradc_adc_write_raw_get_fmt(struct iio_dev *iio_dev,
317 					   const struct iio_chan_spec *chan,
318 					   long m)
319 {
320 	return IIO_VAL_INT_PLUS_NANO;
321 }
322 
323 static ssize_t mxs_lradc_adc_show_scale_avail(struct device *dev,
324 						 struct device_attribute *attr,
325 						 char *buf)
326 {
327 	struct iio_dev *iio = dev_to_iio_dev(dev);
328 	struct mxs_lradc_adc *adc = iio_priv(iio);
329 	struct iio_dev_attr *iio_attr = to_iio_dev_attr(attr);
330 	int i, ch, len = 0;
331 
332 	ch = iio_attr->address;
333 	for (i = 0; i < ARRAY_SIZE(adc->scale_avail[ch]); i++)
334 		len += sprintf(buf + len, "%u.%09u ",
335 			       adc->scale_avail[ch][i].integer,
336 			       adc->scale_avail[ch][i].nano);
337 
338 	len += sprintf(buf + len, "\n");
339 
340 	return len;
341 }
342 
343 #define SHOW_SCALE_AVAILABLE_ATTR(ch)\
344 	IIO_DEVICE_ATTR(in_voltage##ch##_scale_available, 0444,\
345 			mxs_lradc_adc_show_scale_avail, NULL, ch)
346 
347 static SHOW_SCALE_AVAILABLE_ATTR(0);
348 static SHOW_SCALE_AVAILABLE_ATTR(1);
349 static SHOW_SCALE_AVAILABLE_ATTR(2);
350 static SHOW_SCALE_AVAILABLE_ATTR(3);
351 static SHOW_SCALE_AVAILABLE_ATTR(4);
352 static SHOW_SCALE_AVAILABLE_ATTR(5);
353 static SHOW_SCALE_AVAILABLE_ATTR(6);
354 static SHOW_SCALE_AVAILABLE_ATTR(7);
355 static SHOW_SCALE_AVAILABLE_ATTR(10);
356 static SHOW_SCALE_AVAILABLE_ATTR(11);
357 static SHOW_SCALE_AVAILABLE_ATTR(12);
358 static SHOW_SCALE_AVAILABLE_ATTR(13);
359 static SHOW_SCALE_AVAILABLE_ATTR(14);
360 static SHOW_SCALE_AVAILABLE_ATTR(15);
361 
362 static struct attribute *mxs_lradc_adc_attributes[] = {
363 	&iio_dev_attr_in_voltage0_scale_available.dev_attr.attr,
364 	&iio_dev_attr_in_voltage1_scale_available.dev_attr.attr,
365 	&iio_dev_attr_in_voltage2_scale_available.dev_attr.attr,
366 	&iio_dev_attr_in_voltage3_scale_available.dev_attr.attr,
367 	&iio_dev_attr_in_voltage4_scale_available.dev_attr.attr,
368 	&iio_dev_attr_in_voltage5_scale_available.dev_attr.attr,
369 	&iio_dev_attr_in_voltage6_scale_available.dev_attr.attr,
370 	&iio_dev_attr_in_voltage7_scale_available.dev_attr.attr,
371 	&iio_dev_attr_in_voltage10_scale_available.dev_attr.attr,
372 	&iio_dev_attr_in_voltage11_scale_available.dev_attr.attr,
373 	&iio_dev_attr_in_voltage12_scale_available.dev_attr.attr,
374 	&iio_dev_attr_in_voltage13_scale_available.dev_attr.attr,
375 	&iio_dev_attr_in_voltage14_scale_available.dev_attr.attr,
376 	&iio_dev_attr_in_voltage15_scale_available.dev_attr.attr,
377 	NULL
378 };
379 
380 static const struct attribute_group mxs_lradc_adc_attribute_group = {
381 	.attrs = mxs_lradc_adc_attributes,
382 };
383 
384 static const struct iio_info mxs_lradc_adc_iio_info = {
385 	.read_raw		= mxs_lradc_adc_read_raw,
386 	.write_raw		= mxs_lradc_adc_write_raw,
387 	.write_raw_get_fmt	= mxs_lradc_adc_write_raw_get_fmt,
388 	.attrs			= &mxs_lradc_adc_attribute_group,
389 };
390 
391 /* IRQ Handling */
392 static irqreturn_t mxs_lradc_adc_handle_irq(int irq, void *data)
393 {
394 	struct iio_dev *iio = data;
395 	struct mxs_lradc_adc *adc = iio_priv(iio);
396 	struct mxs_lradc *lradc = adc->lradc;
397 	unsigned long reg = readl(adc->base + LRADC_CTRL1);
398 	unsigned long flags;
399 
400 	if (!(reg & mxs_lradc_irq_mask(lradc)))
401 		return IRQ_NONE;
402 
403 	if (iio_buffer_enabled(iio)) {
404 		if (reg & lradc->buffer_vchans) {
405 			spin_lock_irqsave(&adc->lock, flags);
406 			iio_trigger_poll(iio->trig);
407 			spin_unlock_irqrestore(&adc->lock, flags);
408 		}
409 	} else if (reg & LRADC_CTRL1_LRADC_IRQ(0)) {
410 		complete(&adc->completion);
411 	}
412 
413 	writel(reg & mxs_lradc_irq_mask(lradc),
414 	       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);
415 
416 	return IRQ_HANDLED;
417 }
418 
419 
420 /* Trigger handling */
421 static irqreturn_t mxs_lradc_adc_trigger_handler(int irq, void *p)
422 {
423 	struct iio_poll_func *pf = p;
424 	struct iio_dev *iio = pf->indio_dev;
425 	struct mxs_lradc_adc *adc = iio_priv(iio);
426 	const u32 chan_value = LRADC_CH_ACCUMULATE |
427 		((LRADC_DELAY_TIMER_LOOP - 1) << LRADC_CH_NUM_SAMPLES_OFFSET);
428 	unsigned int i, j = 0;
429 
430 	for_each_set_bit(i, iio->active_scan_mask, LRADC_MAX_TOTAL_CHANS) {
431 		adc->buffer[j] = readl(adc->base + LRADC_CH(j));
432 		writel(chan_value, adc->base + LRADC_CH(j));
433 		adc->buffer[j] &= LRADC_CH_VALUE_MASK;
434 		adc->buffer[j] /= LRADC_DELAY_TIMER_LOOP;
435 		j++;
436 	}
437 
438 	iio_push_to_buffers_with_timestamp(iio, adc->buffer, pf->timestamp);
439 
440 	iio_trigger_notify_done(iio->trig);
441 
442 	return IRQ_HANDLED;
443 }
444 
445 static int mxs_lradc_adc_configure_trigger(struct iio_trigger *trig, bool state)
446 {
447 	struct iio_dev *iio = iio_trigger_get_drvdata(trig);
448 	struct mxs_lradc_adc *adc = iio_priv(iio);
449 	const u32 st = state ? STMP_OFFSET_REG_SET : STMP_OFFSET_REG_CLR;
450 
451 	writel(LRADC_DELAY_KICK, adc->base + (LRADC_DELAY(0) + st));
452 
453 	return 0;
454 }
455 
456 static const struct iio_trigger_ops mxs_lradc_adc_trigger_ops = {
457 	.set_trigger_state = &mxs_lradc_adc_configure_trigger,
458 };
459 
460 static int mxs_lradc_adc_trigger_init(struct iio_dev *iio)
461 {
462 	int ret;
463 	struct iio_trigger *trig;
464 	struct mxs_lradc_adc *adc = iio_priv(iio);
465 
466 	trig = devm_iio_trigger_alloc(&iio->dev, "%s-dev%i", iio->name,
467 				      iio->id);
468 
469 	trig->dev.parent = adc->dev;
470 	iio_trigger_set_drvdata(trig, iio);
471 	trig->ops = &mxs_lradc_adc_trigger_ops;
472 
473 	ret = iio_trigger_register(trig);
474 	if (ret)
475 		return ret;
476 
477 	adc->trig = trig;
478 
479 	return 0;
480 }
481 
482 static void mxs_lradc_adc_trigger_remove(struct iio_dev *iio)
483 {
484 	struct mxs_lradc_adc *adc = iio_priv(iio);
485 
486 	iio_trigger_unregister(adc->trig);
487 }
488 
489 static int mxs_lradc_adc_buffer_preenable(struct iio_dev *iio)
490 {
491 	struct mxs_lradc_adc *adc = iio_priv(iio);
492 	struct mxs_lradc *lradc = adc->lradc;
493 	int chan, ofs = 0;
494 	unsigned long enable = 0;
495 	u32 ctrl4_set = 0;
496 	u32 ctrl4_clr = 0;
497 	u32 ctrl1_irq = 0;
498 	const u32 chan_value = LRADC_CH_ACCUMULATE |
499 		((LRADC_DELAY_TIMER_LOOP - 1) << LRADC_CH_NUM_SAMPLES_OFFSET);
500 
501 	if (lradc->soc == IMX28_LRADC)
502 		writel(lradc->buffer_vchans << LRADC_CTRL1_LRADC_IRQ_EN_OFFSET,
503 		       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);
504 	writel(lradc->buffer_vchans,
505 	       adc->base + LRADC_CTRL0 + STMP_OFFSET_REG_CLR);
506 
507 	for_each_set_bit(chan, iio->active_scan_mask, LRADC_MAX_TOTAL_CHANS) {
508 		ctrl4_set |= chan << LRADC_CTRL4_LRADCSELECT_OFFSET(ofs);
509 		ctrl4_clr |= LRADC_CTRL4_LRADCSELECT_MASK(ofs);
510 		ctrl1_irq |= LRADC_CTRL1_LRADC_IRQ_EN(ofs);
511 		writel(chan_value, adc->base + LRADC_CH(ofs));
512 		bitmap_set(&enable, ofs, 1);
513 		ofs++;
514 	}
515 
516 	writel(LRADC_DELAY_TRIGGER_LRADCS_MASK | LRADC_DELAY_KICK,
517 	       adc->base + LRADC_DELAY(0) + STMP_OFFSET_REG_CLR);
518 	writel(ctrl4_clr, adc->base + LRADC_CTRL4 + STMP_OFFSET_REG_CLR);
519 	writel(ctrl4_set, adc->base + LRADC_CTRL4 + STMP_OFFSET_REG_SET);
520 	writel(ctrl1_irq, adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_SET);
521 	writel(enable << LRADC_DELAY_TRIGGER_LRADCS_OFFSET,
522 	       adc->base + LRADC_DELAY(0) + STMP_OFFSET_REG_SET);
523 
524 	return 0;
525 }
526 
527 static int mxs_lradc_adc_buffer_postdisable(struct iio_dev *iio)
528 {
529 	struct mxs_lradc_adc *adc = iio_priv(iio);
530 	struct mxs_lradc *lradc = adc->lradc;
531 
532 	writel(LRADC_DELAY_TRIGGER_LRADCS_MASK | LRADC_DELAY_KICK,
533 	       adc->base + LRADC_DELAY(0) + STMP_OFFSET_REG_CLR);
534 
535 	writel(lradc->buffer_vchans,
536 	       adc->base + LRADC_CTRL0 + STMP_OFFSET_REG_CLR);
537 	if (lradc->soc == IMX28_LRADC)
538 		writel(lradc->buffer_vchans << LRADC_CTRL1_LRADC_IRQ_EN_OFFSET,
539 		       adc->base + LRADC_CTRL1 + STMP_OFFSET_REG_CLR);
540 
541 	return 0;
542 }
543 
544 static bool mxs_lradc_adc_validate_scan_mask(struct iio_dev *iio,
545 					     const unsigned long *mask)
546 {
547 	struct mxs_lradc_adc *adc = iio_priv(iio);
548 	struct mxs_lradc *lradc = adc->lradc;
549 	const int map_chans = bitmap_weight(mask, LRADC_MAX_TOTAL_CHANS);
550 	int rsvd_chans = 0;
551 	unsigned long rsvd_mask = 0;
552 
553 	if (lradc->use_touchbutton)
554 		rsvd_mask |= CHAN_MASK_TOUCHBUTTON;
555 	if (lradc->touchscreen_wire == MXS_LRADC_TOUCHSCREEN_4WIRE)
556 		rsvd_mask |= CHAN_MASK_TOUCHSCREEN_4WIRE;
557 	if (lradc->touchscreen_wire == MXS_LRADC_TOUCHSCREEN_5WIRE)
558 		rsvd_mask |= CHAN_MASK_TOUCHSCREEN_5WIRE;
559 
560 	if (lradc->use_touchbutton)
561 		rsvd_chans++;
562 	if (lradc->touchscreen_wire)
563 		rsvd_chans += 2;
564 
565 	/* Test for attempts to map channels with special mode of operation. */
566 	if (bitmap_intersects(mask, &rsvd_mask, LRADC_MAX_TOTAL_CHANS))
567 		return false;
568 
569 	/* Test for attempts to map more channels then available slots. */
570 	if (map_chans + rsvd_chans > LRADC_MAX_MAPPED_CHANS)
571 		return false;
572 
573 	return true;
574 }
575 
576 static const struct iio_buffer_setup_ops mxs_lradc_adc_buffer_ops = {
577 	.preenable = &mxs_lradc_adc_buffer_preenable,
578 	.postenable = &iio_triggered_buffer_postenable,
579 	.predisable = &iio_triggered_buffer_predisable,
580 	.postdisable = &mxs_lradc_adc_buffer_postdisable,
581 	.validate_scan_mask = &mxs_lradc_adc_validate_scan_mask,
582 };
583 
584 /* Driver initialization */
585 #define MXS_ADC_CHAN(idx, chan_type, name) {			\
586 	.type = (chan_type),					\
587 	.indexed = 1,						\
588 	.scan_index = (idx),					\
589 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
590 			      BIT(IIO_CHAN_INFO_SCALE),		\
591 	.channel = (idx),					\
592 	.address = (idx),					\
593 	.scan_type = {						\
594 		.sign = 'u',					\
595 		.realbits = LRADC_RESOLUTION,			\
596 		.storagebits = 32,				\
597 	},							\
598 	.datasheet_name = (name),				\
599 }
600 
601 static const struct iio_chan_spec mx23_lradc_chan_spec[] = {
602 	MXS_ADC_CHAN(0, IIO_VOLTAGE, "LRADC0"),
603 	MXS_ADC_CHAN(1, IIO_VOLTAGE, "LRADC1"),
604 	MXS_ADC_CHAN(2, IIO_VOLTAGE, "LRADC2"),
605 	MXS_ADC_CHAN(3, IIO_VOLTAGE, "LRADC3"),
606 	MXS_ADC_CHAN(4, IIO_VOLTAGE, "LRADC4"),
607 	MXS_ADC_CHAN(5, IIO_VOLTAGE, "LRADC5"),
608 	MXS_ADC_CHAN(6, IIO_VOLTAGE, "VDDIO"),
609 	MXS_ADC_CHAN(7, IIO_VOLTAGE, "VBATT"),
610 	/* Combined Temperature sensors */
611 	{
612 		.type = IIO_TEMP,
613 		.indexed = 1,
614 		.scan_index = 8,
615 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
616 				      BIT(IIO_CHAN_INFO_OFFSET) |
617 				      BIT(IIO_CHAN_INFO_SCALE),
618 		.channel = 8,
619 		.scan_type = {.sign = 'u', .realbits = 18, .storagebits = 32,},
620 		.datasheet_name = "TEMP_DIE",
621 	},
622 	/* Hidden channel to keep indexes */
623 	{
624 		.type = IIO_TEMP,
625 		.indexed = 1,
626 		.scan_index = -1,
627 		.channel = 9,
628 	},
629 	MXS_ADC_CHAN(10, IIO_VOLTAGE, NULL),
630 	MXS_ADC_CHAN(11, IIO_VOLTAGE, NULL),
631 	MXS_ADC_CHAN(12, IIO_VOLTAGE, "USB_DP"),
632 	MXS_ADC_CHAN(13, IIO_VOLTAGE, "USB_DN"),
633 	MXS_ADC_CHAN(14, IIO_VOLTAGE, "VBG"),
634 	MXS_ADC_CHAN(15, IIO_VOLTAGE, "VDD5V"),
635 };
636 
637 static const struct iio_chan_spec mx28_lradc_chan_spec[] = {
638 	MXS_ADC_CHAN(0, IIO_VOLTAGE, "LRADC0"),
639 	MXS_ADC_CHAN(1, IIO_VOLTAGE, "LRADC1"),
640 	MXS_ADC_CHAN(2, IIO_VOLTAGE, "LRADC2"),
641 	MXS_ADC_CHAN(3, IIO_VOLTAGE, "LRADC3"),
642 	MXS_ADC_CHAN(4, IIO_VOLTAGE, "LRADC4"),
643 	MXS_ADC_CHAN(5, IIO_VOLTAGE, "LRADC5"),
644 	MXS_ADC_CHAN(6, IIO_VOLTAGE, "LRADC6"),
645 	MXS_ADC_CHAN(7, IIO_VOLTAGE, "VBATT"),
646 	/* Combined Temperature sensors */
647 	{
648 		.type = IIO_TEMP,
649 		.indexed = 1,
650 		.scan_index = 8,
651 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
652 				      BIT(IIO_CHAN_INFO_OFFSET) |
653 				      BIT(IIO_CHAN_INFO_SCALE),
654 		.channel = 8,
655 		.scan_type = {.sign = 'u', .realbits = 18, .storagebits = 32,},
656 		.datasheet_name = "TEMP_DIE",
657 	},
658 	/* Hidden channel to keep indexes */
659 	{
660 		.type = IIO_TEMP,
661 		.indexed = 1,
662 		.scan_index = -1,
663 		.channel = 9,
664 	},
665 	MXS_ADC_CHAN(10, IIO_VOLTAGE, "VDDIO"),
666 	MXS_ADC_CHAN(11, IIO_VOLTAGE, "VTH"),
667 	MXS_ADC_CHAN(12, IIO_VOLTAGE, "VDDA"),
668 	MXS_ADC_CHAN(13, IIO_VOLTAGE, "VDDD"),
669 	MXS_ADC_CHAN(14, IIO_VOLTAGE, "VBG"),
670 	MXS_ADC_CHAN(15, IIO_VOLTAGE, "VDD5V"),
671 };
672 
673 static void mxs_lradc_adc_hw_init(struct mxs_lradc_adc *adc)
674 {
675 	/* The ADC always uses DELAY CHANNEL 0. */
676 	const u32 adc_cfg =
677 		(1 << (LRADC_DELAY_TRIGGER_DELAYS_OFFSET + 0)) |
678 		(LRADC_DELAY_TIMER_PER << LRADC_DELAY_DELAY_OFFSET);
679 
680 	/* Configure DELAY CHANNEL 0 for generic ADC sampling. */
681 	writel(adc_cfg, adc->base + LRADC_DELAY(0));
682 
683 	/*
684 	 * Start internal temperature sensing by clearing bit
685 	 * HW_LRADC_CTRL2_TEMPSENSE_PWD. This bit can be left cleared
686 	 * after power up.
687 	 */
688 	writel(0, adc->base + LRADC_CTRL2);
689 }
690 
691 static void mxs_lradc_adc_hw_stop(struct mxs_lradc_adc *adc)
692 {
693 	writel(0, adc->base + LRADC_DELAY(0));
694 }
695 
696 static int mxs_lradc_adc_probe(struct platform_device *pdev)
697 {
698 	struct device *dev = &pdev->dev;
699 	struct mxs_lradc *lradc = dev_get_drvdata(dev->parent);
700 	struct mxs_lradc_adc *adc;
701 	struct iio_dev *iio;
702 	struct resource *iores;
703 	int ret, irq, virq, i, s, n;
704 	u64 scale_uv;
705 	const char **irq_name;
706 
707 	/* Allocate the IIO device. */
708 	iio = devm_iio_device_alloc(dev, sizeof(*adc));
709 	if (!iio) {
710 		dev_err(dev, "Failed to allocate IIO device\n");
711 		return -ENOMEM;
712 	}
713 
714 	adc = iio_priv(iio);
715 	adc->lradc = lradc;
716 	adc->dev = dev;
717 
718 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
719 	if (!iores)
720 		return -EINVAL;
721 
722 	adc->base = devm_ioremap(dev, iores->start, resource_size(iores));
723 	if (!adc->base)
724 		return -ENOMEM;
725 
726 	init_completion(&adc->completion);
727 	spin_lock_init(&adc->lock);
728 
729 	platform_set_drvdata(pdev, iio);
730 
731 	iio->name = pdev->name;
732 	iio->dev.parent = dev;
733 	iio->dev.of_node = dev->parent->of_node;
734 	iio->info = &mxs_lradc_adc_iio_info;
735 	iio->modes = INDIO_DIRECT_MODE;
736 	iio->masklength = LRADC_MAX_TOTAL_CHANS;
737 
738 	if (lradc->soc == IMX23_LRADC) {
739 		iio->channels = mx23_lradc_chan_spec;
740 		iio->num_channels = ARRAY_SIZE(mx23_lradc_chan_spec);
741 		irq_name = mx23_lradc_adc_irq_names;
742 		n = ARRAY_SIZE(mx23_lradc_adc_irq_names);
743 	} else {
744 		iio->channels = mx28_lradc_chan_spec;
745 		iio->num_channels = ARRAY_SIZE(mx28_lradc_chan_spec);
746 		irq_name = mx28_lradc_adc_irq_names;
747 		n = ARRAY_SIZE(mx28_lradc_adc_irq_names);
748 	}
749 
750 	ret = stmp_reset_block(adc->base);
751 	if (ret)
752 		return ret;
753 
754 	for (i = 0; i < n; i++) {
755 		irq = platform_get_irq_byname(pdev, irq_name[i]);
756 		if (irq < 0)
757 			return irq;
758 
759 		virq = irq_of_parse_and_map(dev->parent->of_node, irq);
760 
761 		ret = devm_request_irq(dev, virq, mxs_lradc_adc_handle_irq,
762 				       0, irq_name[i], iio);
763 		if (ret)
764 			return ret;
765 	}
766 
767 	ret = mxs_lradc_adc_trigger_init(iio);
768 	if (ret)
769 		goto err_trig;
770 
771 	ret = iio_triggered_buffer_setup(iio, &iio_pollfunc_store_time,
772 					 &mxs_lradc_adc_trigger_handler,
773 					 &mxs_lradc_adc_buffer_ops);
774 	if (ret)
775 		return ret;
776 
777 	adc->vref_mv = mxs_lradc_adc_vref_mv[lradc->soc];
778 
779 	/* Populate available ADC input ranges */
780 	for (i = 0; i < LRADC_MAX_TOTAL_CHANS; i++) {
781 		for (s = 0; s < ARRAY_SIZE(adc->scale_avail[i]); s++) {
782 			/*
783 			 * [s=0] = optional divider by two disabled (default)
784 			 * [s=1] = optional divider by two enabled
785 			 *
786 			 * The scale is calculated by doing:
787 			 *   Vref >> (realbits - s)
788 			 * which multiplies by two on the second component
789 			 * of the array.
790 			 */
791 			scale_uv = ((u64)adc->vref_mv[i] * 100000000) >>
792 				   (LRADC_RESOLUTION - s);
793 			adc->scale_avail[i][s].nano =
794 					do_div(scale_uv, 100000000) * 10;
795 			adc->scale_avail[i][s].integer = scale_uv;
796 		}
797 	}
798 
799 	/* Configure the hardware. */
800 	mxs_lradc_adc_hw_init(adc);
801 
802 	/* Register IIO device. */
803 	ret = iio_device_register(iio);
804 	if (ret) {
805 		dev_err(dev, "Failed to register IIO device\n");
806 		goto err_dev;
807 	}
808 
809 	return 0;
810 
811 err_dev:
812 	mxs_lradc_adc_hw_stop(adc);
813 	mxs_lradc_adc_trigger_remove(iio);
814 err_trig:
815 	iio_triggered_buffer_cleanup(iio);
816 	return ret;
817 }
818 
819 static int mxs_lradc_adc_remove(struct platform_device *pdev)
820 {
821 	struct iio_dev *iio = platform_get_drvdata(pdev);
822 	struct mxs_lradc_adc *adc = iio_priv(iio);
823 
824 	iio_device_unregister(iio);
825 	mxs_lradc_adc_hw_stop(adc);
826 	mxs_lradc_adc_trigger_remove(iio);
827 	iio_triggered_buffer_cleanup(iio);
828 
829 	return 0;
830 }
831 
832 static struct platform_driver mxs_lradc_adc_driver = {
833 	.driver = {
834 		.name	= "mxs-lradc-adc",
835 	},
836 	.probe	= mxs_lradc_adc_probe,
837 	.remove = mxs_lradc_adc_remove,
838 };
839 module_platform_driver(mxs_lradc_adc_driver);
840 
841 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
842 MODULE_DESCRIPTION("Freescale MXS LRADC driver general purpose ADC driver");
843 MODULE_LICENSE("GPL");
844 MODULE_ALIAS("platform:mxs-lradc-adc");
845