xref: /openbmc/linux/drivers/iio/adc/meson_saradc.c (revision 25763b3c)
1 /*
2  * Amlogic Meson Successive Approximation Register (SAR) A/D Converter
3  *
4  * Copyright (C) 2017 Martin Blumenstingl <martin.blumenstingl@googlemail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * You should have received a copy of the GNU General Public License
11  * along with this program. If not, see <http://www.gnu.org/licenses/>.
12  */
13 
14 #include <linux/bitfield.h>
15 #include <linux/clk.h>
16 #include <linux/clk-provider.h>
17 #include <linux/delay.h>
18 #include <linux/io.h>
19 #include <linux/iio/iio.h>
20 #include <linux/module.h>
21 #include <linux/nvmem-consumer.h>
22 #include <linux/interrupt.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_device.h>
26 #include <linux/platform_device.h>
27 #include <linux/regmap.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/mfd/syscon.h>
30 
31 #define MESON_SAR_ADC_REG0					0x00
32 	#define MESON_SAR_ADC_REG0_PANEL_DETECT			BIT(31)
33 	#define MESON_SAR_ADC_REG0_BUSY_MASK			GENMASK(30, 28)
34 	#define MESON_SAR_ADC_REG0_DELTA_BUSY			BIT(30)
35 	#define MESON_SAR_ADC_REG0_AVG_BUSY			BIT(29)
36 	#define MESON_SAR_ADC_REG0_SAMPLE_BUSY			BIT(28)
37 	#define MESON_SAR_ADC_REG0_FIFO_FULL			BIT(27)
38 	#define MESON_SAR_ADC_REG0_FIFO_EMPTY			BIT(26)
39 	#define MESON_SAR_ADC_REG0_FIFO_COUNT_MASK		GENMASK(25, 21)
40 	#define MESON_SAR_ADC_REG0_ADC_BIAS_CTRL_MASK		GENMASK(20, 19)
41 	#define MESON_SAR_ADC_REG0_CURR_CHAN_ID_MASK		GENMASK(18, 16)
42 	#define MESON_SAR_ADC_REG0_ADC_TEMP_SEN_SEL		BIT(15)
43 	#define MESON_SAR_ADC_REG0_SAMPLING_STOP		BIT(14)
44 	#define MESON_SAR_ADC_REG0_CHAN_DELTA_EN_MASK		GENMASK(13, 12)
45 	#define MESON_SAR_ADC_REG0_DETECT_IRQ_POL		BIT(10)
46 	#define MESON_SAR_ADC_REG0_DETECT_IRQ_EN		BIT(9)
47 	#define MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK		GENMASK(8, 4)
48 	#define MESON_SAR_ADC_REG0_FIFO_IRQ_EN			BIT(3)
49 	#define MESON_SAR_ADC_REG0_SAMPLING_START		BIT(2)
50 	#define MESON_SAR_ADC_REG0_CONTINUOUS_EN		BIT(1)
51 	#define MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE		BIT(0)
52 
53 #define MESON_SAR_ADC_CHAN_LIST					0x04
54 	#define MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK		GENMASK(26, 24)
55 	#define MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(_chan)	\
56 					(GENMASK(2, 0) << ((_chan) * 3))
57 
58 #define MESON_SAR_ADC_AVG_CNTL					0x08
59 	#define MESON_SAR_ADC_AVG_CNTL_AVG_MODE_SHIFT(_chan)	\
60 					(16 + ((_chan) * 2))
61 	#define MESON_SAR_ADC_AVG_CNTL_AVG_MODE_MASK(_chan)	\
62 					(GENMASK(17, 16) << ((_chan) * 2))
63 	#define MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_SHIFT(_chan)	\
64 					(0 + ((_chan) * 2))
65 	#define MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_MASK(_chan)	\
66 					(GENMASK(1, 0) << ((_chan) * 2))
67 
68 #define MESON_SAR_ADC_REG3					0x0c
69 	#define MESON_SAR_ADC_REG3_CNTL_USE_SC_DLY		BIT(31)
70 	#define MESON_SAR_ADC_REG3_CLK_EN			BIT(30)
71 	#define MESON_SAR_ADC_REG3_BL30_INITIALIZED		BIT(28)
72 	#define MESON_SAR_ADC_REG3_CTRL_CONT_RING_COUNTER_EN	BIT(27)
73 	#define MESON_SAR_ADC_REG3_CTRL_SAMPLING_CLOCK_PHASE	BIT(26)
74 	#define MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK	GENMASK(25, 23)
75 	#define MESON_SAR_ADC_REG3_DETECT_EN			BIT(22)
76 	#define MESON_SAR_ADC_REG3_ADC_EN			BIT(21)
77 	#define MESON_SAR_ADC_REG3_PANEL_DETECT_COUNT_MASK	GENMASK(20, 18)
78 	#define MESON_SAR_ADC_REG3_PANEL_DETECT_FILTER_TB_MASK	GENMASK(17, 16)
79 	#define MESON_SAR_ADC_REG3_ADC_CLK_DIV_SHIFT		10
80 	#define MESON_SAR_ADC_REG3_ADC_CLK_DIV_WIDTH		5
81 	#define MESON_SAR_ADC_REG3_BLOCK_DLY_SEL_MASK		GENMASK(9, 8)
82 	#define MESON_SAR_ADC_REG3_BLOCK_DLY_MASK		GENMASK(7, 0)
83 
84 #define MESON_SAR_ADC_DELAY					0x10
85 	#define MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK		GENMASK(25, 24)
86 	#define MESON_SAR_ADC_DELAY_BL30_BUSY			BIT(15)
87 	#define MESON_SAR_ADC_DELAY_KERNEL_BUSY			BIT(14)
88 	#define MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK		GENMASK(23, 16)
89 	#define MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK		GENMASK(9, 8)
90 	#define MESON_SAR_ADC_DELAY_SAMPLE_DLY_CNT_MASK		GENMASK(7, 0)
91 
92 #define MESON_SAR_ADC_LAST_RD					0x14
93 	#define MESON_SAR_ADC_LAST_RD_LAST_CHANNEL1_MASK	GENMASK(23, 16)
94 	#define MESON_SAR_ADC_LAST_RD_LAST_CHANNEL0_MASK	GENMASK(9, 0)
95 
96 #define MESON_SAR_ADC_FIFO_RD					0x18
97 	#define MESON_SAR_ADC_FIFO_RD_CHAN_ID_MASK		GENMASK(14, 12)
98 	#define MESON_SAR_ADC_FIFO_RD_SAMPLE_VALUE_MASK		GENMASK(11, 0)
99 
100 #define MESON_SAR_ADC_AUX_SW					0x1c
101 	#define MESON_SAR_ADC_AUX_SW_MUX_SEL_CHAN_SHIFT(_chan)	\
102 					(8 + (((_chan) - 2) * 3))
103 	#define MESON_SAR_ADC_AUX_SW_VREF_P_MUX			BIT(6)
104 	#define MESON_SAR_ADC_AUX_SW_VREF_N_MUX			BIT(5)
105 	#define MESON_SAR_ADC_AUX_SW_MODE_SEL			BIT(4)
106 	#define MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW		BIT(3)
107 	#define MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW		BIT(2)
108 	#define MESON_SAR_ADC_AUX_SW_YM_DRIVE_SW		BIT(1)
109 	#define MESON_SAR_ADC_AUX_SW_XM_DRIVE_SW		BIT(0)
110 
111 #define MESON_SAR_ADC_CHAN_10_SW				0x20
112 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK	GENMASK(25, 23)
113 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_VREF_P_MUX	BIT(22)
114 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_VREF_N_MUX	BIT(21)
115 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_MODE_SEL		BIT(20)
116 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_YP_DRIVE_SW	BIT(19)
117 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_XP_DRIVE_SW	BIT(18)
118 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_YM_DRIVE_SW	BIT(17)
119 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN1_XM_DRIVE_SW	BIT(16)
120 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK	GENMASK(9, 7)
121 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_VREF_P_MUX	BIT(6)
122 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_VREF_N_MUX	BIT(5)
123 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_MODE_SEL		BIT(4)
124 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_YP_DRIVE_SW	BIT(3)
125 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_XP_DRIVE_SW	BIT(2)
126 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_YM_DRIVE_SW	BIT(1)
127 	#define MESON_SAR_ADC_CHAN_10_SW_CHAN0_XM_DRIVE_SW	BIT(0)
128 
129 #define MESON_SAR_ADC_DETECT_IDLE_SW				0x24
130 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_SW_EN	BIT(26)
131 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK	GENMASK(25, 23)
132 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_VREF_P_MUX	BIT(22)
133 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_VREF_N_MUX	BIT(21)
134 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MODE_SEL	BIT(20)
135 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_YP_DRIVE_SW	BIT(19)
136 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_XP_DRIVE_SW	BIT(18)
137 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_YM_DRIVE_SW	BIT(17)
138 	#define MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_XM_DRIVE_SW	BIT(16)
139 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK	GENMASK(9, 7)
140 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_VREF_P_MUX	BIT(6)
141 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_VREF_N_MUX	BIT(5)
142 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MODE_SEL	BIT(4)
143 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_YP_DRIVE_SW	BIT(3)
144 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_XP_DRIVE_SW	BIT(2)
145 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_YM_DRIVE_SW	BIT(1)
146 	#define MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_XM_DRIVE_SW	BIT(0)
147 
148 #define MESON_SAR_ADC_DELTA_10					0x28
149 	#define MESON_SAR_ADC_DELTA_10_TEMP_SEL			BIT(27)
150 	#define MESON_SAR_ADC_DELTA_10_TS_REVE1			BIT(26)
151 	#define MESON_SAR_ADC_DELTA_10_CHAN1_DELTA_VALUE_MASK	GENMASK(25, 16)
152 	#define MESON_SAR_ADC_DELTA_10_TS_REVE0			BIT(15)
153 	#define MESON_SAR_ADC_DELTA_10_TS_C_MASK		GENMASK(14, 11)
154 	#define MESON_SAR_ADC_DELTA_10_TS_VBG_EN		BIT(10)
155 	#define MESON_SAR_ADC_DELTA_10_CHAN0_DELTA_VALUE_MASK	GENMASK(9, 0)
156 
157 /*
158  * NOTE: registers from here are undocumented (the vendor Linux kernel driver
159  * and u-boot source served as reference). These only seem to be relevant on
160  * GXBB and newer.
161  */
162 #define MESON_SAR_ADC_REG11					0x2c
163 	#define MESON_SAR_ADC_REG11_BANDGAP_EN			BIT(13)
164 
165 #define MESON_SAR_ADC_REG13					0x34
166 	#define MESON_SAR_ADC_REG13_12BIT_CALIBRATION_MASK	GENMASK(13, 8)
167 
168 #define MESON_SAR_ADC_MAX_FIFO_SIZE				32
169 #define MESON_SAR_ADC_TIMEOUT					100 /* ms */
170 #define MESON_SAR_ADC_VOLTAGE_AND_TEMP_CHANNEL			6
171 #define MESON_SAR_ADC_TEMP_OFFSET				27
172 
173 /* temperature sensor calibration information in eFuse */
174 #define MESON_SAR_ADC_EFUSE_BYTES				4
175 #define MESON_SAR_ADC_EFUSE_BYTE3_UPPER_ADC_VAL			GENMASK(6, 0)
176 #define MESON_SAR_ADC_EFUSE_BYTE3_IS_CALIBRATED			BIT(7)
177 
178 #define MESON_HHI_DPLL_TOP_0					0x318
179 #define MESON_HHI_DPLL_TOP_0_TSC_BIT4				BIT(9)
180 
181 /* for use with IIO_VAL_INT_PLUS_MICRO */
182 #define MILLION							1000000
183 
184 #define MESON_SAR_ADC_CHAN(_chan) {					\
185 	.type = IIO_VOLTAGE,						\
186 	.indexed = 1,							\
187 	.channel = _chan,						\
188 	.address = _chan,						\
189 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
190 				BIT(IIO_CHAN_INFO_AVERAGE_RAW),		\
191 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),		\
192 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_CALIBBIAS) |	\
193 				BIT(IIO_CHAN_INFO_CALIBSCALE),		\
194 	.datasheet_name = "SAR_ADC_CH"#_chan,				\
195 }
196 
197 #define MESON_SAR_ADC_TEMP_CHAN(_chan) {				\
198 	.type = IIO_TEMP,						\
199 	.channel = _chan,						\
200 	.address = MESON_SAR_ADC_VOLTAGE_AND_TEMP_CHANNEL,		\
201 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
202 				BIT(IIO_CHAN_INFO_AVERAGE_RAW),		\
203 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) |		\
204 					BIT(IIO_CHAN_INFO_SCALE),	\
205 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_CALIBBIAS) |	\
206 				BIT(IIO_CHAN_INFO_CALIBSCALE),		\
207 	.datasheet_name = "TEMP_SENSOR",				\
208 }
209 
210 static const struct iio_chan_spec meson_sar_adc_iio_channels[] = {
211 	MESON_SAR_ADC_CHAN(0),
212 	MESON_SAR_ADC_CHAN(1),
213 	MESON_SAR_ADC_CHAN(2),
214 	MESON_SAR_ADC_CHAN(3),
215 	MESON_SAR_ADC_CHAN(4),
216 	MESON_SAR_ADC_CHAN(5),
217 	MESON_SAR_ADC_CHAN(6),
218 	MESON_SAR_ADC_CHAN(7),
219 	IIO_CHAN_SOFT_TIMESTAMP(8),
220 };
221 
222 static const struct iio_chan_spec meson_sar_adc_and_temp_iio_channels[] = {
223 	MESON_SAR_ADC_CHAN(0),
224 	MESON_SAR_ADC_CHAN(1),
225 	MESON_SAR_ADC_CHAN(2),
226 	MESON_SAR_ADC_CHAN(3),
227 	MESON_SAR_ADC_CHAN(4),
228 	MESON_SAR_ADC_CHAN(5),
229 	MESON_SAR_ADC_CHAN(6),
230 	MESON_SAR_ADC_CHAN(7),
231 	MESON_SAR_ADC_TEMP_CHAN(8),
232 	IIO_CHAN_SOFT_TIMESTAMP(9),
233 };
234 
235 enum meson_sar_adc_avg_mode {
236 	NO_AVERAGING = 0x0,
237 	MEAN_AVERAGING = 0x1,
238 	MEDIAN_AVERAGING = 0x2,
239 };
240 
241 enum meson_sar_adc_num_samples {
242 	ONE_SAMPLE = 0x0,
243 	TWO_SAMPLES = 0x1,
244 	FOUR_SAMPLES = 0x2,
245 	EIGHT_SAMPLES = 0x3,
246 };
247 
248 enum meson_sar_adc_chan7_mux_sel {
249 	CHAN7_MUX_VSS = 0x0,
250 	CHAN7_MUX_VDD_DIV4 = 0x1,
251 	CHAN7_MUX_VDD_DIV2 = 0x2,
252 	CHAN7_MUX_VDD_MUL3_DIV4 = 0x3,
253 	CHAN7_MUX_VDD = 0x4,
254 	CHAN7_MUX_CH7_INPUT = 0x7,
255 };
256 
257 struct meson_sar_adc_param {
258 	bool					has_bl30_integration;
259 	unsigned long				clock_rate;
260 	u32					bandgap_reg;
261 	unsigned int				resolution;
262 	const struct regmap_config		*regmap_config;
263 	u8					temperature_trimming_bits;
264 	unsigned int				temperature_multiplier;
265 	unsigned int				temperature_divider;
266 };
267 
268 struct meson_sar_adc_data {
269 	const struct meson_sar_adc_param	*param;
270 	const char				*name;
271 };
272 
273 struct meson_sar_adc_priv {
274 	struct regmap				*regmap;
275 	struct regulator			*vref;
276 	const struct meson_sar_adc_param	*param;
277 	struct clk				*clkin;
278 	struct clk				*core_clk;
279 	struct clk				*adc_sel_clk;
280 	struct clk				*adc_clk;
281 	struct clk_gate				clk_gate;
282 	struct clk				*adc_div_clk;
283 	struct clk_divider			clk_div;
284 	struct completion			done;
285 	int					calibbias;
286 	int					calibscale;
287 	struct regmap				*tsc_regmap;
288 	bool					temperature_sensor_calibrated;
289 	u8					temperature_sensor_coefficient;
290 	u16					temperature_sensor_adc_val;
291 };
292 
293 static const struct regmap_config meson_sar_adc_regmap_config_gxbb = {
294 	.reg_bits = 8,
295 	.val_bits = 32,
296 	.reg_stride = 4,
297 	.max_register = MESON_SAR_ADC_REG13,
298 };
299 
300 static const struct regmap_config meson_sar_adc_regmap_config_meson8 = {
301 	.reg_bits = 8,
302 	.val_bits = 32,
303 	.reg_stride = 4,
304 	.max_register = MESON_SAR_ADC_DELTA_10,
305 };
306 
307 static unsigned int meson_sar_adc_get_fifo_count(struct iio_dev *indio_dev)
308 {
309 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
310 	u32 regval;
311 
312 	regmap_read(priv->regmap, MESON_SAR_ADC_REG0, &regval);
313 
314 	return FIELD_GET(MESON_SAR_ADC_REG0_FIFO_COUNT_MASK, regval);
315 }
316 
317 static int meson_sar_adc_calib_val(struct iio_dev *indio_dev, int val)
318 {
319 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
320 	int tmp;
321 
322 	/* use val_calib = scale * val_raw + offset calibration function */
323 	tmp = div_s64((s64)val * priv->calibscale, MILLION) + priv->calibbias;
324 
325 	return clamp(tmp, 0, (1 << priv->param->resolution) - 1);
326 }
327 
328 static int meson_sar_adc_wait_busy_clear(struct iio_dev *indio_dev)
329 {
330 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
331 	int regval, timeout = 10000;
332 
333 	/*
334 	 * NOTE: we need a small delay before reading the status, otherwise
335 	 * the sample engine may not have started internally (which would
336 	 * seem to us that sampling is already finished).
337 	 */
338 	do {
339 		udelay(1);
340 		regmap_read(priv->regmap, MESON_SAR_ADC_REG0, &regval);
341 	} while (FIELD_GET(MESON_SAR_ADC_REG0_BUSY_MASK, regval) && timeout--);
342 
343 	if (timeout < 0)
344 		return -ETIMEDOUT;
345 
346 	return 0;
347 }
348 
349 static int meson_sar_adc_read_raw_sample(struct iio_dev *indio_dev,
350 					 const struct iio_chan_spec *chan,
351 					 int *val)
352 {
353 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
354 	int regval, fifo_chan, fifo_val, count;
355 
356 	if(!wait_for_completion_timeout(&priv->done,
357 				msecs_to_jiffies(MESON_SAR_ADC_TIMEOUT)))
358 		return -ETIMEDOUT;
359 
360 	count = meson_sar_adc_get_fifo_count(indio_dev);
361 	if (count != 1) {
362 		dev_err(&indio_dev->dev,
363 			"ADC FIFO has %d element(s) instead of one\n", count);
364 		return -EINVAL;
365 	}
366 
367 	regmap_read(priv->regmap, MESON_SAR_ADC_FIFO_RD, &regval);
368 	fifo_chan = FIELD_GET(MESON_SAR_ADC_FIFO_RD_CHAN_ID_MASK, regval);
369 	if (fifo_chan != chan->address) {
370 		dev_err(&indio_dev->dev,
371 			"ADC FIFO entry belongs to channel %d instead of %lu\n",
372 			fifo_chan, chan->address);
373 		return -EINVAL;
374 	}
375 
376 	fifo_val = FIELD_GET(MESON_SAR_ADC_FIFO_RD_SAMPLE_VALUE_MASK, regval);
377 	fifo_val &= GENMASK(priv->param->resolution - 1, 0);
378 	*val = meson_sar_adc_calib_val(indio_dev, fifo_val);
379 
380 	return 0;
381 }
382 
383 static void meson_sar_adc_set_averaging(struct iio_dev *indio_dev,
384 					const struct iio_chan_spec *chan,
385 					enum meson_sar_adc_avg_mode mode,
386 					enum meson_sar_adc_num_samples samples)
387 {
388 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
389 	int val, address = chan->address;
390 
391 	val = samples << MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_SHIFT(address);
392 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_AVG_CNTL,
393 			   MESON_SAR_ADC_AVG_CNTL_NUM_SAMPLES_MASK(address),
394 			   val);
395 
396 	val = mode << MESON_SAR_ADC_AVG_CNTL_AVG_MODE_SHIFT(address);
397 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_AVG_CNTL,
398 			   MESON_SAR_ADC_AVG_CNTL_AVG_MODE_MASK(address), val);
399 }
400 
401 static void meson_sar_adc_enable_channel(struct iio_dev *indio_dev,
402 					const struct iio_chan_spec *chan)
403 {
404 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
405 	u32 regval;
406 
407 	/*
408 	 * the SAR ADC engine allows sampling multiple channels at the same
409 	 * time. to keep it simple we're only working with one *internal*
410 	 * channel, which starts counting at index 0 (which means: count = 1).
411 	 */
412 	regval = FIELD_PREP(MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK, 0);
413 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_LIST,
414 			   MESON_SAR_ADC_CHAN_LIST_MAX_INDEX_MASK, regval);
415 
416 	/* map channel index 0 to the channel which we want to read */
417 	regval = FIELD_PREP(MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(0),
418 			    chan->address);
419 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_LIST,
420 			   MESON_SAR_ADC_CHAN_LIST_ENTRY_MASK(0), regval);
421 
422 	regval = FIELD_PREP(MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK,
423 			    chan->address);
424 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DETECT_IDLE_SW,
425 			   MESON_SAR_ADC_DETECT_IDLE_SW_DETECT_MUX_MASK,
426 			   regval);
427 
428 	regval = FIELD_PREP(MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK,
429 			    chan->address);
430 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DETECT_IDLE_SW,
431 			   MESON_SAR_ADC_DETECT_IDLE_SW_IDLE_MUX_SEL_MASK,
432 			   regval);
433 
434 	if (chan->address == MESON_SAR_ADC_VOLTAGE_AND_TEMP_CHANNEL) {
435 		if (chan->type == IIO_TEMP)
436 			regval = MESON_SAR_ADC_DELTA_10_TEMP_SEL;
437 		else
438 			regval = 0;
439 
440 		regmap_update_bits(priv->regmap,
441 				   MESON_SAR_ADC_DELTA_10,
442 				   MESON_SAR_ADC_DELTA_10_TEMP_SEL, regval);
443 	}
444 }
445 
446 static void meson_sar_adc_set_chan7_mux(struct iio_dev *indio_dev,
447 					enum meson_sar_adc_chan7_mux_sel sel)
448 {
449 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
450 	u32 regval;
451 
452 	regval = FIELD_PREP(MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK, sel);
453 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
454 			   MESON_SAR_ADC_REG3_CTRL_CHAN7_MUX_SEL_MASK, regval);
455 
456 	usleep_range(10, 20);
457 }
458 
459 static void meson_sar_adc_start_sample_engine(struct iio_dev *indio_dev)
460 {
461 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
462 
463 	reinit_completion(&priv->done);
464 
465 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
466 			   MESON_SAR_ADC_REG0_FIFO_IRQ_EN,
467 			   MESON_SAR_ADC_REG0_FIFO_IRQ_EN);
468 
469 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
470 			   MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE,
471 			   MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE);
472 
473 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
474 			   MESON_SAR_ADC_REG0_SAMPLING_START,
475 			   MESON_SAR_ADC_REG0_SAMPLING_START);
476 }
477 
478 static void meson_sar_adc_stop_sample_engine(struct iio_dev *indio_dev)
479 {
480 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
481 
482 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
483 			   MESON_SAR_ADC_REG0_FIFO_IRQ_EN, 0);
484 
485 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
486 			   MESON_SAR_ADC_REG0_SAMPLING_STOP,
487 			   MESON_SAR_ADC_REG0_SAMPLING_STOP);
488 
489 	/* wait until all modules are stopped */
490 	meson_sar_adc_wait_busy_clear(indio_dev);
491 
492 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
493 			   MESON_SAR_ADC_REG0_SAMPLE_ENGINE_ENABLE, 0);
494 }
495 
496 static int meson_sar_adc_lock(struct iio_dev *indio_dev)
497 {
498 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
499 	int val, timeout = 10000;
500 
501 	mutex_lock(&indio_dev->mlock);
502 
503 	if (priv->param->has_bl30_integration) {
504 		/* prevent BL30 from using the SAR ADC while we are using it */
505 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
506 				MESON_SAR_ADC_DELAY_KERNEL_BUSY,
507 				MESON_SAR_ADC_DELAY_KERNEL_BUSY);
508 
509 		/*
510 		 * wait until BL30 releases it's lock (so we can use the SAR
511 		 * ADC)
512 		 */
513 		do {
514 			udelay(1);
515 			regmap_read(priv->regmap, MESON_SAR_ADC_DELAY, &val);
516 		} while (val & MESON_SAR_ADC_DELAY_BL30_BUSY && timeout--);
517 
518 		if (timeout < 0) {
519 			mutex_unlock(&indio_dev->mlock);
520 			return -ETIMEDOUT;
521 		}
522 	}
523 
524 	return 0;
525 }
526 
527 static void meson_sar_adc_unlock(struct iio_dev *indio_dev)
528 {
529 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
530 
531 	if (priv->param->has_bl30_integration)
532 		/* allow BL30 to use the SAR ADC again */
533 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
534 				MESON_SAR_ADC_DELAY_KERNEL_BUSY, 0);
535 
536 	mutex_unlock(&indio_dev->mlock);
537 }
538 
539 static void meson_sar_adc_clear_fifo(struct iio_dev *indio_dev)
540 {
541 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
542 	unsigned int count, tmp;
543 
544 	for (count = 0; count < MESON_SAR_ADC_MAX_FIFO_SIZE; count++) {
545 		if (!meson_sar_adc_get_fifo_count(indio_dev))
546 			break;
547 
548 		regmap_read(priv->regmap, MESON_SAR_ADC_FIFO_RD, &tmp);
549 	}
550 }
551 
552 static int meson_sar_adc_get_sample(struct iio_dev *indio_dev,
553 				    const struct iio_chan_spec *chan,
554 				    enum meson_sar_adc_avg_mode avg_mode,
555 				    enum meson_sar_adc_num_samples avg_samples,
556 				    int *val)
557 {
558 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
559 	int ret;
560 
561 	if (chan->type == IIO_TEMP && !priv->temperature_sensor_calibrated)
562 		return -ENOTSUPP;
563 
564 	ret = meson_sar_adc_lock(indio_dev);
565 	if (ret)
566 		return ret;
567 
568 	/* clear the FIFO to make sure we're not reading old values */
569 	meson_sar_adc_clear_fifo(indio_dev);
570 
571 	meson_sar_adc_set_averaging(indio_dev, chan, avg_mode, avg_samples);
572 
573 	meson_sar_adc_enable_channel(indio_dev, chan);
574 
575 	meson_sar_adc_start_sample_engine(indio_dev);
576 	ret = meson_sar_adc_read_raw_sample(indio_dev, chan, val);
577 	meson_sar_adc_stop_sample_engine(indio_dev);
578 
579 	meson_sar_adc_unlock(indio_dev);
580 
581 	if (ret) {
582 		dev_warn(indio_dev->dev.parent,
583 			 "failed to read sample for channel %lu: %d\n",
584 			 chan->address, ret);
585 		return ret;
586 	}
587 
588 	return IIO_VAL_INT;
589 }
590 
591 static int meson_sar_adc_iio_info_read_raw(struct iio_dev *indio_dev,
592 					   const struct iio_chan_spec *chan,
593 					   int *val, int *val2, long mask)
594 {
595 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
596 	int ret;
597 
598 	switch (mask) {
599 	case IIO_CHAN_INFO_RAW:
600 		return meson_sar_adc_get_sample(indio_dev, chan, NO_AVERAGING,
601 						ONE_SAMPLE, val);
602 		break;
603 
604 	case IIO_CHAN_INFO_AVERAGE_RAW:
605 		return meson_sar_adc_get_sample(indio_dev, chan,
606 						MEAN_AVERAGING, EIGHT_SAMPLES,
607 						val);
608 		break;
609 
610 	case IIO_CHAN_INFO_SCALE:
611 		if (chan->type == IIO_VOLTAGE) {
612 			ret = regulator_get_voltage(priv->vref);
613 			if (ret < 0) {
614 				dev_err(indio_dev->dev.parent,
615 					"failed to get vref voltage: %d\n",
616 					ret);
617 				return ret;
618 			}
619 
620 			*val = ret / 1000;
621 			*val2 = priv->param->resolution;
622 			return IIO_VAL_FRACTIONAL_LOG2;
623 		} else if (chan->type == IIO_TEMP) {
624 			/* SoC specific multiplier and divider */
625 			*val = priv->param->temperature_multiplier;
626 			*val2 = priv->param->temperature_divider;
627 
628 			/* celsius to millicelsius */
629 			*val *= 1000;
630 
631 			return IIO_VAL_FRACTIONAL;
632 		} else {
633 			return -EINVAL;
634 		}
635 
636 	case IIO_CHAN_INFO_CALIBBIAS:
637 		*val = priv->calibbias;
638 		return IIO_VAL_INT;
639 
640 	case IIO_CHAN_INFO_CALIBSCALE:
641 		*val = priv->calibscale / MILLION;
642 		*val2 = priv->calibscale % MILLION;
643 		return IIO_VAL_INT_PLUS_MICRO;
644 
645 	case IIO_CHAN_INFO_OFFSET:
646 		*val = DIV_ROUND_CLOSEST(MESON_SAR_ADC_TEMP_OFFSET *
647 					 priv->param->temperature_divider,
648 					 priv->param->temperature_multiplier);
649 		*val -= priv->temperature_sensor_adc_val;
650 		return IIO_VAL_INT;
651 
652 	default:
653 		return -EINVAL;
654 	}
655 }
656 
657 static int meson_sar_adc_clk_init(struct iio_dev *indio_dev,
658 				  void __iomem *base)
659 {
660 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
661 	struct clk_init_data init;
662 	const char *clk_parents[1];
663 
664 	init.name = devm_kasprintf(&indio_dev->dev, GFP_KERNEL, "%s#adc_div",
665 				   dev_name(indio_dev->dev.parent));
666 	if (!init.name)
667 		return -ENOMEM;
668 
669 	init.flags = 0;
670 	init.ops = &clk_divider_ops;
671 	clk_parents[0] = __clk_get_name(priv->clkin);
672 	init.parent_names = clk_parents;
673 	init.num_parents = 1;
674 
675 	priv->clk_div.reg = base + MESON_SAR_ADC_REG3;
676 	priv->clk_div.shift = MESON_SAR_ADC_REG3_ADC_CLK_DIV_SHIFT;
677 	priv->clk_div.width = MESON_SAR_ADC_REG3_ADC_CLK_DIV_WIDTH;
678 	priv->clk_div.hw.init = &init;
679 	priv->clk_div.flags = 0;
680 
681 	priv->adc_div_clk = devm_clk_register(&indio_dev->dev,
682 					      &priv->clk_div.hw);
683 	if (WARN_ON(IS_ERR(priv->adc_div_clk)))
684 		return PTR_ERR(priv->adc_div_clk);
685 
686 	init.name = devm_kasprintf(&indio_dev->dev, GFP_KERNEL, "%s#adc_en",
687 				   dev_name(indio_dev->dev.parent));
688 	if (!init.name)
689 		return -ENOMEM;
690 
691 	init.flags = CLK_SET_RATE_PARENT;
692 	init.ops = &clk_gate_ops;
693 	clk_parents[0] = __clk_get_name(priv->adc_div_clk);
694 	init.parent_names = clk_parents;
695 	init.num_parents = 1;
696 
697 	priv->clk_gate.reg = base + MESON_SAR_ADC_REG3;
698 	priv->clk_gate.bit_idx = __ffs(MESON_SAR_ADC_REG3_CLK_EN);
699 	priv->clk_gate.hw.init = &init;
700 
701 	priv->adc_clk = devm_clk_register(&indio_dev->dev, &priv->clk_gate.hw);
702 	if (WARN_ON(IS_ERR(priv->adc_clk)))
703 		return PTR_ERR(priv->adc_clk);
704 
705 	return 0;
706 }
707 
708 static int meson_sar_adc_temp_sensor_init(struct iio_dev *indio_dev)
709 {
710 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
711 	u8 *buf, trimming_bits, trimming_mask, upper_adc_val;
712 	struct nvmem_cell *temperature_calib;
713 	size_t read_len;
714 	int ret;
715 
716 	temperature_calib = devm_nvmem_cell_get(&indio_dev->dev,
717 						"temperature_calib");
718 	if (IS_ERR(temperature_calib)) {
719 		ret = PTR_ERR(temperature_calib);
720 
721 		/*
722 		 * leave the temperature sensor disabled if no calibration data
723 		 * was passed via nvmem-cells.
724 		 */
725 		if (ret == -ENODEV)
726 			return 0;
727 
728 		if (ret != -EPROBE_DEFER)
729 			dev_err(indio_dev->dev.parent,
730 				"failed to get temperature_calib cell\n");
731 
732 		return ret;
733 	}
734 
735 	priv->tsc_regmap =
736 		syscon_regmap_lookup_by_phandle(indio_dev->dev.parent->of_node,
737 						"amlogic,hhi-sysctrl");
738 	if (IS_ERR(priv->tsc_regmap)) {
739 		dev_err(indio_dev->dev.parent,
740 			"failed to get amlogic,hhi-sysctrl regmap\n");
741 		return PTR_ERR(priv->tsc_regmap);
742 	}
743 
744 	read_len = MESON_SAR_ADC_EFUSE_BYTES;
745 	buf = nvmem_cell_read(temperature_calib, &read_len);
746 	if (IS_ERR(buf)) {
747 		dev_err(indio_dev->dev.parent,
748 			"failed to read temperature_calib cell\n");
749 		return PTR_ERR(buf);
750 	} else if (read_len != MESON_SAR_ADC_EFUSE_BYTES) {
751 		kfree(buf);
752 		dev_err(indio_dev->dev.parent,
753 			"invalid read size of temperature_calib cell\n");
754 		return -EINVAL;
755 	}
756 
757 	trimming_bits = priv->param->temperature_trimming_bits;
758 	trimming_mask = BIT(trimming_bits) - 1;
759 
760 	priv->temperature_sensor_calibrated =
761 		buf[3] & MESON_SAR_ADC_EFUSE_BYTE3_IS_CALIBRATED;
762 	priv->temperature_sensor_coefficient = buf[2] & trimming_mask;
763 
764 	upper_adc_val = FIELD_GET(MESON_SAR_ADC_EFUSE_BYTE3_UPPER_ADC_VAL,
765 				  buf[3]);
766 
767 	priv->temperature_sensor_adc_val = buf[2];
768 	priv->temperature_sensor_adc_val |= upper_adc_val << BITS_PER_BYTE;
769 	priv->temperature_sensor_adc_val >>= trimming_bits;
770 
771 	kfree(buf);
772 
773 	return 0;
774 }
775 
776 static int meson_sar_adc_init(struct iio_dev *indio_dev)
777 {
778 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
779 	int regval, i, ret;
780 
781 	/*
782 	 * make sure we start at CH7 input since the other muxes are only used
783 	 * for internal calibration.
784 	 */
785 	meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_CH7_INPUT);
786 
787 	if (priv->param->has_bl30_integration) {
788 		/*
789 		 * leave sampling delay and the input clocks as configured by
790 		 * BL30 to make sure BL30 gets the values it expects when
791 		 * reading the temperature sensor.
792 		 */
793 		regmap_read(priv->regmap, MESON_SAR_ADC_REG3, &regval);
794 		if (regval & MESON_SAR_ADC_REG3_BL30_INITIALIZED)
795 			return 0;
796 	}
797 
798 	meson_sar_adc_stop_sample_engine(indio_dev);
799 
800 	/*
801 	 * disable this bit as seems to be only relevant for Meson6 (based
802 	 * on the vendor driver), which we don't support at the moment.
803 	 */
804 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
805 			MESON_SAR_ADC_REG0_ADC_TEMP_SEN_SEL, 0);
806 
807 	/* disable all channels by default */
808 	regmap_write(priv->regmap, MESON_SAR_ADC_CHAN_LIST, 0x0);
809 
810 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
811 			   MESON_SAR_ADC_REG3_CTRL_SAMPLING_CLOCK_PHASE, 0);
812 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
813 			   MESON_SAR_ADC_REG3_CNTL_USE_SC_DLY,
814 			   MESON_SAR_ADC_REG3_CNTL_USE_SC_DLY);
815 
816 	/* delay between two samples = (10+1) * 1uS */
817 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
818 			   MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK,
819 			   FIELD_PREP(MESON_SAR_ADC_DELAY_SAMPLE_DLY_CNT_MASK,
820 				      10));
821 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
822 			   MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK,
823 			   FIELD_PREP(MESON_SAR_ADC_DELAY_SAMPLE_DLY_SEL_MASK,
824 				      0));
825 
826 	/* delay between two samples = (10+1) * 1uS */
827 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
828 			   MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK,
829 			   FIELD_PREP(MESON_SAR_ADC_DELAY_INPUT_DLY_CNT_MASK,
830 				      10));
831 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELAY,
832 			   MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK,
833 			   FIELD_PREP(MESON_SAR_ADC_DELAY_INPUT_DLY_SEL_MASK,
834 				      1));
835 
836 	/*
837 	 * set up the input channel muxes in MESON_SAR_ADC_CHAN_10_SW
838 	 * (0 = SAR_ADC_CH0, 1 = SAR_ADC_CH1)
839 	 */
840 	regval = FIELD_PREP(MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK, 0);
841 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
842 			   MESON_SAR_ADC_CHAN_10_SW_CHAN0_MUX_SEL_MASK,
843 			   regval);
844 	regval = FIELD_PREP(MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK, 1);
845 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_CHAN_10_SW,
846 			   MESON_SAR_ADC_CHAN_10_SW_CHAN1_MUX_SEL_MASK,
847 			   regval);
848 
849 	/*
850 	 * set up the input channel muxes in MESON_SAR_ADC_AUX_SW
851 	 * (2 = SAR_ADC_CH2, 3 = SAR_ADC_CH3, ...) and enable
852 	 * MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW and
853 	 * MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW like the vendor driver.
854 	 */
855 	regval = 0;
856 	for (i = 2; i <= 7; i++)
857 		regval |= i << MESON_SAR_ADC_AUX_SW_MUX_SEL_CHAN_SHIFT(i);
858 	regval |= MESON_SAR_ADC_AUX_SW_YP_DRIVE_SW;
859 	regval |= MESON_SAR_ADC_AUX_SW_XP_DRIVE_SW;
860 	regmap_write(priv->regmap, MESON_SAR_ADC_AUX_SW, regval);
861 
862 	if (priv->temperature_sensor_calibrated) {
863 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
864 				   MESON_SAR_ADC_DELTA_10_TS_REVE1,
865 				   MESON_SAR_ADC_DELTA_10_TS_REVE1);
866 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
867 				   MESON_SAR_ADC_DELTA_10_TS_REVE0,
868 				   MESON_SAR_ADC_DELTA_10_TS_REVE0);
869 
870 		/*
871 		 * set bits [3:0] of the TSC (temperature sensor coefficient)
872 		 * to get the correct values when reading the temperature.
873 		 */
874 		regval = FIELD_PREP(MESON_SAR_ADC_DELTA_10_TS_C_MASK,
875 				    priv->temperature_sensor_coefficient);
876 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
877 				   MESON_SAR_ADC_DELTA_10_TS_C_MASK, regval);
878 
879 		if (priv->param->temperature_trimming_bits == 5) {
880 			if (priv->temperature_sensor_coefficient & BIT(4))
881 				regval = MESON_HHI_DPLL_TOP_0_TSC_BIT4;
882 			else
883 				regval = 0;
884 
885 			/*
886 			 * bit [4] (the 5th bit when starting to count at 1)
887 			 * of the TSC is located in the HHI register area.
888 			 */
889 			regmap_update_bits(priv->tsc_regmap,
890 					   MESON_HHI_DPLL_TOP_0,
891 					   MESON_HHI_DPLL_TOP_0_TSC_BIT4,
892 					   regval);
893 		}
894 	} else {
895 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
896 				   MESON_SAR_ADC_DELTA_10_TS_REVE1, 0);
897 		regmap_update_bits(priv->regmap, MESON_SAR_ADC_DELTA_10,
898 				   MESON_SAR_ADC_DELTA_10_TS_REVE0, 0);
899 	}
900 
901 	ret = clk_set_parent(priv->adc_sel_clk, priv->clkin);
902 	if (ret) {
903 		dev_err(indio_dev->dev.parent,
904 			"failed to set adc parent to clkin\n");
905 		return ret;
906 	}
907 
908 	ret = clk_set_rate(priv->adc_clk, priv->param->clock_rate);
909 	if (ret) {
910 		dev_err(indio_dev->dev.parent,
911 			"failed to set adc clock rate\n");
912 		return ret;
913 	}
914 
915 	return 0;
916 }
917 
918 static void meson_sar_adc_set_bandgap(struct iio_dev *indio_dev, bool on_off)
919 {
920 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
921 	const struct meson_sar_adc_param *param = priv->param;
922 	u32 enable_mask;
923 
924 	if (param->bandgap_reg == MESON_SAR_ADC_REG11)
925 		enable_mask = MESON_SAR_ADC_REG11_BANDGAP_EN;
926 	else
927 		enable_mask = MESON_SAR_ADC_DELTA_10_TS_VBG_EN;
928 
929 	regmap_update_bits(priv->regmap, param->bandgap_reg, enable_mask,
930 			   on_off ? enable_mask : 0);
931 }
932 
933 static int meson_sar_adc_hw_enable(struct iio_dev *indio_dev)
934 {
935 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
936 	int ret;
937 	u32 regval;
938 
939 	ret = meson_sar_adc_lock(indio_dev);
940 	if (ret)
941 		goto err_lock;
942 
943 	ret = regulator_enable(priv->vref);
944 	if (ret < 0) {
945 		dev_err(indio_dev->dev.parent,
946 			"failed to enable vref regulator\n");
947 		goto err_vref;
948 	}
949 
950 	ret = clk_prepare_enable(priv->core_clk);
951 	if (ret) {
952 		dev_err(indio_dev->dev.parent, "failed to enable core clk\n");
953 		goto err_core_clk;
954 	}
955 
956 	regval = FIELD_PREP(MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, 1);
957 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG0,
958 			   MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, regval);
959 
960 	meson_sar_adc_set_bandgap(indio_dev, true);
961 
962 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
963 			   MESON_SAR_ADC_REG3_ADC_EN,
964 			   MESON_SAR_ADC_REG3_ADC_EN);
965 
966 	udelay(5);
967 
968 	ret = clk_prepare_enable(priv->adc_clk);
969 	if (ret) {
970 		dev_err(indio_dev->dev.parent, "failed to enable adc clk\n");
971 		goto err_adc_clk;
972 	}
973 
974 	meson_sar_adc_unlock(indio_dev);
975 
976 	return 0;
977 
978 err_adc_clk:
979 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
980 			   MESON_SAR_ADC_REG3_ADC_EN, 0);
981 	meson_sar_adc_set_bandgap(indio_dev, false);
982 	clk_disable_unprepare(priv->core_clk);
983 err_core_clk:
984 	regulator_disable(priv->vref);
985 err_vref:
986 	meson_sar_adc_unlock(indio_dev);
987 err_lock:
988 	return ret;
989 }
990 
991 static int meson_sar_adc_hw_disable(struct iio_dev *indio_dev)
992 {
993 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
994 	int ret;
995 
996 	ret = meson_sar_adc_lock(indio_dev);
997 	if (ret)
998 		return ret;
999 
1000 	clk_disable_unprepare(priv->adc_clk);
1001 
1002 	regmap_update_bits(priv->regmap, MESON_SAR_ADC_REG3,
1003 			   MESON_SAR_ADC_REG3_ADC_EN, 0);
1004 
1005 	meson_sar_adc_set_bandgap(indio_dev, false);
1006 
1007 	clk_disable_unprepare(priv->core_clk);
1008 
1009 	regulator_disable(priv->vref);
1010 
1011 	meson_sar_adc_unlock(indio_dev);
1012 
1013 	return 0;
1014 }
1015 
1016 static irqreturn_t meson_sar_adc_irq(int irq, void *data)
1017 {
1018 	struct iio_dev *indio_dev = data;
1019 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1020 	unsigned int cnt, threshold;
1021 	u32 regval;
1022 
1023 	regmap_read(priv->regmap, MESON_SAR_ADC_REG0, &regval);
1024 	cnt = FIELD_GET(MESON_SAR_ADC_REG0_FIFO_COUNT_MASK, regval);
1025 	threshold = FIELD_GET(MESON_SAR_ADC_REG0_FIFO_CNT_IRQ_MASK, regval);
1026 
1027 	if (cnt < threshold)
1028 		return IRQ_NONE;
1029 
1030 	complete(&priv->done);
1031 
1032 	return IRQ_HANDLED;
1033 }
1034 
1035 static int meson_sar_adc_calib(struct iio_dev *indio_dev)
1036 {
1037 	struct meson_sar_adc_priv *priv = iio_priv(indio_dev);
1038 	int ret, nominal0, nominal1, value0, value1;
1039 
1040 	/* use points 25% and 75% for calibration */
1041 	nominal0 = (1 << priv->param->resolution) / 4;
1042 	nominal1 = (1 << priv->param->resolution) * 3 / 4;
1043 
1044 	meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_VDD_DIV4);
1045 	usleep_range(10, 20);
1046 	ret = meson_sar_adc_get_sample(indio_dev,
1047 				       &indio_dev->channels[7],
1048 				       MEAN_AVERAGING, EIGHT_SAMPLES, &value0);
1049 	if (ret < 0)
1050 		goto out;
1051 
1052 	meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_VDD_MUL3_DIV4);
1053 	usleep_range(10, 20);
1054 	ret = meson_sar_adc_get_sample(indio_dev,
1055 				       &indio_dev->channels[7],
1056 				       MEAN_AVERAGING, EIGHT_SAMPLES, &value1);
1057 	if (ret < 0)
1058 		goto out;
1059 
1060 	if (value1 <= value0) {
1061 		ret = -EINVAL;
1062 		goto out;
1063 	}
1064 
1065 	priv->calibscale = div_s64((nominal1 - nominal0) * (s64)MILLION,
1066 				   value1 - value0);
1067 	priv->calibbias = nominal0 - div_s64((s64)value0 * priv->calibscale,
1068 					     MILLION);
1069 	ret = 0;
1070 out:
1071 	meson_sar_adc_set_chan7_mux(indio_dev, CHAN7_MUX_CH7_INPUT);
1072 
1073 	return ret;
1074 }
1075 
1076 static const struct iio_info meson_sar_adc_iio_info = {
1077 	.read_raw = meson_sar_adc_iio_info_read_raw,
1078 };
1079 
1080 static const struct meson_sar_adc_param meson_sar_adc_meson8_param = {
1081 	.has_bl30_integration = false,
1082 	.clock_rate = 1150000,
1083 	.bandgap_reg = MESON_SAR_ADC_DELTA_10,
1084 	.regmap_config = &meson_sar_adc_regmap_config_meson8,
1085 	.resolution = 10,
1086 	.temperature_trimming_bits = 4,
1087 	.temperature_multiplier = 18 * 10000,
1088 	.temperature_divider = 1024 * 10 * 85,
1089 };
1090 
1091 static const struct meson_sar_adc_param meson_sar_adc_meson8b_param = {
1092 	.has_bl30_integration = false,
1093 	.clock_rate = 1150000,
1094 	.bandgap_reg = MESON_SAR_ADC_DELTA_10,
1095 	.regmap_config = &meson_sar_adc_regmap_config_meson8,
1096 	.resolution = 10,
1097 	.temperature_trimming_bits = 5,
1098 	.temperature_multiplier = 10,
1099 	.temperature_divider = 32,
1100 };
1101 
1102 static const struct meson_sar_adc_param meson_sar_adc_gxbb_param = {
1103 	.has_bl30_integration = true,
1104 	.clock_rate = 1200000,
1105 	.bandgap_reg = MESON_SAR_ADC_REG11,
1106 	.regmap_config = &meson_sar_adc_regmap_config_gxbb,
1107 	.resolution = 10,
1108 };
1109 
1110 static const struct meson_sar_adc_param meson_sar_adc_gxl_param = {
1111 	.has_bl30_integration = true,
1112 	.clock_rate = 1200000,
1113 	.bandgap_reg = MESON_SAR_ADC_REG11,
1114 	.regmap_config = &meson_sar_adc_regmap_config_gxbb,
1115 	.resolution = 12,
1116 };
1117 
1118 static const struct meson_sar_adc_data meson_sar_adc_meson8_data = {
1119 	.param = &meson_sar_adc_meson8_param,
1120 	.name = "meson-meson8-saradc",
1121 };
1122 
1123 static const struct meson_sar_adc_data meson_sar_adc_meson8b_data = {
1124 	.param = &meson_sar_adc_meson8b_param,
1125 	.name = "meson-meson8b-saradc",
1126 };
1127 
1128 static const struct meson_sar_adc_data meson_sar_adc_meson8m2_data = {
1129 	.param = &meson_sar_adc_meson8b_param,
1130 	.name = "meson-meson8m2-saradc",
1131 };
1132 
1133 static const struct meson_sar_adc_data meson_sar_adc_gxbb_data = {
1134 	.param = &meson_sar_adc_gxbb_param,
1135 	.name = "meson-gxbb-saradc",
1136 };
1137 
1138 static const struct meson_sar_adc_data meson_sar_adc_gxl_data = {
1139 	.param = &meson_sar_adc_gxl_param,
1140 	.name = "meson-gxl-saradc",
1141 };
1142 
1143 static const struct meson_sar_adc_data meson_sar_adc_gxm_data = {
1144 	.param = &meson_sar_adc_gxl_param,
1145 	.name = "meson-gxm-saradc",
1146 };
1147 
1148 static const struct meson_sar_adc_data meson_sar_adc_axg_data = {
1149 	.param = &meson_sar_adc_gxl_param,
1150 	.name = "meson-axg-saradc",
1151 };
1152 
1153 static const struct meson_sar_adc_data meson_sar_adc_g12a_data = {
1154 	.param = &meson_sar_adc_gxl_param,
1155 	.name = "meson-g12a-saradc",
1156 };
1157 
1158 static const struct of_device_id meson_sar_adc_of_match[] = {
1159 	{
1160 		.compatible = "amlogic,meson8-saradc",
1161 		.data = &meson_sar_adc_meson8_data,
1162 	},
1163 	{
1164 		.compatible = "amlogic,meson8b-saradc",
1165 		.data = &meson_sar_adc_meson8b_data,
1166 	},
1167 	{
1168 		.compatible = "amlogic,meson8m2-saradc",
1169 		.data = &meson_sar_adc_meson8m2_data,
1170 	},
1171 	{
1172 		.compatible = "amlogic,meson-gxbb-saradc",
1173 		.data = &meson_sar_adc_gxbb_data,
1174 	}, {
1175 		.compatible = "amlogic,meson-gxl-saradc",
1176 		.data = &meson_sar_adc_gxl_data,
1177 	}, {
1178 		.compatible = "amlogic,meson-gxm-saradc",
1179 		.data = &meson_sar_adc_gxm_data,
1180 	}, {
1181 		.compatible = "amlogic,meson-axg-saradc",
1182 		.data = &meson_sar_adc_axg_data,
1183 	}, {
1184 		.compatible = "amlogic,meson-g12a-saradc",
1185 		.data = &meson_sar_adc_g12a_data,
1186 	},
1187 	{},
1188 };
1189 MODULE_DEVICE_TABLE(of, meson_sar_adc_of_match);
1190 
1191 static int meson_sar_adc_probe(struct platform_device *pdev)
1192 {
1193 	const struct meson_sar_adc_data *match_data;
1194 	struct meson_sar_adc_priv *priv;
1195 	struct iio_dev *indio_dev;
1196 	struct resource *res;
1197 	void __iomem *base;
1198 	int irq, ret;
1199 
1200 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*priv));
1201 	if (!indio_dev) {
1202 		dev_err(&pdev->dev, "failed allocating iio device\n");
1203 		return -ENOMEM;
1204 	}
1205 
1206 	priv = iio_priv(indio_dev);
1207 	init_completion(&priv->done);
1208 
1209 	match_data = of_device_get_match_data(&pdev->dev);
1210 	if (!match_data) {
1211 		dev_err(&pdev->dev, "failed to get match data\n");
1212 		return -ENODEV;
1213 	}
1214 
1215 	priv->param = match_data->param;
1216 
1217 	indio_dev->name = match_data->name;
1218 	indio_dev->dev.parent = &pdev->dev;
1219 	indio_dev->dev.of_node = pdev->dev.of_node;
1220 	indio_dev->modes = INDIO_DIRECT_MODE;
1221 	indio_dev->info = &meson_sar_adc_iio_info;
1222 
1223 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1224 	base = devm_ioremap_resource(&pdev->dev, res);
1225 	if (IS_ERR(base))
1226 		return PTR_ERR(base);
1227 
1228 	irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
1229 	if (!irq)
1230 		return -EINVAL;
1231 
1232 	ret = devm_request_irq(&pdev->dev, irq, meson_sar_adc_irq, IRQF_SHARED,
1233 			       dev_name(&pdev->dev), indio_dev);
1234 	if (ret)
1235 		return ret;
1236 
1237 	priv->regmap = devm_regmap_init_mmio(&pdev->dev, base,
1238 					     priv->param->regmap_config);
1239 	if (IS_ERR(priv->regmap))
1240 		return PTR_ERR(priv->regmap);
1241 
1242 	priv->clkin = devm_clk_get(&pdev->dev, "clkin");
1243 	if (IS_ERR(priv->clkin)) {
1244 		dev_err(&pdev->dev, "failed to get clkin\n");
1245 		return PTR_ERR(priv->clkin);
1246 	}
1247 
1248 	priv->core_clk = devm_clk_get(&pdev->dev, "core");
1249 	if (IS_ERR(priv->core_clk)) {
1250 		dev_err(&pdev->dev, "failed to get core clk\n");
1251 		return PTR_ERR(priv->core_clk);
1252 	}
1253 
1254 	priv->adc_clk = devm_clk_get(&pdev->dev, "adc_clk");
1255 	if (IS_ERR(priv->adc_clk)) {
1256 		if (PTR_ERR(priv->adc_clk) == -ENOENT) {
1257 			priv->adc_clk = NULL;
1258 		} else {
1259 			dev_err(&pdev->dev, "failed to get adc clk\n");
1260 			return PTR_ERR(priv->adc_clk);
1261 		}
1262 	}
1263 
1264 	priv->adc_sel_clk = devm_clk_get(&pdev->dev, "adc_sel");
1265 	if (IS_ERR(priv->adc_sel_clk)) {
1266 		if (PTR_ERR(priv->adc_sel_clk) == -ENOENT) {
1267 			priv->adc_sel_clk = NULL;
1268 		} else {
1269 			dev_err(&pdev->dev, "failed to get adc_sel clk\n");
1270 			return PTR_ERR(priv->adc_sel_clk);
1271 		}
1272 	}
1273 
1274 	/* on pre-GXBB SoCs the SAR ADC itself provides the ADC clock: */
1275 	if (!priv->adc_clk) {
1276 		ret = meson_sar_adc_clk_init(indio_dev, base);
1277 		if (ret)
1278 			return ret;
1279 	}
1280 
1281 	priv->vref = devm_regulator_get(&pdev->dev, "vref");
1282 	if (IS_ERR(priv->vref)) {
1283 		dev_err(&pdev->dev, "failed to get vref regulator\n");
1284 		return PTR_ERR(priv->vref);
1285 	}
1286 
1287 	priv->calibscale = MILLION;
1288 
1289 	if (priv->param->temperature_trimming_bits) {
1290 		ret = meson_sar_adc_temp_sensor_init(indio_dev);
1291 		if (ret)
1292 			return ret;
1293 	}
1294 
1295 	if (priv->temperature_sensor_calibrated) {
1296 		indio_dev->channels = meson_sar_adc_and_temp_iio_channels;
1297 		indio_dev->num_channels =
1298 			ARRAY_SIZE(meson_sar_adc_and_temp_iio_channels);
1299 	} else {
1300 		indio_dev->channels = meson_sar_adc_iio_channels;
1301 		indio_dev->num_channels =
1302 			ARRAY_SIZE(meson_sar_adc_iio_channels);
1303 	}
1304 
1305 	ret = meson_sar_adc_init(indio_dev);
1306 	if (ret)
1307 		goto err;
1308 
1309 	ret = meson_sar_adc_hw_enable(indio_dev);
1310 	if (ret)
1311 		goto err;
1312 
1313 	ret = meson_sar_adc_calib(indio_dev);
1314 	if (ret)
1315 		dev_warn(&pdev->dev, "calibration failed\n");
1316 
1317 	platform_set_drvdata(pdev, indio_dev);
1318 
1319 	ret = iio_device_register(indio_dev);
1320 	if (ret)
1321 		goto err_hw;
1322 
1323 	return 0;
1324 
1325 err_hw:
1326 	meson_sar_adc_hw_disable(indio_dev);
1327 err:
1328 	return ret;
1329 }
1330 
1331 static int meson_sar_adc_remove(struct platform_device *pdev)
1332 {
1333 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1334 
1335 	iio_device_unregister(indio_dev);
1336 
1337 	return meson_sar_adc_hw_disable(indio_dev);
1338 }
1339 
1340 static int __maybe_unused meson_sar_adc_suspend(struct device *dev)
1341 {
1342 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1343 
1344 	return meson_sar_adc_hw_disable(indio_dev);
1345 }
1346 
1347 static int __maybe_unused meson_sar_adc_resume(struct device *dev)
1348 {
1349 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1350 
1351 	return meson_sar_adc_hw_enable(indio_dev);
1352 }
1353 
1354 static SIMPLE_DEV_PM_OPS(meson_sar_adc_pm_ops,
1355 			 meson_sar_adc_suspend, meson_sar_adc_resume);
1356 
1357 static struct platform_driver meson_sar_adc_driver = {
1358 	.probe		= meson_sar_adc_probe,
1359 	.remove		= meson_sar_adc_remove,
1360 	.driver		= {
1361 		.name	= "meson-saradc",
1362 		.of_match_table = meson_sar_adc_of_match,
1363 		.pm = &meson_sar_adc_pm_ops,
1364 	},
1365 };
1366 
1367 module_platform_driver(meson_sar_adc_driver);
1368 
1369 MODULE_AUTHOR("Martin Blumenstingl <martin.blumenstingl@googlemail.com>");
1370 MODULE_DESCRIPTION("Amlogic Meson SAR ADC driver");
1371 MODULE_LICENSE("GPL v2");
1372