1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * exynos_adc.c - Support for ADC in EXYNOS SoCs 4 * 5 * 8 ~ 10 channel, 10/12-bit ADC 6 * 7 * Copyright (C) 2013 Naveen Krishna Chatradhi <ch.naveen@samsung.com> 8 */ 9 10 #include <linux/module.h> 11 #include <linux/platform_device.h> 12 #include <linux/interrupt.h> 13 #include <linux/delay.h> 14 #include <linux/errno.h> 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/io.h> 18 #include <linux/clk.h> 19 #include <linux/completion.h> 20 #include <linux/of.h> 21 #include <linux/of_irq.h> 22 #include <linux/regulator/consumer.h> 23 #include <linux/of_platform.h> 24 #include <linux/err.h> 25 #include <linux/input.h> 26 27 #include <linux/iio/iio.h> 28 #include <linux/iio/machine.h> 29 #include <linux/iio/driver.h> 30 #include <linux/mfd/syscon.h> 31 #include <linux/regmap.h> 32 33 #include <linux/platform_data/touchscreen-s3c2410.h> 34 35 /* S3C/EXYNOS4412/5250 ADC_V1 registers definitions */ 36 #define ADC_V1_CON(x) ((x) + 0x00) 37 #define ADC_V1_TSC(x) ((x) + 0x04) 38 #define ADC_V1_DLY(x) ((x) + 0x08) 39 #define ADC_V1_DATX(x) ((x) + 0x0C) 40 #define ADC_V1_DATY(x) ((x) + 0x10) 41 #define ADC_V1_UPDN(x) ((x) + 0x14) 42 #define ADC_V1_INTCLR(x) ((x) + 0x18) 43 #define ADC_V1_MUX(x) ((x) + 0x1c) 44 #define ADC_V1_CLRINTPNDNUP(x) ((x) + 0x20) 45 46 /* S3C2410 ADC registers definitions */ 47 #define ADC_S3C2410_MUX(x) ((x) + 0x18) 48 49 /* Future ADC_V2 registers definitions */ 50 #define ADC_V2_CON1(x) ((x) + 0x00) 51 #define ADC_V2_CON2(x) ((x) + 0x04) 52 #define ADC_V2_STAT(x) ((x) + 0x08) 53 #define ADC_V2_INT_EN(x) ((x) + 0x10) 54 #define ADC_V2_INT_ST(x) ((x) + 0x14) 55 #define ADC_V2_VER(x) ((x) + 0x20) 56 57 /* Bit definitions for ADC_V1 */ 58 #define ADC_V1_CON_RES (1u << 16) 59 #define ADC_V1_CON_PRSCEN (1u << 14) 60 #define ADC_V1_CON_PRSCLV(x) (((x) & 0xFF) << 6) 61 #define ADC_V1_CON_STANDBY (1u << 2) 62 63 /* Bit definitions for S3C2410 ADC */ 64 #define ADC_S3C2410_CON_SELMUX(x) (((x) & 7) << 3) 65 #define ADC_S3C2410_DATX_MASK 0x3FF 66 #define ADC_S3C2416_CON_RES_SEL (1u << 3) 67 68 /* touch screen always uses channel 0 */ 69 #define ADC_S3C2410_MUX_TS 0 70 71 /* ADCTSC Register Bits */ 72 #define ADC_S3C2443_TSC_UD_SEN (1u << 8) 73 #define ADC_S3C2410_TSC_YM_SEN (1u << 7) 74 #define ADC_S3C2410_TSC_YP_SEN (1u << 6) 75 #define ADC_S3C2410_TSC_XM_SEN (1u << 5) 76 #define ADC_S3C2410_TSC_XP_SEN (1u << 4) 77 #define ADC_S3C2410_TSC_PULL_UP_DISABLE (1u << 3) 78 #define ADC_S3C2410_TSC_AUTO_PST (1u << 2) 79 #define ADC_S3C2410_TSC_XY_PST(x) (((x) & 0x3) << 0) 80 81 #define ADC_TSC_WAIT4INT (ADC_S3C2410_TSC_YM_SEN | \ 82 ADC_S3C2410_TSC_YP_SEN | \ 83 ADC_S3C2410_TSC_XP_SEN | \ 84 ADC_S3C2410_TSC_XY_PST(3)) 85 86 #define ADC_TSC_AUTOPST (ADC_S3C2410_TSC_YM_SEN | \ 87 ADC_S3C2410_TSC_YP_SEN | \ 88 ADC_S3C2410_TSC_XP_SEN | \ 89 ADC_S3C2410_TSC_AUTO_PST | \ 90 ADC_S3C2410_TSC_XY_PST(0)) 91 92 /* Bit definitions for ADC_V2 */ 93 #define ADC_V2_CON1_SOFT_RESET (1u << 2) 94 95 #define ADC_V2_CON2_OSEL (1u << 10) 96 #define ADC_V2_CON2_ESEL (1u << 9) 97 #define ADC_V2_CON2_HIGHF (1u << 8) 98 #define ADC_V2_CON2_C_TIME(x) (((x) & 7) << 4) 99 #define ADC_V2_CON2_ACH_SEL(x) (((x) & 0xF) << 0) 100 #define ADC_V2_CON2_ACH_MASK 0xF 101 102 #define MAX_ADC_V2_CHANNELS 10 103 #define MAX_ADC_V1_CHANNELS 8 104 #define MAX_EXYNOS3250_ADC_CHANNELS 2 105 #define MAX_EXYNOS4212_ADC_CHANNELS 4 106 #define MAX_S5PV210_ADC_CHANNELS 10 107 108 /* Bit definitions common for ADC_V1 and ADC_V2 */ 109 #define ADC_CON_EN_START (1u << 0) 110 #define ADC_CON_EN_START_MASK (0x3 << 0) 111 #define ADC_DATX_PRESSED (1u << 15) 112 #define ADC_DATX_MASK 0xFFF 113 #define ADC_DATY_MASK 0xFFF 114 115 #define EXYNOS_ADC_TIMEOUT (msecs_to_jiffies(100)) 116 117 #define EXYNOS_ADCV1_PHY_OFFSET 0x0718 118 #define EXYNOS_ADCV2_PHY_OFFSET 0x0720 119 120 struct exynos_adc { 121 struct exynos_adc_data *data; 122 struct device *dev; 123 struct input_dev *input; 124 void __iomem *regs; 125 struct regmap *pmu_map; 126 struct clk *clk; 127 struct clk *sclk; 128 unsigned int irq; 129 unsigned int tsirq; 130 unsigned int delay; 131 struct regulator *vdd; 132 133 struct completion completion; 134 135 u32 value; 136 unsigned int version; 137 138 bool read_ts; 139 u32 ts_x; 140 u32 ts_y; 141 }; 142 143 struct exynos_adc_data { 144 int num_channels; 145 bool needs_sclk; 146 bool needs_adc_phy; 147 int phy_offset; 148 u32 mask; 149 150 void (*init_hw)(struct exynos_adc *info); 151 void (*exit_hw)(struct exynos_adc *info); 152 void (*clear_irq)(struct exynos_adc *info); 153 void (*start_conv)(struct exynos_adc *info, unsigned long addr); 154 }; 155 156 static void exynos_adc_unprepare_clk(struct exynos_adc *info) 157 { 158 if (info->data->needs_sclk) 159 clk_unprepare(info->sclk); 160 clk_unprepare(info->clk); 161 } 162 163 static int exynos_adc_prepare_clk(struct exynos_adc *info) 164 { 165 int ret; 166 167 ret = clk_prepare(info->clk); 168 if (ret) { 169 dev_err(info->dev, "failed preparing adc clock: %d\n", ret); 170 return ret; 171 } 172 173 if (info->data->needs_sclk) { 174 ret = clk_prepare(info->sclk); 175 if (ret) { 176 clk_unprepare(info->clk); 177 dev_err(info->dev, 178 "failed preparing sclk_adc clock: %d\n", ret); 179 return ret; 180 } 181 } 182 183 return 0; 184 } 185 186 static void exynos_adc_disable_clk(struct exynos_adc *info) 187 { 188 if (info->data->needs_sclk) 189 clk_disable(info->sclk); 190 clk_disable(info->clk); 191 } 192 193 static int exynos_adc_enable_clk(struct exynos_adc *info) 194 { 195 int ret; 196 197 ret = clk_enable(info->clk); 198 if (ret) { 199 dev_err(info->dev, "failed enabling adc clock: %d\n", ret); 200 return ret; 201 } 202 203 if (info->data->needs_sclk) { 204 ret = clk_enable(info->sclk); 205 if (ret) { 206 clk_disable(info->clk); 207 dev_err(info->dev, 208 "failed enabling sclk_adc clock: %d\n", ret); 209 return ret; 210 } 211 } 212 213 return 0; 214 } 215 216 static void exynos_adc_v1_init_hw(struct exynos_adc *info) 217 { 218 u32 con1; 219 220 if (info->data->needs_adc_phy) 221 regmap_write(info->pmu_map, info->data->phy_offset, 1); 222 223 /* set default prescaler values and Enable prescaler */ 224 con1 = ADC_V1_CON_PRSCLV(49) | ADC_V1_CON_PRSCEN; 225 226 /* Enable 12-bit ADC resolution */ 227 con1 |= ADC_V1_CON_RES; 228 writel(con1, ADC_V1_CON(info->regs)); 229 230 /* set touchscreen delay */ 231 writel(info->delay, ADC_V1_DLY(info->regs)); 232 } 233 234 static void exynos_adc_v1_exit_hw(struct exynos_adc *info) 235 { 236 u32 con; 237 238 if (info->data->needs_adc_phy) 239 regmap_write(info->pmu_map, info->data->phy_offset, 0); 240 241 con = readl(ADC_V1_CON(info->regs)); 242 con |= ADC_V1_CON_STANDBY; 243 writel(con, ADC_V1_CON(info->regs)); 244 } 245 246 static void exynos_adc_v1_clear_irq(struct exynos_adc *info) 247 { 248 writel(1, ADC_V1_INTCLR(info->regs)); 249 } 250 251 static void exynos_adc_v1_start_conv(struct exynos_adc *info, 252 unsigned long addr) 253 { 254 u32 con1; 255 256 writel(addr, ADC_V1_MUX(info->regs)); 257 258 con1 = readl(ADC_V1_CON(info->regs)); 259 writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs)); 260 } 261 262 /* Exynos4212 and 4412 is like ADCv1 but with four channels only */ 263 static const struct exynos_adc_data exynos4212_adc_data = { 264 .num_channels = MAX_EXYNOS4212_ADC_CHANNELS, 265 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */ 266 .needs_adc_phy = true, 267 .phy_offset = EXYNOS_ADCV1_PHY_OFFSET, 268 269 .init_hw = exynos_adc_v1_init_hw, 270 .exit_hw = exynos_adc_v1_exit_hw, 271 .clear_irq = exynos_adc_v1_clear_irq, 272 .start_conv = exynos_adc_v1_start_conv, 273 }; 274 275 static const struct exynos_adc_data exynos_adc_v1_data = { 276 .num_channels = MAX_ADC_V1_CHANNELS, 277 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */ 278 .needs_adc_phy = true, 279 .phy_offset = EXYNOS_ADCV1_PHY_OFFSET, 280 281 .init_hw = exynos_adc_v1_init_hw, 282 .exit_hw = exynos_adc_v1_exit_hw, 283 .clear_irq = exynos_adc_v1_clear_irq, 284 .start_conv = exynos_adc_v1_start_conv, 285 }; 286 287 static const struct exynos_adc_data exynos_adc_s5pv210_data = { 288 .num_channels = MAX_S5PV210_ADC_CHANNELS, 289 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */ 290 291 .init_hw = exynos_adc_v1_init_hw, 292 .exit_hw = exynos_adc_v1_exit_hw, 293 .clear_irq = exynos_adc_v1_clear_irq, 294 .start_conv = exynos_adc_v1_start_conv, 295 }; 296 297 static void exynos_adc_s3c2416_start_conv(struct exynos_adc *info, 298 unsigned long addr) 299 { 300 u32 con1; 301 302 /* Enable 12 bit ADC resolution */ 303 con1 = readl(ADC_V1_CON(info->regs)); 304 con1 |= ADC_S3C2416_CON_RES_SEL; 305 writel(con1, ADC_V1_CON(info->regs)); 306 307 /* Select channel for S3C2416 */ 308 writel(addr, ADC_S3C2410_MUX(info->regs)); 309 310 con1 = readl(ADC_V1_CON(info->regs)); 311 writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs)); 312 } 313 314 static struct exynos_adc_data const exynos_adc_s3c2416_data = { 315 .num_channels = MAX_ADC_V1_CHANNELS, 316 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */ 317 318 .init_hw = exynos_adc_v1_init_hw, 319 .exit_hw = exynos_adc_v1_exit_hw, 320 .start_conv = exynos_adc_s3c2416_start_conv, 321 }; 322 323 static void exynos_adc_s3c2443_start_conv(struct exynos_adc *info, 324 unsigned long addr) 325 { 326 u32 con1; 327 328 /* Select channel for S3C2433 */ 329 writel(addr, ADC_S3C2410_MUX(info->regs)); 330 331 con1 = readl(ADC_V1_CON(info->regs)); 332 writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs)); 333 } 334 335 static struct exynos_adc_data const exynos_adc_s3c2443_data = { 336 .num_channels = MAX_ADC_V1_CHANNELS, 337 .mask = ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */ 338 339 .init_hw = exynos_adc_v1_init_hw, 340 .exit_hw = exynos_adc_v1_exit_hw, 341 .start_conv = exynos_adc_s3c2443_start_conv, 342 }; 343 344 static void exynos_adc_s3c64xx_start_conv(struct exynos_adc *info, 345 unsigned long addr) 346 { 347 u32 con1; 348 349 con1 = readl(ADC_V1_CON(info->regs)); 350 con1 &= ~ADC_S3C2410_CON_SELMUX(0x7); 351 con1 |= ADC_S3C2410_CON_SELMUX(addr); 352 writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs)); 353 } 354 355 static struct exynos_adc_data const exynos_adc_s3c24xx_data = { 356 .num_channels = MAX_ADC_V1_CHANNELS, 357 .mask = ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */ 358 359 .init_hw = exynos_adc_v1_init_hw, 360 .exit_hw = exynos_adc_v1_exit_hw, 361 .start_conv = exynos_adc_s3c64xx_start_conv, 362 }; 363 364 static struct exynos_adc_data const exynos_adc_s3c64xx_data = { 365 .num_channels = MAX_ADC_V1_CHANNELS, 366 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */ 367 368 .init_hw = exynos_adc_v1_init_hw, 369 .exit_hw = exynos_adc_v1_exit_hw, 370 .clear_irq = exynos_adc_v1_clear_irq, 371 .start_conv = exynos_adc_s3c64xx_start_conv, 372 }; 373 374 static void exynos_adc_v2_init_hw(struct exynos_adc *info) 375 { 376 u32 con1, con2; 377 378 if (info->data->needs_adc_phy) 379 regmap_write(info->pmu_map, info->data->phy_offset, 1); 380 381 con1 = ADC_V2_CON1_SOFT_RESET; 382 writel(con1, ADC_V2_CON1(info->regs)); 383 384 con2 = ADC_V2_CON2_OSEL | ADC_V2_CON2_ESEL | 385 ADC_V2_CON2_HIGHF | ADC_V2_CON2_C_TIME(0); 386 writel(con2, ADC_V2_CON2(info->regs)); 387 388 /* Enable interrupts */ 389 writel(1, ADC_V2_INT_EN(info->regs)); 390 } 391 392 static void exynos_adc_v2_exit_hw(struct exynos_adc *info) 393 { 394 u32 con; 395 396 if (info->data->needs_adc_phy) 397 regmap_write(info->pmu_map, info->data->phy_offset, 0); 398 399 con = readl(ADC_V2_CON1(info->regs)); 400 con &= ~ADC_CON_EN_START; 401 writel(con, ADC_V2_CON1(info->regs)); 402 } 403 404 static void exynos_adc_v2_clear_irq(struct exynos_adc *info) 405 { 406 writel(1, ADC_V2_INT_ST(info->regs)); 407 } 408 409 static void exynos_adc_v2_start_conv(struct exynos_adc *info, 410 unsigned long addr) 411 { 412 u32 con1, con2; 413 414 con2 = readl(ADC_V2_CON2(info->regs)); 415 con2 &= ~ADC_V2_CON2_ACH_MASK; 416 con2 |= ADC_V2_CON2_ACH_SEL(addr); 417 writel(con2, ADC_V2_CON2(info->regs)); 418 419 con1 = readl(ADC_V2_CON1(info->regs)); 420 writel(con1 | ADC_CON_EN_START, ADC_V2_CON1(info->regs)); 421 } 422 423 static const struct exynos_adc_data exynos_adc_v2_data = { 424 .num_channels = MAX_ADC_V2_CHANNELS, 425 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */ 426 .needs_adc_phy = true, 427 .phy_offset = EXYNOS_ADCV2_PHY_OFFSET, 428 429 .init_hw = exynos_adc_v2_init_hw, 430 .exit_hw = exynos_adc_v2_exit_hw, 431 .clear_irq = exynos_adc_v2_clear_irq, 432 .start_conv = exynos_adc_v2_start_conv, 433 }; 434 435 static const struct exynos_adc_data exynos3250_adc_data = { 436 .num_channels = MAX_EXYNOS3250_ADC_CHANNELS, 437 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */ 438 .needs_sclk = true, 439 .needs_adc_phy = true, 440 .phy_offset = EXYNOS_ADCV1_PHY_OFFSET, 441 442 .init_hw = exynos_adc_v2_init_hw, 443 .exit_hw = exynos_adc_v2_exit_hw, 444 .clear_irq = exynos_adc_v2_clear_irq, 445 .start_conv = exynos_adc_v2_start_conv, 446 }; 447 448 static void exynos_adc_exynos7_init_hw(struct exynos_adc *info) 449 { 450 u32 con1, con2; 451 452 if (info->data->needs_adc_phy) 453 regmap_write(info->pmu_map, info->data->phy_offset, 1); 454 455 con1 = ADC_V2_CON1_SOFT_RESET; 456 writel(con1, ADC_V2_CON1(info->regs)); 457 458 con2 = readl(ADC_V2_CON2(info->regs)); 459 con2 &= ~ADC_V2_CON2_C_TIME(7); 460 con2 |= ADC_V2_CON2_C_TIME(0); 461 writel(con2, ADC_V2_CON2(info->regs)); 462 463 /* Enable interrupts */ 464 writel(1, ADC_V2_INT_EN(info->regs)); 465 } 466 467 static const struct exynos_adc_data exynos7_adc_data = { 468 .num_channels = MAX_ADC_V1_CHANNELS, 469 .mask = ADC_DATX_MASK, /* 12 bit ADC resolution */ 470 471 .init_hw = exynos_adc_exynos7_init_hw, 472 .exit_hw = exynos_adc_v2_exit_hw, 473 .clear_irq = exynos_adc_v2_clear_irq, 474 .start_conv = exynos_adc_v2_start_conv, 475 }; 476 477 static const struct of_device_id exynos_adc_match[] = { 478 { 479 .compatible = "samsung,s3c2410-adc", 480 .data = &exynos_adc_s3c24xx_data, 481 }, { 482 .compatible = "samsung,s3c2416-adc", 483 .data = &exynos_adc_s3c2416_data, 484 }, { 485 .compatible = "samsung,s3c2440-adc", 486 .data = &exynos_adc_s3c24xx_data, 487 }, { 488 .compatible = "samsung,s3c2443-adc", 489 .data = &exynos_adc_s3c2443_data, 490 }, { 491 .compatible = "samsung,s3c6410-adc", 492 .data = &exynos_adc_s3c64xx_data, 493 }, { 494 .compatible = "samsung,s5pv210-adc", 495 .data = &exynos_adc_s5pv210_data, 496 }, { 497 .compatible = "samsung,exynos4212-adc", 498 .data = &exynos4212_adc_data, 499 }, { 500 .compatible = "samsung,exynos-adc-v1", 501 .data = &exynos_adc_v1_data, 502 }, { 503 .compatible = "samsung,exynos-adc-v2", 504 .data = &exynos_adc_v2_data, 505 }, { 506 .compatible = "samsung,exynos3250-adc", 507 .data = &exynos3250_adc_data, 508 }, { 509 .compatible = "samsung,exynos7-adc", 510 .data = &exynos7_adc_data, 511 }, 512 {}, 513 }; 514 MODULE_DEVICE_TABLE(of, exynos_adc_match); 515 516 static struct exynos_adc_data *exynos_adc_get_data(struct platform_device *pdev) 517 { 518 const struct of_device_id *match; 519 520 match = of_match_node(exynos_adc_match, pdev->dev.of_node); 521 return (struct exynos_adc_data *)match->data; 522 } 523 524 static int exynos_read_raw(struct iio_dev *indio_dev, 525 struct iio_chan_spec const *chan, 526 int *val, 527 int *val2, 528 long mask) 529 { 530 struct exynos_adc *info = iio_priv(indio_dev); 531 unsigned long timeout; 532 int ret; 533 534 if (mask != IIO_CHAN_INFO_RAW) 535 return -EINVAL; 536 537 mutex_lock(&indio_dev->mlock); 538 reinit_completion(&info->completion); 539 540 /* Select the channel to be used and Trigger conversion */ 541 if (info->data->start_conv) 542 info->data->start_conv(info, chan->address); 543 544 timeout = wait_for_completion_timeout(&info->completion, 545 EXYNOS_ADC_TIMEOUT); 546 if (timeout == 0) { 547 dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n"); 548 if (info->data->init_hw) 549 info->data->init_hw(info); 550 ret = -ETIMEDOUT; 551 } else { 552 *val = info->value; 553 *val2 = 0; 554 ret = IIO_VAL_INT; 555 } 556 557 mutex_unlock(&indio_dev->mlock); 558 559 return ret; 560 } 561 562 static int exynos_read_s3c64xx_ts(struct iio_dev *indio_dev, int *x, int *y) 563 { 564 struct exynos_adc *info = iio_priv(indio_dev); 565 unsigned long timeout; 566 int ret; 567 568 mutex_lock(&indio_dev->mlock); 569 info->read_ts = true; 570 571 reinit_completion(&info->completion); 572 573 writel(ADC_S3C2410_TSC_PULL_UP_DISABLE | ADC_TSC_AUTOPST, 574 ADC_V1_TSC(info->regs)); 575 576 /* Select the ts channel to be used and Trigger conversion */ 577 info->data->start_conv(info, ADC_S3C2410_MUX_TS); 578 579 timeout = wait_for_completion_timeout(&info->completion, 580 EXYNOS_ADC_TIMEOUT); 581 if (timeout == 0) { 582 dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n"); 583 if (info->data->init_hw) 584 info->data->init_hw(info); 585 ret = -ETIMEDOUT; 586 } else { 587 *x = info->ts_x; 588 *y = info->ts_y; 589 ret = 0; 590 } 591 592 info->read_ts = false; 593 mutex_unlock(&indio_dev->mlock); 594 595 return ret; 596 } 597 598 static irqreturn_t exynos_adc_isr(int irq, void *dev_id) 599 { 600 struct exynos_adc *info = dev_id; 601 u32 mask = info->data->mask; 602 603 /* Read value */ 604 if (info->read_ts) { 605 info->ts_x = readl(ADC_V1_DATX(info->regs)); 606 info->ts_y = readl(ADC_V1_DATY(info->regs)); 607 writel(ADC_TSC_WAIT4INT | ADC_S3C2443_TSC_UD_SEN, ADC_V1_TSC(info->regs)); 608 } else { 609 info->value = readl(ADC_V1_DATX(info->regs)) & mask; 610 } 611 612 /* clear irq */ 613 if (info->data->clear_irq) 614 info->data->clear_irq(info); 615 616 complete(&info->completion); 617 618 return IRQ_HANDLED; 619 } 620 621 /* 622 * Here we (ab)use a threaded interrupt handler to stay running 623 * for as long as the touchscreen remains pressed, we report 624 * a new event with the latest data and then sleep until the 625 * next timer tick. This mirrors the behavior of the old 626 * driver, with much less code. 627 */ 628 static irqreturn_t exynos_ts_isr(int irq, void *dev_id) 629 { 630 struct exynos_adc *info = dev_id; 631 struct iio_dev *dev = dev_get_drvdata(info->dev); 632 u32 x, y; 633 bool pressed; 634 int ret; 635 636 while (info->input->users) { 637 ret = exynos_read_s3c64xx_ts(dev, &x, &y); 638 if (ret == -ETIMEDOUT) 639 break; 640 641 pressed = x & y & ADC_DATX_PRESSED; 642 if (!pressed) { 643 input_report_key(info->input, BTN_TOUCH, 0); 644 input_sync(info->input); 645 break; 646 } 647 648 input_report_abs(info->input, ABS_X, x & ADC_DATX_MASK); 649 input_report_abs(info->input, ABS_Y, y & ADC_DATY_MASK); 650 input_report_key(info->input, BTN_TOUCH, 1); 651 input_sync(info->input); 652 653 usleep_range(1000, 1100); 654 } 655 656 writel(0, ADC_V1_CLRINTPNDNUP(info->regs)); 657 658 return IRQ_HANDLED; 659 } 660 661 static int exynos_adc_reg_access(struct iio_dev *indio_dev, 662 unsigned reg, unsigned writeval, 663 unsigned *readval) 664 { 665 struct exynos_adc *info = iio_priv(indio_dev); 666 667 if (readval == NULL) 668 return -EINVAL; 669 670 *readval = readl(info->regs + reg); 671 672 return 0; 673 } 674 675 static const struct iio_info exynos_adc_iio_info = { 676 .read_raw = &exynos_read_raw, 677 .debugfs_reg_access = &exynos_adc_reg_access, 678 }; 679 680 #define ADC_CHANNEL(_index, _id) { \ 681 .type = IIO_VOLTAGE, \ 682 .indexed = 1, \ 683 .channel = _index, \ 684 .address = _index, \ 685 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 686 .datasheet_name = _id, \ 687 } 688 689 static const struct iio_chan_spec exynos_adc_iio_channels[] = { 690 ADC_CHANNEL(0, "adc0"), 691 ADC_CHANNEL(1, "adc1"), 692 ADC_CHANNEL(2, "adc2"), 693 ADC_CHANNEL(3, "adc3"), 694 ADC_CHANNEL(4, "adc4"), 695 ADC_CHANNEL(5, "adc5"), 696 ADC_CHANNEL(6, "adc6"), 697 ADC_CHANNEL(7, "adc7"), 698 ADC_CHANNEL(8, "adc8"), 699 ADC_CHANNEL(9, "adc9"), 700 }; 701 702 static int exynos_adc_remove_devices(struct device *dev, void *c) 703 { 704 struct platform_device *pdev = to_platform_device(dev); 705 706 platform_device_unregister(pdev); 707 708 return 0; 709 } 710 711 static int exynos_adc_ts_open(struct input_dev *dev) 712 { 713 struct exynos_adc *info = input_get_drvdata(dev); 714 715 enable_irq(info->tsirq); 716 717 return 0; 718 } 719 720 static void exynos_adc_ts_close(struct input_dev *dev) 721 { 722 struct exynos_adc *info = input_get_drvdata(dev); 723 724 disable_irq(info->tsirq); 725 } 726 727 static int exynos_adc_ts_init(struct exynos_adc *info) 728 { 729 int ret; 730 731 if (info->tsirq <= 0) 732 return -ENODEV; 733 734 info->input = input_allocate_device(); 735 if (!info->input) 736 return -ENOMEM; 737 738 info->input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS); 739 info->input->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH); 740 741 input_set_abs_params(info->input, ABS_X, 0, 0x3FF, 0, 0); 742 input_set_abs_params(info->input, ABS_Y, 0, 0x3FF, 0, 0); 743 744 info->input->name = "S3C24xx TouchScreen"; 745 info->input->id.bustype = BUS_HOST; 746 info->input->open = exynos_adc_ts_open; 747 info->input->close = exynos_adc_ts_close; 748 749 input_set_drvdata(info->input, info); 750 751 ret = input_register_device(info->input); 752 if (ret) { 753 input_free_device(info->input); 754 return ret; 755 } 756 757 disable_irq(info->tsirq); 758 ret = request_threaded_irq(info->tsirq, NULL, exynos_ts_isr, 759 IRQF_ONESHOT, "touchscreen", info); 760 if (ret) 761 input_unregister_device(info->input); 762 763 return ret; 764 } 765 766 static int exynos_adc_probe(struct platform_device *pdev) 767 { 768 struct exynos_adc *info = NULL; 769 struct device_node *np = pdev->dev.of_node; 770 struct s3c2410_ts_mach_info *pdata = dev_get_platdata(&pdev->dev); 771 struct iio_dev *indio_dev = NULL; 772 bool has_ts = false; 773 int ret = -ENODEV; 774 int irq; 775 776 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(struct exynos_adc)); 777 if (!indio_dev) { 778 dev_err(&pdev->dev, "failed allocating iio device\n"); 779 return -ENOMEM; 780 } 781 782 info = iio_priv(indio_dev); 783 784 info->data = exynos_adc_get_data(pdev); 785 if (!info->data) { 786 dev_err(&pdev->dev, "failed getting exynos_adc_data\n"); 787 return -EINVAL; 788 } 789 790 info->regs = devm_platform_ioremap_resource(pdev, 0); 791 if (IS_ERR(info->regs)) 792 return PTR_ERR(info->regs); 793 794 795 if (info->data->needs_adc_phy) { 796 info->pmu_map = syscon_regmap_lookup_by_phandle( 797 pdev->dev.of_node, 798 "samsung,syscon-phandle"); 799 if (IS_ERR(info->pmu_map)) { 800 dev_err(&pdev->dev, "syscon regmap lookup failed.\n"); 801 return PTR_ERR(info->pmu_map); 802 } 803 } 804 805 irq = platform_get_irq(pdev, 0); 806 if (irq < 0) 807 return irq; 808 info->irq = irq; 809 810 irq = platform_get_irq(pdev, 1); 811 if (irq == -EPROBE_DEFER) 812 return irq; 813 814 info->tsirq = irq; 815 816 info->dev = &pdev->dev; 817 818 init_completion(&info->completion); 819 820 info->clk = devm_clk_get(&pdev->dev, "adc"); 821 if (IS_ERR(info->clk)) { 822 dev_err(&pdev->dev, "failed getting clock, err = %ld\n", 823 PTR_ERR(info->clk)); 824 return PTR_ERR(info->clk); 825 } 826 827 if (info->data->needs_sclk) { 828 info->sclk = devm_clk_get(&pdev->dev, "sclk"); 829 if (IS_ERR(info->sclk)) { 830 dev_err(&pdev->dev, 831 "failed getting sclk clock, err = %ld\n", 832 PTR_ERR(info->sclk)); 833 return PTR_ERR(info->sclk); 834 } 835 } 836 837 info->vdd = devm_regulator_get(&pdev->dev, "vdd"); 838 if (IS_ERR(info->vdd)) { 839 if (PTR_ERR(info->vdd) != -EPROBE_DEFER) 840 dev_err(&pdev->dev, 841 "failed getting regulator, err = %ld\n", 842 PTR_ERR(info->vdd)); 843 return PTR_ERR(info->vdd); 844 } 845 846 ret = regulator_enable(info->vdd); 847 if (ret) 848 return ret; 849 850 ret = exynos_adc_prepare_clk(info); 851 if (ret) 852 goto err_disable_reg; 853 854 ret = exynos_adc_enable_clk(info); 855 if (ret) 856 goto err_unprepare_clk; 857 858 platform_set_drvdata(pdev, indio_dev); 859 860 indio_dev->name = dev_name(&pdev->dev); 861 indio_dev->dev.parent = &pdev->dev; 862 indio_dev->dev.of_node = pdev->dev.of_node; 863 indio_dev->info = &exynos_adc_iio_info; 864 indio_dev->modes = INDIO_DIRECT_MODE; 865 indio_dev->channels = exynos_adc_iio_channels; 866 indio_dev->num_channels = info->data->num_channels; 867 868 ret = request_irq(info->irq, exynos_adc_isr, 869 0, dev_name(&pdev->dev), info); 870 if (ret < 0) { 871 dev_err(&pdev->dev, "failed requesting irq, irq = %d\n", 872 info->irq); 873 goto err_disable_clk; 874 } 875 876 ret = iio_device_register(indio_dev); 877 if (ret) 878 goto err_irq; 879 880 if (info->data->init_hw) 881 info->data->init_hw(info); 882 883 /* leave out any TS related code if unreachable */ 884 if (IS_REACHABLE(CONFIG_INPUT)) { 885 has_ts = of_property_read_bool(pdev->dev.of_node, 886 "has-touchscreen") || pdata; 887 } 888 889 if (pdata) 890 info->delay = pdata->delay; 891 else 892 info->delay = 10000; 893 894 if (has_ts) 895 ret = exynos_adc_ts_init(info); 896 if (ret) 897 goto err_iio; 898 899 ret = of_platform_populate(np, exynos_adc_match, NULL, &indio_dev->dev); 900 if (ret < 0) { 901 dev_err(&pdev->dev, "failed adding child nodes\n"); 902 goto err_of_populate; 903 } 904 905 return 0; 906 907 err_of_populate: 908 device_for_each_child(&indio_dev->dev, NULL, 909 exynos_adc_remove_devices); 910 if (has_ts) { 911 input_unregister_device(info->input); 912 free_irq(info->tsirq, info); 913 } 914 err_iio: 915 iio_device_unregister(indio_dev); 916 err_irq: 917 free_irq(info->irq, info); 918 err_disable_clk: 919 if (info->data->exit_hw) 920 info->data->exit_hw(info); 921 exynos_adc_disable_clk(info); 922 err_unprepare_clk: 923 exynos_adc_unprepare_clk(info); 924 err_disable_reg: 925 regulator_disable(info->vdd); 926 return ret; 927 } 928 929 static int exynos_adc_remove(struct platform_device *pdev) 930 { 931 struct iio_dev *indio_dev = platform_get_drvdata(pdev); 932 struct exynos_adc *info = iio_priv(indio_dev); 933 934 if (IS_REACHABLE(CONFIG_INPUT) && info->input) { 935 free_irq(info->tsirq, info); 936 input_unregister_device(info->input); 937 } 938 device_for_each_child(&indio_dev->dev, NULL, 939 exynos_adc_remove_devices); 940 iio_device_unregister(indio_dev); 941 free_irq(info->irq, info); 942 if (info->data->exit_hw) 943 info->data->exit_hw(info); 944 exynos_adc_disable_clk(info); 945 exynos_adc_unprepare_clk(info); 946 regulator_disable(info->vdd); 947 948 return 0; 949 } 950 951 #ifdef CONFIG_PM_SLEEP 952 static int exynos_adc_suspend(struct device *dev) 953 { 954 struct iio_dev *indio_dev = dev_get_drvdata(dev); 955 struct exynos_adc *info = iio_priv(indio_dev); 956 957 if (info->data->exit_hw) 958 info->data->exit_hw(info); 959 exynos_adc_disable_clk(info); 960 regulator_disable(info->vdd); 961 962 return 0; 963 } 964 965 static int exynos_adc_resume(struct device *dev) 966 { 967 struct iio_dev *indio_dev = dev_get_drvdata(dev); 968 struct exynos_adc *info = iio_priv(indio_dev); 969 int ret; 970 971 ret = regulator_enable(info->vdd); 972 if (ret) 973 return ret; 974 975 ret = exynos_adc_enable_clk(info); 976 if (ret) 977 return ret; 978 979 if (info->data->init_hw) 980 info->data->init_hw(info); 981 982 return 0; 983 } 984 #endif 985 986 static SIMPLE_DEV_PM_OPS(exynos_adc_pm_ops, 987 exynos_adc_suspend, 988 exynos_adc_resume); 989 990 static struct platform_driver exynos_adc_driver = { 991 .probe = exynos_adc_probe, 992 .remove = exynos_adc_remove, 993 .driver = { 994 .name = "exynos-adc", 995 .of_match_table = exynos_adc_match, 996 .pm = &exynos_adc_pm_ops, 997 }, 998 }; 999 1000 module_platform_driver(exynos_adc_driver); 1001 1002 MODULE_AUTHOR("Naveen Krishna Chatradhi <ch.naveen@samsung.com>"); 1003 MODULE_DESCRIPTION("Samsung EXYNOS5 ADC driver"); 1004 MODULE_LICENSE("GPL v2"); 1005