xref: /openbmc/linux/drivers/iio/adc/exynos_adc.c (revision 9a8f3203)
1 /*
2  *  exynos_adc.c - Support for ADC in EXYNOS SoCs
3  *
4  *  8 ~ 10 channel, 10/12-bit ADC
5  *
6  *  Copyright (C) 2013 Naveen Krishna Chatradhi <ch.naveen@samsung.com>
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/errno.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/io.h>
31 #include <linux/clk.h>
32 #include <linux/completion.h>
33 #include <linux/of.h>
34 #include <linux/of_irq.h>
35 #include <linux/regulator/consumer.h>
36 #include <linux/of_platform.h>
37 #include <linux/err.h>
38 #include <linux/input.h>
39 
40 #include <linux/iio/iio.h>
41 #include <linux/iio/machine.h>
42 #include <linux/iio/driver.h>
43 #include <linux/mfd/syscon.h>
44 #include <linux/regmap.h>
45 
46 #include <linux/platform_data/touchscreen-s3c2410.h>
47 
48 /* S3C/EXYNOS4412/5250 ADC_V1 registers definitions */
49 #define ADC_V1_CON(x)		((x) + 0x00)
50 #define ADC_V1_TSC(x)		((x) + 0x04)
51 #define ADC_V1_DLY(x)		((x) + 0x08)
52 #define ADC_V1_DATX(x)		((x) + 0x0C)
53 #define ADC_V1_DATY(x)		((x) + 0x10)
54 #define ADC_V1_UPDN(x)		((x) + 0x14)
55 #define ADC_V1_INTCLR(x)	((x) + 0x18)
56 #define ADC_V1_MUX(x)		((x) + 0x1c)
57 #define ADC_V1_CLRINTPNDNUP(x)	((x) + 0x20)
58 
59 /* S3C2410 ADC registers definitions */
60 #define ADC_S3C2410_MUX(x)	((x) + 0x18)
61 
62 /* Future ADC_V2 registers definitions */
63 #define ADC_V2_CON1(x)		((x) + 0x00)
64 #define ADC_V2_CON2(x)		((x) + 0x04)
65 #define ADC_V2_STAT(x)		((x) + 0x08)
66 #define ADC_V2_INT_EN(x)	((x) + 0x10)
67 #define ADC_V2_INT_ST(x)	((x) + 0x14)
68 #define ADC_V2_VER(x)		((x) + 0x20)
69 
70 /* Bit definitions for ADC_V1 */
71 #define ADC_V1_CON_RES		(1u << 16)
72 #define ADC_V1_CON_PRSCEN	(1u << 14)
73 #define ADC_V1_CON_PRSCLV(x)	(((x) & 0xFF) << 6)
74 #define ADC_V1_CON_STANDBY	(1u << 2)
75 
76 /* Bit definitions for S3C2410 ADC */
77 #define ADC_S3C2410_CON_SELMUX(x) (((x) & 7) << 3)
78 #define ADC_S3C2410_DATX_MASK	0x3FF
79 #define ADC_S3C2416_CON_RES_SEL	(1u << 3)
80 
81 /* touch screen always uses channel 0 */
82 #define ADC_S3C2410_MUX_TS	0
83 
84 /* ADCTSC Register Bits */
85 #define ADC_S3C2443_TSC_UD_SEN		(1u << 8)
86 #define ADC_S3C2410_TSC_YM_SEN		(1u << 7)
87 #define ADC_S3C2410_TSC_YP_SEN		(1u << 6)
88 #define ADC_S3C2410_TSC_XM_SEN		(1u << 5)
89 #define ADC_S3C2410_TSC_XP_SEN		(1u << 4)
90 #define ADC_S3C2410_TSC_PULL_UP_DISABLE	(1u << 3)
91 #define ADC_S3C2410_TSC_AUTO_PST	(1u << 2)
92 #define ADC_S3C2410_TSC_XY_PST(x)	(((x) & 0x3) << 0)
93 
94 #define ADC_TSC_WAIT4INT (ADC_S3C2410_TSC_YM_SEN | \
95 			 ADC_S3C2410_TSC_YP_SEN | \
96 			 ADC_S3C2410_TSC_XP_SEN | \
97 			 ADC_S3C2410_TSC_XY_PST(3))
98 
99 #define ADC_TSC_AUTOPST	(ADC_S3C2410_TSC_YM_SEN | \
100 			 ADC_S3C2410_TSC_YP_SEN | \
101 			 ADC_S3C2410_TSC_XP_SEN | \
102 			 ADC_S3C2410_TSC_AUTO_PST | \
103 			 ADC_S3C2410_TSC_XY_PST(0))
104 
105 /* Bit definitions for ADC_V2 */
106 #define ADC_V2_CON1_SOFT_RESET	(1u << 2)
107 
108 #define ADC_V2_CON2_OSEL	(1u << 10)
109 #define ADC_V2_CON2_ESEL	(1u << 9)
110 #define ADC_V2_CON2_HIGHF	(1u << 8)
111 #define ADC_V2_CON2_C_TIME(x)	(((x) & 7) << 4)
112 #define ADC_V2_CON2_ACH_SEL(x)	(((x) & 0xF) << 0)
113 #define ADC_V2_CON2_ACH_MASK	0xF
114 
115 #define MAX_ADC_V2_CHANNELS		10
116 #define MAX_ADC_V1_CHANNELS		8
117 #define MAX_EXYNOS3250_ADC_CHANNELS	2
118 #define MAX_EXYNOS4212_ADC_CHANNELS	4
119 #define MAX_S5PV210_ADC_CHANNELS	10
120 
121 /* Bit definitions common for ADC_V1 and ADC_V2 */
122 #define ADC_CON_EN_START	(1u << 0)
123 #define ADC_CON_EN_START_MASK	(0x3 << 0)
124 #define ADC_DATX_PRESSED	(1u << 15)
125 #define ADC_DATX_MASK		0xFFF
126 #define ADC_DATY_MASK		0xFFF
127 
128 #define EXYNOS_ADC_TIMEOUT	(msecs_to_jiffies(100))
129 
130 #define EXYNOS_ADCV1_PHY_OFFSET	0x0718
131 #define EXYNOS_ADCV2_PHY_OFFSET	0x0720
132 
133 struct exynos_adc {
134 	struct exynos_adc_data	*data;
135 	struct device		*dev;
136 	struct input_dev	*input;
137 	void __iomem		*regs;
138 	struct regmap		*pmu_map;
139 	struct clk		*clk;
140 	struct clk		*sclk;
141 	unsigned int		irq;
142 	unsigned int		tsirq;
143 	unsigned int		delay;
144 	struct regulator	*vdd;
145 
146 	struct completion	completion;
147 
148 	u32			value;
149 	unsigned int            version;
150 
151 	bool			read_ts;
152 	u32			ts_x;
153 	u32			ts_y;
154 };
155 
156 struct exynos_adc_data {
157 	int num_channels;
158 	bool needs_sclk;
159 	bool needs_adc_phy;
160 	int phy_offset;
161 	u32 mask;
162 
163 	void (*init_hw)(struct exynos_adc *info);
164 	void (*exit_hw)(struct exynos_adc *info);
165 	void (*clear_irq)(struct exynos_adc *info);
166 	void (*start_conv)(struct exynos_adc *info, unsigned long addr);
167 };
168 
169 static void exynos_adc_unprepare_clk(struct exynos_adc *info)
170 {
171 	if (info->data->needs_sclk)
172 		clk_unprepare(info->sclk);
173 	clk_unprepare(info->clk);
174 }
175 
176 static int exynos_adc_prepare_clk(struct exynos_adc *info)
177 {
178 	int ret;
179 
180 	ret = clk_prepare(info->clk);
181 	if (ret) {
182 		dev_err(info->dev, "failed preparing adc clock: %d\n", ret);
183 		return ret;
184 	}
185 
186 	if (info->data->needs_sclk) {
187 		ret = clk_prepare(info->sclk);
188 		if (ret) {
189 			clk_unprepare(info->clk);
190 			dev_err(info->dev,
191 				"failed preparing sclk_adc clock: %d\n", ret);
192 			return ret;
193 		}
194 	}
195 
196 	return 0;
197 }
198 
199 static void exynos_adc_disable_clk(struct exynos_adc *info)
200 {
201 	if (info->data->needs_sclk)
202 		clk_disable(info->sclk);
203 	clk_disable(info->clk);
204 }
205 
206 static int exynos_adc_enable_clk(struct exynos_adc *info)
207 {
208 	int ret;
209 
210 	ret = clk_enable(info->clk);
211 	if (ret) {
212 		dev_err(info->dev, "failed enabling adc clock: %d\n", ret);
213 		return ret;
214 	}
215 
216 	if (info->data->needs_sclk) {
217 		ret = clk_enable(info->sclk);
218 		if (ret) {
219 			clk_disable(info->clk);
220 			dev_err(info->dev,
221 				"failed enabling sclk_adc clock: %d\n", ret);
222 			return ret;
223 		}
224 	}
225 
226 	return 0;
227 }
228 
229 static void exynos_adc_v1_init_hw(struct exynos_adc *info)
230 {
231 	u32 con1;
232 
233 	if (info->data->needs_adc_phy)
234 		regmap_write(info->pmu_map, info->data->phy_offset, 1);
235 
236 	/* set default prescaler values and Enable prescaler */
237 	con1 =  ADC_V1_CON_PRSCLV(49) | ADC_V1_CON_PRSCEN;
238 
239 	/* Enable 12-bit ADC resolution */
240 	con1 |= ADC_V1_CON_RES;
241 	writel(con1, ADC_V1_CON(info->regs));
242 
243 	/* set touchscreen delay */
244 	writel(info->delay, ADC_V1_DLY(info->regs));
245 }
246 
247 static void exynos_adc_v1_exit_hw(struct exynos_adc *info)
248 {
249 	u32 con;
250 
251 	if (info->data->needs_adc_phy)
252 		regmap_write(info->pmu_map, info->data->phy_offset, 0);
253 
254 	con = readl(ADC_V1_CON(info->regs));
255 	con |= ADC_V1_CON_STANDBY;
256 	writel(con, ADC_V1_CON(info->regs));
257 }
258 
259 static void exynos_adc_v1_clear_irq(struct exynos_adc *info)
260 {
261 	writel(1, ADC_V1_INTCLR(info->regs));
262 }
263 
264 static void exynos_adc_v1_start_conv(struct exynos_adc *info,
265 				     unsigned long addr)
266 {
267 	u32 con1;
268 
269 	writel(addr, ADC_V1_MUX(info->regs));
270 
271 	con1 = readl(ADC_V1_CON(info->regs));
272 	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
273 }
274 
275 /* Exynos4212 and 4412 is like ADCv1 but with four channels only */
276 static const struct exynos_adc_data exynos4212_adc_data = {
277 	.num_channels	= MAX_EXYNOS4212_ADC_CHANNELS,
278 	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
279 	.needs_adc_phy	= true,
280 	.phy_offset	= EXYNOS_ADCV1_PHY_OFFSET,
281 
282 	.init_hw	= exynos_adc_v1_init_hw,
283 	.exit_hw	= exynos_adc_v1_exit_hw,
284 	.clear_irq	= exynos_adc_v1_clear_irq,
285 	.start_conv	= exynos_adc_v1_start_conv,
286 };
287 
288 static const struct exynos_adc_data exynos_adc_v1_data = {
289 	.num_channels	= MAX_ADC_V1_CHANNELS,
290 	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
291 	.needs_adc_phy	= true,
292 	.phy_offset	= EXYNOS_ADCV1_PHY_OFFSET,
293 
294 	.init_hw	= exynos_adc_v1_init_hw,
295 	.exit_hw	= exynos_adc_v1_exit_hw,
296 	.clear_irq	= exynos_adc_v1_clear_irq,
297 	.start_conv	= exynos_adc_v1_start_conv,
298 };
299 
300 static const struct exynos_adc_data exynos_adc_s5pv210_data = {
301 	.num_channels	= MAX_S5PV210_ADC_CHANNELS,
302 	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
303 
304 	.init_hw	= exynos_adc_v1_init_hw,
305 	.exit_hw	= exynos_adc_v1_exit_hw,
306 	.clear_irq	= exynos_adc_v1_clear_irq,
307 	.start_conv	= exynos_adc_v1_start_conv,
308 };
309 
310 static void exynos_adc_s3c2416_start_conv(struct exynos_adc *info,
311 					  unsigned long addr)
312 {
313 	u32 con1;
314 
315 	/* Enable 12 bit ADC resolution */
316 	con1 = readl(ADC_V1_CON(info->regs));
317 	con1 |= ADC_S3C2416_CON_RES_SEL;
318 	writel(con1, ADC_V1_CON(info->regs));
319 
320 	/* Select channel for S3C2416 */
321 	writel(addr, ADC_S3C2410_MUX(info->regs));
322 
323 	con1 = readl(ADC_V1_CON(info->regs));
324 	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
325 }
326 
327 static struct exynos_adc_data const exynos_adc_s3c2416_data = {
328 	.num_channels	= MAX_ADC_V1_CHANNELS,
329 	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
330 
331 	.init_hw	= exynos_adc_v1_init_hw,
332 	.exit_hw	= exynos_adc_v1_exit_hw,
333 	.start_conv	= exynos_adc_s3c2416_start_conv,
334 };
335 
336 static void exynos_adc_s3c2443_start_conv(struct exynos_adc *info,
337 					  unsigned long addr)
338 {
339 	u32 con1;
340 
341 	/* Select channel for S3C2433 */
342 	writel(addr, ADC_S3C2410_MUX(info->regs));
343 
344 	con1 = readl(ADC_V1_CON(info->regs));
345 	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
346 }
347 
348 static struct exynos_adc_data const exynos_adc_s3c2443_data = {
349 	.num_channels	= MAX_ADC_V1_CHANNELS,
350 	.mask		= ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
351 
352 	.init_hw	= exynos_adc_v1_init_hw,
353 	.exit_hw	= exynos_adc_v1_exit_hw,
354 	.start_conv	= exynos_adc_s3c2443_start_conv,
355 };
356 
357 static void exynos_adc_s3c64xx_start_conv(struct exynos_adc *info,
358 					  unsigned long addr)
359 {
360 	u32 con1;
361 
362 	con1 = readl(ADC_V1_CON(info->regs));
363 	con1 &= ~ADC_S3C2410_CON_SELMUX(0x7);
364 	con1 |= ADC_S3C2410_CON_SELMUX(addr);
365 	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
366 }
367 
368 static struct exynos_adc_data const exynos_adc_s3c24xx_data = {
369 	.num_channels	= MAX_ADC_V1_CHANNELS,
370 	.mask		= ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
371 
372 	.init_hw	= exynos_adc_v1_init_hw,
373 	.exit_hw	= exynos_adc_v1_exit_hw,
374 	.start_conv	= exynos_adc_s3c64xx_start_conv,
375 };
376 
377 static struct exynos_adc_data const exynos_adc_s3c64xx_data = {
378 	.num_channels	= MAX_ADC_V1_CHANNELS,
379 	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
380 
381 	.init_hw	= exynos_adc_v1_init_hw,
382 	.exit_hw	= exynos_adc_v1_exit_hw,
383 	.clear_irq	= exynos_adc_v1_clear_irq,
384 	.start_conv	= exynos_adc_s3c64xx_start_conv,
385 };
386 
387 static void exynos_adc_v2_init_hw(struct exynos_adc *info)
388 {
389 	u32 con1, con2;
390 
391 	if (info->data->needs_adc_phy)
392 		regmap_write(info->pmu_map, info->data->phy_offset, 1);
393 
394 	con1 = ADC_V2_CON1_SOFT_RESET;
395 	writel(con1, ADC_V2_CON1(info->regs));
396 
397 	con2 = ADC_V2_CON2_OSEL | ADC_V2_CON2_ESEL |
398 		ADC_V2_CON2_HIGHF | ADC_V2_CON2_C_TIME(0);
399 	writel(con2, ADC_V2_CON2(info->regs));
400 
401 	/* Enable interrupts */
402 	writel(1, ADC_V2_INT_EN(info->regs));
403 }
404 
405 static void exynos_adc_v2_exit_hw(struct exynos_adc *info)
406 {
407 	u32 con;
408 
409 	if (info->data->needs_adc_phy)
410 		regmap_write(info->pmu_map, info->data->phy_offset, 0);
411 
412 	con = readl(ADC_V2_CON1(info->regs));
413 	con &= ~ADC_CON_EN_START;
414 	writel(con, ADC_V2_CON1(info->regs));
415 }
416 
417 static void exynos_adc_v2_clear_irq(struct exynos_adc *info)
418 {
419 	writel(1, ADC_V2_INT_ST(info->regs));
420 }
421 
422 static void exynos_adc_v2_start_conv(struct exynos_adc *info,
423 				     unsigned long addr)
424 {
425 	u32 con1, con2;
426 
427 	con2 = readl(ADC_V2_CON2(info->regs));
428 	con2 &= ~ADC_V2_CON2_ACH_MASK;
429 	con2 |= ADC_V2_CON2_ACH_SEL(addr);
430 	writel(con2, ADC_V2_CON2(info->regs));
431 
432 	con1 = readl(ADC_V2_CON1(info->regs));
433 	writel(con1 | ADC_CON_EN_START, ADC_V2_CON1(info->regs));
434 }
435 
436 static const struct exynos_adc_data exynos_adc_v2_data = {
437 	.num_channels	= MAX_ADC_V2_CHANNELS,
438 	.mask		= ADC_DATX_MASK, /* 12 bit ADC resolution */
439 	.needs_adc_phy	= true,
440 	.phy_offset	= EXYNOS_ADCV2_PHY_OFFSET,
441 
442 	.init_hw	= exynos_adc_v2_init_hw,
443 	.exit_hw	= exynos_adc_v2_exit_hw,
444 	.clear_irq	= exynos_adc_v2_clear_irq,
445 	.start_conv	= exynos_adc_v2_start_conv,
446 };
447 
448 static const struct exynos_adc_data exynos3250_adc_data = {
449 	.num_channels	= MAX_EXYNOS3250_ADC_CHANNELS,
450 	.mask		= ADC_DATX_MASK, /* 12 bit ADC resolution */
451 	.needs_sclk	= true,
452 	.needs_adc_phy	= true,
453 	.phy_offset	= EXYNOS_ADCV1_PHY_OFFSET,
454 
455 	.init_hw	= exynos_adc_v2_init_hw,
456 	.exit_hw	= exynos_adc_v2_exit_hw,
457 	.clear_irq	= exynos_adc_v2_clear_irq,
458 	.start_conv	= exynos_adc_v2_start_conv,
459 };
460 
461 static void exynos_adc_exynos7_init_hw(struct exynos_adc *info)
462 {
463 	u32 con1, con2;
464 
465 	if (info->data->needs_adc_phy)
466 		regmap_write(info->pmu_map, info->data->phy_offset, 1);
467 
468 	con1 = ADC_V2_CON1_SOFT_RESET;
469 	writel(con1, ADC_V2_CON1(info->regs));
470 
471 	con2 = readl(ADC_V2_CON2(info->regs));
472 	con2 &= ~ADC_V2_CON2_C_TIME(7);
473 	con2 |= ADC_V2_CON2_C_TIME(0);
474 	writel(con2, ADC_V2_CON2(info->regs));
475 
476 	/* Enable interrupts */
477 	writel(1, ADC_V2_INT_EN(info->regs));
478 }
479 
480 static const struct exynos_adc_data exynos7_adc_data = {
481 	.num_channels	= MAX_ADC_V1_CHANNELS,
482 	.mask		= ADC_DATX_MASK, /* 12 bit ADC resolution */
483 
484 	.init_hw	= exynos_adc_exynos7_init_hw,
485 	.exit_hw	= exynos_adc_v2_exit_hw,
486 	.clear_irq	= exynos_adc_v2_clear_irq,
487 	.start_conv	= exynos_adc_v2_start_conv,
488 };
489 
490 static const struct of_device_id exynos_adc_match[] = {
491 	{
492 		.compatible = "samsung,s3c2410-adc",
493 		.data = &exynos_adc_s3c24xx_data,
494 	}, {
495 		.compatible = "samsung,s3c2416-adc",
496 		.data = &exynos_adc_s3c2416_data,
497 	}, {
498 		.compatible = "samsung,s3c2440-adc",
499 		.data = &exynos_adc_s3c24xx_data,
500 	}, {
501 		.compatible = "samsung,s3c2443-adc",
502 		.data = &exynos_adc_s3c2443_data,
503 	}, {
504 		.compatible = "samsung,s3c6410-adc",
505 		.data = &exynos_adc_s3c64xx_data,
506 	}, {
507 		.compatible = "samsung,s5pv210-adc",
508 		.data = &exynos_adc_s5pv210_data,
509 	}, {
510 		.compatible = "samsung,exynos4212-adc",
511 		.data = &exynos4212_adc_data,
512 	}, {
513 		.compatible = "samsung,exynos-adc-v1",
514 		.data = &exynos_adc_v1_data,
515 	}, {
516 		.compatible = "samsung,exynos-adc-v2",
517 		.data = &exynos_adc_v2_data,
518 	}, {
519 		.compatible = "samsung,exynos3250-adc",
520 		.data = &exynos3250_adc_data,
521 	}, {
522 		.compatible = "samsung,exynos7-adc",
523 		.data = &exynos7_adc_data,
524 	},
525 	{},
526 };
527 MODULE_DEVICE_TABLE(of, exynos_adc_match);
528 
529 static struct exynos_adc_data *exynos_adc_get_data(struct platform_device *pdev)
530 {
531 	const struct of_device_id *match;
532 
533 	match = of_match_node(exynos_adc_match, pdev->dev.of_node);
534 	return (struct exynos_adc_data *)match->data;
535 }
536 
537 static int exynos_read_raw(struct iio_dev *indio_dev,
538 				struct iio_chan_spec const *chan,
539 				int *val,
540 				int *val2,
541 				long mask)
542 {
543 	struct exynos_adc *info = iio_priv(indio_dev);
544 	unsigned long timeout;
545 	int ret;
546 
547 	if (mask != IIO_CHAN_INFO_RAW)
548 		return -EINVAL;
549 
550 	mutex_lock(&indio_dev->mlock);
551 	reinit_completion(&info->completion);
552 
553 	/* Select the channel to be used and Trigger conversion */
554 	if (info->data->start_conv)
555 		info->data->start_conv(info, chan->address);
556 
557 	timeout = wait_for_completion_timeout(&info->completion,
558 					      EXYNOS_ADC_TIMEOUT);
559 	if (timeout == 0) {
560 		dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
561 		if (info->data->init_hw)
562 			info->data->init_hw(info);
563 		ret = -ETIMEDOUT;
564 	} else {
565 		*val = info->value;
566 		*val2 = 0;
567 		ret = IIO_VAL_INT;
568 	}
569 
570 	mutex_unlock(&indio_dev->mlock);
571 
572 	return ret;
573 }
574 
575 static int exynos_read_s3c64xx_ts(struct iio_dev *indio_dev, int *x, int *y)
576 {
577 	struct exynos_adc *info = iio_priv(indio_dev);
578 	unsigned long timeout;
579 	int ret;
580 
581 	mutex_lock(&indio_dev->mlock);
582 	info->read_ts = true;
583 
584 	reinit_completion(&info->completion);
585 
586 	writel(ADC_S3C2410_TSC_PULL_UP_DISABLE | ADC_TSC_AUTOPST,
587 	       ADC_V1_TSC(info->regs));
588 
589 	/* Select the ts channel to be used and Trigger conversion */
590 	info->data->start_conv(info, ADC_S3C2410_MUX_TS);
591 
592 	timeout = wait_for_completion_timeout(&info->completion,
593 					      EXYNOS_ADC_TIMEOUT);
594 	if (timeout == 0) {
595 		dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
596 		if (info->data->init_hw)
597 			info->data->init_hw(info);
598 		ret = -ETIMEDOUT;
599 	} else {
600 		*x = info->ts_x;
601 		*y = info->ts_y;
602 		ret = 0;
603 	}
604 
605 	info->read_ts = false;
606 	mutex_unlock(&indio_dev->mlock);
607 
608 	return ret;
609 }
610 
611 static irqreturn_t exynos_adc_isr(int irq, void *dev_id)
612 {
613 	struct exynos_adc *info = dev_id;
614 	u32 mask = info->data->mask;
615 
616 	/* Read value */
617 	if (info->read_ts) {
618 		info->ts_x = readl(ADC_V1_DATX(info->regs));
619 		info->ts_y = readl(ADC_V1_DATY(info->regs));
620 		writel(ADC_TSC_WAIT4INT | ADC_S3C2443_TSC_UD_SEN, ADC_V1_TSC(info->regs));
621 	} else {
622 		info->value = readl(ADC_V1_DATX(info->regs)) & mask;
623 	}
624 
625 	/* clear irq */
626 	if (info->data->clear_irq)
627 		info->data->clear_irq(info);
628 
629 	complete(&info->completion);
630 
631 	return IRQ_HANDLED;
632 }
633 
634 /*
635  * Here we (ab)use a threaded interrupt handler to stay running
636  * for as long as the touchscreen remains pressed, we report
637  * a new event with the latest data and then sleep until the
638  * next timer tick. This mirrors the behavior of the old
639  * driver, with much less code.
640  */
641 static irqreturn_t exynos_ts_isr(int irq, void *dev_id)
642 {
643 	struct exynos_adc *info = dev_id;
644 	struct iio_dev *dev = dev_get_drvdata(info->dev);
645 	u32 x, y;
646 	bool pressed;
647 	int ret;
648 
649 	while (info->input->users) {
650 		ret = exynos_read_s3c64xx_ts(dev, &x, &y);
651 		if (ret == -ETIMEDOUT)
652 			break;
653 
654 		pressed = x & y & ADC_DATX_PRESSED;
655 		if (!pressed) {
656 			input_report_key(info->input, BTN_TOUCH, 0);
657 			input_sync(info->input);
658 			break;
659 		}
660 
661 		input_report_abs(info->input, ABS_X, x & ADC_DATX_MASK);
662 		input_report_abs(info->input, ABS_Y, y & ADC_DATY_MASK);
663 		input_report_key(info->input, BTN_TOUCH, 1);
664 		input_sync(info->input);
665 
666 		usleep_range(1000, 1100);
667 	};
668 
669 	writel(0, ADC_V1_CLRINTPNDNUP(info->regs));
670 
671 	return IRQ_HANDLED;
672 }
673 
674 static int exynos_adc_reg_access(struct iio_dev *indio_dev,
675 			      unsigned reg, unsigned writeval,
676 			      unsigned *readval)
677 {
678 	struct exynos_adc *info = iio_priv(indio_dev);
679 
680 	if (readval == NULL)
681 		return -EINVAL;
682 
683 	*readval = readl(info->regs + reg);
684 
685 	return 0;
686 }
687 
688 static const struct iio_info exynos_adc_iio_info = {
689 	.read_raw = &exynos_read_raw,
690 	.debugfs_reg_access = &exynos_adc_reg_access,
691 };
692 
693 #define ADC_CHANNEL(_index, _id) {			\
694 	.type = IIO_VOLTAGE,				\
695 	.indexed = 1,					\
696 	.channel = _index,				\
697 	.address = _index,				\
698 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),	\
699 	.datasheet_name = _id,				\
700 }
701 
702 static const struct iio_chan_spec exynos_adc_iio_channels[] = {
703 	ADC_CHANNEL(0, "adc0"),
704 	ADC_CHANNEL(1, "adc1"),
705 	ADC_CHANNEL(2, "adc2"),
706 	ADC_CHANNEL(3, "adc3"),
707 	ADC_CHANNEL(4, "adc4"),
708 	ADC_CHANNEL(5, "adc5"),
709 	ADC_CHANNEL(6, "adc6"),
710 	ADC_CHANNEL(7, "adc7"),
711 	ADC_CHANNEL(8, "adc8"),
712 	ADC_CHANNEL(9, "adc9"),
713 };
714 
715 static int exynos_adc_remove_devices(struct device *dev, void *c)
716 {
717 	struct platform_device *pdev = to_platform_device(dev);
718 
719 	platform_device_unregister(pdev);
720 
721 	return 0;
722 }
723 
724 static int exynos_adc_ts_open(struct input_dev *dev)
725 {
726 	struct exynos_adc *info = input_get_drvdata(dev);
727 
728 	enable_irq(info->tsirq);
729 
730 	return 0;
731 }
732 
733 static void exynos_adc_ts_close(struct input_dev *dev)
734 {
735 	struct exynos_adc *info = input_get_drvdata(dev);
736 
737 	disable_irq(info->tsirq);
738 }
739 
740 static int exynos_adc_ts_init(struct exynos_adc *info)
741 {
742 	int ret;
743 
744 	if (info->tsirq <= 0)
745 		return -ENODEV;
746 
747 	info->input = input_allocate_device();
748 	if (!info->input)
749 		return -ENOMEM;
750 
751 	info->input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
752 	info->input->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
753 
754 	input_set_abs_params(info->input, ABS_X, 0, 0x3FF, 0, 0);
755 	input_set_abs_params(info->input, ABS_Y, 0, 0x3FF, 0, 0);
756 
757 	info->input->name = "S3C24xx TouchScreen";
758 	info->input->id.bustype = BUS_HOST;
759 	info->input->open = exynos_adc_ts_open;
760 	info->input->close = exynos_adc_ts_close;
761 
762 	input_set_drvdata(info->input, info);
763 
764 	ret = input_register_device(info->input);
765 	if (ret) {
766 		input_free_device(info->input);
767 		return ret;
768 	}
769 
770 	disable_irq(info->tsirq);
771 	ret = request_threaded_irq(info->tsirq, NULL, exynos_ts_isr,
772 				   IRQF_ONESHOT, "touchscreen", info);
773 	if (ret)
774 		input_unregister_device(info->input);
775 
776 	return ret;
777 }
778 
779 static int exynos_adc_probe(struct platform_device *pdev)
780 {
781 	struct exynos_adc *info = NULL;
782 	struct device_node *np = pdev->dev.of_node;
783 	struct s3c2410_ts_mach_info *pdata = dev_get_platdata(&pdev->dev);
784 	struct iio_dev *indio_dev = NULL;
785 	struct resource	*mem;
786 	bool has_ts = false;
787 	int ret = -ENODEV;
788 	int irq;
789 
790 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(struct exynos_adc));
791 	if (!indio_dev) {
792 		dev_err(&pdev->dev, "failed allocating iio device\n");
793 		return -ENOMEM;
794 	}
795 
796 	info = iio_priv(indio_dev);
797 
798 	info->data = exynos_adc_get_data(pdev);
799 	if (!info->data) {
800 		dev_err(&pdev->dev, "failed getting exynos_adc_data\n");
801 		return -EINVAL;
802 	}
803 
804 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
805 	info->regs = devm_ioremap_resource(&pdev->dev, mem);
806 	if (IS_ERR(info->regs))
807 		return PTR_ERR(info->regs);
808 
809 
810 	if (info->data->needs_adc_phy) {
811 		info->pmu_map = syscon_regmap_lookup_by_phandle(
812 					pdev->dev.of_node,
813 					"samsung,syscon-phandle");
814 		if (IS_ERR(info->pmu_map)) {
815 			dev_err(&pdev->dev, "syscon regmap lookup failed.\n");
816 			return PTR_ERR(info->pmu_map);
817 		}
818 	}
819 
820 	irq = platform_get_irq(pdev, 0);
821 	if (irq < 0) {
822 		dev_err(&pdev->dev, "no irq resource?\n");
823 		return irq;
824 	}
825 	info->irq = irq;
826 
827 	irq = platform_get_irq(pdev, 1);
828 	if (irq == -EPROBE_DEFER)
829 		return irq;
830 
831 	info->tsirq = irq;
832 
833 	info->dev = &pdev->dev;
834 
835 	init_completion(&info->completion);
836 
837 	info->clk = devm_clk_get(&pdev->dev, "adc");
838 	if (IS_ERR(info->clk)) {
839 		dev_err(&pdev->dev, "failed getting clock, err = %ld\n",
840 							PTR_ERR(info->clk));
841 		return PTR_ERR(info->clk);
842 	}
843 
844 	if (info->data->needs_sclk) {
845 		info->sclk = devm_clk_get(&pdev->dev, "sclk");
846 		if (IS_ERR(info->sclk)) {
847 			dev_err(&pdev->dev,
848 				"failed getting sclk clock, err = %ld\n",
849 				PTR_ERR(info->sclk));
850 			return PTR_ERR(info->sclk);
851 		}
852 	}
853 
854 	info->vdd = devm_regulator_get(&pdev->dev, "vdd");
855 	if (IS_ERR(info->vdd)) {
856 		dev_err(&pdev->dev, "failed getting regulator, err = %ld\n",
857 							PTR_ERR(info->vdd));
858 		return PTR_ERR(info->vdd);
859 	}
860 
861 	ret = regulator_enable(info->vdd);
862 	if (ret)
863 		return ret;
864 
865 	ret = exynos_adc_prepare_clk(info);
866 	if (ret)
867 		goto err_disable_reg;
868 
869 	ret = exynos_adc_enable_clk(info);
870 	if (ret)
871 		goto err_unprepare_clk;
872 
873 	platform_set_drvdata(pdev, indio_dev);
874 
875 	indio_dev->name = dev_name(&pdev->dev);
876 	indio_dev->dev.parent = &pdev->dev;
877 	indio_dev->dev.of_node = pdev->dev.of_node;
878 	indio_dev->info = &exynos_adc_iio_info;
879 	indio_dev->modes = INDIO_DIRECT_MODE;
880 	indio_dev->channels = exynos_adc_iio_channels;
881 	indio_dev->num_channels = info->data->num_channels;
882 
883 	ret = request_irq(info->irq, exynos_adc_isr,
884 					0, dev_name(&pdev->dev), info);
885 	if (ret < 0) {
886 		dev_err(&pdev->dev, "failed requesting irq, irq = %d\n",
887 							info->irq);
888 		goto err_disable_clk;
889 	}
890 
891 	ret = iio_device_register(indio_dev);
892 	if (ret)
893 		goto err_irq;
894 
895 	if (info->data->init_hw)
896 		info->data->init_hw(info);
897 
898 	/* leave out any TS related code if unreachable */
899 	if (IS_REACHABLE(CONFIG_INPUT)) {
900 		has_ts = of_property_read_bool(pdev->dev.of_node,
901 					       "has-touchscreen") || pdata;
902 	}
903 
904 	if (pdata)
905 		info->delay = pdata->delay;
906 	else
907 		info->delay = 10000;
908 
909 	if (has_ts)
910 		ret = exynos_adc_ts_init(info);
911 	if (ret)
912 		goto err_iio;
913 
914 	ret = of_platform_populate(np, exynos_adc_match, NULL, &indio_dev->dev);
915 	if (ret < 0) {
916 		dev_err(&pdev->dev, "failed adding child nodes\n");
917 		goto err_of_populate;
918 	}
919 
920 	return 0;
921 
922 err_of_populate:
923 	device_for_each_child(&indio_dev->dev, NULL,
924 				exynos_adc_remove_devices);
925 	if (has_ts) {
926 		input_unregister_device(info->input);
927 		free_irq(info->tsirq, info);
928 	}
929 err_iio:
930 	iio_device_unregister(indio_dev);
931 err_irq:
932 	free_irq(info->irq, info);
933 err_disable_clk:
934 	if (info->data->exit_hw)
935 		info->data->exit_hw(info);
936 	exynos_adc_disable_clk(info);
937 err_unprepare_clk:
938 	exynos_adc_unprepare_clk(info);
939 err_disable_reg:
940 	regulator_disable(info->vdd);
941 	return ret;
942 }
943 
944 static int exynos_adc_remove(struct platform_device *pdev)
945 {
946 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
947 	struct exynos_adc *info = iio_priv(indio_dev);
948 
949 	if (IS_REACHABLE(CONFIG_INPUT) && info->input) {
950 		free_irq(info->tsirq, info);
951 		input_unregister_device(info->input);
952 	}
953 	device_for_each_child(&indio_dev->dev, NULL,
954 				exynos_adc_remove_devices);
955 	iio_device_unregister(indio_dev);
956 	free_irq(info->irq, info);
957 	if (info->data->exit_hw)
958 		info->data->exit_hw(info);
959 	exynos_adc_disable_clk(info);
960 	exynos_adc_unprepare_clk(info);
961 	regulator_disable(info->vdd);
962 
963 	return 0;
964 }
965 
966 #ifdef CONFIG_PM_SLEEP
967 static int exynos_adc_suspend(struct device *dev)
968 {
969 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
970 	struct exynos_adc *info = iio_priv(indio_dev);
971 
972 	if (info->data->exit_hw)
973 		info->data->exit_hw(info);
974 	exynos_adc_disable_clk(info);
975 	regulator_disable(info->vdd);
976 
977 	return 0;
978 }
979 
980 static int exynos_adc_resume(struct device *dev)
981 {
982 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
983 	struct exynos_adc *info = iio_priv(indio_dev);
984 	int ret;
985 
986 	ret = regulator_enable(info->vdd);
987 	if (ret)
988 		return ret;
989 
990 	ret = exynos_adc_enable_clk(info);
991 	if (ret)
992 		return ret;
993 
994 	if (info->data->init_hw)
995 		info->data->init_hw(info);
996 
997 	return 0;
998 }
999 #endif
1000 
1001 static SIMPLE_DEV_PM_OPS(exynos_adc_pm_ops,
1002 			exynos_adc_suspend,
1003 			exynos_adc_resume);
1004 
1005 static struct platform_driver exynos_adc_driver = {
1006 	.probe		= exynos_adc_probe,
1007 	.remove		= exynos_adc_remove,
1008 	.driver		= {
1009 		.name	= "exynos-adc",
1010 		.of_match_table = exynos_adc_match,
1011 		.pm	= &exynos_adc_pm_ops,
1012 	},
1013 };
1014 
1015 module_platform_driver(exynos_adc_driver);
1016 
1017 MODULE_AUTHOR("Naveen Krishna Chatradhi <ch.naveen@samsung.com>");
1018 MODULE_DESCRIPTION("Samsung EXYNOS5 ADC driver");
1019 MODULE_LICENSE("GPL v2");
1020