xref: /openbmc/linux/drivers/iio/adc/exynos_adc.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  exynos_adc.c - Support for ADC in EXYNOS SoCs
4  *
5  *  8 ~ 10 channel, 10/12-bit ADC
6  *
7  *  Copyright (C) 2013 Naveen Krishna Chatradhi <ch.naveen@samsung.com>
8  */
9 
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/interrupt.h>
13 #include <linux/delay.h>
14 #include <linux/errno.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/completion.h>
20 #include <linux/of.h>
21 #include <linux/of_irq.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/of_platform.h>
24 #include <linux/err.h>
25 #include <linux/input.h>
26 
27 #include <linux/iio/iio.h>
28 #include <linux/iio/machine.h>
29 #include <linux/iio/driver.h>
30 #include <linux/mfd/syscon.h>
31 #include <linux/regmap.h>
32 
33 #include <linux/platform_data/touchscreen-s3c2410.h>
34 
35 /* S3C/EXYNOS4412/5250 ADC_V1 registers definitions */
36 #define ADC_V1_CON(x)		((x) + 0x00)
37 #define ADC_V1_TSC(x)		((x) + 0x04)
38 #define ADC_V1_DLY(x)		((x) + 0x08)
39 #define ADC_V1_DATX(x)		((x) + 0x0C)
40 #define ADC_V1_DATY(x)		((x) + 0x10)
41 #define ADC_V1_UPDN(x)		((x) + 0x14)
42 #define ADC_V1_INTCLR(x)	((x) + 0x18)
43 #define ADC_V1_MUX(x)		((x) + 0x1c)
44 #define ADC_V1_CLRINTPNDNUP(x)	((x) + 0x20)
45 
46 /* S3C2410 ADC registers definitions */
47 #define ADC_S3C2410_MUX(x)	((x) + 0x18)
48 
49 /* Future ADC_V2 registers definitions */
50 #define ADC_V2_CON1(x)		((x) + 0x00)
51 #define ADC_V2_CON2(x)		((x) + 0x04)
52 #define ADC_V2_STAT(x)		((x) + 0x08)
53 #define ADC_V2_INT_EN(x)	((x) + 0x10)
54 #define ADC_V2_INT_ST(x)	((x) + 0x14)
55 #define ADC_V2_VER(x)		((x) + 0x20)
56 
57 /* Bit definitions for ADC_V1 */
58 #define ADC_V1_CON_RES		(1u << 16)
59 #define ADC_V1_CON_PRSCEN	(1u << 14)
60 #define ADC_V1_CON_PRSCLV(x)	(((x) & 0xFF) << 6)
61 #define ADC_V1_CON_STANDBY	(1u << 2)
62 
63 /* Bit definitions for S3C2410 ADC */
64 #define ADC_S3C2410_CON_SELMUX(x) (((x) & 7) << 3)
65 #define ADC_S3C2410_DATX_MASK	0x3FF
66 #define ADC_S3C2416_CON_RES_SEL	(1u << 3)
67 
68 /* touch screen always uses channel 0 */
69 #define ADC_S3C2410_MUX_TS	0
70 
71 /* ADCTSC Register Bits */
72 #define ADC_S3C2443_TSC_UD_SEN		(1u << 8)
73 #define ADC_S3C2410_TSC_YM_SEN		(1u << 7)
74 #define ADC_S3C2410_TSC_YP_SEN		(1u << 6)
75 #define ADC_S3C2410_TSC_XM_SEN		(1u << 5)
76 #define ADC_S3C2410_TSC_XP_SEN		(1u << 4)
77 #define ADC_S3C2410_TSC_PULL_UP_DISABLE	(1u << 3)
78 #define ADC_S3C2410_TSC_AUTO_PST	(1u << 2)
79 #define ADC_S3C2410_TSC_XY_PST(x)	(((x) & 0x3) << 0)
80 
81 #define ADC_TSC_WAIT4INT (ADC_S3C2410_TSC_YM_SEN | \
82 			 ADC_S3C2410_TSC_YP_SEN | \
83 			 ADC_S3C2410_TSC_XP_SEN | \
84 			 ADC_S3C2410_TSC_XY_PST(3))
85 
86 #define ADC_TSC_AUTOPST	(ADC_S3C2410_TSC_YM_SEN | \
87 			 ADC_S3C2410_TSC_YP_SEN | \
88 			 ADC_S3C2410_TSC_XP_SEN | \
89 			 ADC_S3C2410_TSC_AUTO_PST | \
90 			 ADC_S3C2410_TSC_XY_PST(0))
91 
92 /* Bit definitions for ADC_V2 */
93 #define ADC_V2_CON1_SOFT_RESET	(1u << 2)
94 
95 #define ADC_V2_CON2_OSEL	(1u << 10)
96 #define ADC_V2_CON2_ESEL	(1u << 9)
97 #define ADC_V2_CON2_HIGHF	(1u << 8)
98 #define ADC_V2_CON2_C_TIME(x)	(((x) & 7) << 4)
99 #define ADC_V2_CON2_ACH_SEL(x)	(((x) & 0xF) << 0)
100 #define ADC_V2_CON2_ACH_MASK	0xF
101 
102 #define MAX_ADC_V2_CHANNELS		10
103 #define MAX_ADC_V1_CHANNELS		8
104 #define MAX_EXYNOS3250_ADC_CHANNELS	2
105 #define MAX_EXYNOS4212_ADC_CHANNELS	4
106 #define MAX_S5PV210_ADC_CHANNELS	10
107 
108 /* Bit definitions common for ADC_V1 and ADC_V2 */
109 #define ADC_CON_EN_START	(1u << 0)
110 #define ADC_CON_EN_START_MASK	(0x3 << 0)
111 #define ADC_DATX_PRESSED	(1u << 15)
112 #define ADC_DATX_MASK		0xFFF
113 #define ADC_DATY_MASK		0xFFF
114 
115 #define EXYNOS_ADC_TIMEOUT	(msecs_to_jiffies(100))
116 
117 #define EXYNOS_ADCV1_PHY_OFFSET	0x0718
118 #define EXYNOS_ADCV2_PHY_OFFSET	0x0720
119 
120 struct exynos_adc {
121 	struct exynos_adc_data	*data;
122 	struct device		*dev;
123 	struct input_dev	*input;
124 	void __iomem		*regs;
125 	struct regmap		*pmu_map;
126 	struct clk		*clk;
127 	struct clk		*sclk;
128 	unsigned int		irq;
129 	unsigned int		tsirq;
130 	unsigned int		delay;
131 	struct regulator	*vdd;
132 
133 	struct completion	completion;
134 
135 	u32			value;
136 	unsigned int            version;
137 
138 	bool			read_ts;
139 	u32			ts_x;
140 	u32			ts_y;
141 };
142 
143 struct exynos_adc_data {
144 	int num_channels;
145 	bool needs_sclk;
146 	bool needs_adc_phy;
147 	int phy_offset;
148 	u32 mask;
149 
150 	void (*init_hw)(struct exynos_adc *info);
151 	void (*exit_hw)(struct exynos_adc *info);
152 	void (*clear_irq)(struct exynos_adc *info);
153 	void (*start_conv)(struct exynos_adc *info, unsigned long addr);
154 };
155 
156 static void exynos_adc_unprepare_clk(struct exynos_adc *info)
157 {
158 	if (info->data->needs_sclk)
159 		clk_unprepare(info->sclk);
160 	clk_unprepare(info->clk);
161 }
162 
163 static int exynos_adc_prepare_clk(struct exynos_adc *info)
164 {
165 	int ret;
166 
167 	ret = clk_prepare(info->clk);
168 	if (ret) {
169 		dev_err(info->dev, "failed preparing adc clock: %d\n", ret);
170 		return ret;
171 	}
172 
173 	if (info->data->needs_sclk) {
174 		ret = clk_prepare(info->sclk);
175 		if (ret) {
176 			clk_unprepare(info->clk);
177 			dev_err(info->dev,
178 				"failed preparing sclk_adc clock: %d\n", ret);
179 			return ret;
180 		}
181 	}
182 
183 	return 0;
184 }
185 
186 static void exynos_adc_disable_clk(struct exynos_adc *info)
187 {
188 	if (info->data->needs_sclk)
189 		clk_disable(info->sclk);
190 	clk_disable(info->clk);
191 }
192 
193 static int exynos_adc_enable_clk(struct exynos_adc *info)
194 {
195 	int ret;
196 
197 	ret = clk_enable(info->clk);
198 	if (ret) {
199 		dev_err(info->dev, "failed enabling adc clock: %d\n", ret);
200 		return ret;
201 	}
202 
203 	if (info->data->needs_sclk) {
204 		ret = clk_enable(info->sclk);
205 		if (ret) {
206 			clk_disable(info->clk);
207 			dev_err(info->dev,
208 				"failed enabling sclk_adc clock: %d\n", ret);
209 			return ret;
210 		}
211 	}
212 
213 	return 0;
214 }
215 
216 static void exynos_adc_v1_init_hw(struct exynos_adc *info)
217 {
218 	u32 con1;
219 
220 	if (info->data->needs_adc_phy)
221 		regmap_write(info->pmu_map, info->data->phy_offset, 1);
222 
223 	/* set default prescaler values and Enable prescaler */
224 	con1 =  ADC_V1_CON_PRSCLV(49) | ADC_V1_CON_PRSCEN;
225 
226 	/* Enable 12-bit ADC resolution */
227 	con1 |= ADC_V1_CON_RES;
228 	writel(con1, ADC_V1_CON(info->regs));
229 
230 	/* set touchscreen delay */
231 	writel(info->delay, ADC_V1_DLY(info->regs));
232 }
233 
234 static void exynos_adc_v1_exit_hw(struct exynos_adc *info)
235 {
236 	u32 con;
237 
238 	if (info->data->needs_adc_phy)
239 		regmap_write(info->pmu_map, info->data->phy_offset, 0);
240 
241 	con = readl(ADC_V1_CON(info->regs));
242 	con |= ADC_V1_CON_STANDBY;
243 	writel(con, ADC_V1_CON(info->regs));
244 }
245 
246 static void exynos_adc_v1_clear_irq(struct exynos_adc *info)
247 {
248 	writel(1, ADC_V1_INTCLR(info->regs));
249 }
250 
251 static void exynos_adc_v1_start_conv(struct exynos_adc *info,
252 				     unsigned long addr)
253 {
254 	u32 con1;
255 
256 	writel(addr, ADC_V1_MUX(info->regs));
257 
258 	con1 = readl(ADC_V1_CON(info->regs));
259 	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
260 }
261 
262 /* Exynos4212 and 4412 is like ADCv1 but with four channels only */
263 static const struct exynos_adc_data exynos4212_adc_data = {
264 	.num_channels	= MAX_EXYNOS4212_ADC_CHANNELS,
265 	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
266 	.needs_adc_phy	= true,
267 	.phy_offset	= EXYNOS_ADCV1_PHY_OFFSET,
268 
269 	.init_hw	= exynos_adc_v1_init_hw,
270 	.exit_hw	= exynos_adc_v1_exit_hw,
271 	.clear_irq	= exynos_adc_v1_clear_irq,
272 	.start_conv	= exynos_adc_v1_start_conv,
273 };
274 
275 static const struct exynos_adc_data exynos_adc_v1_data = {
276 	.num_channels	= MAX_ADC_V1_CHANNELS,
277 	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
278 	.needs_adc_phy	= true,
279 	.phy_offset	= EXYNOS_ADCV1_PHY_OFFSET,
280 
281 	.init_hw	= exynos_adc_v1_init_hw,
282 	.exit_hw	= exynos_adc_v1_exit_hw,
283 	.clear_irq	= exynos_adc_v1_clear_irq,
284 	.start_conv	= exynos_adc_v1_start_conv,
285 };
286 
287 static const struct exynos_adc_data exynos_adc_s5pv210_data = {
288 	.num_channels	= MAX_S5PV210_ADC_CHANNELS,
289 	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
290 
291 	.init_hw	= exynos_adc_v1_init_hw,
292 	.exit_hw	= exynos_adc_v1_exit_hw,
293 	.clear_irq	= exynos_adc_v1_clear_irq,
294 	.start_conv	= exynos_adc_v1_start_conv,
295 };
296 
297 static void exynos_adc_s3c2416_start_conv(struct exynos_adc *info,
298 					  unsigned long addr)
299 {
300 	u32 con1;
301 
302 	/* Enable 12 bit ADC resolution */
303 	con1 = readl(ADC_V1_CON(info->regs));
304 	con1 |= ADC_S3C2416_CON_RES_SEL;
305 	writel(con1, ADC_V1_CON(info->regs));
306 
307 	/* Select channel for S3C2416 */
308 	writel(addr, ADC_S3C2410_MUX(info->regs));
309 
310 	con1 = readl(ADC_V1_CON(info->regs));
311 	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
312 }
313 
314 static struct exynos_adc_data const exynos_adc_s3c2416_data = {
315 	.num_channels	= MAX_ADC_V1_CHANNELS,
316 	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
317 
318 	.init_hw	= exynos_adc_v1_init_hw,
319 	.exit_hw	= exynos_adc_v1_exit_hw,
320 	.start_conv	= exynos_adc_s3c2416_start_conv,
321 };
322 
323 static void exynos_adc_s3c2443_start_conv(struct exynos_adc *info,
324 					  unsigned long addr)
325 {
326 	u32 con1;
327 
328 	/* Select channel for S3C2433 */
329 	writel(addr, ADC_S3C2410_MUX(info->regs));
330 
331 	con1 = readl(ADC_V1_CON(info->regs));
332 	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
333 }
334 
335 static struct exynos_adc_data const exynos_adc_s3c2443_data = {
336 	.num_channels	= MAX_ADC_V1_CHANNELS,
337 	.mask		= ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
338 
339 	.init_hw	= exynos_adc_v1_init_hw,
340 	.exit_hw	= exynos_adc_v1_exit_hw,
341 	.start_conv	= exynos_adc_s3c2443_start_conv,
342 };
343 
344 static void exynos_adc_s3c64xx_start_conv(struct exynos_adc *info,
345 					  unsigned long addr)
346 {
347 	u32 con1;
348 
349 	con1 = readl(ADC_V1_CON(info->regs));
350 	con1 &= ~ADC_S3C2410_CON_SELMUX(0x7);
351 	con1 |= ADC_S3C2410_CON_SELMUX(addr);
352 	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
353 }
354 
355 static struct exynos_adc_data const exynos_adc_s3c24xx_data = {
356 	.num_channels	= MAX_ADC_V1_CHANNELS,
357 	.mask		= ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
358 
359 	.init_hw	= exynos_adc_v1_init_hw,
360 	.exit_hw	= exynos_adc_v1_exit_hw,
361 	.start_conv	= exynos_adc_s3c64xx_start_conv,
362 };
363 
364 static struct exynos_adc_data const exynos_adc_s3c64xx_data = {
365 	.num_channels	= MAX_ADC_V1_CHANNELS,
366 	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
367 
368 	.init_hw	= exynos_adc_v1_init_hw,
369 	.exit_hw	= exynos_adc_v1_exit_hw,
370 	.clear_irq	= exynos_adc_v1_clear_irq,
371 	.start_conv	= exynos_adc_s3c64xx_start_conv,
372 };
373 
374 static void exynos_adc_v2_init_hw(struct exynos_adc *info)
375 {
376 	u32 con1, con2;
377 
378 	if (info->data->needs_adc_phy)
379 		regmap_write(info->pmu_map, info->data->phy_offset, 1);
380 
381 	con1 = ADC_V2_CON1_SOFT_RESET;
382 	writel(con1, ADC_V2_CON1(info->regs));
383 
384 	con2 = ADC_V2_CON2_OSEL | ADC_V2_CON2_ESEL |
385 		ADC_V2_CON2_HIGHF | ADC_V2_CON2_C_TIME(0);
386 	writel(con2, ADC_V2_CON2(info->regs));
387 
388 	/* Enable interrupts */
389 	writel(1, ADC_V2_INT_EN(info->regs));
390 }
391 
392 static void exynos_adc_v2_exit_hw(struct exynos_adc *info)
393 {
394 	u32 con;
395 
396 	if (info->data->needs_adc_phy)
397 		regmap_write(info->pmu_map, info->data->phy_offset, 0);
398 
399 	con = readl(ADC_V2_CON1(info->regs));
400 	con &= ~ADC_CON_EN_START;
401 	writel(con, ADC_V2_CON1(info->regs));
402 }
403 
404 static void exynos_adc_v2_clear_irq(struct exynos_adc *info)
405 {
406 	writel(1, ADC_V2_INT_ST(info->regs));
407 }
408 
409 static void exynos_adc_v2_start_conv(struct exynos_adc *info,
410 				     unsigned long addr)
411 {
412 	u32 con1, con2;
413 
414 	con2 = readl(ADC_V2_CON2(info->regs));
415 	con2 &= ~ADC_V2_CON2_ACH_MASK;
416 	con2 |= ADC_V2_CON2_ACH_SEL(addr);
417 	writel(con2, ADC_V2_CON2(info->regs));
418 
419 	con1 = readl(ADC_V2_CON1(info->regs));
420 	writel(con1 | ADC_CON_EN_START, ADC_V2_CON1(info->regs));
421 }
422 
423 static const struct exynos_adc_data exynos_adc_v2_data = {
424 	.num_channels	= MAX_ADC_V2_CHANNELS,
425 	.mask		= ADC_DATX_MASK, /* 12 bit ADC resolution */
426 	.needs_adc_phy	= true,
427 	.phy_offset	= EXYNOS_ADCV2_PHY_OFFSET,
428 
429 	.init_hw	= exynos_adc_v2_init_hw,
430 	.exit_hw	= exynos_adc_v2_exit_hw,
431 	.clear_irq	= exynos_adc_v2_clear_irq,
432 	.start_conv	= exynos_adc_v2_start_conv,
433 };
434 
435 static const struct exynos_adc_data exynos3250_adc_data = {
436 	.num_channels	= MAX_EXYNOS3250_ADC_CHANNELS,
437 	.mask		= ADC_DATX_MASK, /* 12 bit ADC resolution */
438 	.needs_sclk	= true,
439 	.needs_adc_phy	= true,
440 	.phy_offset	= EXYNOS_ADCV1_PHY_OFFSET,
441 
442 	.init_hw	= exynos_adc_v2_init_hw,
443 	.exit_hw	= exynos_adc_v2_exit_hw,
444 	.clear_irq	= exynos_adc_v2_clear_irq,
445 	.start_conv	= exynos_adc_v2_start_conv,
446 };
447 
448 static void exynos_adc_exynos7_init_hw(struct exynos_adc *info)
449 {
450 	u32 con1, con2;
451 
452 	con1 = ADC_V2_CON1_SOFT_RESET;
453 	writel(con1, ADC_V2_CON1(info->regs));
454 
455 	con2 = readl(ADC_V2_CON2(info->regs));
456 	con2 &= ~ADC_V2_CON2_C_TIME(7);
457 	con2 |= ADC_V2_CON2_C_TIME(0);
458 	writel(con2, ADC_V2_CON2(info->regs));
459 
460 	/* Enable interrupts */
461 	writel(1, ADC_V2_INT_EN(info->regs));
462 }
463 
464 static const struct exynos_adc_data exynos7_adc_data = {
465 	.num_channels	= MAX_ADC_V1_CHANNELS,
466 	.mask		= ADC_DATX_MASK, /* 12 bit ADC resolution */
467 
468 	.init_hw	= exynos_adc_exynos7_init_hw,
469 	.exit_hw	= exynos_adc_v2_exit_hw,
470 	.clear_irq	= exynos_adc_v2_clear_irq,
471 	.start_conv	= exynos_adc_v2_start_conv,
472 };
473 
474 static const struct of_device_id exynos_adc_match[] = {
475 	{
476 		.compatible = "samsung,s3c2410-adc",
477 		.data = &exynos_adc_s3c24xx_data,
478 	}, {
479 		.compatible = "samsung,s3c2416-adc",
480 		.data = &exynos_adc_s3c2416_data,
481 	}, {
482 		.compatible = "samsung,s3c2440-adc",
483 		.data = &exynos_adc_s3c24xx_data,
484 	}, {
485 		.compatible = "samsung,s3c2443-adc",
486 		.data = &exynos_adc_s3c2443_data,
487 	}, {
488 		.compatible = "samsung,s3c6410-adc",
489 		.data = &exynos_adc_s3c64xx_data,
490 	}, {
491 		.compatible = "samsung,s5pv210-adc",
492 		.data = &exynos_adc_s5pv210_data,
493 	}, {
494 		.compatible = "samsung,exynos4212-adc",
495 		.data = &exynos4212_adc_data,
496 	}, {
497 		.compatible = "samsung,exynos-adc-v1",
498 		.data = &exynos_adc_v1_data,
499 	}, {
500 		.compatible = "samsung,exynos-adc-v2",
501 		.data = &exynos_adc_v2_data,
502 	}, {
503 		.compatible = "samsung,exynos3250-adc",
504 		.data = &exynos3250_adc_data,
505 	}, {
506 		.compatible = "samsung,exynos7-adc",
507 		.data = &exynos7_adc_data,
508 	},
509 	{},
510 };
511 MODULE_DEVICE_TABLE(of, exynos_adc_match);
512 
513 static struct exynos_adc_data *exynos_adc_get_data(struct platform_device *pdev)
514 {
515 	const struct of_device_id *match;
516 
517 	match = of_match_node(exynos_adc_match, pdev->dev.of_node);
518 	return (struct exynos_adc_data *)match->data;
519 }
520 
521 static int exynos_read_raw(struct iio_dev *indio_dev,
522 				struct iio_chan_spec const *chan,
523 				int *val,
524 				int *val2,
525 				long mask)
526 {
527 	struct exynos_adc *info = iio_priv(indio_dev);
528 	unsigned long timeout;
529 	int ret;
530 
531 	if (mask == IIO_CHAN_INFO_SCALE) {
532 		ret = regulator_get_voltage(info->vdd);
533 		if (ret < 0)
534 			return ret;
535 
536 		/* Regulator voltage is in uV, but need mV */
537 		*val = ret / 1000;
538 		*val2 = info->data->mask;
539 
540 		return IIO_VAL_FRACTIONAL;
541 	} else if (mask != IIO_CHAN_INFO_RAW) {
542 		return -EINVAL;
543 	}
544 
545 	mutex_lock(&indio_dev->mlock);
546 	reinit_completion(&info->completion);
547 
548 	/* Select the channel to be used and Trigger conversion */
549 	if (info->data->start_conv)
550 		info->data->start_conv(info, chan->address);
551 
552 	timeout = wait_for_completion_timeout(&info->completion,
553 					      EXYNOS_ADC_TIMEOUT);
554 	if (timeout == 0) {
555 		dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
556 		if (info->data->init_hw)
557 			info->data->init_hw(info);
558 		ret = -ETIMEDOUT;
559 	} else {
560 		*val = info->value;
561 		*val2 = 0;
562 		ret = IIO_VAL_INT;
563 	}
564 
565 	mutex_unlock(&indio_dev->mlock);
566 
567 	return ret;
568 }
569 
570 static int exynos_read_s3c64xx_ts(struct iio_dev *indio_dev, int *x, int *y)
571 {
572 	struct exynos_adc *info = iio_priv(indio_dev);
573 	unsigned long timeout;
574 	int ret;
575 
576 	mutex_lock(&indio_dev->mlock);
577 	info->read_ts = true;
578 
579 	reinit_completion(&info->completion);
580 
581 	writel(ADC_S3C2410_TSC_PULL_UP_DISABLE | ADC_TSC_AUTOPST,
582 	       ADC_V1_TSC(info->regs));
583 
584 	/* Select the ts channel to be used and Trigger conversion */
585 	info->data->start_conv(info, ADC_S3C2410_MUX_TS);
586 
587 	timeout = wait_for_completion_timeout(&info->completion,
588 					      EXYNOS_ADC_TIMEOUT);
589 	if (timeout == 0) {
590 		dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
591 		if (info->data->init_hw)
592 			info->data->init_hw(info);
593 		ret = -ETIMEDOUT;
594 	} else {
595 		*x = info->ts_x;
596 		*y = info->ts_y;
597 		ret = 0;
598 	}
599 
600 	info->read_ts = false;
601 	mutex_unlock(&indio_dev->mlock);
602 
603 	return ret;
604 }
605 
606 static irqreturn_t exynos_adc_isr(int irq, void *dev_id)
607 {
608 	struct exynos_adc *info = dev_id;
609 	u32 mask = info->data->mask;
610 
611 	/* Read value */
612 	if (info->read_ts) {
613 		info->ts_x = readl(ADC_V1_DATX(info->regs));
614 		info->ts_y = readl(ADC_V1_DATY(info->regs));
615 		writel(ADC_TSC_WAIT4INT | ADC_S3C2443_TSC_UD_SEN, ADC_V1_TSC(info->regs));
616 	} else {
617 		info->value = readl(ADC_V1_DATX(info->regs)) & mask;
618 	}
619 
620 	/* clear irq */
621 	if (info->data->clear_irq)
622 		info->data->clear_irq(info);
623 
624 	complete(&info->completion);
625 
626 	return IRQ_HANDLED;
627 }
628 
629 /*
630  * Here we (ab)use a threaded interrupt handler to stay running
631  * for as long as the touchscreen remains pressed, we report
632  * a new event with the latest data and then sleep until the
633  * next timer tick. This mirrors the behavior of the old
634  * driver, with much less code.
635  */
636 static irqreturn_t exynos_ts_isr(int irq, void *dev_id)
637 {
638 	struct exynos_adc *info = dev_id;
639 	struct iio_dev *dev = dev_get_drvdata(info->dev);
640 	u32 x, y;
641 	bool pressed;
642 	int ret;
643 
644 	while (info->input->users) {
645 		ret = exynos_read_s3c64xx_ts(dev, &x, &y);
646 		if (ret == -ETIMEDOUT)
647 			break;
648 
649 		pressed = x & y & ADC_DATX_PRESSED;
650 		if (!pressed) {
651 			input_report_key(info->input, BTN_TOUCH, 0);
652 			input_sync(info->input);
653 			break;
654 		}
655 
656 		input_report_abs(info->input, ABS_X, x & ADC_DATX_MASK);
657 		input_report_abs(info->input, ABS_Y, y & ADC_DATY_MASK);
658 		input_report_key(info->input, BTN_TOUCH, 1);
659 		input_sync(info->input);
660 
661 		usleep_range(1000, 1100);
662 	}
663 
664 	writel(0, ADC_V1_CLRINTPNDNUP(info->regs));
665 
666 	return IRQ_HANDLED;
667 }
668 
669 static int exynos_adc_reg_access(struct iio_dev *indio_dev,
670 			      unsigned reg, unsigned writeval,
671 			      unsigned *readval)
672 {
673 	struct exynos_adc *info = iio_priv(indio_dev);
674 
675 	if (readval == NULL)
676 		return -EINVAL;
677 
678 	*readval = readl(info->regs + reg);
679 
680 	return 0;
681 }
682 
683 static const struct iio_info exynos_adc_iio_info = {
684 	.read_raw = &exynos_read_raw,
685 	.debugfs_reg_access = &exynos_adc_reg_access,
686 };
687 
688 #define ADC_CHANNEL(_index, _id) {			\
689 	.type = IIO_VOLTAGE,				\
690 	.indexed = 1,					\
691 	.channel = _index,				\
692 	.address = _index,				\
693 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),	\
694 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SCALE),	\
695 	.datasheet_name = _id,				\
696 }
697 
698 static const struct iio_chan_spec exynos_adc_iio_channels[] = {
699 	ADC_CHANNEL(0, "adc0"),
700 	ADC_CHANNEL(1, "adc1"),
701 	ADC_CHANNEL(2, "adc2"),
702 	ADC_CHANNEL(3, "adc3"),
703 	ADC_CHANNEL(4, "adc4"),
704 	ADC_CHANNEL(5, "adc5"),
705 	ADC_CHANNEL(6, "adc6"),
706 	ADC_CHANNEL(7, "adc7"),
707 	ADC_CHANNEL(8, "adc8"),
708 	ADC_CHANNEL(9, "adc9"),
709 };
710 
711 static int exynos_adc_remove_devices(struct device *dev, void *c)
712 {
713 	struct platform_device *pdev = to_platform_device(dev);
714 
715 	platform_device_unregister(pdev);
716 
717 	return 0;
718 }
719 
720 static int exynos_adc_ts_open(struct input_dev *dev)
721 {
722 	struct exynos_adc *info = input_get_drvdata(dev);
723 
724 	enable_irq(info->tsirq);
725 
726 	return 0;
727 }
728 
729 static void exynos_adc_ts_close(struct input_dev *dev)
730 {
731 	struct exynos_adc *info = input_get_drvdata(dev);
732 
733 	disable_irq(info->tsirq);
734 }
735 
736 static int exynos_adc_ts_init(struct exynos_adc *info)
737 {
738 	int ret;
739 
740 	if (info->tsirq <= 0)
741 		return -ENODEV;
742 
743 	info->input = input_allocate_device();
744 	if (!info->input)
745 		return -ENOMEM;
746 
747 	info->input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
748 	info->input->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
749 
750 	input_set_abs_params(info->input, ABS_X, 0, 0x3FF, 0, 0);
751 	input_set_abs_params(info->input, ABS_Y, 0, 0x3FF, 0, 0);
752 
753 	info->input->name = "S3C24xx TouchScreen";
754 	info->input->id.bustype = BUS_HOST;
755 	info->input->open = exynos_adc_ts_open;
756 	info->input->close = exynos_adc_ts_close;
757 
758 	input_set_drvdata(info->input, info);
759 
760 	ret = input_register_device(info->input);
761 	if (ret) {
762 		input_free_device(info->input);
763 		return ret;
764 	}
765 
766 	disable_irq(info->tsirq);
767 	ret = request_threaded_irq(info->tsirq, NULL, exynos_ts_isr,
768 				   IRQF_ONESHOT, "touchscreen", info);
769 	if (ret)
770 		input_unregister_device(info->input);
771 
772 	return ret;
773 }
774 
775 static int exynos_adc_probe(struct platform_device *pdev)
776 {
777 	struct exynos_adc *info = NULL;
778 	struct device_node *np = pdev->dev.of_node;
779 	struct s3c2410_ts_mach_info *pdata = dev_get_platdata(&pdev->dev);
780 	struct iio_dev *indio_dev = NULL;
781 	bool has_ts = false;
782 	int ret = -ENODEV;
783 	int irq;
784 
785 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(struct exynos_adc));
786 	if (!indio_dev) {
787 		dev_err(&pdev->dev, "failed allocating iio device\n");
788 		return -ENOMEM;
789 	}
790 
791 	info = iio_priv(indio_dev);
792 
793 	info->data = exynos_adc_get_data(pdev);
794 	if (!info->data) {
795 		dev_err(&pdev->dev, "failed getting exynos_adc_data\n");
796 		return -EINVAL;
797 	}
798 
799 	info->regs = devm_platform_ioremap_resource(pdev, 0);
800 	if (IS_ERR(info->regs))
801 		return PTR_ERR(info->regs);
802 
803 
804 	if (info->data->needs_adc_phy) {
805 		info->pmu_map = syscon_regmap_lookup_by_phandle(
806 					pdev->dev.of_node,
807 					"samsung,syscon-phandle");
808 		if (IS_ERR(info->pmu_map)) {
809 			dev_err(&pdev->dev, "syscon regmap lookup failed.\n");
810 			return PTR_ERR(info->pmu_map);
811 		}
812 	}
813 
814 	irq = platform_get_irq(pdev, 0);
815 	if (irq < 0)
816 		return irq;
817 	info->irq = irq;
818 
819 	irq = platform_get_irq(pdev, 1);
820 	if (irq == -EPROBE_DEFER)
821 		return irq;
822 
823 	info->tsirq = irq;
824 
825 	info->dev = &pdev->dev;
826 
827 	init_completion(&info->completion);
828 
829 	info->clk = devm_clk_get(&pdev->dev, "adc");
830 	if (IS_ERR(info->clk)) {
831 		dev_err(&pdev->dev, "failed getting clock, err = %ld\n",
832 							PTR_ERR(info->clk));
833 		return PTR_ERR(info->clk);
834 	}
835 
836 	if (info->data->needs_sclk) {
837 		info->sclk = devm_clk_get(&pdev->dev, "sclk");
838 		if (IS_ERR(info->sclk)) {
839 			dev_err(&pdev->dev,
840 				"failed getting sclk clock, err = %ld\n",
841 				PTR_ERR(info->sclk));
842 			return PTR_ERR(info->sclk);
843 		}
844 	}
845 
846 	info->vdd = devm_regulator_get(&pdev->dev, "vdd");
847 	if (IS_ERR(info->vdd)) {
848 		if (PTR_ERR(info->vdd) != -EPROBE_DEFER)
849 			dev_err(&pdev->dev,
850 				"failed getting regulator, err = %ld\n",
851 				PTR_ERR(info->vdd));
852 		return PTR_ERR(info->vdd);
853 	}
854 
855 	ret = regulator_enable(info->vdd);
856 	if (ret)
857 		return ret;
858 
859 	ret = exynos_adc_prepare_clk(info);
860 	if (ret)
861 		goto err_disable_reg;
862 
863 	ret = exynos_adc_enable_clk(info);
864 	if (ret)
865 		goto err_unprepare_clk;
866 
867 	platform_set_drvdata(pdev, indio_dev);
868 
869 	indio_dev->name = dev_name(&pdev->dev);
870 	indio_dev->dev.parent = &pdev->dev;
871 	indio_dev->dev.of_node = pdev->dev.of_node;
872 	indio_dev->info = &exynos_adc_iio_info;
873 	indio_dev->modes = INDIO_DIRECT_MODE;
874 	indio_dev->channels = exynos_adc_iio_channels;
875 	indio_dev->num_channels = info->data->num_channels;
876 
877 	ret = request_irq(info->irq, exynos_adc_isr,
878 					0, dev_name(&pdev->dev), info);
879 	if (ret < 0) {
880 		dev_err(&pdev->dev, "failed requesting irq, irq = %d\n",
881 							info->irq);
882 		goto err_disable_clk;
883 	}
884 
885 	ret = iio_device_register(indio_dev);
886 	if (ret)
887 		goto err_irq;
888 
889 	if (info->data->init_hw)
890 		info->data->init_hw(info);
891 
892 	/* leave out any TS related code if unreachable */
893 	if (IS_REACHABLE(CONFIG_INPUT)) {
894 		has_ts = of_property_read_bool(pdev->dev.of_node,
895 					       "has-touchscreen") || pdata;
896 	}
897 
898 	if (pdata)
899 		info->delay = pdata->delay;
900 	else
901 		info->delay = 10000;
902 
903 	if (has_ts)
904 		ret = exynos_adc_ts_init(info);
905 	if (ret)
906 		goto err_iio;
907 
908 	ret = of_platform_populate(np, exynos_adc_match, NULL, &indio_dev->dev);
909 	if (ret < 0) {
910 		dev_err(&pdev->dev, "failed adding child nodes\n");
911 		goto err_of_populate;
912 	}
913 
914 	return 0;
915 
916 err_of_populate:
917 	device_for_each_child(&indio_dev->dev, NULL,
918 				exynos_adc_remove_devices);
919 	if (has_ts) {
920 		input_unregister_device(info->input);
921 		free_irq(info->tsirq, info);
922 	}
923 err_iio:
924 	iio_device_unregister(indio_dev);
925 err_irq:
926 	free_irq(info->irq, info);
927 err_disable_clk:
928 	if (info->data->exit_hw)
929 		info->data->exit_hw(info);
930 	exynos_adc_disable_clk(info);
931 err_unprepare_clk:
932 	exynos_adc_unprepare_clk(info);
933 err_disable_reg:
934 	regulator_disable(info->vdd);
935 	return ret;
936 }
937 
938 static int exynos_adc_remove(struct platform_device *pdev)
939 {
940 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
941 	struct exynos_adc *info = iio_priv(indio_dev);
942 
943 	if (IS_REACHABLE(CONFIG_INPUT) && info->input) {
944 		free_irq(info->tsirq, info);
945 		input_unregister_device(info->input);
946 	}
947 	device_for_each_child(&indio_dev->dev, NULL,
948 				exynos_adc_remove_devices);
949 	iio_device_unregister(indio_dev);
950 	free_irq(info->irq, info);
951 	if (info->data->exit_hw)
952 		info->data->exit_hw(info);
953 	exynos_adc_disable_clk(info);
954 	exynos_adc_unprepare_clk(info);
955 	regulator_disable(info->vdd);
956 
957 	return 0;
958 }
959 
960 #ifdef CONFIG_PM_SLEEP
961 static int exynos_adc_suspend(struct device *dev)
962 {
963 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
964 	struct exynos_adc *info = iio_priv(indio_dev);
965 
966 	if (info->data->exit_hw)
967 		info->data->exit_hw(info);
968 	exynos_adc_disable_clk(info);
969 	regulator_disable(info->vdd);
970 
971 	return 0;
972 }
973 
974 static int exynos_adc_resume(struct device *dev)
975 {
976 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
977 	struct exynos_adc *info = iio_priv(indio_dev);
978 	int ret;
979 
980 	ret = regulator_enable(info->vdd);
981 	if (ret)
982 		return ret;
983 
984 	ret = exynos_adc_enable_clk(info);
985 	if (ret)
986 		return ret;
987 
988 	if (info->data->init_hw)
989 		info->data->init_hw(info);
990 
991 	return 0;
992 }
993 #endif
994 
995 static SIMPLE_DEV_PM_OPS(exynos_adc_pm_ops,
996 			exynos_adc_suspend,
997 			exynos_adc_resume);
998 
999 static struct platform_driver exynos_adc_driver = {
1000 	.probe		= exynos_adc_probe,
1001 	.remove		= exynos_adc_remove,
1002 	.driver		= {
1003 		.name	= "exynos-adc",
1004 		.of_match_table = exynos_adc_match,
1005 		.pm	= &exynos_adc_pm_ops,
1006 	},
1007 };
1008 
1009 module_platform_driver(exynos_adc_driver);
1010 
1011 MODULE_AUTHOR("Naveen Krishna Chatradhi <ch.naveen@samsung.com>");
1012 MODULE_DESCRIPTION("Samsung EXYNOS5 ADC driver");
1013 MODULE_LICENSE("GPL v2");
1014