xref: /openbmc/linux/drivers/iio/adc/exynos_adc.c (revision 07d9a767)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  exynos_adc.c - Support for ADC in EXYNOS SoCs
4  *
5  *  8 ~ 10 channel, 10/12-bit ADC
6  *
7  *  Copyright (C) 2013 Naveen Krishna Chatradhi <ch.naveen@samsung.com>
8  */
9 
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/interrupt.h>
13 #include <linux/delay.h>
14 #include <linux/errno.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/io.h>
18 #include <linux/clk.h>
19 #include <linux/completion.h>
20 #include <linux/of.h>
21 #include <linux/of_irq.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/of_platform.h>
24 #include <linux/err.h>
25 #include <linux/input.h>
26 
27 #include <linux/iio/iio.h>
28 #include <linux/iio/machine.h>
29 #include <linux/iio/driver.h>
30 #include <linux/mfd/syscon.h>
31 #include <linux/regmap.h>
32 
33 #include <linux/platform_data/touchscreen-s3c2410.h>
34 
35 /* S3C/EXYNOS4412/5250 ADC_V1 registers definitions */
36 #define ADC_V1_CON(x)		((x) + 0x00)
37 #define ADC_V1_TSC(x)		((x) + 0x04)
38 #define ADC_V1_DLY(x)		((x) + 0x08)
39 #define ADC_V1_DATX(x)		((x) + 0x0C)
40 #define ADC_V1_DATY(x)		((x) + 0x10)
41 #define ADC_V1_UPDN(x)		((x) + 0x14)
42 #define ADC_V1_INTCLR(x)	((x) + 0x18)
43 #define ADC_V1_MUX(x)		((x) + 0x1c)
44 #define ADC_V1_CLRINTPNDNUP(x)	((x) + 0x20)
45 
46 /* S3C2410 ADC registers definitions */
47 #define ADC_S3C2410_MUX(x)	((x) + 0x18)
48 
49 /* Future ADC_V2 registers definitions */
50 #define ADC_V2_CON1(x)		((x) + 0x00)
51 #define ADC_V2_CON2(x)		((x) + 0x04)
52 #define ADC_V2_STAT(x)		((x) + 0x08)
53 #define ADC_V2_INT_EN(x)	((x) + 0x10)
54 #define ADC_V2_INT_ST(x)	((x) + 0x14)
55 #define ADC_V2_VER(x)		((x) + 0x20)
56 
57 /* Bit definitions for ADC_V1 */
58 #define ADC_V1_CON_RES		(1u << 16)
59 #define ADC_V1_CON_PRSCEN	(1u << 14)
60 #define ADC_V1_CON_PRSCLV(x)	(((x) & 0xFF) << 6)
61 #define ADC_V1_CON_STANDBY	(1u << 2)
62 
63 /* Bit definitions for S3C2410 ADC */
64 #define ADC_S3C2410_CON_SELMUX(x) (((x) & 7) << 3)
65 #define ADC_S3C2410_DATX_MASK	0x3FF
66 #define ADC_S3C2416_CON_RES_SEL	(1u << 3)
67 
68 /* touch screen always uses channel 0 */
69 #define ADC_S3C2410_MUX_TS	0
70 
71 /* ADCTSC Register Bits */
72 #define ADC_S3C2443_TSC_UD_SEN		(1u << 8)
73 #define ADC_S3C2410_TSC_YM_SEN		(1u << 7)
74 #define ADC_S3C2410_TSC_YP_SEN		(1u << 6)
75 #define ADC_S3C2410_TSC_XM_SEN		(1u << 5)
76 #define ADC_S3C2410_TSC_XP_SEN		(1u << 4)
77 #define ADC_S3C2410_TSC_PULL_UP_DISABLE	(1u << 3)
78 #define ADC_S3C2410_TSC_AUTO_PST	(1u << 2)
79 #define ADC_S3C2410_TSC_XY_PST(x)	(((x) & 0x3) << 0)
80 
81 #define ADC_TSC_WAIT4INT (ADC_S3C2410_TSC_YM_SEN | \
82 			 ADC_S3C2410_TSC_YP_SEN | \
83 			 ADC_S3C2410_TSC_XP_SEN | \
84 			 ADC_S3C2410_TSC_XY_PST(3))
85 
86 #define ADC_TSC_AUTOPST	(ADC_S3C2410_TSC_YM_SEN | \
87 			 ADC_S3C2410_TSC_YP_SEN | \
88 			 ADC_S3C2410_TSC_XP_SEN | \
89 			 ADC_S3C2410_TSC_AUTO_PST | \
90 			 ADC_S3C2410_TSC_XY_PST(0))
91 
92 /* Bit definitions for ADC_V2 */
93 #define ADC_V2_CON1_SOFT_RESET	(1u << 2)
94 
95 #define ADC_V2_CON2_OSEL	(1u << 10)
96 #define ADC_V2_CON2_ESEL	(1u << 9)
97 #define ADC_V2_CON2_HIGHF	(1u << 8)
98 #define ADC_V2_CON2_C_TIME(x)	(((x) & 7) << 4)
99 #define ADC_V2_CON2_ACH_SEL(x)	(((x) & 0xF) << 0)
100 #define ADC_V2_CON2_ACH_MASK	0xF
101 
102 #define MAX_ADC_V2_CHANNELS		10
103 #define MAX_ADC_V1_CHANNELS		8
104 #define MAX_EXYNOS3250_ADC_CHANNELS	2
105 #define MAX_EXYNOS4212_ADC_CHANNELS	4
106 #define MAX_S5PV210_ADC_CHANNELS	10
107 
108 /* Bit definitions common for ADC_V1 and ADC_V2 */
109 #define ADC_CON_EN_START	(1u << 0)
110 #define ADC_CON_EN_START_MASK	(0x3 << 0)
111 #define ADC_DATX_PRESSED	(1u << 15)
112 #define ADC_DATX_MASK		0xFFF
113 #define ADC_DATY_MASK		0xFFF
114 
115 #define EXYNOS_ADC_TIMEOUT	(msecs_to_jiffies(100))
116 
117 #define EXYNOS_ADCV1_PHY_OFFSET	0x0718
118 #define EXYNOS_ADCV2_PHY_OFFSET	0x0720
119 
120 struct exynos_adc {
121 	struct exynos_adc_data	*data;
122 	struct device		*dev;
123 	struct input_dev	*input;
124 	void __iomem		*regs;
125 	struct regmap		*pmu_map;
126 	struct clk		*clk;
127 	struct clk		*sclk;
128 	unsigned int		irq;
129 	unsigned int		tsirq;
130 	unsigned int		delay;
131 	struct regulator	*vdd;
132 
133 	struct completion	completion;
134 
135 	u32			value;
136 	unsigned int            version;
137 
138 	bool			read_ts;
139 	u32			ts_x;
140 	u32			ts_y;
141 
142 	/*
143 	 * Lock to protect from potential concurrent access to the
144 	 * completion callback during a manual conversion. For this driver
145 	 * a wait-callback is used to wait for the conversion result,
146 	 * so in the meantime no other read request (or conversion start)
147 	 * must be performed, otherwise it would interfere with the
148 	 * current conversion result.
149 	 */
150 	struct mutex		lock;
151 };
152 
153 struct exynos_adc_data {
154 	int num_channels;
155 	bool needs_sclk;
156 	bool needs_adc_phy;
157 	int phy_offset;
158 	u32 mask;
159 
160 	void (*init_hw)(struct exynos_adc *info);
161 	void (*exit_hw)(struct exynos_adc *info);
162 	void (*clear_irq)(struct exynos_adc *info);
163 	void (*start_conv)(struct exynos_adc *info, unsigned long addr);
164 };
165 
166 static void exynos_adc_unprepare_clk(struct exynos_adc *info)
167 {
168 	if (info->data->needs_sclk)
169 		clk_unprepare(info->sclk);
170 	clk_unprepare(info->clk);
171 }
172 
173 static int exynos_adc_prepare_clk(struct exynos_adc *info)
174 {
175 	int ret;
176 
177 	ret = clk_prepare(info->clk);
178 	if (ret) {
179 		dev_err(info->dev, "failed preparing adc clock: %d\n", ret);
180 		return ret;
181 	}
182 
183 	if (info->data->needs_sclk) {
184 		ret = clk_prepare(info->sclk);
185 		if (ret) {
186 			clk_unprepare(info->clk);
187 			dev_err(info->dev,
188 				"failed preparing sclk_adc clock: %d\n", ret);
189 			return ret;
190 		}
191 	}
192 
193 	return 0;
194 }
195 
196 static void exynos_adc_disable_clk(struct exynos_adc *info)
197 {
198 	if (info->data->needs_sclk)
199 		clk_disable(info->sclk);
200 	clk_disable(info->clk);
201 }
202 
203 static int exynos_adc_enable_clk(struct exynos_adc *info)
204 {
205 	int ret;
206 
207 	ret = clk_enable(info->clk);
208 	if (ret) {
209 		dev_err(info->dev, "failed enabling adc clock: %d\n", ret);
210 		return ret;
211 	}
212 
213 	if (info->data->needs_sclk) {
214 		ret = clk_enable(info->sclk);
215 		if (ret) {
216 			clk_disable(info->clk);
217 			dev_err(info->dev,
218 				"failed enabling sclk_adc clock: %d\n", ret);
219 			return ret;
220 		}
221 	}
222 
223 	return 0;
224 }
225 
226 static void exynos_adc_v1_init_hw(struct exynos_adc *info)
227 {
228 	u32 con1;
229 
230 	if (info->data->needs_adc_phy)
231 		regmap_write(info->pmu_map, info->data->phy_offset, 1);
232 
233 	/* set default prescaler values and Enable prescaler */
234 	con1 =  ADC_V1_CON_PRSCLV(49) | ADC_V1_CON_PRSCEN;
235 
236 	/* Enable 12-bit ADC resolution */
237 	con1 |= ADC_V1_CON_RES;
238 	writel(con1, ADC_V1_CON(info->regs));
239 
240 	/* set touchscreen delay */
241 	writel(info->delay, ADC_V1_DLY(info->regs));
242 }
243 
244 static void exynos_adc_v1_exit_hw(struct exynos_adc *info)
245 {
246 	u32 con;
247 
248 	if (info->data->needs_adc_phy)
249 		regmap_write(info->pmu_map, info->data->phy_offset, 0);
250 
251 	con = readl(ADC_V1_CON(info->regs));
252 	con |= ADC_V1_CON_STANDBY;
253 	writel(con, ADC_V1_CON(info->regs));
254 }
255 
256 static void exynos_adc_v1_clear_irq(struct exynos_adc *info)
257 {
258 	writel(1, ADC_V1_INTCLR(info->regs));
259 }
260 
261 static void exynos_adc_v1_start_conv(struct exynos_adc *info,
262 				     unsigned long addr)
263 {
264 	u32 con1;
265 
266 	writel(addr, ADC_V1_MUX(info->regs));
267 
268 	con1 = readl(ADC_V1_CON(info->regs));
269 	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
270 }
271 
272 /* Exynos4212 and 4412 is like ADCv1 but with four channels only */
273 static const struct exynos_adc_data exynos4212_adc_data = {
274 	.num_channels	= MAX_EXYNOS4212_ADC_CHANNELS,
275 	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
276 	.needs_adc_phy	= true,
277 	.phy_offset	= EXYNOS_ADCV1_PHY_OFFSET,
278 
279 	.init_hw	= exynos_adc_v1_init_hw,
280 	.exit_hw	= exynos_adc_v1_exit_hw,
281 	.clear_irq	= exynos_adc_v1_clear_irq,
282 	.start_conv	= exynos_adc_v1_start_conv,
283 };
284 
285 static const struct exynos_adc_data exynos_adc_v1_data = {
286 	.num_channels	= MAX_ADC_V1_CHANNELS,
287 	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
288 	.needs_adc_phy	= true,
289 	.phy_offset	= EXYNOS_ADCV1_PHY_OFFSET,
290 
291 	.init_hw	= exynos_adc_v1_init_hw,
292 	.exit_hw	= exynos_adc_v1_exit_hw,
293 	.clear_irq	= exynos_adc_v1_clear_irq,
294 	.start_conv	= exynos_adc_v1_start_conv,
295 };
296 
297 static const struct exynos_adc_data exynos_adc_s5pv210_data = {
298 	.num_channels	= MAX_S5PV210_ADC_CHANNELS,
299 	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
300 
301 	.init_hw	= exynos_adc_v1_init_hw,
302 	.exit_hw	= exynos_adc_v1_exit_hw,
303 	.clear_irq	= exynos_adc_v1_clear_irq,
304 	.start_conv	= exynos_adc_v1_start_conv,
305 };
306 
307 static void exynos_adc_s3c2416_start_conv(struct exynos_adc *info,
308 					  unsigned long addr)
309 {
310 	u32 con1;
311 
312 	/* Enable 12 bit ADC resolution */
313 	con1 = readl(ADC_V1_CON(info->regs));
314 	con1 |= ADC_S3C2416_CON_RES_SEL;
315 	writel(con1, ADC_V1_CON(info->regs));
316 
317 	/* Select channel for S3C2416 */
318 	writel(addr, ADC_S3C2410_MUX(info->regs));
319 
320 	con1 = readl(ADC_V1_CON(info->regs));
321 	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
322 }
323 
324 static struct exynos_adc_data const exynos_adc_s3c2416_data = {
325 	.num_channels	= MAX_ADC_V1_CHANNELS,
326 	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
327 
328 	.init_hw	= exynos_adc_v1_init_hw,
329 	.exit_hw	= exynos_adc_v1_exit_hw,
330 	.start_conv	= exynos_adc_s3c2416_start_conv,
331 };
332 
333 static void exynos_adc_s3c2443_start_conv(struct exynos_adc *info,
334 					  unsigned long addr)
335 {
336 	u32 con1;
337 
338 	/* Select channel for S3C2433 */
339 	writel(addr, ADC_S3C2410_MUX(info->regs));
340 
341 	con1 = readl(ADC_V1_CON(info->regs));
342 	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
343 }
344 
345 static struct exynos_adc_data const exynos_adc_s3c2443_data = {
346 	.num_channels	= MAX_ADC_V1_CHANNELS,
347 	.mask		= ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
348 
349 	.init_hw	= exynos_adc_v1_init_hw,
350 	.exit_hw	= exynos_adc_v1_exit_hw,
351 	.start_conv	= exynos_adc_s3c2443_start_conv,
352 };
353 
354 static void exynos_adc_s3c64xx_start_conv(struct exynos_adc *info,
355 					  unsigned long addr)
356 {
357 	u32 con1;
358 
359 	con1 = readl(ADC_V1_CON(info->regs));
360 	con1 &= ~ADC_S3C2410_CON_SELMUX(0x7);
361 	con1 |= ADC_S3C2410_CON_SELMUX(addr);
362 	writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
363 }
364 
365 static struct exynos_adc_data const exynos_adc_s3c24xx_data = {
366 	.num_channels	= MAX_ADC_V1_CHANNELS,
367 	.mask		= ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
368 
369 	.init_hw	= exynos_adc_v1_init_hw,
370 	.exit_hw	= exynos_adc_v1_exit_hw,
371 	.start_conv	= exynos_adc_s3c64xx_start_conv,
372 };
373 
374 static struct exynos_adc_data const exynos_adc_s3c64xx_data = {
375 	.num_channels	= MAX_ADC_V1_CHANNELS,
376 	.mask		= ADC_DATX_MASK,	/* 12 bit ADC resolution */
377 
378 	.init_hw	= exynos_adc_v1_init_hw,
379 	.exit_hw	= exynos_adc_v1_exit_hw,
380 	.clear_irq	= exynos_adc_v1_clear_irq,
381 	.start_conv	= exynos_adc_s3c64xx_start_conv,
382 };
383 
384 static void exynos_adc_v2_init_hw(struct exynos_adc *info)
385 {
386 	u32 con1, con2;
387 
388 	if (info->data->needs_adc_phy)
389 		regmap_write(info->pmu_map, info->data->phy_offset, 1);
390 
391 	con1 = ADC_V2_CON1_SOFT_RESET;
392 	writel(con1, ADC_V2_CON1(info->regs));
393 
394 	con2 = ADC_V2_CON2_OSEL | ADC_V2_CON2_ESEL |
395 		ADC_V2_CON2_HIGHF | ADC_V2_CON2_C_TIME(0);
396 	writel(con2, ADC_V2_CON2(info->regs));
397 
398 	/* Enable interrupts */
399 	writel(1, ADC_V2_INT_EN(info->regs));
400 }
401 
402 static void exynos_adc_v2_exit_hw(struct exynos_adc *info)
403 {
404 	u32 con;
405 
406 	if (info->data->needs_adc_phy)
407 		regmap_write(info->pmu_map, info->data->phy_offset, 0);
408 
409 	con = readl(ADC_V2_CON1(info->regs));
410 	con &= ~ADC_CON_EN_START;
411 	writel(con, ADC_V2_CON1(info->regs));
412 }
413 
414 static void exynos_adc_v2_clear_irq(struct exynos_adc *info)
415 {
416 	writel(1, ADC_V2_INT_ST(info->regs));
417 }
418 
419 static void exynos_adc_v2_start_conv(struct exynos_adc *info,
420 				     unsigned long addr)
421 {
422 	u32 con1, con2;
423 
424 	con2 = readl(ADC_V2_CON2(info->regs));
425 	con2 &= ~ADC_V2_CON2_ACH_MASK;
426 	con2 |= ADC_V2_CON2_ACH_SEL(addr);
427 	writel(con2, ADC_V2_CON2(info->regs));
428 
429 	con1 = readl(ADC_V2_CON1(info->regs));
430 	writel(con1 | ADC_CON_EN_START, ADC_V2_CON1(info->regs));
431 }
432 
433 static const struct exynos_adc_data exynos_adc_v2_data = {
434 	.num_channels	= MAX_ADC_V2_CHANNELS,
435 	.mask		= ADC_DATX_MASK, /* 12 bit ADC resolution */
436 	.needs_adc_phy	= true,
437 	.phy_offset	= EXYNOS_ADCV2_PHY_OFFSET,
438 
439 	.init_hw	= exynos_adc_v2_init_hw,
440 	.exit_hw	= exynos_adc_v2_exit_hw,
441 	.clear_irq	= exynos_adc_v2_clear_irq,
442 	.start_conv	= exynos_adc_v2_start_conv,
443 };
444 
445 static const struct exynos_adc_data exynos3250_adc_data = {
446 	.num_channels	= MAX_EXYNOS3250_ADC_CHANNELS,
447 	.mask		= ADC_DATX_MASK, /* 12 bit ADC resolution */
448 	.needs_sclk	= true,
449 	.needs_adc_phy	= true,
450 	.phy_offset	= EXYNOS_ADCV1_PHY_OFFSET,
451 
452 	.init_hw	= exynos_adc_v2_init_hw,
453 	.exit_hw	= exynos_adc_v2_exit_hw,
454 	.clear_irq	= exynos_adc_v2_clear_irq,
455 	.start_conv	= exynos_adc_v2_start_conv,
456 };
457 
458 static void exynos_adc_exynos7_init_hw(struct exynos_adc *info)
459 {
460 	u32 con1, con2;
461 
462 	con1 = ADC_V2_CON1_SOFT_RESET;
463 	writel(con1, ADC_V2_CON1(info->regs));
464 
465 	con2 = readl(ADC_V2_CON2(info->regs));
466 	con2 &= ~ADC_V2_CON2_C_TIME(7);
467 	con2 |= ADC_V2_CON2_C_TIME(0);
468 	writel(con2, ADC_V2_CON2(info->regs));
469 
470 	/* Enable interrupts */
471 	writel(1, ADC_V2_INT_EN(info->regs));
472 }
473 
474 static const struct exynos_adc_data exynos7_adc_data = {
475 	.num_channels	= MAX_ADC_V1_CHANNELS,
476 	.mask		= ADC_DATX_MASK, /* 12 bit ADC resolution */
477 
478 	.init_hw	= exynos_adc_exynos7_init_hw,
479 	.exit_hw	= exynos_adc_v2_exit_hw,
480 	.clear_irq	= exynos_adc_v2_clear_irq,
481 	.start_conv	= exynos_adc_v2_start_conv,
482 };
483 
484 static const struct of_device_id exynos_adc_match[] = {
485 	{
486 		.compatible = "samsung,s3c2410-adc",
487 		.data = &exynos_adc_s3c24xx_data,
488 	}, {
489 		.compatible = "samsung,s3c2416-adc",
490 		.data = &exynos_adc_s3c2416_data,
491 	}, {
492 		.compatible = "samsung,s3c2440-adc",
493 		.data = &exynos_adc_s3c24xx_data,
494 	}, {
495 		.compatible = "samsung,s3c2443-adc",
496 		.data = &exynos_adc_s3c2443_data,
497 	}, {
498 		.compatible = "samsung,s3c6410-adc",
499 		.data = &exynos_adc_s3c64xx_data,
500 	}, {
501 		.compatible = "samsung,s5pv210-adc",
502 		.data = &exynos_adc_s5pv210_data,
503 	}, {
504 		.compatible = "samsung,exynos4212-adc",
505 		.data = &exynos4212_adc_data,
506 	}, {
507 		.compatible = "samsung,exynos-adc-v1",
508 		.data = &exynos_adc_v1_data,
509 	}, {
510 		.compatible = "samsung,exynos-adc-v2",
511 		.data = &exynos_adc_v2_data,
512 	}, {
513 		.compatible = "samsung,exynos3250-adc",
514 		.data = &exynos3250_adc_data,
515 	}, {
516 		.compatible = "samsung,exynos7-adc",
517 		.data = &exynos7_adc_data,
518 	},
519 	{},
520 };
521 MODULE_DEVICE_TABLE(of, exynos_adc_match);
522 
523 static struct exynos_adc_data *exynos_adc_get_data(struct platform_device *pdev)
524 {
525 	const struct of_device_id *match;
526 
527 	match = of_match_node(exynos_adc_match, pdev->dev.of_node);
528 	return (struct exynos_adc_data *)match->data;
529 }
530 
531 static int exynos_read_raw(struct iio_dev *indio_dev,
532 				struct iio_chan_spec const *chan,
533 				int *val,
534 				int *val2,
535 				long mask)
536 {
537 	struct exynos_adc *info = iio_priv(indio_dev);
538 	unsigned long timeout;
539 	int ret;
540 
541 	if (mask == IIO_CHAN_INFO_SCALE) {
542 		ret = regulator_get_voltage(info->vdd);
543 		if (ret < 0)
544 			return ret;
545 
546 		/* Regulator voltage is in uV, but need mV */
547 		*val = ret / 1000;
548 		*val2 = info->data->mask;
549 
550 		return IIO_VAL_FRACTIONAL;
551 	} else if (mask != IIO_CHAN_INFO_RAW) {
552 		return -EINVAL;
553 	}
554 
555 	mutex_lock(&info->lock);
556 	reinit_completion(&info->completion);
557 
558 	/* Select the channel to be used and Trigger conversion */
559 	if (info->data->start_conv)
560 		info->data->start_conv(info, chan->address);
561 
562 	timeout = wait_for_completion_timeout(&info->completion,
563 					      EXYNOS_ADC_TIMEOUT);
564 	if (timeout == 0) {
565 		dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
566 		if (info->data->init_hw)
567 			info->data->init_hw(info);
568 		ret = -ETIMEDOUT;
569 	} else {
570 		*val = info->value;
571 		*val2 = 0;
572 		ret = IIO_VAL_INT;
573 	}
574 
575 	mutex_unlock(&info->lock);
576 
577 	return ret;
578 }
579 
580 static int exynos_read_s3c64xx_ts(struct iio_dev *indio_dev, int *x, int *y)
581 {
582 	struct exynos_adc *info = iio_priv(indio_dev);
583 	unsigned long timeout;
584 	int ret;
585 
586 	mutex_lock(&info->lock);
587 	info->read_ts = true;
588 
589 	reinit_completion(&info->completion);
590 
591 	writel(ADC_S3C2410_TSC_PULL_UP_DISABLE | ADC_TSC_AUTOPST,
592 	       ADC_V1_TSC(info->regs));
593 
594 	/* Select the ts channel to be used and Trigger conversion */
595 	info->data->start_conv(info, ADC_S3C2410_MUX_TS);
596 
597 	timeout = wait_for_completion_timeout(&info->completion,
598 					      EXYNOS_ADC_TIMEOUT);
599 	if (timeout == 0) {
600 		dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
601 		if (info->data->init_hw)
602 			info->data->init_hw(info);
603 		ret = -ETIMEDOUT;
604 	} else {
605 		*x = info->ts_x;
606 		*y = info->ts_y;
607 		ret = 0;
608 	}
609 
610 	info->read_ts = false;
611 	mutex_unlock(&info->lock);
612 
613 	return ret;
614 }
615 
616 static irqreturn_t exynos_adc_isr(int irq, void *dev_id)
617 {
618 	struct exynos_adc *info = dev_id;
619 	u32 mask = info->data->mask;
620 
621 	/* Read value */
622 	if (info->read_ts) {
623 		info->ts_x = readl(ADC_V1_DATX(info->regs));
624 		info->ts_y = readl(ADC_V1_DATY(info->regs));
625 		writel(ADC_TSC_WAIT4INT | ADC_S3C2443_TSC_UD_SEN, ADC_V1_TSC(info->regs));
626 	} else {
627 		info->value = readl(ADC_V1_DATX(info->regs)) & mask;
628 	}
629 
630 	/* clear irq */
631 	if (info->data->clear_irq)
632 		info->data->clear_irq(info);
633 
634 	complete(&info->completion);
635 
636 	return IRQ_HANDLED;
637 }
638 
639 /*
640  * Here we (ab)use a threaded interrupt handler to stay running
641  * for as long as the touchscreen remains pressed, we report
642  * a new event with the latest data and then sleep until the
643  * next timer tick. This mirrors the behavior of the old
644  * driver, with much less code.
645  */
646 static irqreturn_t exynos_ts_isr(int irq, void *dev_id)
647 {
648 	struct exynos_adc *info = dev_id;
649 	struct iio_dev *dev = dev_get_drvdata(info->dev);
650 	u32 x, y;
651 	bool pressed;
652 	int ret;
653 
654 	while (info->input->users) {
655 		ret = exynos_read_s3c64xx_ts(dev, &x, &y);
656 		if (ret == -ETIMEDOUT)
657 			break;
658 
659 		pressed = x & y & ADC_DATX_PRESSED;
660 		if (!pressed) {
661 			input_report_key(info->input, BTN_TOUCH, 0);
662 			input_sync(info->input);
663 			break;
664 		}
665 
666 		input_report_abs(info->input, ABS_X, x & ADC_DATX_MASK);
667 		input_report_abs(info->input, ABS_Y, y & ADC_DATY_MASK);
668 		input_report_key(info->input, BTN_TOUCH, 1);
669 		input_sync(info->input);
670 
671 		usleep_range(1000, 1100);
672 	}
673 
674 	writel(0, ADC_V1_CLRINTPNDNUP(info->regs));
675 
676 	return IRQ_HANDLED;
677 }
678 
679 static int exynos_adc_reg_access(struct iio_dev *indio_dev,
680 			      unsigned reg, unsigned writeval,
681 			      unsigned *readval)
682 {
683 	struct exynos_adc *info = iio_priv(indio_dev);
684 
685 	if (readval == NULL)
686 		return -EINVAL;
687 
688 	*readval = readl(info->regs + reg);
689 
690 	return 0;
691 }
692 
693 static const struct iio_info exynos_adc_iio_info = {
694 	.read_raw = &exynos_read_raw,
695 	.debugfs_reg_access = &exynos_adc_reg_access,
696 };
697 
698 #define ADC_CHANNEL(_index, _id) {			\
699 	.type = IIO_VOLTAGE,				\
700 	.indexed = 1,					\
701 	.channel = _index,				\
702 	.address = _index,				\
703 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),	\
704 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SCALE),	\
705 	.datasheet_name = _id,				\
706 }
707 
708 static const struct iio_chan_spec exynos_adc_iio_channels[] = {
709 	ADC_CHANNEL(0, "adc0"),
710 	ADC_CHANNEL(1, "adc1"),
711 	ADC_CHANNEL(2, "adc2"),
712 	ADC_CHANNEL(3, "adc3"),
713 	ADC_CHANNEL(4, "adc4"),
714 	ADC_CHANNEL(5, "adc5"),
715 	ADC_CHANNEL(6, "adc6"),
716 	ADC_CHANNEL(7, "adc7"),
717 	ADC_CHANNEL(8, "adc8"),
718 	ADC_CHANNEL(9, "adc9"),
719 };
720 
721 static int exynos_adc_remove_devices(struct device *dev, void *c)
722 {
723 	struct platform_device *pdev = to_platform_device(dev);
724 
725 	platform_device_unregister(pdev);
726 
727 	return 0;
728 }
729 
730 static int exynos_adc_ts_open(struct input_dev *dev)
731 {
732 	struct exynos_adc *info = input_get_drvdata(dev);
733 
734 	enable_irq(info->tsirq);
735 
736 	return 0;
737 }
738 
739 static void exynos_adc_ts_close(struct input_dev *dev)
740 {
741 	struct exynos_adc *info = input_get_drvdata(dev);
742 
743 	disable_irq(info->tsirq);
744 }
745 
746 static int exynos_adc_ts_init(struct exynos_adc *info)
747 {
748 	int ret;
749 
750 	if (info->tsirq <= 0)
751 		return -ENODEV;
752 
753 	info->input = input_allocate_device();
754 	if (!info->input)
755 		return -ENOMEM;
756 
757 	info->input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
758 	info->input->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
759 
760 	input_set_abs_params(info->input, ABS_X, 0, 0x3FF, 0, 0);
761 	input_set_abs_params(info->input, ABS_Y, 0, 0x3FF, 0, 0);
762 
763 	info->input->name = "S3C24xx TouchScreen";
764 	info->input->id.bustype = BUS_HOST;
765 	info->input->open = exynos_adc_ts_open;
766 	info->input->close = exynos_adc_ts_close;
767 
768 	input_set_drvdata(info->input, info);
769 
770 	ret = input_register_device(info->input);
771 	if (ret) {
772 		input_free_device(info->input);
773 		return ret;
774 	}
775 
776 	disable_irq(info->tsirq);
777 	ret = request_threaded_irq(info->tsirq, NULL, exynos_ts_isr,
778 				   IRQF_ONESHOT, "touchscreen", info);
779 	if (ret)
780 		input_unregister_device(info->input);
781 
782 	return ret;
783 }
784 
785 static int exynos_adc_probe(struct platform_device *pdev)
786 {
787 	struct exynos_adc *info = NULL;
788 	struct device_node *np = pdev->dev.of_node;
789 	struct s3c2410_ts_mach_info *pdata = dev_get_platdata(&pdev->dev);
790 	struct iio_dev *indio_dev = NULL;
791 	bool has_ts = false;
792 	int ret = -ENODEV;
793 	int irq;
794 
795 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(struct exynos_adc));
796 	if (!indio_dev) {
797 		dev_err(&pdev->dev, "failed allocating iio device\n");
798 		return -ENOMEM;
799 	}
800 
801 	info = iio_priv(indio_dev);
802 
803 	info->data = exynos_adc_get_data(pdev);
804 	if (!info->data) {
805 		dev_err(&pdev->dev, "failed getting exynos_adc_data\n");
806 		return -EINVAL;
807 	}
808 
809 	info->regs = devm_platform_ioremap_resource(pdev, 0);
810 	if (IS_ERR(info->regs))
811 		return PTR_ERR(info->regs);
812 
813 
814 	if (info->data->needs_adc_phy) {
815 		info->pmu_map = syscon_regmap_lookup_by_phandle(
816 					pdev->dev.of_node,
817 					"samsung,syscon-phandle");
818 		if (IS_ERR(info->pmu_map)) {
819 			dev_err(&pdev->dev, "syscon regmap lookup failed.\n");
820 			return PTR_ERR(info->pmu_map);
821 		}
822 	}
823 
824 	irq = platform_get_irq(pdev, 0);
825 	if (irq < 0)
826 		return irq;
827 	info->irq = irq;
828 
829 	irq = platform_get_irq(pdev, 1);
830 	if (irq == -EPROBE_DEFER)
831 		return irq;
832 
833 	info->tsirq = irq;
834 
835 	info->dev = &pdev->dev;
836 
837 	init_completion(&info->completion);
838 
839 	info->clk = devm_clk_get(&pdev->dev, "adc");
840 	if (IS_ERR(info->clk)) {
841 		dev_err(&pdev->dev, "failed getting clock, err = %ld\n",
842 							PTR_ERR(info->clk));
843 		return PTR_ERR(info->clk);
844 	}
845 
846 	if (info->data->needs_sclk) {
847 		info->sclk = devm_clk_get(&pdev->dev, "sclk");
848 		if (IS_ERR(info->sclk)) {
849 			dev_err(&pdev->dev,
850 				"failed getting sclk clock, err = %ld\n",
851 				PTR_ERR(info->sclk));
852 			return PTR_ERR(info->sclk);
853 		}
854 	}
855 
856 	info->vdd = devm_regulator_get(&pdev->dev, "vdd");
857 	if (IS_ERR(info->vdd))
858 		return dev_err_probe(&pdev->dev, PTR_ERR(info->vdd),
859 				     "failed getting regulator");
860 
861 	ret = regulator_enable(info->vdd);
862 	if (ret)
863 		return ret;
864 
865 	ret = exynos_adc_prepare_clk(info);
866 	if (ret)
867 		goto err_disable_reg;
868 
869 	ret = exynos_adc_enable_clk(info);
870 	if (ret)
871 		goto err_unprepare_clk;
872 
873 	platform_set_drvdata(pdev, indio_dev);
874 
875 	indio_dev->name = dev_name(&pdev->dev);
876 	indio_dev->info = &exynos_adc_iio_info;
877 	indio_dev->modes = INDIO_DIRECT_MODE;
878 	indio_dev->channels = exynos_adc_iio_channels;
879 	indio_dev->num_channels = info->data->num_channels;
880 
881 	mutex_init(&info->lock);
882 
883 	ret = request_irq(info->irq, exynos_adc_isr,
884 					0, dev_name(&pdev->dev), info);
885 	if (ret < 0) {
886 		dev_err(&pdev->dev, "failed requesting irq, irq = %d\n",
887 							info->irq);
888 		goto err_disable_clk;
889 	}
890 
891 	ret = iio_device_register(indio_dev);
892 	if (ret)
893 		goto err_irq;
894 
895 	if (info->data->init_hw)
896 		info->data->init_hw(info);
897 
898 	/* leave out any TS related code if unreachable */
899 	if (IS_REACHABLE(CONFIG_INPUT)) {
900 		has_ts = of_property_read_bool(pdev->dev.of_node,
901 					       "has-touchscreen") || pdata;
902 	}
903 
904 	if (pdata)
905 		info->delay = pdata->delay;
906 	else
907 		info->delay = 10000;
908 
909 	if (has_ts)
910 		ret = exynos_adc_ts_init(info);
911 	if (ret)
912 		goto err_iio;
913 
914 	ret = of_platform_populate(np, exynos_adc_match, NULL, &indio_dev->dev);
915 	if (ret < 0) {
916 		dev_err(&pdev->dev, "failed adding child nodes\n");
917 		goto err_of_populate;
918 	}
919 
920 	return 0;
921 
922 err_of_populate:
923 	device_for_each_child(&indio_dev->dev, NULL,
924 				exynos_adc_remove_devices);
925 	if (has_ts) {
926 		input_unregister_device(info->input);
927 		free_irq(info->tsirq, info);
928 	}
929 err_iio:
930 	iio_device_unregister(indio_dev);
931 err_irq:
932 	free_irq(info->irq, info);
933 err_disable_clk:
934 	if (info->data->exit_hw)
935 		info->data->exit_hw(info);
936 	exynos_adc_disable_clk(info);
937 err_unprepare_clk:
938 	exynos_adc_unprepare_clk(info);
939 err_disable_reg:
940 	regulator_disable(info->vdd);
941 	return ret;
942 }
943 
944 static int exynos_adc_remove(struct platform_device *pdev)
945 {
946 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
947 	struct exynos_adc *info = iio_priv(indio_dev);
948 
949 	if (IS_REACHABLE(CONFIG_INPUT) && info->input) {
950 		free_irq(info->tsirq, info);
951 		input_unregister_device(info->input);
952 	}
953 	device_for_each_child(&indio_dev->dev, NULL,
954 				exynos_adc_remove_devices);
955 	iio_device_unregister(indio_dev);
956 	free_irq(info->irq, info);
957 	if (info->data->exit_hw)
958 		info->data->exit_hw(info);
959 	exynos_adc_disable_clk(info);
960 	exynos_adc_unprepare_clk(info);
961 	regulator_disable(info->vdd);
962 
963 	return 0;
964 }
965 
966 #ifdef CONFIG_PM_SLEEP
967 static int exynos_adc_suspend(struct device *dev)
968 {
969 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
970 	struct exynos_adc *info = iio_priv(indio_dev);
971 
972 	if (info->data->exit_hw)
973 		info->data->exit_hw(info);
974 	exynos_adc_disable_clk(info);
975 	regulator_disable(info->vdd);
976 
977 	return 0;
978 }
979 
980 static int exynos_adc_resume(struct device *dev)
981 {
982 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
983 	struct exynos_adc *info = iio_priv(indio_dev);
984 	int ret;
985 
986 	ret = regulator_enable(info->vdd);
987 	if (ret)
988 		return ret;
989 
990 	ret = exynos_adc_enable_clk(info);
991 	if (ret)
992 		return ret;
993 
994 	if (info->data->init_hw)
995 		info->data->init_hw(info);
996 
997 	return 0;
998 }
999 #endif
1000 
1001 static SIMPLE_DEV_PM_OPS(exynos_adc_pm_ops,
1002 			exynos_adc_suspend,
1003 			exynos_adc_resume);
1004 
1005 static struct platform_driver exynos_adc_driver = {
1006 	.probe		= exynos_adc_probe,
1007 	.remove		= exynos_adc_remove,
1008 	.driver		= {
1009 		.name	= "exynos-adc",
1010 		.of_match_table = exynos_adc_match,
1011 		.pm	= &exynos_adc_pm_ops,
1012 	},
1013 };
1014 
1015 module_platform_driver(exynos_adc_driver);
1016 
1017 MODULE_AUTHOR("Naveen Krishna Chatradhi <ch.naveen@samsung.com>");
1018 MODULE_DESCRIPTION("Samsung EXYNOS5 ADC driver");
1019 MODULE_LICENSE("GPL v2");
1020