xref: /openbmc/linux/drivers/iio/adc/cpcap-adc.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /*
2  * Copyright (C) 2017 Tony Lindgren <tony@atomide.com>
3  *
4  * Rewritten for Linux IIO framework with some code based on
5  * earlier driver found in the Motorola Linux kernel:
6  *
7  * Copyright (C) 2009-2010 Motorola, Inc.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  */
18 
19 #include <linux/delay.h>
20 #include <linux/device.h>
21 #include <linux/err.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/of.h>
27 #include <linux/of_platform.h>
28 #include <linux/platform_device.h>
29 #include <linux/regmap.h>
30 
31 #include <linux/iio/buffer.h>
32 #include <linux/iio/driver.h>
33 #include <linux/iio/iio.h>
34 #include <linux/iio/kfifo_buf.h>
35 #include <linux/mfd/motorola-cpcap.h>
36 
37 /* Register CPCAP_REG_ADCC1 bits */
38 #define CPCAP_BIT_ADEN_AUTO_CLR		BIT(15)	/* Currently unused */
39 #define CPCAP_BIT_CAL_MODE		BIT(14) /* Set with BIT_RAND0 */
40 #define CPCAP_BIT_ADC_CLK_SEL1		BIT(13)	/* Currently unused */
41 #define CPCAP_BIT_ADC_CLK_SEL0		BIT(12)	/* Currently unused */
42 #define CPCAP_BIT_ATOX			BIT(11)
43 #define CPCAP_BIT_ATO3			BIT(10)
44 #define CPCAP_BIT_ATO2			BIT(9)
45 #define CPCAP_BIT_ATO1			BIT(8)
46 #define CPCAP_BIT_ATO0			BIT(7)
47 #define CPCAP_BIT_ADA2			BIT(6)
48 #define CPCAP_BIT_ADA1			BIT(5)
49 #define CPCAP_BIT_ADA0			BIT(4)
50 #define CPCAP_BIT_AD_SEL1		BIT(3)	/* Set for bank1 */
51 #define CPCAP_BIT_RAND1			BIT(2)	/* Set for channel 16 & 17 */
52 #define CPCAP_BIT_RAND0			BIT(1)	/* Set with CAL_MODE */
53 #define CPCAP_BIT_ADEN			BIT(0)	/* Currently unused */
54 
55 #define CPCAP_REG_ADCC1_DEFAULTS	(CPCAP_BIT_ADEN_AUTO_CLR | \
56 					 CPCAP_BIT_ADC_CLK_SEL0 |  \
57 					 CPCAP_BIT_RAND1)
58 
59 /* Register CPCAP_REG_ADCC2 bits */
60 #define CPCAP_BIT_CAL_FACTOR_ENABLE	BIT(15)	/* Currently unused */
61 #define CPCAP_BIT_BATDETB_EN		BIT(14)	/* Currently unused */
62 #define CPCAP_BIT_ADTRIG_ONESHOT	BIT(13)	/* Set for !TIMING_IMM */
63 #define CPCAP_BIT_ASC			BIT(12)	/* Set for TIMING_IMM */
64 #define CPCAP_BIT_ATOX_PS_FACTOR	BIT(11)
65 #define CPCAP_BIT_ADC_PS_FACTOR1	BIT(10)
66 #define CPCAP_BIT_ADC_PS_FACTOR0	BIT(9)
67 #define CPCAP_BIT_AD4_SELECT		BIT(8)	/* Currently unused */
68 #define CPCAP_BIT_ADC_BUSY		BIT(7)	/* Currently unused */
69 #define CPCAP_BIT_THERMBIAS_EN		BIT(6)	/* Bias for AD0_BATTDETB */
70 #define CPCAP_BIT_ADTRIG_DIS		BIT(5)	/* Disable interrupt */
71 #define CPCAP_BIT_LIADC			BIT(4)	/* Currently unused */
72 #define CPCAP_BIT_TS_REFEN		BIT(3)	/* Currently unused */
73 #define CPCAP_BIT_TS_M2			BIT(2)	/* Currently unused */
74 #define CPCAP_BIT_TS_M1			BIT(1)	/* Currently unused */
75 #define CPCAP_BIT_TS_M0			BIT(0)	/* Currently unused */
76 
77 #define CPCAP_REG_ADCC2_DEFAULTS	(CPCAP_BIT_AD4_SELECT | \
78 					 CPCAP_BIT_ADTRIG_DIS | \
79 					 CPCAP_BIT_LIADC | \
80 					 CPCAP_BIT_TS_M2 | \
81 					 CPCAP_BIT_TS_M1)
82 
83 #define CPCAP_MAX_TEMP_LVL		27
84 #define CPCAP_FOUR_POINT_TWO_ADC	801
85 #define ST_ADC_CAL_CHRGI_HIGH_THRESHOLD	530
86 #define ST_ADC_CAL_CHRGI_LOW_THRESHOLD	494
87 #define ST_ADC_CAL_BATTI_HIGH_THRESHOLD	530
88 #define ST_ADC_CAL_BATTI_LOW_THRESHOLD	494
89 #define ST_ADC_CALIBRATE_DIFF_THRESHOLD	3
90 
91 #define CPCAP_ADC_MAX_RETRIES		5	/* Calibration */
92 
93 /**
94  * struct cpcap_adc_ato - timing settings for cpcap adc
95  *
96  * Unfortunately no cpcap documentation available, please document when
97  * using these.
98  */
99 struct cpcap_adc_ato {
100 	unsigned short ato_in;
101 	unsigned short atox_in;
102 	unsigned short adc_ps_factor_in;
103 	unsigned short atox_ps_factor_in;
104 	unsigned short ato_out;
105 	unsigned short atox_out;
106 	unsigned short adc_ps_factor_out;
107 	unsigned short atox_ps_factor_out;
108 };
109 
110 /**
111  * struct cpcap-adc - cpcap adc device driver data
112  * @reg: cpcap regmap
113  * @dev: struct device
114  * @vendor: cpcap vendor
115  * @irq: interrupt
116  * @lock: mutex
117  * @ato: request timings
118  * @wq_data_avail: work queue
119  * @done: work done
120  */
121 struct cpcap_adc {
122 	struct regmap *reg;
123 	struct device *dev;
124 	u16 vendor;
125 	int irq;
126 	struct mutex lock;	/* ADC register access lock */
127 	const struct cpcap_adc_ato *ato;
128 	wait_queue_head_t wq_data_avail;
129 	bool done;
130 };
131 
132 /**
133  * enum cpcap_adc_channel - cpcap adc channels
134  */
135 enum cpcap_adc_channel {
136 	/* Bank0 channels */
137 	CPCAP_ADC_AD0,		/* Battery temperature */
138 	CPCAP_ADC_BATTP,	/* Battery voltage */
139 	CPCAP_ADC_VBUS,		/* USB VBUS voltage */
140 	CPCAP_ADC_AD3,		/* Die temperature when charging */
141 	CPCAP_ADC_BPLUS_AD4,	/* Another battery or system voltage */
142 	CPCAP_ADC_CHG_ISENSE,	/* Calibrated charge current */
143 	CPCAP_ADC_BATTI,	/* Calibrated system current */
144 	CPCAP_ADC_USB_ID,	/* USB OTG ID, unused on droid 4? */
145 
146 	/* Bank1 channels */
147 	CPCAP_ADC_AD8,		/* Seems unused */
148 	CPCAP_ADC_AD9,		/* Seems unused */
149 	CPCAP_ADC_LICELL,	/* Maybe system voltage? Always 3V */
150 	CPCAP_ADC_HV_BATTP,	/* Another battery detection? */
151 	CPCAP_ADC_TSX1_AD12,	/* Seems unused, for touchscreen? */
152 	CPCAP_ADC_TSX2_AD13,	/* Seems unused, for touchscreen? */
153 	CPCAP_ADC_TSY1_AD14,	/* Seems unused, for touchscreen? */
154 	CPCAP_ADC_TSY2_AD15,	/* Seems unused, for touchscreen? */
155 
156 	/* Remuxed channels using bank0 entries */
157 	CPCAP_ADC_BATTP_PI16,	/* Alternative mux mode for BATTP */
158 	CPCAP_ADC_BATTI_PI17,	/* Alternative mux mode for BATTI */
159 
160 	CPCAP_ADC_CHANNEL_NUM,
161 };
162 
163 /**
164  * enum cpcap_adc_timing - cpcap adc timing options
165  *
166  * CPCAP_ADC_TIMING_IMM seems to be immediate with no timings.
167  * Please document when using.
168  */
169 enum cpcap_adc_timing {
170 	CPCAP_ADC_TIMING_IMM,
171 	CPCAP_ADC_TIMING_IN,
172 	CPCAP_ADC_TIMING_OUT,
173 };
174 
175 /**
176  * struct cpcap_adc_phasing_tbl - cpcap phasing table
177  * @offset: offset in the phasing table
178  * @multiplier: multiplier in the phasing table
179  * @divider: divider in the phasing table
180  * @min: minimum value
181  * @max: maximum value
182  */
183 struct cpcap_adc_phasing_tbl {
184 	short offset;
185 	unsigned short multiplier;
186 	unsigned short divider;
187 	short min;
188 	short max;
189 };
190 
191 /**
192  * struct cpcap_adc_conversion_tbl - cpcap conversion table
193  * @conv_type: conversion type
194  * @align_offset: align offset
195  * @conv_offset: conversion offset
196  * @cal_offset: calibration offset
197  * @multiplier: conversion multiplier
198  * @divider: conversion divider
199  */
200 struct cpcap_adc_conversion_tbl {
201 	enum iio_chan_info_enum conv_type;
202 	int align_offset;
203 	int conv_offset;
204 	int cal_offset;
205 	int multiplier;
206 	int divider;
207 };
208 
209 /**
210  * struct cpcap_adc_request - cpcap adc request
211  * @channel: request channel
212  * @phase_tbl: channel phasing table
213  * @conv_tbl: channel conversion table
214  * @bank_index: channel index within the bank
215  * @timing: timing settings
216  * @result: result
217  */
218 struct cpcap_adc_request {
219 	int channel;
220 	const struct cpcap_adc_phasing_tbl *phase_tbl;
221 	const struct cpcap_adc_conversion_tbl *conv_tbl;
222 	int bank_index;
223 	enum cpcap_adc_timing timing;
224 	int result;
225 };
226 
227 /* Phasing table for channels. Note that channels 16 & 17 use BATTP and BATTI */
228 static const struct cpcap_adc_phasing_tbl bank_phasing[] = {
229 	/* Bank0 */
230 	[CPCAP_ADC_AD0] =          {0, 0x80, 0x80,    0, 1023},
231 	[CPCAP_ADC_BATTP] =        {0, 0x80, 0x80,    0, 1023},
232 	[CPCAP_ADC_VBUS] =         {0, 0x80, 0x80,    0, 1023},
233 	[CPCAP_ADC_AD3] =          {0, 0x80, 0x80,    0, 1023},
234 	[CPCAP_ADC_BPLUS_AD4] =    {0, 0x80, 0x80,    0, 1023},
235 	[CPCAP_ADC_CHG_ISENSE] =   {0, 0x80, 0x80, -512,  511},
236 	[CPCAP_ADC_BATTI] =        {0, 0x80, 0x80, -512,  511},
237 	[CPCAP_ADC_USB_ID] =       {0, 0x80, 0x80,    0, 1023},
238 
239 	/* Bank1 */
240 	[CPCAP_ADC_AD8] =          {0, 0x80, 0x80,    0, 1023},
241 	[CPCAP_ADC_AD9] =          {0, 0x80, 0x80,    0, 1023},
242 	[CPCAP_ADC_LICELL] =       {0, 0x80, 0x80,    0, 1023},
243 	[CPCAP_ADC_HV_BATTP] =     {0, 0x80, 0x80,    0, 1023},
244 	[CPCAP_ADC_TSX1_AD12] =    {0, 0x80, 0x80,    0, 1023},
245 	[CPCAP_ADC_TSX2_AD13] =    {0, 0x80, 0x80,    0, 1023},
246 	[CPCAP_ADC_TSY1_AD14] =    {0, 0x80, 0x80,    0, 1023},
247 	[CPCAP_ADC_TSY2_AD15] =    {0, 0x80, 0x80,    0, 1023},
248 };
249 
250 /*
251  * Conversion table for channels. Updated during init based on calibration.
252  * Here too channels 16 & 17 use BATTP and BATTI.
253  */
254 static struct cpcap_adc_conversion_tbl bank_conversion[] = {
255 	/* Bank0 */
256 	[CPCAP_ADC_AD0] = {
257 		IIO_CHAN_INFO_PROCESSED,    0,    0, 0,     1,    1,
258 	},
259 	[CPCAP_ADC_BATTP] = {
260 		IIO_CHAN_INFO_PROCESSED,    0, 2400, 0,  2300, 1023,
261 	},
262 	[CPCAP_ADC_VBUS] = {
263 		IIO_CHAN_INFO_PROCESSED,    0,    0, 0, 10000, 1023,
264 	},
265 	[CPCAP_ADC_AD3] = {
266 		IIO_CHAN_INFO_PROCESSED,    0,    0, 0,     1,    1,
267 		},
268 	[CPCAP_ADC_BPLUS_AD4] = {
269 		IIO_CHAN_INFO_PROCESSED,    0, 2400, 0,  2300, 1023,
270 	},
271 	[CPCAP_ADC_CHG_ISENSE] = {
272 		IIO_CHAN_INFO_PROCESSED, -512,    2, 0,  5000, 1023,
273 	},
274 	[CPCAP_ADC_BATTI] = {
275 		IIO_CHAN_INFO_PROCESSED, -512,    2, 0,  5000, 1023,
276 	},
277 	[CPCAP_ADC_USB_ID] = {
278 		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
279 	},
280 
281 	/* Bank1 */
282 	[CPCAP_ADC_AD8] = {
283 		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
284 	},
285 	[CPCAP_ADC_AD9] = {
286 		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
287 	},
288 	[CPCAP_ADC_LICELL] = {
289 		IIO_CHAN_INFO_PROCESSED,    0,    0, 0,  3400, 1023,
290 	},
291 	[CPCAP_ADC_HV_BATTP] = {
292 		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
293 	},
294 	[CPCAP_ADC_TSX1_AD12] = {
295 		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
296 	},
297 	[CPCAP_ADC_TSX2_AD13] = {
298 		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
299 	},
300 	[CPCAP_ADC_TSY1_AD14] = {
301 		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
302 	},
303 	[CPCAP_ADC_TSY2_AD15] = {
304 		IIO_CHAN_INFO_RAW,          0,    0, 0,     1,    1,
305 	},
306 };
307 
308 /*
309  * Temperature lookup table of register values to milliCelcius.
310  * REVISIT: Check the duplicate 0x3ff entry in a freezer
311  */
312 static const int temp_map[CPCAP_MAX_TEMP_LVL][2] = {
313 	{ 0x03ff, -40000 },
314 	{ 0x03ff, -35000 },
315 	{ 0x03ef, -30000 },
316 	{ 0x03b2, -25000 },
317 	{ 0x036c, -20000 },
318 	{ 0x0320, -15000 },
319 	{ 0x02d0, -10000 },
320 	{ 0x027f, -5000 },
321 	{ 0x022f, 0 },
322 	{ 0x01e4, 5000 },
323 	{ 0x019f, 10000 },
324 	{ 0x0161, 15000 },
325 	{ 0x012b, 20000 },
326 	{ 0x00fc, 25000 },
327 	{ 0x00d4, 30000 },
328 	{ 0x00b2, 35000 },
329 	{ 0x0095, 40000 },
330 	{ 0x007d, 45000 },
331 	{ 0x0069, 50000 },
332 	{ 0x0059, 55000 },
333 	{ 0x004b, 60000 },
334 	{ 0x003f, 65000 },
335 	{ 0x0036, 70000 },
336 	{ 0x002e, 75000 },
337 	{ 0x0027, 80000 },
338 	{ 0x0022, 85000 },
339 	{ 0x001d, 90000 },
340 };
341 
342 #define CPCAP_CHAN(_type, _index, _address, _datasheet_name) {	\
343 	.type = (_type), \
344 	.address = (_address), \
345 	.indexed = 1, \
346 	.channel = (_index), \
347 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
348 			      BIT(IIO_CHAN_INFO_PROCESSED), \
349 	.scan_index = (_index), \
350 	.scan_type = { \
351 		.sign = 'u', \
352 		.realbits = 10, \
353 		.storagebits = 16, \
354 		.endianness = IIO_CPU, \
355 	}, \
356 	.datasheet_name = (_datasheet_name), \
357 }
358 
359 /*
360  * The datasheet names are from Motorola mapphone Linux kernel except
361  * for the last two which might be uncalibrated charge voltage and
362  * current.
363  */
364 static const struct iio_chan_spec cpcap_adc_channels[] = {
365 	/* Bank0 */
366 	CPCAP_CHAN(IIO_TEMP,    0, CPCAP_REG_ADCD0,  "battdetb"),
367 	CPCAP_CHAN(IIO_VOLTAGE, 1, CPCAP_REG_ADCD1,  "battp"),
368 	CPCAP_CHAN(IIO_VOLTAGE, 2, CPCAP_REG_ADCD2,  "vbus"),
369 	CPCAP_CHAN(IIO_TEMP,    3, CPCAP_REG_ADCD3,  "ad3"),
370 	CPCAP_CHAN(IIO_VOLTAGE, 4, CPCAP_REG_ADCD4,  "ad4"),
371 	CPCAP_CHAN(IIO_CURRENT, 5, CPCAP_REG_ADCD5,  "chg_isense"),
372 	CPCAP_CHAN(IIO_CURRENT, 6, CPCAP_REG_ADCD6,  "batti"),
373 	CPCAP_CHAN(IIO_VOLTAGE, 7, CPCAP_REG_ADCD7,  "usb_id"),
374 
375 	/* Bank1 */
376 	CPCAP_CHAN(IIO_CURRENT, 8, CPCAP_REG_ADCD0,  "ad8"),
377 	CPCAP_CHAN(IIO_VOLTAGE, 9, CPCAP_REG_ADCD1,  "ad9"),
378 	CPCAP_CHAN(IIO_VOLTAGE, 10, CPCAP_REG_ADCD2, "licell"),
379 	CPCAP_CHAN(IIO_VOLTAGE, 11, CPCAP_REG_ADCD3, "hv_battp"),
380 	CPCAP_CHAN(IIO_VOLTAGE, 12, CPCAP_REG_ADCD4, "tsx1_ad12"),
381 	CPCAP_CHAN(IIO_VOLTAGE, 13, CPCAP_REG_ADCD5, "tsx2_ad13"),
382 	CPCAP_CHAN(IIO_VOLTAGE, 14, CPCAP_REG_ADCD6, "tsy1_ad14"),
383 	CPCAP_CHAN(IIO_VOLTAGE, 15, CPCAP_REG_ADCD7, "tsy2_ad15"),
384 
385 	/* There are two registers with multiplexed functionality */
386 	CPCAP_CHAN(IIO_VOLTAGE, 16, CPCAP_REG_ADCD0, "chg_vsense"),
387 	CPCAP_CHAN(IIO_CURRENT, 17, CPCAP_REG_ADCD1, "batti2"),
388 };
389 
390 static irqreturn_t cpcap_adc_irq_thread(int irq, void *data)
391 {
392 	struct iio_dev *indio_dev = data;
393 	struct cpcap_adc *ddata = iio_priv(indio_dev);
394 	int error;
395 
396 	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
397 				   CPCAP_BIT_ADTRIG_DIS,
398 				   CPCAP_BIT_ADTRIG_DIS);
399 	if (error)
400 		return IRQ_NONE;
401 
402 	ddata->done = true;
403 	wake_up_interruptible(&ddata->wq_data_avail);
404 
405 	return IRQ_HANDLED;
406 }
407 
408 /* ADC calibration functions */
409 static void cpcap_adc_setup_calibrate(struct cpcap_adc *ddata,
410 				      enum cpcap_adc_channel chan)
411 {
412 	unsigned int value = 0;
413 	unsigned long timeout = jiffies + msecs_to_jiffies(3000);
414 	int error;
415 
416 	if ((chan != CPCAP_ADC_CHG_ISENSE) &&
417 	    (chan != CPCAP_ADC_BATTI))
418 		return;
419 
420 	value |= CPCAP_BIT_CAL_MODE | CPCAP_BIT_RAND0;
421 	value |= ((chan << 4) &
422 		  (CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 | CPCAP_BIT_ADA0));
423 
424 	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
425 				   CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX |
426 				   CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 |
427 				   CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 |
428 				   CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 |
429 				   CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 |
430 				   CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0,
431 				   value);
432 	if (error)
433 		return;
434 
435 	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
436 				   CPCAP_BIT_ATOX_PS_FACTOR |
437 				   CPCAP_BIT_ADC_PS_FACTOR1 |
438 				   CPCAP_BIT_ADC_PS_FACTOR0,
439 				   0);
440 	if (error)
441 		return;
442 
443 	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
444 				   CPCAP_BIT_ADTRIG_DIS,
445 				   CPCAP_BIT_ADTRIG_DIS);
446 	if (error)
447 		return;
448 
449 	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
450 				   CPCAP_BIT_ASC,
451 				   CPCAP_BIT_ASC);
452 	if (error)
453 		return;
454 
455 	do {
456 		schedule_timeout_uninterruptible(1);
457 		error = regmap_read(ddata->reg, CPCAP_REG_ADCC2, &value);
458 		if (error)
459 			return;
460 	} while ((value & CPCAP_BIT_ASC) && time_before(jiffies, timeout));
461 
462 	if (value & CPCAP_BIT_ASC)
463 		dev_err(ddata->dev,
464 			"Timeout waiting for calibration to complete\n");
465 
466 	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
467 				   CPCAP_BIT_CAL_MODE, 0);
468 	if (error)
469 		return;
470 }
471 
472 static int cpcap_adc_calibrate_one(struct cpcap_adc *ddata,
473 				   int channel,
474 				   u16 calibration_register,
475 				   int lower_threshold,
476 				   int upper_threshold)
477 {
478 	unsigned int calibration_data[2];
479 	unsigned short cal_data_diff;
480 	int i, error;
481 
482 	for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) {
483 		calibration_data[0]  = 0;
484 		calibration_data[1]  = 0;
485 		cal_data_diff = 0;
486 		cpcap_adc_setup_calibrate(ddata, channel);
487 		error = regmap_read(ddata->reg, calibration_register,
488 				    &calibration_data[0]);
489 		if (error)
490 			return error;
491 		cpcap_adc_setup_calibrate(ddata, channel);
492 		error = regmap_read(ddata->reg, calibration_register,
493 				    &calibration_data[1]);
494 		if (error)
495 			return error;
496 
497 		if (calibration_data[0] > calibration_data[1])
498 			cal_data_diff =
499 				calibration_data[0] - calibration_data[1];
500 		else
501 			cal_data_diff =
502 				calibration_data[1] - calibration_data[0];
503 
504 		if (((calibration_data[1] >= lower_threshold) &&
505 		     (calibration_data[1] <= upper_threshold) &&
506 		     (cal_data_diff <= ST_ADC_CALIBRATE_DIFF_THRESHOLD)) ||
507 		    (ddata->vendor == CPCAP_VENDOR_TI)) {
508 			bank_conversion[channel].cal_offset =
509 				((short)calibration_data[1] * -1) + 512;
510 			dev_dbg(ddata->dev, "ch%i calibration complete: %i\n",
511 				channel, bank_conversion[channel].cal_offset);
512 			break;
513 		}
514 		usleep_range(5000, 10000);
515 	}
516 
517 	return 0;
518 }
519 
520 static int cpcap_adc_calibrate(struct cpcap_adc *ddata)
521 {
522 	int error;
523 
524 	error = cpcap_adc_calibrate_one(ddata, CPCAP_ADC_CHG_ISENSE,
525 					CPCAP_REG_ADCAL1,
526 					ST_ADC_CAL_CHRGI_LOW_THRESHOLD,
527 					ST_ADC_CAL_CHRGI_HIGH_THRESHOLD);
528 	if (error)
529 		return error;
530 
531 	error = cpcap_adc_calibrate_one(ddata, CPCAP_ADC_BATTI,
532 					CPCAP_REG_ADCAL2,
533 					ST_ADC_CAL_BATTI_LOW_THRESHOLD,
534 					ST_ADC_CAL_BATTI_HIGH_THRESHOLD);
535 	if (error)
536 		return error;
537 
538 	return 0;
539 }
540 
541 /* ADC setup, read and scale functions */
542 static void cpcap_adc_setup_bank(struct cpcap_adc *ddata,
543 				 struct cpcap_adc_request *req)
544 {
545 	const struct cpcap_adc_ato *ato = ddata->ato;
546 	unsigned short value1 = 0;
547 	unsigned short value2 = 0;
548 	int error;
549 
550 	if (!ato)
551 		return;
552 
553 	switch (req->channel) {
554 	case CPCAP_ADC_AD0:
555 		value2 |= CPCAP_BIT_THERMBIAS_EN;
556 		error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
557 					   CPCAP_BIT_THERMBIAS_EN,
558 					   value2);
559 		if (error)
560 			return;
561 		usleep_range(800, 1000);
562 		break;
563 	case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15:
564 		value1 |= CPCAP_BIT_AD_SEL1;
565 		break;
566 	case CPCAP_ADC_BATTP_PI16 ... CPCAP_ADC_BATTI_PI17:
567 		value1 |= CPCAP_BIT_RAND1;
568 	default:
569 		break;
570 	}
571 
572 	switch (req->timing) {
573 	case CPCAP_ADC_TIMING_IN:
574 		value1 |= ato->ato_in;
575 		value1 |= ato->atox_in;
576 		value2 |= ato->adc_ps_factor_in;
577 		value2 |= ato->atox_ps_factor_in;
578 		break;
579 	case CPCAP_ADC_TIMING_OUT:
580 		value1 |= ato->ato_out;
581 		value1 |= ato->atox_out;
582 		value2 |= ato->adc_ps_factor_out;
583 		value2 |= ato->atox_ps_factor_out;
584 		break;
585 
586 	case CPCAP_ADC_TIMING_IMM:
587 	default:
588 		break;
589 	}
590 
591 	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
592 				   CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX |
593 				   CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 |
594 				   CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 |
595 				   CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 |
596 				   CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 |
597 				   CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0,
598 				   value1);
599 	if (error)
600 		return;
601 
602 	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
603 				   CPCAP_BIT_ATOX_PS_FACTOR |
604 				   CPCAP_BIT_ADC_PS_FACTOR1 |
605 				   CPCAP_BIT_ADC_PS_FACTOR0 |
606 				   CPCAP_BIT_THERMBIAS_EN,
607 				   value2);
608 	if (error)
609 		return;
610 
611 	if (req->timing == CPCAP_ADC_TIMING_IMM) {
612 		error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
613 					   CPCAP_BIT_ADTRIG_DIS,
614 					   CPCAP_BIT_ADTRIG_DIS);
615 		if (error)
616 			return;
617 
618 		error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
619 					   CPCAP_BIT_ASC,
620 					   CPCAP_BIT_ASC);
621 		if (error)
622 			return;
623 	} else {
624 		error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
625 					   CPCAP_BIT_ADTRIG_ONESHOT,
626 					   CPCAP_BIT_ADTRIG_ONESHOT);
627 		if (error)
628 			return;
629 
630 		error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
631 					   CPCAP_BIT_ADTRIG_DIS, 0);
632 		if (error)
633 			return;
634 	}
635 }
636 
637 static int cpcap_adc_start_bank(struct cpcap_adc *ddata,
638 				struct cpcap_adc_request *req)
639 {
640 	int i, error;
641 
642 	req->timing = CPCAP_ADC_TIMING_IMM;
643 	ddata->done = false;
644 
645 	for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) {
646 		cpcap_adc_setup_bank(ddata, req);
647 		error = wait_event_interruptible_timeout(ddata->wq_data_avail,
648 							 ddata->done,
649 							 msecs_to_jiffies(50));
650 		if (error > 0)
651 			return 0;
652 
653 		if (error == 0) {
654 			error = -ETIMEDOUT;
655 			continue;
656 		}
657 
658 		if (error < 0)
659 			return error;
660 	}
661 
662 	return error;
663 }
664 
665 static int cpcap_adc_stop_bank(struct cpcap_adc *ddata)
666 {
667 	int error;
668 
669 	error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
670 				   0xffff,
671 				   CPCAP_REG_ADCC1_DEFAULTS);
672 	if (error)
673 		return error;
674 
675 	return regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
676 				  0xffff,
677 				  CPCAP_REG_ADCC2_DEFAULTS);
678 }
679 
680 static void cpcap_adc_phase(struct cpcap_adc_request *req)
681 {
682 	const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl;
683 	const struct cpcap_adc_phasing_tbl *phase_tbl = req->phase_tbl;
684 	int index = req->channel;
685 
686 	/* Remuxed channels 16 and 17 use BATTP and BATTI entries */
687 	switch (req->channel) {
688 	case CPCAP_ADC_BATTP:
689 	case CPCAP_ADC_BATTP_PI16:
690 		index = req->bank_index;
691 		req->result -= phase_tbl[index].offset;
692 		req->result -= CPCAP_FOUR_POINT_TWO_ADC;
693 		req->result *= phase_tbl[index].multiplier;
694 		if (phase_tbl[index].divider == 0)
695 			return;
696 		req->result /= phase_tbl[index].divider;
697 		req->result += CPCAP_FOUR_POINT_TWO_ADC;
698 		break;
699 	case CPCAP_ADC_BATTI_PI17:
700 		index = req->bank_index;
701 		/* fallthrough */
702 	default:
703 		req->result += conv_tbl[index].cal_offset;
704 		req->result += conv_tbl[index].align_offset;
705 		req->result *= phase_tbl[index].multiplier;
706 		if (phase_tbl[index].divider == 0)
707 			return;
708 		req->result /= phase_tbl[index].divider;
709 		req->result += phase_tbl[index].offset;
710 		break;
711 	}
712 
713 	if (req->result < phase_tbl[index].min)
714 		req->result = phase_tbl[index].min;
715 	else if (req->result > phase_tbl[index].max)
716 		req->result = phase_tbl[index].max;
717 }
718 
719 /* Looks up temperatures in a table and calculates averages if needed */
720 static int cpcap_adc_table_to_millicelcius(unsigned short value)
721 {
722 	int i, result = 0, alpha;
723 
724 	if (value <= temp_map[CPCAP_MAX_TEMP_LVL - 1][0])
725 		return temp_map[CPCAP_MAX_TEMP_LVL - 1][1];
726 
727 	if (value >= temp_map[0][0])
728 		return temp_map[0][1];
729 
730 	for (i = 0; i < CPCAP_MAX_TEMP_LVL - 1; i++) {
731 		if ((value <= temp_map[i][0]) &&
732 		    (value >= temp_map[i + 1][0])) {
733 			if (value == temp_map[i][0]) {
734 				result = temp_map[i][1];
735 			} else if (value == temp_map[i + 1][0]) {
736 				result = temp_map[i + 1][1];
737 			} else {
738 				alpha = ((value - temp_map[i][0]) * 1000) /
739 					(temp_map[i + 1][0] - temp_map[i][0]);
740 
741 				result = temp_map[i][1] +
742 					((alpha * (temp_map[i + 1][1] -
743 						 temp_map[i][1])) / 1000);
744 			}
745 			break;
746 		}
747 	}
748 
749 	return result;
750 }
751 
752 static void cpcap_adc_convert(struct cpcap_adc_request *req)
753 {
754 	const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl;
755 	int index = req->channel;
756 
757 	/* Remuxed channels 16 and 17 use BATTP and BATTI entries */
758 	switch (req->channel) {
759 	case CPCAP_ADC_BATTP_PI16:
760 		index = CPCAP_ADC_BATTP;
761 		break;
762 	case CPCAP_ADC_BATTI_PI17:
763 		index = CPCAP_ADC_BATTI;
764 		break;
765 	default:
766 		break;
767 	}
768 
769 	/* No conversion for raw channels */
770 	if (conv_tbl[index].conv_type == IIO_CHAN_INFO_RAW)
771 		return;
772 
773 	/* Temperatures use a lookup table instead of conversion table */
774 	if ((req->channel == CPCAP_ADC_AD0) ||
775 	    (req->channel == CPCAP_ADC_AD3)) {
776 		req->result =
777 			cpcap_adc_table_to_millicelcius(req->result);
778 
779 		return;
780 	}
781 
782 	/* All processed channels use a conversion table */
783 	req->result *= conv_tbl[index].multiplier;
784 	if (conv_tbl[index].divider == 0)
785 		return;
786 	req->result /= conv_tbl[index].divider;
787 	req->result += conv_tbl[index].conv_offset;
788 }
789 
790 /*
791  * REVISIT: Check if timed sampling can use multiple channels at the
792  * same time. If not, replace channel_mask with just channel.
793  */
794 static int cpcap_adc_read_bank_scaled(struct cpcap_adc *ddata,
795 				      struct cpcap_adc_request *req)
796 {
797 	int calibration_data, error, addr;
798 
799 	if (ddata->vendor == CPCAP_VENDOR_TI) {
800 		error = regmap_read(ddata->reg, CPCAP_REG_ADCAL1,
801 				    &calibration_data);
802 		if (error)
803 			return error;
804 		bank_conversion[CPCAP_ADC_CHG_ISENSE].cal_offset =
805 			((short)calibration_data * -1) + 512;
806 
807 		error = regmap_read(ddata->reg, CPCAP_REG_ADCAL2,
808 				    &calibration_data);
809 		if (error)
810 			return error;
811 		bank_conversion[CPCAP_ADC_BATTI].cal_offset =
812 			((short)calibration_data * -1) + 512;
813 	}
814 
815 	addr = CPCAP_REG_ADCD0 + req->bank_index * 4;
816 
817 	error = regmap_read(ddata->reg, addr, &req->result);
818 	if (error)
819 		return error;
820 
821 	req->result &= 0x3ff;
822 	cpcap_adc_phase(req);
823 	cpcap_adc_convert(req);
824 
825 	return 0;
826 }
827 
828 static int cpcap_adc_init_request(struct cpcap_adc_request *req,
829 				  int channel)
830 {
831 	req->channel = channel;
832 	req->phase_tbl = bank_phasing;
833 	req->conv_tbl = bank_conversion;
834 
835 	switch (channel) {
836 	case CPCAP_ADC_AD0 ... CPCAP_ADC_USB_ID:
837 		req->bank_index = channel;
838 		break;
839 	case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15:
840 		req->bank_index = channel - 8;
841 		break;
842 	case CPCAP_ADC_BATTP_PI16:
843 		req->bank_index = CPCAP_ADC_BATTP;
844 		break;
845 	case CPCAP_ADC_BATTI_PI17:
846 		req->bank_index = CPCAP_ADC_BATTI;
847 		break;
848 	default:
849 		return -EINVAL;
850 	}
851 
852 	return 0;
853 }
854 
855 static int cpcap_adc_read_st_die_temp(struct cpcap_adc *ddata,
856 				      int addr, int *val)
857 {
858 	int error;
859 
860 	error = regmap_read(ddata->reg, addr, val);
861 	if (error)
862 		return error;
863 
864 	*val -= 282;
865 	*val *= 114;
866 	*val += 25000;
867 
868 	return 0;
869 }
870 
871 static int cpcap_adc_read(struct iio_dev *indio_dev,
872 			  struct iio_chan_spec const *chan,
873 			  int *val, int *val2, long mask)
874 {
875 	struct cpcap_adc *ddata = iio_priv(indio_dev);
876 	struct cpcap_adc_request req;
877 	int error;
878 
879 	error = cpcap_adc_init_request(&req, chan->channel);
880 	if (error)
881 		return error;
882 
883 	switch (mask) {
884 	case IIO_CHAN_INFO_RAW:
885 		mutex_lock(&ddata->lock);
886 		error = cpcap_adc_start_bank(ddata, &req);
887 		if (error)
888 			goto err_unlock;
889 		error = regmap_read(ddata->reg, chan->address, val);
890 		if (error)
891 			goto err_unlock;
892 		error = cpcap_adc_stop_bank(ddata);
893 		if (error)
894 			goto err_unlock;
895 		mutex_unlock(&ddata->lock);
896 		break;
897 	case IIO_CHAN_INFO_PROCESSED:
898 		mutex_lock(&ddata->lock);
899 		error = cpcap_adc_start_bank(ddata, &req);
900 		if (error)
901 			goto err_unlock;
902 		if ((ddata->vendor == CPCAP_VENDOR_ST) &&
903 		    (chan->channel == CPCAP_ADC_AD3)) {
904 			error = cpcap_adc_read_st_die_temp(ddata,
905 							   chan->address,
906 							   &req.result);
907 			if (error)
908 				goto err_unlock;
909 		} else {
910 			error = cpcap_adc_read_bank_scaled(ddata, &req);
911 			if (error)
912 				goto err_unlock;
913 		}
914 		error = cpcap_adc_stop_bank(ddata);
915 		if (error)
916 			goto err_unlock;
917 		mutex_unlock(&ddata->lock);
918 		*val = req.result;
919 		break;
920 	default:
921 		return -EINVAL;
922 	}
923 
924 	return IIO_VAL_INT;
925 
926 err_unlock:
927 	mutex_unlock(&ddata->lock);
928 	dev_err(ddata->dev, "error reading ADC: %i\n", error);
929 
930 	return error;
931 }
932 
933 static const struct iio_info cpcap_adc_info = {
934 	.read_raw = &cpcap_adc_read,
935 };
936 
937 /*
938  * Configuration for Motorola mapphone series such as droid 4.
939  * Copied from the Motorola mapphone kernel tree.
940  */
941 static const struct cpcap_adc_ato mapphone_adc = {
942 	.ato_in = 0x0480,
943 	.atox_in = 0,
944 	.adc_ps_factor_in = 0x0200,
945 	.atox_ps_factor_in = 0,
946 	.ato_out = 0,
947 	.atox_out = 0,
948 	.adc_ps_factor_out = 0,
949 	.atox_ps_factor_out = 0,
950 };
951 
952 static const struct of_device_id cpcap_adc_id_table[] = {
953 	{
954 		.compatible = "motorola,cpcap-adc",
955 	},
956 	{
957 		.compatible = "motorola,mapphone-cpcap-adc",
958 		.data = &mapphone_adc,
959 	},
960 	{ /* sentinel */ },
961 };
962 MODULE_DEVICE_TABLE(of, cpcap_adc_id_table);
963 
964 static int cpcap_adc_probe(struct platform_device *pdev)
965 {
966 	const struct of_device_id *match;
967 	struct cpcap_adc *ddata;
968 	struct iio_dev *indio_dev;
969 	int error;
970 
971 	match = of_match_device(of_match_ptr(cpcap_adc_id_table),
972 				&pdev->dev);
973 	if (!match)
974 		return -EINVAL;
975 
976 	if (!match->data) {
977 		dev_err(&pdev->dev, "no configuration data found\n");
978 
979 		return -ENODEV;
980 	}
981 
982 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ddata));
983 	if (!indio_dev) {
984 		dev_err(&pdev->dev, "failed to allocate iio device\n");
985 
986 		return -ENOMEM;
987 	}
988 	ddata = iio_priv(indio_dev);
989 	ddata->ato = match->data;
990 	ddata->dev = &pdev->dev;
991 
992 	mutex_init(&ddata->lock);
993 	init_waitqueue_head(&ddata->wq_data_avail);
994 
995 	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
996 	indio_dev->dev.parent = &pdev->dev;
997 	indio_dev->dev.of_node = pdev->dev.of_node;
998 	indio_dev->channels = cpcap_adc_channels;
999 	indio_dev->num_channels = ARRAY_SIZE(cpcap_adc_channels);
1000 	indio_dev->name = dev_name(&pdev->dev);
1001 	indio_dev->info = &cpcap_adc_info;
1002 
1003 	ddata->reg = dev_get_regmap(pdev->dev.parent, NULL);
1004 	if (!ddata->reg)
1005 		return -ENODEV;
1006 
1007 	error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor);
1008 	if (error)
1009 		return error;
1010 
1011 	platform_set_drvdata(pdev, indio_dev);
1012 
1013 	ddata->irq = platform_get_irq_byname(pdev, "adcdone");
1014 	if (ddata->irq < 0)
1015 		return -ENODEV;
1016 
1017 	error = devm_request_threaded_irq(&pdev->dev, ddata->irq, NULL,
1018 					  cpcap_adc_irq_thread,
1019 					  IRQF_TRIGGER_NONE,
1020 					  "cpcap-adc", indio_dev);
1021 	if (error) {
1022 		dev_err(&pdev->dev, "could not get irq: %i\n",
1023 			error);
1024 
1025 		return error;
1026 	}
1027 
1028 	error = cpcap_adc_calibrate(ddata);
1029 	if (error)
1030 		return error;
1031 
1032 	dev_info(&pdev->dev, "CPCAP ADC device probed\n");
1033 
1034 	return devm_iio_device_register(&pdev->dev, indio_dev);
1035 }
1036 
1037 static struct platform_driver cpcap_adc_driver = {
1038 	.driver = {
1039 		.name = "cpcap_adc",
1040 		.of_match_table = of_match_ptr(cpcap_adc_id_table),
1041 	},
1042 	.probe = cpcap_adc_probe,
1043 };
1044 
1045 module_platform_driver(cpcap_adc_driver);
1046 
1047 MODULE_ALIAS("platform:cpcap_adc");
1048 MODULE_DESCRIPTION("CPCAP ADC driver");
1049 MODULE_AUTHOR("Tony Lindgren <tony@atomide.com");
1050 MODULE_LICENSE("GPL v2");
1051