1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2017 Tony Lindgren <tony@atomide.com> 4 * 5 * Rewritten for Linux IIO framework with some code based on 6 * earlier driver found in the Motorola Linux kernel: 7 * 8 * Copyright (C) 2009-2010 Motorola, Inc. 9 */ 10 11 #include <linux/delay.h> 12 #include <linux/device.h> 13 #include <linux/err.h> 14 #include <linux/init.h> 15 #include <linux/interrupt.h> 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/of.h> 19 #include <linux/of_platform.h> 20 #include <linux/platform_device.h> 21 #include <linux/regmap.h> 22 23 #include <linux/iio/buffer.h> 24 #include <linux/iio/driver.h> 25 #include <linux/iio/iio.h> 26 #include <linux/iio/kfifo_buf.h> 27 #include <linux/mfd/motorola-cpcap.h> 28 29 /* Register CPCAP_REG_ADCC1 bits */ 30 #define CPCAP_BIT_ADEN_AUTO_CLR BIT(15) /* Currently unused */ 31 #define CPCAP_BIT_CAL_MODE BIT(14) /* Set with BIT_RAND0 */ 32 #define CPCAP_BIT_ADC_CLK_SEL1 BIT(13) /* Currently unused */ 33 #define CPCAP_BIT_ADC_CLK_SEL0 BIT(12) /* Currently unused */ 34 #define CPCAP_BIT_ATOX BIT(11) 35 #define CPCAP_BIT_ATO3 BIT(10) 36 #define CPCAP_BIT_ATO2 BIT(9) 37 #define CPCAP_BIT_ATO1 BIT(8) 38 #define CPCAP_BIT_ATO0 BIT(7) 39 #define CPCAP_BIT_ADA2 BIT(6) 40 #define CPCAP_BIT_ADA1 BIT(5) 41 #define CPCAP_BIT_ADA0 BIT(4) 42 #define CPCAP_BIT_AD_SEL1 BIT(3) /* Set for bank1 */ 43 #define CPCAP_BIT_RAND1 BIT(2) /* Set for channel 16 & 17 */ 44 #define CPCAP_BIT_RAND0 BIT(1) /* Set with CAL_MODE */ 45 #define CPCAP_BIT_ADEN BIT(0) /* Currently unused */ 46 47 #define CPCAP_REG_ADCC1_DEFAULTS (CPCAP_BIT_ADEN_AUTO_CLR | \ 48 CPCAP_BIT_ADC_CLK_SEL0 | \ 49 CPCAP_BIT_RAND1) 50 51 /* Register CPCAP_REG_ADCC2 bits */ 52 #define CPCAP_BIT_CAL_FACTOR_ENABLE BIT(15) /* Currently unused */ 53 #define CPCAP_BIT_BATDETB_EN BIT(14) /* Currently unused */ 54 #define CPCAP_BIT_ADTRIG_ONESHOT BIT(13) /* Set for !TIMING_IMM */ 55 #define CPCAP_BIT_ASC BIT(12) /* Set for TIMING_IMM */ 56 #define CPCAP_BIT_ATOX_PS_FACTOR BIT(11) 57 #define CPCAP_BIT_ADC_PS_FACTOR1 BIT(10) 58 #define CPCAP_BIT_ADC_PS_FACTOR0 BIT(9) 59 #define CPCAP_BIT_AD4_SELECT BIT(8) /* Currently unused */ 60 #define CPCAP_BIT_ADC_BUSY BIT(7) /* Currently unused */ 61 #define CPCAP_BIT_THERMBIAS_EN BIT(6) /* Bias for AD0_BATTDETB */ 62 #define CPCAP_BIT_ADTRIG_DIS BIT(5) /* Disable interrupt */ 63 #define CPCAP_BIT_LIADC BIT(4) /* Currently unused */ 64 #define CPCAP_BIT_TS_REFEN BIT(3) /* Currently unused */ 65 #define CPCAP_BIT_TS_M2 BIT(2) /* Currently unused */ 66 #define CPCAP_BIT_TS_M1 BIT(1) /* Currently unused */ 67 #define CPCAP_BIT_TS_M0 BIT(0) /* Currently unused */ 68 69 #define CPCAP_REG_ADCC2_DEFAULTS (CPCAP_BIT_AD4_SELECT | \ 70 CPCAP_BIT_ADTRIG_DIS | \ 71 CPCAP_BIT_LIADC | \ 72 CPCAP_BIT_TS_M2 | \ 73 CPCAP_BIT_TS_M1) 74 75 #define CPCAP_MAX_TEMP_LVL 27 76 #define CPCAP_FOUR_POINT_TWO_ADC 801 77 #define ST_ADC_CAL_CHRGI_HIGH_THRESHOLD 530 78 #define ST_ADC_CAL_CHRGI_LOW_THRESHOLD 494 79 #define ST_ADC_CAL_BATTI_HIGH_THRESHOLD 530 80 #define ST_ADC_CAL_BATTI_LOW_THRESHOLD 494 81 #define ST_ADC_CALIBRATE_DIFF_THRESHOLD 3 82 83 #define CPCAP_ADC_MAX_RETRIES 5 /* Calibration */ 84 85 /** 86 * struct cpcap_adc_ato - timing settings for cpcap adc 87 * 88 * Unfortunately no cpcap documentation available, please document when 89 * using these. 90 */ 91 struct cpcap_adc_ato { 92 unsigned short ato_in; 93 unsigned short atox_in; 94 unsigned short adc_ps_factor_in; 95 unsigned short atox_ps_factor_in; 96 unsigned short ato_out; 97 unsigned short atox_out; 98 unsigned short adc_ps_factor_out; 99 unsigned short atox_ps_factor_out; 100 }; 101 102 /** 103 * struct cpcap-adc - cpcap adc device driver data 104 * @reg: cpcap regmap 105 * @dev: struct device 106 * @vendor: cpcap vendor 107 * @irq: interrupt 108 * @lock: mutex 109 * @ato: request timings 110 * @wq_data_avail: work queue 111 * @done: work done 112 */ 113 struct cpcap_adc { 114 struct regmap *reg; 115 struct device *dev; 116 u16 vendor; 117 int irq; 118 struct mutex lock; /* ADC register access lock */ 119 const struct cpcap_adc_ato *ato; 120 wait_queue_head_t wq_data_avail; 121 bool done; 122 }; 123 124 /** 125 * enum cpcap_adc_channel - cpcap adc channels 126 */ 127 enum cpcap_adc_channel { 128 /* Bank0 channels */ 129 CPCAP_ADC_AD0, /* Battery temperature */ 130 CPCAP_ADC_BATTP, /* Battery voltage */ 131 CPCAP_ADC_VBUS, /* USB VBUS voltage */ 132 CPCAP_ADC_AD3, /* Die temperature when charging */ 133 CPCAP_ADC_BPLUS_AD4, /* Another battery or system voltage */ 134 CPCAP_ADC_CHG_ISENSE, /* Calibrated charge current */ 135 CPCAP_ADC_BATTI, /* Calibrated system current */ 136 CPCAP_ADC_USB_ID, /* USB OTG ID, unused on droid 4? */ 137 138 /* Bank1 channels */ 139 CPCAP_ADC_AD8, /* Seems unused */ 140 CPCAP_ADC_AD9, /* Seems unused */ 141 CPCAP_ADC_LICELL, /* Maybe system voltage? Always 3V */ 142 CPCAP_ADC_HV_BATTP, /* Another battery detection? */ 143 CPCAP_ADC_TSX1_AD12, /* Seems unused, for touchscreen? */ 144 CPCAP_ADC_TSX2_AD13, /* Seems unused, for touchscreen? */ 145 CPCAP_ADC_TSY1_AD14, /* Seems unused, for touchscreen? */ 146 CPCAP_ADC_TSY2_AD15, /* Seems unused, for touchscreen? */ 147 148 /* Remuxed channels using bank0 entries */ 149 CPCAP_ADC_BATTP_PI16, /* Alternative mux mode for BATTP */ 150 CPCAP_ADC_BATTI_PI17, /* Alternative mux mode for BATTI */ 151 152 CPCAP_ADC_CHANNEL_NUM, 153 }; 154 155 /** 156 * enum cpcap_adc_timing - cpcap adc timing options 157 * 158 * CPCAP_ADC_TIMING_IMM seems to be immediate with no timings. 159 * Please document when using. 160 */ 161 enum cpcap_adc_timing { 162 CPCAP_ADC_TIMING_IMM, 163 CPCAP_ADC_TIMING_IN, 164 CPCAP_ADC_TIMING_OUT, 165 }; 166 167 /** 168 * struct cpcap_adc_phasing_tbl - cpcap phasing table 169 * @offset: offset in the phasing table 170 * @multiplier: multiplier in the phasing table 171 * @divider: divider in the phasing table 172 * @min: minimum value 173 * @max: maximum value 174 */ 175 struct cpcap_adc_phasing_tbl { 176 short offset; 177 unsigned short multiplier; 178 unsigned short divider; 179 short min; 180 short max; 181 }; 182 183 /** 184 * struct cpcap_adc_conversion_tbl - cpcap conversion table 185 * @conv_type: conversion type 186 * @align_offset: align offset 187 * @conv_offset: conversion offset 188 * @cal_offset: calibration offset 189 * @multiplier: conversion multiplier 190 * @divider: conversion divider 191 */ 192 struct cpcap_adc_conversion_tbl { 193 enum iio_chan_info_enum conv_type; 194 int align_offset; 195 int conv_offset; 196 int cal_offset; 197 int multiplier; 198 int divider; 199 }; 200 201 /** 202 * struct cpcap_adc_request - cpcap adc request 203 * @channel: request channel 204 * @phase_tbl: channel phasing table 205 * @conv_tbl: channel conversion table 206 * @bank_index: channel index within the bank 207 * @timing: timing settings 208 * @result: result 209 */ 210 struct cpcap_adc_request { 211 int channel; 212 const struct cpcap_adc_phasing_tbl *phase_tbl; 213 const struct cpcap_adc_conversion_tbl *conv_tbl; 214 int bank_index; 215 enum cpcap_adc_timing timing; 216 int result; 217 }; 218 219 /* Phasing table for channels. Note that channels 16 & 17 use BATTP and BATTI */ 220 static const struct cpcap_adc_phasing_tbl bank_phasing[] = { 221 /* Bank0 */ 222 [CPCAP_ADC_AD0] = {0, 0x80, 0x80, 0, 1023}, 223 [CPCAP_ADC_BATTP] = {0, 0x80, 0x80, 0, 1023}, 224 [CPCAP_ADC_VBUS] = {0, 0x80, 0x80, 0, 1023}, 225 [CPCAP_ADC_AD3] = {0, 0x80, 0x80, 0, 1023}, 226 [CPCAP_ADC_BPLUS_AD4] = {0, 0x80, 0x80, 0, 1023}, 227 [CPCAP_ADC_CHG_ISENSE] = {0, 0x80, 0x80, -512, 511}, 228 [CPCAP_ADC_BATTI] = {0, 0x80, 0x80, -512, 511}, 229 [CPCAP_ADC_USB_ID] = {0, 0x80, 0x80, 0, 1023}, 230 231 /* Bank1 */ 232 [CPCAP_ADC_AD8] = {0, 0x80, 0x80, 0, 1023}, 233 [CPCAP_ADC_AD9] = {0, 0x80, 0x80, 0, 1023}, 234 [CPCAP_ADC_LICELL] = {0, 0x80, 0x80, 0, 1023}, 235 [CPCAP_ADC_HV_BATTP] = {0, 0x80, 0x80, 0, 1023}, 236 [CPCAP_ADC_TSX1_AD12] = {0, 0x80, 0x80, 0, 1023}, 237 [CPCAP_ADC_TSX2_AD13] = {0, 0x80, 0x80, 0, 1023}, 238 [CPCAP_ADC_TSY1_AD14] = {0, 0x80, 0x80, 0, 1023}, 239 [CPCAP_ADC_TSY2_AD15] = {0, 0x80, 0x80, 0, 1023}, 240 }; 241 242 /* 243 * Conversion table for channels. Updated during init based on calibration. 244 * Here too channels 16 & 17 use BATTP and BATTI. 245 */ 246 static struct cpcap_adc_conversion_tbl bank_conversion[] = { 247 /* Bank0 */ 248 [CPCAP_ADC_AD0] = { 249 IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 1, 1, 250 }, 251 [CPCAP_ADC_BATTP] = { 252 IIO_CHAN_INFO_PROCESSED, 0, 2400, 0, 2300, 1023, 253 }, 254 [CPCAP_ADC_VBUS] = { 255 IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 10000, 1023, 256 }, 257 [CPCAP_ADC_AD3] = { 258 IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 1, 1, 259 }, 260 [CPCAP_ADC_BPLUS_AD4] = { 261 IIO_CHAN_INFO_PROCESSED, 0, 2400, 0, 2300, 1023, 262 }, 263 [CPCAP_ADC_CHG_ISENSE] = { 264 IIO_CHAN_INFO_PROCESSED, -512, 2, 0, 5000, 1023, 265 }, 266 [CPCAP_ADC_BATTI] = { 267 IIO_CHAN_INFO_PROCESSED, -512, 2, 0, 5000, 1023, 268 }, 269 [CPCAP_ADC_USB_ID] = { 270 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 271 }, 272 273 /* Bank1 */ 274 [CPCAP_ADC_AD8] = { 275 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 276 }, 277 [CPCAP_ADC_AD9] = { 278 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 279 }, 280 [CPCAP_ADC_LICELL] = { 281 IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 3400, 1023, 282 }, 283 [CPCAP_ADC_HV_BATTP] = { 284 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 285 }, 286 [CPCAP_ADC_TSX1_AD12] = { 287 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 288 }, 289 [CPCAP_ADC_TSX2_AD13] = { 290 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 291 }, 292 [CPCAP_ADC_TSY1_AD14] = { 293 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 294 }, 295 [CPCAP_ADC_TSY2_AD15] = { 296 IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1, 297 }, 298 }; 299 300 /* 301 * Temperature lookup table of register values to milliCelcius. 302 * REVISIT: Check the duplicate 0x3ff entry in a freezer 303 */ 304 static const int temp_map[CPCAP_MAX_TEMP_LVL][2] = { 305 { 0x03ff, -40000 }, 306 { 0x03ff, -35000 }, 307 { 0x03ef, -30000 }, 308 { 0x03b2, -25000 }, 309 { 0x036c, -20000 }, 310 { 0x0320, -15000 }, 311 { 0x02d0, -10000 }, 312 { 0x027f, -5000 }, 313 { 0x022f, 0 }, 314 { 0x01e4, 5000 }, 315 { 0x019f, 10000 }, 316 { 0x0161, 15000 }, 317 { 0x012b, 20000 }, 318 { 0x00fc, 25000 }, 319 { 0x00d4, 30000 }, 320 { 0x00b2, 35000 }, 321 { 0x0095, 40000 }, 322 { 0x007d, 45000 }, 323 { 0x0069, 50000 }, 324 { 0x0059, 55000 }, 325 { 0x004b, 60000 }, 326 { 0x003f, 65000 }, 327 { 0x0036, 70000 }, 328 { 0x002e, 75000 }, 329 { 0x0027, 80000 }, 330 { 0x0022, 85000 }, 331 { 0x001d, 90000 }, 332 }; 333 334 #define CPCAP_CHAN(_type, _index, _address, _datasheet_name) { \ 335 .type = (_type), \ 336 .address = (_address), \ 337 .indexed = 1, \ 338 .channel = (_index), \ 339 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 340 BIT(IIO_CHAN_INFO_PROCESSED), \ 341 .scan_index = (_index), \ 342 .scan_type = { \ 343 .sign = 'u', \ 344 .realbits = 10, \ 345 .storagebits = 16, \ 346 .endianness = IIO_CPU, \ 347 }, \ 348 .datasheet_name = (_datasheet_name), \ 349 } 350 351 /* 352 * The datasheet names are from Motorola mapphone Linux kernel except 353 * for the last two which might be uncalibrated charge voltage and 354 * current. 355 */ 356 static const struct iio_chan_spec cpcap_adc_channels[] = { 357 /* Bank0 */ 358 CPCAP_CHAN(IIO_TEMP, 0, CPCAP_REG_ADCD0, "battdetb"), 359 CPCAP_CHAN(IIO_VOLTAGE, 1, CPCAP_REG_ADCD1, "battp"), 360 CPCAP_CHAN(IIO_VOLTAGE, 2, CPCAP_REG_ADCD2, "vbus"), 361 CPCAP_CHAN(IIO_TEMP, 3, CPCAP_REG_ADCD3, "ad3"), 362 CPCAP_CHAN(IIO_VOLTAGE, 4, CPCAP_REG_ADCD4, "ad4"), 363 CPCAP_CHAN(IIO_CURRENT, 5, CPCAP_REG_ADCD5, "chg_isense"), 364 CPCAP_CHAN(IIO_CURRENT, 6, CPCAP_REG_ADCD6, "batti"), 365 CPCAP_CHAN(IIO_VOLTAGE, 7, CPCAP_REG_ADCD7, "usb_id"), 366 367 /* Bank1 */ 368 CPCAP_CHAN(IIO_CURRENT, 8, CPCAP_REG_ADCD0, "ad8"), 369 CPCAP_CHAN(IIO_VOLTAGE, 9, CPCAP_REG_ADCD1, "ad9"), 370 CPCAP_CHAN(IIO_VOLTAGE, 10, CPCAP_REG_ADCD2, "licell"), 371 CPCAP_CHAN(IIO_VOLTAGE, 11, CPCAP_REG_ADCD3, "hv_battp"), 372 CPCAP_CHAN(IIO_VOLTAGE, 12, CPCAP_REG_ADCD4, "tsx1_ad12"), 373 CPCAP_CHAN(IIO_VOLTAGE, 13, CPCAP_REG_ADCD5, "tsx2_ad13"), 374 CPCAP_CHAN(IIO_VOLTAGE, 14, CPCAP_REG_ADCD6, "tsy1_ad14"), 375 CPCAP_CHAN(IIO_VOLTAGE, 15, CPCAP_REG_ADCD7, "tsy2_ad15"), 376 377 /* There are two registers with multiplexed functionality */ 378 CPCAP_CHAN(IIO_VOLTAGE, 16, CPCAP_REG_ADCD0, "chg_vsense"), 379 CPCAP_CHAN(IIO_CURRENT, 17, CPCAP_REG_ADCD1, "batti2"), 380 }; 381 382 static irqreturn_t cpcap_adc_irq_thread(int irq, void *data) 383 { 384 struct iio_dev *indio_dev = data; 385 struct cpcap_adc *ddata = iio_priv(indio_dev); 386 int error; 387 388 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 389 CPCAP_BIT_ADTRIG_DIS, 390 CPCAP_BIT_ADTRIG_DIS); 391 if (error) 392 return IRQ_NONE; 393 394 ddata->done = true; 395 wake_up_interruptible(&ddata->wq_data_avail); 396 397 return IRQ_HANDLED; 398 } 399 400 /* ADC calibration functions */ 401 static void cpcap_adc_setup_calibrate(struct cpcap_adc *ddata, 402 enum cpcap_adc_channel chan) 403 { 404 unsigned int value = 0; 405 unsigned long timeout = jiffies + msecs_to_jiffies(3000); 406 int error; 407 408 if ((chan != CPCAP_ADC_CHG_ISENSE) && 409 (chan != CPCAP_ADC_BATTI)) 410 return; 411 412 value |= CPCAP_BIT_CAL_MODE | CPCAP_BIT_RAND0; 413 value |= ((chan << 4) & 414 (CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 | CPCAP_BIT_ADA0)); 415 416 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1, 417 CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX | 418 CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 | 419 CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 | 420 CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 | 421 CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 | 422 CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0, 423 value); 424 if (error) 425 return; 426 427 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 428 CPCAP_BIT_ATOX_PS_FACTOR | 429 CPCAP_BIT_ADC_PS_FACTOR1 | 430 CPCAP_BIT_ADC_PS_FACTOR0, 431 0); 432 if (error) 433 return; 434 435 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 436 CPCAP_BIT_ADTRIG_DIS, 437 CPCAP_BIT_ADTRIG_DIS); 438 if (error) 439 return; 440 441 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 442 CPCAP_BIT_ASC, 443 CPCAP_BIT_ASC); 444 if (error) 445 return; 446 447 do { 448 schedule_timeout_uninterruptible(1); 449 error = regmap_read(ddata->reg, CPCAP_REG_ADCC2, &value); 450 if (error) 451 return; 452 } while ((value & CPCAP_BIT_ASC) && time_before(jiffies, timeout)); 453 454 if (value & CPCAP_BIT_ASC) 455 dev_err(ddata->dev, 456 "Timeout waiting for calibration to complete\n"); 457 458 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1, 459 CPCAP_BIT_CAL_MODE, 0); 460 if (error) 461 return; 462 } 463 464 static int cpcap_adc_calibrate_one(struct cpcap_adc *ddata, 465 int channel, 466 u16 calibration_register, 467 int lower_threshold, 468 int upper_threshold) 469 { 470 unsigned int calibration_data[2]; 471 unsigned short cal_data_diff; 472 int i, error; 473 474 for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) { 475 calibration_data[0] = 0; 476 calibration_data[1] = 0; 477 cal_data_diff = 0; 478 cpcap_adc_setup_calibrate(ddata, channel); 479 error = regmap_read(ddata->reg, calibration_register, 480 &calibration_data[0]); 481 if (error) 482 return error; 483 cpcap_adc_setup_calibrate(ddata, channel); 484 error = regmap_read(ddata->reg, calibration_register, 485 &calibration_data[1]); 486 if (error) 487 return error; 488 489 if (calibration_data[0] > calibration_data[1]) 490 cal_data_diff = 491 calibration_data[0] - calibration_data[1]; 492 else 493 cal_data_diff = 494 calibration_data[1] - calibration_data[0]; 495 496 if (((calibration_data[1] >= lower_threshold) && 497 (calibration_data[1] <= upper_threshold) && 498 (cal_data_diff <= ST_ADC_CALIBRATE_DIFF_THRESHOLD)) || 499 (ddata->vendor == CPCAP_VENDOR_TI)) { 500 bank_conversion[channel].cal_offset = 501 ((short)calibration_data[1] * -1) + 512; 502 dev_dbg(ddata->dev, "ch%i calibration complete: %i\n", 503 channel, bank_conversion[channel].cal_offset); 504 break; 505 } 506 usleep_range(5000, 10000); 507 } 508 509 return 0; 510 } 511 512 static int cpcap_adc_calibrate(struct cpcap_adc *ddata) 513 { 514 int error; 515 516 error = cpcap_adc_calibrate_one(ddata, CPCAP_ADC_CHG_ISENSE, 517 CPCAP_REG_ADCAL1, 518 ST_ADC_CAL_CHRGI_LOW_THRESHOLD, 519 ST_ADC_CAL_CHRGI_HIGH_THRESHOLD); 520 if (error) 521 return error; 522 523 error = cpcap_adc_calibrate_one(ddata, CPCAP_ADC_BATTI, 524 CPCAP_REG_ADCAL2, 525 ST_ADC_CAL_BATTI_LOW_THRESHOLD, 526 ST_ADC_CAL_BATTI_HIGH_THRESHOLD); 527 if (error) 528 return error; 529 530 return 0; 531 } 532 533 /* ADC setup, read and scale functions */ 534 static void cpcap_adc_setup_bank(struct cpcap_adc *ddata, 535 struct cpcap_adc_request *req) 536 { 537 const struct cpcap_adc_ato *ato = ddata->ato; 538 unsigned short value1 = 0; 539 unsigned short value2 = 0; 540 int error; 541 542 if (!ato) 543 return; 544 545 switch (req->channel) { 546 case CPCAP_ADC_AD0: 547 value2 |= CPCAP_BIT_THERMBIAS_EN; 548 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 549 CPCAP_BIT_THERMBIAS_EN, 550 value2); 551 if (error) 552 return; 553 usleep_range(800, 1000); 554 break; 555 case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15: 556 value1 |= CPCAP_BIT_AD_SEL1; 557 break; 558 case CPCAP_ADC_BATTP_PI16 ... CPCAP_ADC_BATTI_PI17: 559 value1 |= CPCAP_BIT_RAND1; 560 default: 561 break; 562 } 563 564 switch (req->timing) { 565 case CPCAP_ADC_TIMING_IN: 566 value1 |= ato->ato_in; 567 value1 |= ato->atox_in; 568 value2 |= ato->adc_ps_factor_in; 569 value2 |= ato->atox_ps_factor_in; 570 break; 571 case CPCAP_ADC_TIMING_OUT: 572 value1 |= ato->ato_out; 573 value1 |= ato->atox_out; 574 value2 |= ato->adc_ps_factor_out; 575 value2 |= ato->atox_ps_factor_out; 576 break; 577 578 case CPCAP_ADC_TIMING_IMM: 579 default: 580 break; 581 } 582 583 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1, 584 CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX | 585 CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 | 586 CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 | 587 CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 | 588 CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 | 589 CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0, 590 value1); 591 if (error) 592 return; 593 594 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 595 CPCAP_BIT_ATOX_PS_FACTOR | 596 CPCAP_BIT_ADC_PS_FACTOR1 | 597 CPCAP_BIT_ADC_PS_FACTOR0 | 598 CPCAP_BIT_THERMBIAS_EN, 599 value2); 600 if (error) 601 return; 602 603 if (req->timing == CPCAP_ADC_TIMING_IMM) { 604 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 605 CPCAP_BIT_ADTRIG_DIS, 606 CPCAP_BIT_ADTRIG_DIS); 607 if (error) 608 return; 609 610 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 611 CPCAP_BIT_ASC, 612 CPCAP_BIT_ASC); 613 if (error) 614 return; 615 } else { 616 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 617 CPCAP_BIT_ADTRIG_ONESHOT, 618 CPCAP_BIT_ADTRIG_ONESHOT); 619 if (error) 620 return; 621 622 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 623 CPCAP_BIT_ADTRIG_DIS, 0); 624 if (error) 625 return; 626 } 627 } 628 629 static int cpcap_adc_start_bank(struct cpcap_adc *ddata, 630 struct cpcap_adc_request *req) 631 { 632 int i, error; 633 634 req->timing = CPCAP_ADC_TIMING_IMM; 635 ddata->done = false; 636 637 for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) { 638 cpcap_adc_setup_bank(ddata, req); 639 error = wait_event_interruptible_timeout(ddata->wq_data_avail, 640 ddata->done, 641 msecs_to_jiffies(50)); 642 if (error > 0) 643 return 0; 644 645 if (error == 0) { 646 error = -ETIMEDOUT; 647 continue; 648 } 649 650 if (error < 0) 651 return error; 652 } 653 654 return error; 655 } 656 657 static int cpcap_adc_stop_bank(struct cpcap_adc *ddata) 658 { 659 int error; 660 661 error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1, 662 0xffff, 663 CPCAP_REG_ADCC1_DEFAULTS); 664 if (error) 665 return error; 666 667 return regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2, 668 0xffff, 669 CPCAP_REG_ADCC2_DEFAULTS); 670 } 671 672 static void cpcap_adc_phase(struct cpcap_adc_request *req) 673 { 674 const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl; 675 const struct cpcap_adc_phasing_tbl *phase_tbl = req->phase_tbl; 676 int index = req->channel; 677 678 /* Remuxed channels 16 and 17 use BATTP and BATTI entries */ 679 switch (req->channel) { 680 case CPCAP_ADC_BATTP: 681 case CPCAP_ADC_BATTP_PI16: 682 index = req->bank_index; 683 req->result -= phase_tbl[index].offset; 684 req->result -= CPCAP_FOUR_POINT_TWO_ADC; 685 req->result *= phase_tbl[index].multiplier; 686 if (phase_tbl[index].divider == 0) 687 return; 688 req->result /= phase_tbl[index].divider; 689 req->result += CPCAP_FOUR_POINT_TWO_ADC; 690 break; 691 case CPCAP_ADC_BATTI_PI17: 692 index = req->bank_index; 693 /* fallthrough */ 694 default: 695 req->result += conv_tbl[index].cal_offset; 696 req->result += conv_tbl[index].align_offset; 697 req->result *= phase_tbl[index].multiplier; 698 if (phase_tbl[index].divider == 0) 699 return; 700 req->result /= phase_tbl[index].divider; 701 req->result += phase_tbl[index].offset; 702 break; 703 } 704 705 if (req->result < phase_tbl[index].min) 706 req->result = phase_tbl[index].min; 707 else if (req->result > phase_tbl[index].max) 708 req->result = phase_tbl[index].max; 709 } 710 711 /* Looks up temperatures in a table and calculates averages if needed */ 712 static int cpcap_adc_table_to_millicelcius(unsigned short value) 713 { 714 int i, result = 0, alpha; 715 716 if (value <= temp_map[CPCAP_MAX_TEMP_LVL - 1][0]) 717 return temp_map[CPCAP_MAX_TEMP_LVL - 1][1]; 718 719 if (value >= temp_map[0][0]) 720 return temp_map[0][1]; 721 722 for (i = 0; i < CPCAP_MAX_TEMP_LVL - 1; i++) { 723 if ((value <= temp_map[i][0]) && 724 (value >= temp_map[i + 1][0])) { 725 if (value == temp_map[i][0]) { 726 result = temp_map[i][1]; 727 } else if (value == temp_map[i + 1][0]) { 728 result = temp_map[i + 1][1]; 729 } else { 730 alpha = ((value - temp_map[i][0]) * 1000) / 731 (temp_map[i + 1][0] - temp_map[i][0]); 732 733 result = temp_map[i][1] + 734 ((alpha * (temp_map[i + 1][1] - 735 temp_map[i][1])) / 1000); 736 } 737 break; 738 } 739 } 740 741 return result; 742 } 743 744 static void cpcap_adc_convert(struct cpcap_adc_request *req) 745 { 746 const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl; 747 int index = req->channel; 748 749 /* Remuxed channels 16 and 17 use BATTP and BATTI entries */ 750 switch (req->channel) { 751 case CPCAP_ADC_BATTP_PI16: 752 index = CPCAP_ADC_BATTP; 753 break; 754 case CPCAP_ADC_BATTI_PI17: 755 index = CPCAP_ADC_BATTI; 756 break; 757 default: 758 break; 759 } 760 761 /* No conversion for raw channels */ 762 if (conv_tbl[index].conv_type == IIO_CHAN_INFO_RAW) 763 return; 764 765 /* Temperatures use a lookup table instead of conversion table */ 766 if ((req->channel == CPCAP_ADC_AD0) || 767 (req->channel == CPCAP_ADC_AD3)) { 768 req->result = 769 cpcap_adc_table_to_millicelcius(req->result); 770 771 return; 772 } 773 774 /* All processed channels use a conversion table */ 775 req->result *= conv_tbl[index].multiplier; 776 if (conv_tbl[index].divider == 0) 777 return; 778 req->result /= conv_tbl[index].divider; 779 req->result += conv_tbl[index].conv_offset; 780 } 781 782 /* 783 * REVISIT: Check if timed sampling can use multiple channels at the 784 * same time. If not, replace channel_mask with just channel. 785 */ 786 static int cpcap_adc_read_bank_scaled(struct cpcap_adc *ddata, 787 struct cpcap_adc_request *req) 788 { 789 int calibration_data, error, addr; 790 791 if (ddata->vendor == CPCAP_VENDOR_TI) { 792 error = regmap_read(ddata->reg, CPCAP_REG_ADCAL1, 793 &calibration_data); 794 if (error) 795 return error; 796 bank_conversion[CPCAP_ADC_CHG_ISENSE].cal_offset = 797 ((short)calibration_data * -1) + 512; 798 799 error = regmap_read(ddata->reg, CPCAP_REG_ADCAL2, 800 &calibration_data); 801 if (error) 802 return error; 803 bank_conversion[CPCAP_ADC_BATTI].cal_offset = 804 ((short)calibration_data * -1) + 512; 805 } 806 807 addr = CPCAP_REG_ADCD0 + req->bank_index * 4; 808 809 error = regmap_read(ddata->reg, addr, &req->result); 810 if (error) 811 return error; 812 813 req->result &= 0x3ff; 814 cpcap_adc_phase(req); 815 cpcap_adc_convert(req); 816 817 return 0; 818 } 819 820 static int cpcap_adc_init_request(struct cpcap_adc_request *req, 821 int channel) 822 { 823 req->channel = channel; 824 req->phase_tbl = bank_phasing; 825 req->conv_tbl = bank_conversion; 826 827 switch (channel) { 828 case CPCAP_ADC_AD0 ... CPCAP_ADC_USB_ID: 829 req->bank_index = channel; 830 break; 831 case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15: 832 req->bank_index = channel - 8; 833 break; 834 case CPCAP_ADC_BATTP_PI16: 835 req->bank_index = CPCAP_ADC_BATTP; 836 break; 837 case CPCAP_ADC_BATTI_PI17: 838 req->bank_index = CPCAP_ADC_BATTI; 839 break; 840 default: 841 return -EINVAL; 842 } 843 844 return 0; 845 } 846 847 static int cpcap_adc_read_st_die_temp(struct cpcap_adc *ddata, 848 int addr, int *val) 849 { 850 int error; 851 852 error = regmap_read(ddata->reg, addr, val); 853 if (error) 854 return error; 855 856 *val -= 282; 857 *val *= 114; 858 *val += 25000; 859 860 return 0; 861 } 862 863 static int cpcap_adc_read(struct iio_dev *indio_dev, 864 struct iio_chan_spec const *chan, 865 int *val, int *val2, long mask) 866 { 867 struct cpcap_adc *ddata = iio_priv(indio_dev); 868 struct cpcap_adc_request req; 869 int error; 870 871 error = cpcap_adc_init_request(&req, chan->channel); 872 if (error) 873 return error; 874 875 switch (mask) { 876 case IIO_CHAN_INFO_RAW: 877 mutex_lock(&ddata->lock); 878 error = cpcap_adc_start_bank(ddata, &req); 879 if (error) 880 goto err_unlock; 881 error = regmap_read(ddata->reg, chan->address, val); 882 if (error) 883 goto err_unlock; 884 error = cpcap_adc_stop_bank(ddata); 885 if (error) 886 goto err_unlock; 887 mutex_unlock(&ddata->lock); 888 break; 889 case IIO_CHAN_INFO_PROCESSED: 890 mutex_lock(&ddata->lock); 891 error = cpcap_adc_start_bank(ddata, &req); 892 if (error) 893 goto err_unlock; 894 if ((ddata->vendor == CPCAP_VENDOR_ST) && 895 (chan->channel == CPCAP_ADC_AD3)) { 896 error = cpcap_adc_read_st_die_temp(ddata, 897 chan->address, 898 &req.result); 899 if (error) 900 goto err_unlock; 901 } else { 902 error = cpcap_adc_read_bank_scaled(ddata, &req); 903 if (error) 904 goto err_unlock; 905 } 906 error = cpcap_adc_stop_bank(ddata); 907 if (error) 908 goto err_unlock; 909 mutex_unlock(&ddata->lock); 910 *val = req.result; 911 break; 912 default: 913 return -EINVAL; 914 } 915 916 return IIO_VAL_INT; 917 918 err_unlock: 919 mutex_unlock(&ddata->lock); 920 dev_err(ddata->dev, "error reading ADC: %i\n", error); 921 922 return error; 923 } 924 925 static const struct iio_info cpcap_adc_info = { 926 .read_raw = &cpcap_adc_read, 927 }; 928 929 /* 930 * Configuration for Motorola mapphone series such as droid 4. 931 * Copied from the Motorola mapphone kernel tree. 932 */ 933 static const struct cpcap_adc_ato mapphone_adc = { 934 .ato_in = 0x0480, 935 .atox_in = 0, 936 .adc_ps_factor_in = 0x0200, 937 .atox_ps_factor_in = 0, 938 .ato_out = 0, 939 .atox_out = 0, 940 .adc_ps_factor_out = 0, 941 .atox_ps_factor_out = 0, 942 }; 943 944 static const struct of_device_id cpcap_adc_id_table[] = { 945 { 946 .compatible = "motorola,cpcap-adc", 947 }, 948 { 949 .compatible = "motorola,mapphone-cpcap-adc", 950 .data = &mapphone_adc, 951 }, 952 { /* sentinel */ }, 953 }; 954 MODULE_DEVICE_TABLE(of, cpcap_adc_id_table); 955 956 static int cpcap_adc_probe(struct platform_device *pdev) 957 { 958 const struct of_device_id *match; 959 struct cpcap_adc *ddata; 960 struct iio_dev *indio_dev; 961 int error; 962 963 match = of_match_device(of_match_ptr(cpcap_adc_id_table), 964 &pdev->dev); 965 if (!match) 966 return -EINVAL; 967 968 if (!match->data) { 969 dev_err(&pdev->dev, "no configuration data found\n"); 970 971 return -ENODEV; 972 } 973 974 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ddata)); 975 if (!indio_dev) { 976 dev_err(&pdev->dev, "failed to allocate iio device\n"); 977 978 return -ENOMEM; 979 } 980 ddata = iio_priv(indio_dev); 981 ddata->ato = match->data; 982 ddata->dev = &pdev->dev; 983 984 mutex_init(&ddata->lock); 985 init_waitqueue_head(&ddata->wq_data_avail); 986 987 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE; 988 indio_dev->dev.parent = &pdev->dev; 989 indio_dev->dev.of_node = pdev->dev.of_node; 990 indio_dev->channels = cpcap_adc_channels; 991 indio_dev->num_channels = ARRAY_SIZE(cpcap_adc_channels); 992 indio_dev->name = dev_name(&pdev->dev); 993 indio_dev->info = &cpcap_adc_info; 994 995 ddata->reg = dev_get_regmap(pdev->dev.parent, NULL); 996 if (!ddata->reg) 997 return -ENODEV; 998 999 error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor); 1000 if (error) 1001 return error; 1002 1003 platform_set_drvdata(pdev, indio_dev); 1004 1005 ddata->irq = platform_get_irq_byname(pdev, "adcdone"); 1006 if (ddata->irq < 0) 1007 return -ENODEV; 1008 1009 error = devm_request_threaded_irq(&pdev->dev, ddata->irq, NULL, 1010 cpcap_adc_irq_thread, 1011 IRQF_TRIGGER_NONE, 1012 "cpcap-adc", indio_dev); 1013 if (error) { 1014 dev_err(&pdev->dev, "could not get irq: %i\n", 1015 error); 1016 1017 return error; 1018 } 1019 1020 error = cpcap_adc_calibrate(ddata); 1021 if (error) 1022 return error; 1023 1024 dev_info(&pdev->dev, "CPCAP ADC device probed\n"); 1025 1026 return devm_iio_device_register(&pdev->dev, indio_dev); 1027 } 1028 1029 static struct platform_driver cpcap_adc_driver = { 1030 .driver = { 1031 .name = "cpcap_adc", 1032 .of_match_table = of_match_ptr(cpcap_adc_id_table), 1033 }, 1034 .probe = cpcap_adc_probe, 1035 }; 1036 1037 module_platform_driver(cpcap_adc_driver); 1038 1039 MODULE_ALIAS("platform:cpcap_adc"); 1040 MODULE_DESCRIPTION("CPCAP ADC driver"); 1041 MODULE_AUTHOR("Tony Lindgren <tony@atomide.com"); 1042 MODULE_LICENSE("GPL v2"); 1043