1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Atmel ADC driver for SAMA5D2 devices and compatible. 4 * 5 * Copyright (C) 2015 Atmel, 6 * 2015 Ludovic Desroches <ludovic.desroches@atmel.com> 7 * 2021 Microchip Technology, Inc. and its subsidiaries 8 * 2021 Eugen Hristev <eugen.hristev@microchip.com> 9 */ 10 11 #include <linux/bitops.h> 12 #include <linux/clk.h> 13 #include <linux/delay.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/dmaengine.h> 16 #include <linux/interrupt.h> 17 #include <linux/io.h> 18 #include <linux/module.h> 19 #include <linux/mod_devicetable.h> 20 #include <linux/platform_device.h> 21 #include <linux/property.h> 22 #include <linux/sched.h> 23 #include <linux/units.h> 24 #include <linux/wait.h> 25 #include <linux/iio/iio.h> 26 #include <linux/iio/sysfs.h> 27 #include <linux/iio/buffer.h> 28 #include <linux/iio/trigger.h> 29 #include <linux/iio/trigger_consumer.h> 30 #include <linux/iio/triggered_buffer.h> 31 #include <linux/nvmem-consumer.h> 32 #include <linux/pinctrl/consumer.h> 33 #include <linux/pm_runtime.h> 34 #include <linux/regulator/consumer.h> 35 36 #include <dt-bindings/iio/adc/at91-sama5d2_adc.h> 37 38 struct at91_adc_reg_layout { 39 /* Control Register */ 40 u16 CR; 41 /* Software Reset */ 42 #define AT91_SAMA5D2_CR_SWRST BIT(0) 43 /* Start Conversion */ 44 #define AT91_SAMA5D2_CR_START BIT(1) 45 /* Touchscreen Calibration */ 46 #define AT91_SAMA5D2_CR_TSCALIB BIT(2) 47 /* Comparison Restart */ 48 #define AT91_SAMA5D2_CR_CMPRST BIT(4) 49 50 /* Mode Register */ 51 u16 MR; 52 /* Trigger Selection */ 53 #define AT91_SAMA5D2_MR_TRGSEL(v) ((v) << 1) 54 /* ADTRG */ 55 #define AT91_SAMA5D2_MR_TRGSEL_TRIG0 0 56 /* TIOA0 */ 57 #define AT91_SAMA5D2_MR_TRGSEL_TRIG1 1 58 /* TIOA1 */ 59 #define AT91_SAMA5D2_MR_TRGSEL_TRIG2 2 60 /* TIOA2 */ 61 #define AT91_SAMA5D2_MR_TRGSEL_TRIG3 3 62 /* PWM event line 0 */ 63 #define AT91_SAMA5D2_MR_TRGSEL_TRIG4 4 64 /* PWM event line 1 */ 65 #define AT91_SAMA5D2_MR_TRGSEL_TRIG5 5 66 /* TIOA3 */ 67 #define AT91_SAMA5D2_MR_TRGSEL_TRIG6 6 68 /* RTCOUT0 */ 69 #define AT91_SAMA5D2_MR_TRGSEL_TRIG7 7 70 /* Sleep Mode */ 71 #define AT91_SAMA5D2_MR_SLEEP BIT(5) 72 /* Fast Wake Up */ 73 #define AT91_SAMA5D2_MR_FWUP BIT(6) 74 /* Prescaler Rate Selection */ 75 #define AT91_SAMA5D2_MR_PRESCAL(v) ((v) << AT91_SAMA5D2_MR_PRESCAL_OFFSET) 76 #define AT91_SAMA5D2_MR_PRESCAL_OFFSET 8 77 #define AT91_SAMA5D2_MR_PRESCAL_MAX 0xff 78 #define AT91_SAMA5D2_MR_PRESCAL_MASK GENMASK(15, 8) 79 /* Startup Time */ 80 #define AT91_SAMA5D2_MR_STARTUP(v) ((v) << 16) 81 #define AT91_SAMA5D2_MR_STARTUP_MASK GENMASK(19, 16) 82 /* Minimum startup time for temperature sensor */ 83 #define AT91_SAMA5D2_MR_STARTUP_TS_MIN (50) 84 /* Analog Change */ 85 #define AT91_SAMA5D2_MR_ANACH BIT(23) 86 /* Tracking Time */ 87 #define AT91_SAMA5D2_MR_TRACKTIM(v) ((v) << 24) 88 #define AT91_SAMA5D2_MR_TRACKTIM_TS 6 89 #define AT91_SAMA5D2_MR_TRACKTIM_MAX 0xf 90 /* Transfer Time */ 91 #define AT91_SAMA5D2_MR_TRANSFER(v) ((v) << 28) 92 #define AT91_SAMA5D2_MR_TRANSFER_MAX 0x3 93 /* Use Sequence Enable */ 94 #define AT91_SAMA5D2_MR_USEQ BIT(31) 95 96 /* Channel Sequence Register 1 */ 97 u16 SEQR1; 98 /* Channel Sequence Register 2 */ 99 u16 SEQR2; 100 /* Channel Enable Register */ 101 u16 CHER; 102 /* Channel Disable Register */ 103 u16 CHDR; 104 /* Channel Status Register */ 105 u16 CHSR; 106 /* Last Converted Data Register */ 107 u16 LCDR; 108 /* Interrupt Enable Register */ 109 u16 IER; 110 /* Interrupt Enable Register - TS X measurement ready */ 111 #define AT91_SAMA5D2_IER_XRDY BIT(20) 112 /* Interrupt Enable Register - TS Y measurement ready */ 113 #define AT91_SAMA5D2_IER_YRDY BIT(21) 114 /* Interrupt Enable Register - TS pressure measurement ready */ 115 #define AT91_SAMA5D2_IER_PRDY BIT(22) 116 /* Interrupt Enable Register - Data ready */ 117 #define AT91_SAMA5D2_IER_DRDY BIT(24) 118 /* Interrupt Enable Register - general overrun error */ 119 #define AT91_SAMA5D2_IER_GOVRE BIT(25) 120 /* Interrupt Enable Register - Pen detect */ 121 #define AT91_SAMA5D2_IER_PEN BIT(29) 122 /* Interrupt Enable Register - No pen detect */ 123 #define AT91_SAMA5D2_IER_NOPEN BIT(30) 124 125 /* Interrupt Disable Register */ 126 u16 IDR; 127 /* Interrupt Mask Register */ 128 u16 IMR; 129 /* Interrupt Status Register */ 130 u16 ISR; 131 /* End of Conversion Interrupt Enable Register */ 132 u16 EOC_IER; 133 /* End of Conversion Interrupt Disable Register */ 134 u16 EOC_IDR; 135 /* End of Conversion Interrupt Mask Register */ 136 u16 EOC_IMR; 137 /* End of Conversion Interrupt Status Register */ 138 u16 EOC_ISR; 139 /* Interrupt Status Register - Pen touching sense status */ 140 #define AT91_SAMA5D2_ISR_PENS BIT(31) 141 /* Last Channel Trigger Mode Register */ 142 u16 LCTMR; 143 /* Last Channel Compare Window Register */ 144 u16 LCCWR; 145 /* Overrun Status Register */ 146 u16 OVER; 147 /* Extended Mode Register */ 148 u16 EMR; 149 /* Extended Mode Register - Oversampling rate */ 150 #define AT91_SAMA5D2_EMR_OSR(V, M) (((V) << 16) & (M)) 151 #define AT91_SAMA5D2_EMR_OSR_1SAMPLES 0 152 #define AT91_SAMA5D2_EMR_OSR_4SAMPLES 1 153 #define AT91_SAMA5D2_EMR_OSR_16SAMPLES 2 154 #define AT91_SAMA5D2_EMR_OSR_64SAMPLES 3 155 #define AT91_SAMA5D2_EMR_OSR_256SAMPLES 4 156 157 /* Extended Mode Register - TRACKX */ 158 #define AT91_SAMA5D2_TRACKX_MASK GENMASK(23, 22) 159 #define AT91_SAMA5D2_TRACKX(x) (((x) << 22) & \ 160 AT91_SAMA5D2_TRACKX_MASK) 161 /* TRACKX for temperature sensor. */ 162 #define AT91_SAMA5D2_TRACKX_TS (1) 163 164 /* Extended Mode Register - Averaging on single trigger event */ 165 #define AT91_SAMA5D2_EMR_ASTE(V) ((V) << 20) 166 167 /* Compare Window Register */ 168 u16 CWR; 169 /* Channel Gain Register */ 170 u16 CGR; 171 /* Channel Offset Register */ 172 u16 COR; 173 /* Channel Offset Register differential offset - constant, not a register */ 174 u16 COR_diff_offset; 175 /* Analog Control Register */ 176 u16 ACR; 177 /* Analog Control Register - Pen detect sensitivity mask */ 178 #define AT91_SAMA5D2_ACR_PENDETSENS_MASK GENMASK(1, 0) 179 /* Analog Control Register - Source last channel */ 180 #define AT91_SAMA5D2_ACR_SRCLCH BIT(16) 181 182 /* Touchscreen Mode Register */ 183 u16 TSMR; 184 /* Touchscreen Mode Register - No touch mode */ 185 #define AT91_SAMA5D2_TSMR_TSMODE_NONE 0 186 /* Touchscreen Mode Register - 4 wire screen, no pressure measurement */ 187 #define AT91_SAMA5D2_TSMR_TSMODE_4WIRE_NO_PRESS 1 188 /* Touchscreen Mode Register - 4 wire screen, pressure measurement */ 189 #define AT91_SAMA5D2_TSMR_TSMODE_4WIRE_PRESS 2 190 /* Touchscreen Mode Register - 5 wire screen */ 191 #define AT91_SAMA5D2_TSMR_TSMODE_5WIRE 3 192 /* Touchscreen Mode Register - Average samples mask */ 193 #define AT91_SAMA5D2_TSMR_TSAV_MASK GENMASK(5, 4) 194 /* Touchscreen Mode Register - Average samples */ 195 #define AT91_SAMA5D2_TSMR_TSAV(x) ((x) << 4) 196 /* Touchscreen Mode Register - Touch/trigger frequency ratio mask */ 197 #define AT91_SAMA5D2_TSMR_TSFREQ_MASK GENMASK(11, 8) 198 /* Touchscreen Mode Register - Touch/trigger frequency ratio */ 199 #define AT91_SAMA5D2_TSMR_TSFREQ(x) ((x) << 8) 200 /* Touchscreen Mode Register - Pen Debounce Time mask */ 201 #define AT91_SAMA5D2_TSMR_PENDBC_MASK GENMASK(31, 28) 202 /* Touchscreen Mode Register - Pen Debounce Time */ 203 #define AT91_SAMA5D2_TSMR_PENDBC(x) ((x) << 28) 204 /* Touchscreen Mode Register - No DMA for touch measurements */ 205 #define AT91_SAMA5D2_TSMR_NOTSDMA BIT(22) 206 /* Touchscreen Mode Register - Disable pen detection */ 207 #define AT91_SAMA5D2_TSMR_PENDET_DIS (0 << 24) 208 /* Touchscreen Mode Register - Enable pen detection */ 209 #define AT91_SAMA5D2_TSMR_PENDET_ENA BIT(24) 210 211 /* Touchscreen X Position Register */ 212 u16 XPOSR; 213 /* Touchscreen Y Position Register */ 214 u16 YPOSR; 215 /* Touchscreen Pressure Register */ 216 u16 PRESSR; 217 /* Trigger Register */ 218 u16 TRGR; 219 /* Mask for TRGMOD field of TRGR register */ 220 #define AT91_SAMA5D2_TRGR_TRGMOD_MASK GENMASK(2, 0) 221 /* No trigger, only software trigger can start conversions */ 222 #define AT91_SAMA5D2_TRGR_TRGMOD_NO_TRIGGER 0 223 /* Trigger Mode external trigger rising edge */ 224 #define AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_RISE 1 225 /* Trigger Mode external trigger falling edge */ 226 #define AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_FALL 2 227 /* Trigger Mode external trigger any edge */ 228 #define AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_ANY 3 229 /* Trigger Mode internal periodic */ 230 #define AT91_SAMA5D2_TRGR_TRGMOD_PERIODIC 5 231 /* Trigger Mode - trigger period mask */ 232 #define AT91_SAMA5D2_TRGR_TRGPER_MASK GENMASK(31, 16) 233 /* Trigger Mode - trigger period */ 234 #define AT91_SAMA5D2_TRGR_TRGPER(x) ((x) << 16) 235 236 /* Correction Select Register */ 237 u16 COSR; 238 /* Correction Value Register */ 239 u16 CVR; 240 /* Channel Error Correction Register */ 241 u16 CECR; 242 /* Write Protection Mode Register */ 243 u16 WPMR; 244 /* Write Protection Status Register */ 245 u16 WPSR; 246 /* Version Register */ 247 u16 VERSION; 248 /* Temperature Sensor Mode Register */ 249 u16 TEMPMR; 250 /* Temperature Sensor Mode - Temperature sensor on */ 251 #define AT91_SAMA5D2_TEMPMR_TEMPON BIT(0) 252 }; 253 254 static const struct at91_adc_reg_layout sama5d2_layout = { 255 .CR = 0x00, 256 .MR = 0x04, 257 .SEQR1 = 0x08, 258 .SEQR2 = 0x0c, 259 .CHER = 0x10, 260 .CHDR = 0x14, 261 .CHSR = 0x18, 262 .LCDR = 0x20, 263 .IER = 0x24, 264 .IDR = 0x28, 265 .IMR = 0x2c, 266 .ISR = 0x30, 267 .LCTMR = 0x34, 268 .LCCWR = 0x38, 269 .OVER = 0x3c, 270 .EMR = 0x40, 271 .CWR = 0x44, 272 .CGR = 0x48, 273 .COR = 0x4c, 274 .COR_diff_offset = 16, 275 .ACR = 0x94, 276 .TSMR = 0xb0, 277 .XPOSR = 0xb4, 278 .YPOSR = 0xb8, 279 .PRESSR = 0xbc, 280 .TRGR = 0xc0, 281 .COSR = 0xd0, 282 .CVR = 0xd4, 283 .CECR = 0xd8, 284 .WPMR = 0xe4, 285 .WPSR = 0xe8, 286 .VERSION = 0xfc, 287 }; 288 289 static const struct at91_adc_reg_layout sama7g5_layout = { 290 .CR = 0x00, 291 .MR = 0x04, 292 .SEQR1 = 0x08, 293 .SEQR2 = 0x0c, 294 .CHER = 0x10, 295 .CHDR = 0x14, 296 .CHSR = 0x18, 297 .LCDR = 0x20, 298 .IER = 0x24, 299 .IDR = 0x28, 300 .IMR = 0x2c, 301 .ISR = 0x30, 302 .EOC_IER = 0x34, 303 .EOC_IDR = 0x38, 304 .EOC_IMR = 0x3c, 305 .EOC_ISR = 0x40, 306 .TEMPMR = 0x44, 307 .OVER = 0x4c, 308 .EMR = 0x50, 309 .CWR = 0x54, 310 .COR = 0x5c, 311 .COR_diff_offset = 0, 312 .ACR = 0xe0, 313 .TRGR = 0x100, 314 .COSR = 0x104, 315 .CVR = 0x108, 316 .CECR = 0x10c, 317 .WPMR = 0x118, 318 .WPSR = 0x11c, 319 .VERSION = 0x130, 320 }; 321 322 #define AT91_SAMA5D2_TOUCH_SAMPLE_PERIOD_US 2000 /* 2ms */ 323 #define AT91_SAMA5D2_TOUCH_PEN_DETECT_DEBOUNCE_US 200 324 325 #define AT91_SAMA5D2_XYZ_MASK GENMASK(11, 0) 326 327 #define AT91_SAMA5D2_MAX_POS_BITS 12 328 329 #define AT91_HWFIFO_MAX_SIZE_STR "128" 330 #define AT91_HWFIFO_MAX_SIZE 128 331 332 #define AT91_SAMA5D2_CHAN_SINGLE(index, num, addr) \ 333 { \ 334 .type = IIO_VOLTAGE, \ 335 .channel = num, \ 336 .address = addr, \ 337 .scan_index = index, \ 338 .scan_type = { \ 339 .sign = 'u', \ 340 .realbits = 14, \ 341 .storagebits = 16, \ 342 }, \ 343 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 344 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ 345 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\ 346 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 347 .info_mask_shared_by_all_available = \ 348 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 349 .datasheet_name = "CH"#num, \ 350 .indexed = 1, \ 351 } 352 353 #define AT91_SAMA5D2_CHAN_DIFF(index, num, num2, addr) \ 354 { \ 355 .type = IIO_VOLTAGE, \ 356 .differential = 1, \ 357 .channel = num, \ 358 .channel2 = num2, \ 359 .address = addr, \ 360 .scan_index = index, \ 361 .scan_type = { \ 362 .sign = 's', \ 363 .realbits = 14, \ 364 .storagebits = 16, \ 365 }, \ 366 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 367 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ 368 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\ 369 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 370 .info_mask_shared_by_all_available = \ 371 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 372 .datasheet_name = "CH"#num"-CH"#num2, \ 373 .indexed = 1, \ 374 } 375 376 #define AT91_SAMA5D2_CHAN_TOUCH(num, name, mod) \ 377 { \ 378 .type = IIO_POSITIONRELATIVE, \ 379 .modified = 1, \ 380 .channel = num, \ 381 .channel2 = mod, \ 382 .scan_index = num, \ 383 .scan_type = { \ 384 .sign = 'u', \ 385 .realbits = 12, \ 386 .storagebits = 16, \ 387 }, \ 388 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 389 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\ 390 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 391 .info_mask_shared_by_all_available = \ 392 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 393 .datasheet_name = name, \ 394 } 395 #define AT91_SAMA5D2_CHAN_PRESSURE(num, name) \ 396 { \ 397 .type = IIO_PRESSURE, \ 398 .channel = num, \ 399 .scan_index = num, \ 400 .scan_type = { \ 401 .sign = 'u', \ 402 .realbits = 12, \ 403 .storagebits = 16, \ 404 }, \ 405 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 406 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\ 407 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 408 .info_mask_shared_by_all_available = \ 409 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 410 .datasheet_name = name, \ 411 } 412 413 #define AT91_SAMA5D2_CHAN_TEMP(num, name, addr) \ 414 { \ 415 .type = IIO_TEMP, \ 416 .channel = num, \ 417 .address = addr, \ 418 .scan_index = num, \ 419 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \ 420 .info_mask_shared_by_all = \ 421 BIT(IIO_CHAN_INFO_PROCESSED) | \ 422 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 423 .info_mask_shared_by_all_available = \ 424 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 425 .datasheet_name = name, \ 426 } 427 428 #define at91_adc_readl(st, reg) \ 429 readl_relaxed((st)->base + (st)->soc_info.platform->layout->reg) 430 #define at91_adc_read_chan(st, reg) \ 431 readl_relaxed((st)->base + reg) 432 #define at91_adc_writel(st, reg, val) \ 433 writel_relaxed(val, (st)->base + (st)->soc_info.platform->layout->reg) 434 435 /** 436 * struct at91_adc_platform - at91-sama5d2 platform information struct 437 * @layout: pointer to the reg layout struct 438 * @adc_channels: pointer to an array of channels for registering in 439 * the iio subsystem 440 * @nr_channels: number of physical channels available 441 * @touch_chan_x: index of the touchscreen X channel 442 * @touch_chan_y: index of the touchscreen Y channel 443 * @touch_chan_p: index of the touchscreen P channel 444 * @max_channels: number of total channels 445 * @max_index: highest channel index (highest index may be higher 446 * than the total channel number) 447 * @hw_trig_cnt: number of possible hardware triggers 448 * @osr_mask: oversampling ratio bitmask on EMR register 449 * @oversampling_avail: available oversampling values 450 * @oversampling_avail_no: number of available oversampling values 451 * @chan_realbits: realbits for registered channels 452 * @temp_chan: temperature channel index 453 * @temp_sensor: temperature sensor supported 454 */ 455 struct at91_adc_platform { 456 const struct at91_adc_reg_layout *layout; 457 const struct iio_chan_spec (*adc_channels)[]; 458 unsigned int nr_channels; 459 unsigned int touch_chan_x; 460 unsigned int touch_chan_y; 461 unsigned int touch_chan_p; 462 unsigned int max_channels; 463 unsigned int max_index; 464 unsigned int hw_trig_cnt; 465 unsigned int osr_mask; 466 unsigned int oversampling_avail[5]; 467 unsigned int oversampling_avail_no; 468 unsigned int chan_realbits; 469 unsigned int temp_chan; 470 bool temp_sensor; 471 }; 472 473 /** 474 * struct at91_adc_temp_sensor_clb - at91-sama5d2 temperature sensor 475 * calibration data structure 476 * @p1: P1 calibration temperature 477 * @p4: P4 calibration voltage 478 * @p6: P6 calibration voltage 479 */ 480 struct at91_adc_temp_sensor_clb { 481 u32 p1; 482 u32 p4; 483 u32 p6; 484 }; 485 486 /** 487 * enum at91_adc_ts_clb_idx - calibration indexes in NVMEM buffer 488 * @AT91_ADC_TS_CLB_IDX_P1: index for P1 489 * @AT91_ADC_TS_CLB_IDX_P4: index for P4 490 * @AT91_ADC_TS_CLB_IDX_P6: index for P6 491 * @AT91_ADC_TS_CLB_IDX_MAX: max index for temperature calibration packet in OTP 492 */ 493 enum at91_adc_ts_clb_idx { 494 AT91_ADC_TS_CLB_IDX_P1 = 2, 495 AT91_ADC_TS_CLB_IDX_P4 = 5, 496 AT91_ADC_TS_CLB_IDX_P6 = 7, 497 AT91_ADC_TS_CLB_IDX_MAX = 19, 498 }; 499 500 /* Temperature sensor calibration - Vtemp voltage sensitivity to temperature. */ 501 #define AT91_ADC_TS_VTEMP_DT (2080U) 502 503 /** 504 * struct at91_adc_soc_info - at91-sama5d2 soc information struct 505 * @startup_time: device startup time 506 * @min_sample_rate: minimum sample rate in Hz 507 * @max_sample_rate: maximum sample rate in Hz 508 * @platform: pointer to the platform structure 509 * @temp_sensor_clb: temperature sensor calibration data structure 510 */ 511 struct at91_adc_soc_info { 512 unsigned startup_time; 513 unsigned min_sample_rate; 514 unsigned max_sample_rate; 515 const struct at91_adc_platform *platform; 516 struct at91_adc_temp_sensor_clb temp_sensor_clb; 517 }; 518 519 struct at91_adc_trigger { 520 char *name; 521 unsigned int trgmod_value; 522 unsigned int edge_type; 523 bool hw_trig; 524 }; 525 526 /** 527 * struct at91_adc_dma - at91-sama5d2 dma information struct 528 * @dma_chan: the dma channel acquired 529 * @rx_buf: dma coherent allocated area 530 * @rx_dma_buf: dma handler for the buffer 531 * @phys_addr: physical address of the ADC base register 532 * @buf_idx: index inside the dma buffer where reading was last done 533 * @rx_buf_sz: size of buffer used by DMA operation 534 * @watermark: number of conversions to copy before DMA triggers irq 535 * @dma_ts: hold the start timestamp of dma operation 536 */ 537 struct at91_adc_dma { 538 struct dma_chan *dma_chan; 539 u8 *rx_buf; 540 dma_addr_t rx_dma_buf; 541 phys_addr_t phys_addr; 542 int buf_idx; 543 int rx_buf_sz; 544 int watermark; 545 s64 dma_ts; 546 }; 547 548 /** 549 * struct at91_adc_touch - at91-sama5d2 touchscreen information struct 550 * @sample_period_val: the value for periodic trigger interval 551 * @touching: is the pen touching the screen or not 552 * @x_pos: temporary placeholder for pressure computation 553 * @channels_bitmask: bitmask with the touchscreen channels enabled 554 * @workq: workqueue for buffer data pushing 555 */ 556 struct at91_adc_touch { 557 u16 sample_period_val; 558 bool touching; 559 u16 x_pos; 560 unsigned long channels_bitmask; 561 struct work_struct workq; 562 }; 563 564 /** 565 * struct at91_adc_temp - at91-sama5d2 temperature information structure 566 * @sample_period_val: sample period value 567 * @saved_sample_rate: saved sample rate 568 * @saved_oversampling: saved oversampling 569 */ 570 struct at91_adc_temp { 571 u16 sample_period_val; 572 u16 saved_sample_rate; 573 u16 saved_oversampling; 574 }; 575 576 /* 577 * Buffer size requirements: 578 * No channels * bytes_per_channel(2) + timestamp bytes (8) 579 * Divided by 2 because we need half words. 580 * We assume 32 channels for now, has to be increased if needed. 581 * Nobody minds a buffer being too big. 582 */ 583 #define AT91_BUFFER_MAX_HWORDS ((32 * 2 + 8) / 2) 584 585 struct at91_adc_state { 586 void __iomem *base; 587 int irq; 588 struct clk *per_clk; 589 struct regulator *reg; 590 struct regulator *vref; 591 int vref_uv; 592 unsigned int current_sample_rate; 593 struct iio_trigger *trig; 594 const struct at91_adc_trigger *selected_trig; 595 const struct iio_chan_spec *chan; 596 bool conversion_done; 597 u32 conversion_value; 598 unsigned int oversampling_ratio; 599 struct at91_adc_soc_info soc_info; 600 wait_queue_head_t wq_data_available; 601 struct at91_adc_dma dma_st; 602 struct at91_adc_touch touch_st; 603 struct at91_adc_temp temp_st; 604 struct iio_dev *indio_dev; 605 struct device *dev; 606 /* Ensure naturally aligned timestamp */ 607 u16 buffer[AT91_BUFFER_MAX_HWORDS] __aligned(8); 608 /* 609 * lock to prevent concurrent 'single conversion' requests through 610 * sysfs. 611 */ 612 struct mutex lock; 613 }; 614 615 static const struct at91_adc_trigger at91_adc_trigger_list[] = { 616 { 617 .name = "external_rising", 618 .trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_RISE, 619 .edge_type = IRQ_TYPE_EDGE_RISING, 620 .hw_trig = true, 621 }, 622 { 623 .name = "external_falling", 624 .trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_FALL, 625 .edge_type = IRQ_TYPE_EDGE_FALLING, 626 .hw_trig = true, 627 }, 628 { 629 .name = "external_any", 630 .trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_ANY, 631 .edge_type = IRQ_TYPE_EDGE_BOTH, 632 .hw_trig = true, 633 }, 634 { 635 .name = "software", 636 .trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_NO_TRIGGER, 637 .edge_type = IRQ_TYPE_NONE, 638 .hw_trig = false, 639 }, 640 }; 641 642 static const struct iio_chan_spec at91_sama5d2_adc_channels[] = { 643 AT91_SAMA5D2_CHAN_SINGLE(0, 0, 0x50), 644 AT91_SAMA5D2_CHAN_SINGLE(1, 1, 0x54), 645 AT91_SAMA5D2_CHAN_SINGLE(2, 2, 0x58), 646 AT91_SAMA5D2_CHAN_SINGLE(3, 3, 0x5c), 647 AT91_SAMA5D2_CHAN_SINGLE(4, 4, 0x60), 648 AT91_SAMA5D2_CHAN_SINGLE(5, 5, 0x64), 649 AT91_SAMA5D2_CHAN_SINGLE(6, 6, 0x68), 650 AT91_SAMA5D2_CHAN_SINGLE(7, 7, 0x6c), 651 AT91_SAMA5D2_CHAN_SINGLE(8, 8, 0x70), 652 AT91_SAMA5D2_CHAN_SINGLE(9, 9, 0x74), 653 AT91_SAMA5D2_CHAN_SINGLE(10, 10, 0x78), 654 AT91_SAMA5D2_CHAN_SINGLE(11, 11, 0x7c), 655 /* original ABI has the differential channels with a gap in between */ 656 AT91_SAMA5D2_CHAN_DIFF(12, 0, 1, 0x50), 657 AT91_SAMA5D2_CHAN_DIFF(14, 2, 3, 0x58), 658 AT91_SAMA5D2_CHAN_DIFF(16, 4, 5, 0x60), 659 AT91_SAMA5D2_CHAN_DIFF(18, 6, 7, 0x68), 660 AT91_SAMA5D2_CHAN_DIFF(20, 8, 9, 0x70), 661 AT91_SAMA5D2_CHAN_DIFF(22, 10, 11, 0x78), 662 IIO_CHAN_SOFT_TIMESTAMP(23), 663 AT91_SAMA5D2_CHAN_TOUCH(24, "x", IIO_MOD_X), 664 AT91_SAMA5D2_CHAN_TOUCH(25, "y", IIO_MOD_Y), 665 AT91_SAMA5D2_CHAN_PRESSURE(26, "pressure"), 666 }; 667 668 static const struct iio_chan_spec at91_sama7g5_adc_channels[] = { 669 AT91_SAMA5D2_CHAN_SINGLE(0, 0, 0x60), 670 AT91_SAMA5D2_CHAN_SINGLE(1, 1, 0x64), 671 AT91_SAMA5D2_CHAN_SINGLE(2, 2, 0x68), 672 AT91_SAMA5D2_CHAN_SINGLE(3, 3, 0x6c), 673 AT91_SAMA5D2_CHAN_SINGLE(4, 4, 0x70), 674 AT91_SAMA5D2_CHAN_SINGLE(5, 5, 0x74), 675 AT91_SAMA5D2_CHAN_SINGLE(6, 6, 0x78), 676 AT91_SAMA5D2_CHAN_SINGLE(7, 7, 0x7c), 677 AT91_SAMA5D2_CHAN_SINGLE(8, 8, 0x80), 678 AT91_SAMA5D2_CHAN_SINGLE(9, 9, 0x84), 679 AT91_SAMA5D2_CHAN_SINGLE(10, 10, 0x88), 680 AT91_SAMA5D2_CHAN_SINGLE(11, 11, 0x8c), 681 AT91_SAMA5D2_CHAN_SINGLE(12, 12, 0x90), 682 AT91_SAMA5D2_CHAN_SINGLE(13, 13, 0x94), 683 AT91_SAMA5D2_CHAN_SINGLE(14, 14, 0x98), 684 AT91_SAMA5D2_CHAN_SINGLE(15, 15, 0x9c), 685 AT91_SAMA5D2_CHAN_DIFF(16, 0, 1, 0x60), 686 AT91_SAMA5D2_CHAN_DIFF(17, 2, 3, 0x68), 687 AT91_SAMA5D2_CHAN_DIFF(18, 4, 5, 0x70), 688 AT91_SAMA5D2_CHAN_DIFF(19, 6, 7, 0x78), 689 AT91_SAMA5D2_CHAN_DIFF(20, 8, 9, 0x80), 690 AT91_SAMA5D2_CHAN_DIFF(21, 10, 11, 0x88), 691 AT91_SAMA5D2_CHAN_DIFF(22, 12, 13, 0x90), 692 AT91_SAMA5D2_CHAN_DIFF(23, 14, 15, 0x98), 693 IIO_CHAN_SOFT_TIMESTAMP(24), 694 AT91_SAMA5D2_CHAN_TEMP(AT91_SAMA7G5_ADC_TEMP_CHANNEL, "temp", 0xdc), 695 }; 696 697 static const struct at91_adc_platform sama5d2_platform = { 698 .layout = &sama5d2_layout, 699 .adc_channels = &at91_sama5d2_adc_channels, 700 #define AT91_SAMA5D2_SINGLE_CHAN_CNT 12 701 #define AT91_SAMA5D2_DIFF_CHAN_CNT 6 702 .nr_channels = AT91_SAMA5D2_SINGLE_CHAN_CNT + 703 AT91_SAMA5D2_DIFF_CHAN_CNT, 704 #define AT91_SAMA5D2_TOUCH_X_CHAN_IDX (AT91_SAMA5D2_SINGLE_CHAN_CNT + \ 705 AT91_SAMA5D2_DIFF_CHAN_CNT * 2) 706 .touch_chan_x = AT91_SAMA5D2_TOUCH_X_CHAN_IDX, 707 #define AT91_SAMA5D2_TOUCH_Y_CHAN_IDX (AT91_SAMA5D2_TOUCH_X_CHAN_IDX + 1) 708 .touch_chan_y = AT91_SAMA5D2_TOUCH_Y_CHAN_IDX, 709 #define AT91_SAMA5D2_TOUCH_P_CHAN_IDX (AT91_SAMA5D2_TOUCH_Y_CHAN_IDX + 1) 710 .touch_chan_p = AT91_SAMA5D2_TOUCH_P_CHAN_IDX, 711 #define AT91_SAMA5D2_MAX_CHAN_IDX AT91_SAMA5D2_TOUCH_P_CHAN_IDX 712 .max_channels = ARRAY_SIZE(at91_sama5d2_adc_channels), 713 .max_index = AT91_SAMA5D2_MAX_CHAN_IDX, 714 #define AT91_SAMA5D2_HW_TRIG_CNT 3 715 .hw_trig_cnt = AT91_SAMA5D2_HW_TRIG_CNT, 716 .osr_mask = GENMASK(17, 16), 717 .oversampling_avail = { 1, 4, 16, }, 718 .oversampling_avail_no = 3, 719 .chan_realbits = 14, 720 }; 721 722 static const struct at91_adc_platform sama7g5_platform = { 723 .layout = &sama7g5_layout, 724 .adc_channels = &at91_sama7g5_adc_channels, 725 #define AT91_SAMA7G5_SINGLE_CHAN_CNT 16 726 #define AT91_SAMA7G5_DIFF_CHAN_CNT 8 727 #define AT91_SAMA7G5_TEMP_CHAN_CNT 1 728 .nr_channels = AT91_SAMA7G5_SINGLE_CHAN_CNT + 729 AT91_SAMA7G5_DIFF_CHAN_CNT + 730 AT91_SAMA7G5_TEMP_CHAN_CNT, 731 #define AT91_SAMA7G5_MAX_CHAN_IDX (AT91_SAMA7G5_SINGLE_CHAN_CNT + \ 732 AT91_SAMA7G5_DIFF_CHAN_CNT + \ 733 AT91_SAMA7G5_TEMP_CHAN_CNT) 734 .max_channels = ARRAY_SIZE(at91_sama7g5_adc_channels), 735 .max_index = AT91_SAMA7G5_MAX_CHAN_IDX, 736 #define AT91_SAMA7G5_HW_TRIG_CNT 3 737 .hw_trig_cnt = AT91_SAMA7G5_HW_TRIG_CNT, 738 .osr_mask = GENMASK(18, 16), 739 .oversampling_avail = { 1, 4, 16, 64, 256, }, 740 .oversampling_avail_no = 5, 741 .chan_realbits = 16, 742 .temp_sensor = true, 743 .temp_chan = AT91_SAMA7G5_ADC_TEMP_CHANNEL, 744 }; 745 746 static int at91_adc_chan_xlate(struct iio_dev *indio_dev, int chan) 747 { 748 int i; 749 750 for (i = 0; i < indio_dev->num_channels; i++) { 751 if (indio_dev->channels[i].scan_index == chan) 752 return i; 753 } 754 return -EINVAL; 755 } 756 757 static inline struct iio_chan_spec const * 758 at91_adc_chan_get(struct iio_dev *indio_dev, int chan) 759 { 760 int index = at91_adc_chan_xlate(indio_dev, chan); 761 762 if (index < 0) 763 return NULL; 764 return indio_dev->channels + index; 765 } 766 767 static inline int at91_adc_fwnode_xlate(struct iio_dev *indio_dev, 768 const struct fwnode_reference_args *iiospec) 769 { 770 return at91_adc_chan_xlate(indio_dev, iiospec->args[0]); 771 } 772 773 static unsigned int at91_adc_active_scan_mask_to_reg(struct iio_dev *indio_dev) 774 { 775 u32 mask = 0; 776 u8 bit; 777 struct at91_adc_state *st = iio_priv(indio_dev); 778 779 for_each_set_bit(bit, indio_dev->active_scan_mask, 780 indio_dev->num_channels) { 781 struct iio_chan_spec const *chan = 782 at91_adc_chan_get(indio_dev, bit); 783 mask |= BIT(chan->channel); 784 } 785 786 return mask & GENMASK(st->soc_info.platform->nr_channels, 0); 787 } 788 789 static void at91_adc_cor(struct at91_adc_state *st, 790 struct iio_chan_spec const *chan) 791 { 792 u32 cor, cur_cor; 793 794 cor = BIT(chan->channel) | BIT(chan->channel2); 795 796 cur_cor = at91_adc_readl(st, COR); 797 cor <<= st->soc_info.platform->layout->COR_diff_offset; 798 if (chan->differential) 799 at91_adc_writel(st, COR, cur_cor | cor); 800 else 801 at91_adc_writel(st, COR, cur_cor & ~cor); 802 } 803 804 static void at91_adc_irq_status(struct at91_adc_state *st, u32 *status, 805 u32 *eoc) 806 { 807 *status = at91_adc_readl(st, ISR); 808 if (st->soc_info.platform->layout->EOC_ISR) 809 *eoc = at91_adc_readl(st, EOC_ISR); 810 else 811 *eoc = *status; 812 } 813 814 static void at91_adc_irq_mask(struct at91_adc_state *st, u32 *status, u32 *eoc) 815 { 816 *status = at91_adc_readl(st, IMR); 817 if (st->soc_info.platform->layout->EOC_IMR) 818 *eoc = at91_adc_readl(st, EOC_IMR); 819 else 820 *eoc = *status; 821 } 822 823 static void at91_adc_eoc_dis(struct at91_adc_state *st, unsigned int channel) 824 { 825 /* 826 * On some products having the EOC bits in a separate register, 827 * errata recommends not writing this register (EOC_IDR). 828 * On products having the EOC bits in the IDR register, it's fine to write it. 829 */ 830 if (!st->soc_info.platform->layout->EOC_IDR) 831 at91_adc_writel(st, IDR, BIT(channel)); 832 } 833 834 static void at91_adc_eoc_ena(struct at91_adc_state *st, unsigned int channel) 835 { 836 if (!st->soc_info.platform->layout->EOC_IDR) 837 at91_adc_writel(st, IER, BIT(channel)); 838 else 839 at91_adc_writel(st, EOC_IER, BIT(channel)); 840 } 841 842 static int at91_adc_config_emr(struct at91_adc_state *st, 843 u32 oversampling_ratio, u32 trackx) 844 { 845 /* configure the extended mode register */ 846 unsigned int emr, osr; 847 unsigned int osr_mask = st->soc_info.platform->osr_mask; 848 int i, ret; 849 850 /* Check against supported oversampling values. */ 851 for (i = 0; i < st->soc_info.platform->oversampling_avail_no; i++) { 852 if (oversampling_ratio == st->soc_info.platform->oversampling_avail[i]) 853 break; 854 } 855 if (i == st->soc_info.platform->oversampling_avail_no) 856 return -EINVAL; 857 858 /* select oversampling ratio from configuration */ 859 switch (oversampling_ratio) { 860 case 1: 861 osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_1SAMPLES, 862 osr_mask); 863 break; 864 case 4: 865 osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_4SAMPLES, 866 osr_mask); 867 break; 868 case 16: 869 osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_16SAMPLES, 870 osr_mask); 871 break; 872 case 64: 873 osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_64SAMPLES, 874 osr_mask); 875 break; 876 case 256: 877 osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_256SAMPLES, 878 osr_mask); 879 break; 880 } 881 882 ret = pm_runtime_resume_and_get(st->dev); 883 if (ret < 0) 884 return ret; 885 886 emr = at91_adc_readl(st, EMR); 887 /* select oversampling per single trigger event */ 888 emr |= AT91_SAMA5D2_EMR_ASTE(1); 889 /* delete leftover content if it's the case */ 890 emr &= ~(osr_mask | AT91_SAMA5D2_TRACKX_MASK); 891 /* Update osr and trackx. */ 892 emr |= osr | AT91_SAMA5D2_TRACKX(trackx); 893 at91_adc_writel(st, EMR, emr); 894 895 pm_runtime_mark_last_busy(st->dev); 896 pm_runtime_put_autosuspend(st->dev); 897 898 st->oversampling_ratio = oversampling_ratio; 899 900 return 0; 901 } 902 903 static int at91_adc_adjust_val_osr(struct at91_adc_state *st, int *val) 904 { 905 int nbits, diff; 906 907 if (st->oversampling_ratio == 1) 908 nbits = 12; 909 else if (st->oversampling_ratio == 4) 910 nbits = 13; 911 else if (st->oversampling_ratio == 16) 912 nbits = 14; 913 else if (st->oversampling_ratio == 64) 914 nbits = 15; 915 else if (st->oversampling_ratio == 256) 916 nbits = 16; 917 else 918 /* Should not happen. */ 919 return -EINVAL; 920 921 /* 922 * We have nbits of real data and channel is registered as 923 * st->soc_info.platform->chan_realbits, so shift left diff bits. 924 */ 925 diff = st->soc_info.platform->chan_realbits - nbits; 926 *val <<= diff; 927 928 return IIO_VAL_INT; 929 } 930 931 static void at91_adc_adjust_val_osr_array(struct at91_adc_state *st, void *buf, 932 int len) 933 { 934 int i = 0, val; 935 u16 *buf_u16 = (u16 *) buf; 936 937 /* 938 * We are converting each two bytes (each sample). 939 * First convert the byte based array to u16, and convert each sample 940 * separately. 941 * Each value is two bytes in an array of chars, so to not shift 942 * more than we need, save the value separately. 943 * len is in bytes, so divide by two to get number of samples. 944 */ 945 while (i < len / 2) { 946 val = buf_u16[i]; 947 at91_adc_adjust_val_osr(st, &val); 948 buf_u16[i] = val; 949 i++; 950 } 951 } 952 953 static int at91_adc_configure_touch(struct at91_adc_state *st, bool state) 954 { 955 u32 clk_khz = st->current_sample_rate / 1000; 956 int i = 0, ret; 957 u16 pendbc; 958 u32 tsmr, acr; 959 960 if (state) { 961 ret = pm_runtime_resume_and_get(st->dev); 962 if (ret < 0) 963 return ret; 964 } else { 965 /* disabling touch IRQs and setting mode to no touch enabled */ 966 at91_adc_writel(st, IDR, 967 AT91_SAMA5D2_IER_PEN | AT91_SAMA5D2_IER_NOPEN); 968 at91_adc_writel(st, TSMR, 0); 969 970 pm_runtime_mark_last_busy(st->dev); 971 pm_runtime_put_autosuspend(st->dev); 972 return 0; 973 } 974 /* 975 * debounce time is in microseconds, we need it in milliseconds to 976 * multiply with kilohertz, so, divide by 1000, but after the multiply. 977 * round up to make sure pendbc is at least 1 978 */ 979 pendbc = round_up(AT91_SAMA5D2_TOUCH_PEN_DETECT_DEBOUNCE_US * 980 clk_khz / 1000, 1); 981 982 /* get the required exponent */ 983 while (pendbc >> i++) 984 ; 985 986 pendbc = i; 987 988 tsmr = AT91_SAMA5D2_TSMR_TSMODE_4WIRE_PRESS; 989 990 tsmr |= AT91_SAMA5D2_TSMR_TSAV(2) & AT91_SAMA5D2_TSMR_TSAV_MASK; 991 tsmr |= AT91_SAMA5D2_TSMR_PENDBC(pendbc) & 992 AT91_SAMA5D2_TSMR_PENDBC_MASK; 993 tsmr |= AT91_SAMA5D2_TSMR_NOTSDMA; 994 tsmr |= AT91_SAMA5D2_TSMR_PENDET_ENA; 995 tsmr |= AT91_SAMA5D2_TSMR_TSFREQ(2) & AT91_SAMA5D2_TSMR_TSFREQ_MASK; 996 997 at91_adc_writel(st, TSMR, tsmr); 998 999 acr = at91_adc_readl(st, ACR); 1000 acr &= ~AT91_SAMA5D2_ACR_PENDETSENS_MASK; 1001 acr |= 0x02 & AT91_SAMA5D2_ACR_PENDETSENS_MASK; 1002 at91_adc_writel(st, ACR, acr); 1003 1004 /* Sample Period Time = (TRGPER + 1) / ADCClock */ 1005 st->touch_st.sample_period_val = 1006 round_up((AT91_SAMA5D2_TOUCH_SAMPLE_PERIOD_US * 1007 clk_khz / 1000) - 1, 1); 1008 /* enable pen detect IRQ */ 1009 at91_adc_writel(st, IER, AT91_SAMA5D2_IER_PEN); 1010 1011 return 0; 1012 } 1013 1014 static u16 at91_adc_touch_pos(struct at91_adc_state *st, int reg) 1015 { 1016 u32 val = 0; 1017 u32 scale, result, pos; 1018 1019 /* 1020 * to obtain the actual position we must divide by scale 1021 * and multiply with max, where 1022 * max = 2^AT91_SAMA5D2_MAX_POS_BITS - 1 1023 */ 1024 /* first half of register is the x or y, second half is the scale */ 1025 if (reg == st->soc_info.platform->layout->XPOSR) 1026 val = at91_adc_readl(st, XPOSR); 1027 else if (reg == st->soc_info.platform->layout->YPOSR) 1028 val = at91_adc_readl(st, YPOSR); 1029 1030 if (!val) 1031 dev_dbg(&st->indio_dev->dev, "pos is 0\n"); 1032 1033 pos = val & AT91_SAMA5D2_XYZ_MASK; 1034 result = (pos << AT91_SAMA5D2_MAX_POS_BITS) - pos; 1035 scale = (val >> 16) & AT91_SAMA5D2_XYZ_MASK; 1036 if (scale == 0) { 1037 dev_err(&st->indio_dev->dev, "scale is 0\n"); 1038 return 0; 1039 } 1040 result /= scale; 1041 1042 return result; 1043 } 1044 1045 static u16 at91_adc_touch_x_pos(struct at91_adc_state *st) 1046 { 1047 st->touch_st.x_pos = at91_adc_touch_pos(st, st->soc_info.platform->layout->XPOSR); 1048 return st->touch_st.x_pos; 1049 } 1050 1051 static u16 at91_adc_touch_y_pos(struct at91_adc_state *st) 1052 { 1053 return at91_adc_touch_pos(st, st->soc_info.platform->layout->YPOSR); 1054 } 1055 1056 static u16 at91_adc_touch_pressure(struct at91_adc_state *st) 1057 { 1058 u32 val; 1059 u32 z1, z2; 1060 u32 pres; 1061 u32 rxp = 1; 1062 u32 factor = 1000; 1063 1064 /* calculate the pressure */ 1065 val = at91_adc_readl(st, PRESSR); 1066 z1 = val & AT91_SAMA5D2_XYZ_MASK; 1067 z2 = (val >> 16) & AT91_SAMA5D2_XYZ_MASK; 1068 1069 if (z1 != 0) 1070 pres = rxp * (st->touch_st.x_pos * factor / 1024) * 1071 (z2 * factor / z1 - factor) / 1072 factor; 1073 else 1074 pres = 0xFFFF; /* no pen contact */ 1075 1076 /* 1077 * The pressure from device grows down, minimum is 0xFFFF, maximum 0x0. 1078 * We compute it this way, but let's return it in the expected way, 1079 * growing from 0 to 0xFFFF. 1080 */ 1081 return 0xFFFF - pres; 1082 } 1083 1084 static int at91_adc_read_position(struct at91_adc_state *st, int chan, u16 *val) 1085 { 1086 *val = 0; 1087 if (!st->touch_st.touching) 1088 return -ENODATA; 1089 if (chan == st->soc_info.platform->touch_chan_x) 1090 *val = at91_adc_touch_x_pos(st); 1091 else if (chan == st->soc_info.platform->touch_chan_y) 1092 *val = at91_adc_touch_y_pos(st); 1093 else 1094 return -ENODATA; 1095 1096 return IIO_VAL_INT; 1097 } 1098 1099 static int at91_adc_read_pressure(struct at91_adc_state *st, int chan, u16 *val) 1100 { 1101 *val = 0; 1102 if (!st->touch_st.touching) 1103 return -ENODATA; 1104 if (chan == st->soc_info.platform->touch_chan_p) 1105 *val = at91_adc_touch_pressure(st); 1106 else 1107 return -ENODATA; 1108 1109 return IIO_VAL_INT; 1110 } 1111 1112 static void at91_adc_configure_trigger_registers(struct at91_adc_state *st, 1113 bool state) 1114 { 1115 u32 status = at91_adc_readl(st, TRGR); 1116 1117 /* clear TRGMOD */ 1118 status &= ~AT91_SAMA5D2_TRGR_TRGMOD_MASK; 1119 1120 if (state) 1121 status |= st->selected_trig->trgmod_value; 1122 1123 /* set/unset hw trigger */ 1124 at91_adc_writel(st, TRGR, status); 1125 } 1126 1127 static int at91_adc_configure_trigger(struct iio_trigger *trig, bool state) 1128 { 1129 struct iio_dev *indio = iio_trigger_get_drvdata(trig); 1130 struct at91_adc_state *st = iio_priv(indio); 1131 int ret; 1132 1133 if (state) { 1134 ret = pm_runtime_resume_and_get(st->dev); 1135 if (ret < 0) 1136 return ret; 1137 } 1138 1139 at91_adc_configure_trigger_registers(st, state); 1140 1141 if (!state) { 1142 pm_runtime_mark_last_busy(st->dev); 1143 pm_runtime_put_autosuspend(st->dev); 1144 } 1145 1146 return 0; 1147 } 1148 1149 static void at91_adc_reenable_trigger(struct iio_trigger *trig) 1150 { 1151 struct iio_dev *indio = iio_trigger_get_drvdata(trig); 1152 struct at91_adc_state *st = iio_priv(indio); 1153 1154 /* if we are using DMA, we must not reenable irq after each trigger */ 1155 if (st->dma_st.dma_chan) 1156 return; 1157 1158 enable_irq(st->irq); 1159 1160 /* Needed to ACK the DRDY interruption */ 1161 at91_adc_readl(st, LCDR); 1162 } 1163 1164 static const struct iio_trigger_ops at91_adc_trigger_ops = { 1165 .set_trigger_state = &at91_adc_configure_trigger, 1166 .reenable = &at91_adc_reenable_trigger, 1167 .validate_device = iio_trigger_validate_own_device, 1168 }; 1169 1170 static int at91_adc_dma_size_done(struct at91_adc_state *st) 1171 { 1172 struct dma_tx_state state; 1173 enum dma_status status; 1174 int i, size; 1175 1176 status = dmaengine_tx_status(st->dma_st.dma_chan, 1177 st->dma_st.dma_chan->cookie, 1178 &state); 1179 if (status != DMA_IN_PROGRESS) 1180 return 0; 1181 1182 /* Transferred length is size in bytes from end of buffer */ 1183 i = st->dma_st.rx_buf_sz - state.residue; 1184 1185 /* Return available bytes */ 1186 if (i >= st->dma_st.buf_idx) 1187 size = i - st->dma_st.buf_idx; 1188 else 1189 size = st->dma_st.rx_buf_sz + i - st->dma_st.buf_idx; 1190 return size; 1191 } 1192 1193 static void at91_dma_buffer_done(void *data) 1194 { 1195 struct iio_dev *indio_dev = data; 1196 1197 iio_trigger_poll_chained(indio_dev->trig); 1198 } 1199 1200 static int at91_adc_dma_start(struct iio_dev *indio_dev) 1201 { 1202 struct at91_adc_state *st = iio_priv(indio_dev); 1203 struct dma_async_tx_descriptor *desc; 1204 dma_cookie_t cookie; 1205 int ret; 1206 u8 bit; 1207 1208 if (!st->dma_st.dma_chan) 1209 return 0; 1210 1211 /* we start a new DMA, so set buffer index to start */ 1212 st->dma_st.buf_idx = 0; 1213 1214 /* 1215 * compute buffer size w.r.t. watermark and enabled channels. 1216 * scan_bytes is aligned so we need an exact size for DMA 1217 */ 1218 st->dma_st.rx_buf_sz = 0; 1219 1220 for_each_set_bit(bit, indio_dev->active_scan_mask, 1221 indio_dev->num_channels) { 1222 struct iio_chan_spec const *chan = 1223 at91_adc_chan_get(indio_dev, bit); 1224 1225 if (!chan) 1226 continue; 1227 1228 st->dma_st.rx_buf_sz += chan->scan_type.storagebits / 8; 1229 } 1230 st->dma_st.rx_buf_sz *= st->dma_st.watermark; 1231 1232 /* Prepare a DMA cyclic transaction */ 1233 desc = dmaengine_prep_dma_cyclic(st->dma_st.dma_chan, 1234 st->dma_st.rx_dma_buf, 1235 st->dma_st.rx_buf_sz, 1236 st->dma_st.rx_buf_sz / 2, 1237 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1238 1239 if (!desc) { 1240 dev_err(&indio_dev->dev, "cannot prepare DMA cyclic\n"); 1241 return -EBUSY; 1242 } 1243 1244 desc->callback = at91_dma_buffer_done; 1245 desc->callback_param = indio_dev; 1246 1247 cookie = dmaengine_submit(desc); 1248 ret = dma_submit_error(cookie); 1249 if (ret) { 1250 dev_err(&indio_dev->dev, "cannot submit DMA cyclic\n"); 1251 dmaengine_terminate_async(st->dma_st.dma_chan); 1252 return ret; 1253 } 1254 1255 /* enable general overrun error signaling */ 1256 at91_adc_writel(st, IER, AT91_SAMA5D2_IER_GOVRE); 1257 /* Issue pending DMA requests */ 1258 dma_async_issue_pending(st->dma_st.dma_chan); 1259 1260 /* consider current time as DMA start time for timestamps */ 1261 st->dma_st.dma_ts = iio_get_time_ns(indio_dev); 1262 1263 dev_dbg(&indio_dev->dev, "DMA cyclic started\n"); 1264 1265 return 0; 1266 } 1267 1268 static bool at91_adc_buffer_check_use_irq(struct iio_dev *indio, 1269 struct at91_adc_state *st) 1270 { 1271 /* if using DMA, we do not use our own IRQ (we use DMA-controller) */ 1272 if (st->dma_st.dma_chan) 1273 return false; 1274 /* if the trigger is not ours, then it has its own IRQ */ 1275 if (iio_trigger_validate_own_device(indio->trig, indio)) 1276 return false; 1277 return true; 1278 } 1279 1280 static bool at91_adc_current_chan_is_touch(struct iio_dev *indio_dev) 1281 { 1282 struct at91_adc_state *st = iio_priv(indio_dev); 1283 1284 return !!bitmap_subset(indio_dev->active_scan_mask, 1285 &st->touch_st.channels_bitmask, 1286 st->soc_info.platform->max_index + 1); 1287 } 1288 1289 static int at91_adc_buffer_prepare(struct iio_dev *indio_dev) 1290 { 1291 int ret; 1292 u8 bit; 1293 struct at91_adc_state *st = iio_priv(indio_dev); 1294 1295 /* check if we are enabling triggered buffer or the touchscreen */ 1296 if (at91_adc_current_chan_is_touch(indio_dev)) 1297 return at91_adc_configure_touch(st, true); 1298 1299 /* if we are not in triggered mode, we cannot enable the buffer. */ 1300 if (!(iio_device_get_current_mode(indio_dev) & INDIO_ALL_TRIGGERED_MODES)) 1301 return -EINVAL; 1302 1303 ret = pm_runtime_resume_and_get(st->dev); 1304 if (ret < 0) 1305 return ret; 1306 1307 /* we continue with the triggered buffer */ 1308 ret = at91_adc_dma_start(indio_dev); 1309 if (ret) { 1310 dev_err(&indio_dev->dev, "buffer prepare failed\n"); 1311 goto pm_runtime_put; 1312 } 1313 1314 for_each_set_bit(bit, indio_dev->active_scan_mask, 1315 indio_dev->num_channels) { 1316 struct iio_chan_spec const *chan = 1317 at91_adc_chan_get(indio_dev, bit); 1318 if (!chan) 1319 continue; 1320 /* these channel types cannot be handled by this trigger */ 1321 if (chan->type == IIO_POSITIONRELATIVE || 1322 chan->type == IIO_PRESSURE || 1323 chan->type == IIO_TEMP) 1324 continue; 1325 1326 at91_adc_cor(st, chan); 1327 1328 at91_adc_writel(st, CHER, BIT(chan->channel)); 1329 } 1330 1331 if (at91_adc_buffer_check_use_irq(indio_dev, st)) 1332 at91_adc_writel(st, IER, AT91_SAMA5D2_IER_DRDY); 1333 1334 pm_runtime_put: 1335 pm_runtime_mark_last_busy(st->dev); 1336 pm_runtime_put_autosuspend(st->dev); 1337 return ret; 1338 } 1339 1340 static int at91_adc_buffer_postdisable(struct iio_dev *indio_dev) 1341 { 1342 struct at91_adc_state *st = iio_priv(indio_dev); 1343 int ret; 1344 u8 bit; 1345 1346 /* check if we are disabling triggered buffer or the touchscreen */ 1347 if (at91_adc_current_chan_is_touch(indio_dev)) 1348 return at91_adc_configure_touch(st, false); 1349 1350 /* if we are not in triggered mode, nothing to do here */ 1351 if (!(iio_device_get_current_mode(indio_dev) & INDIO_ALL_TRIGGERED_MODES)) 1352 return -EINVAL; 1353 1354 ret = pm_runtime_resume_and_get(st->dev); 1355 if (ret < 0) 1356 return ret; 1357 1358 /* 1359 * For each enable channel we must disable it in hardware. 1360 * In the case of DMA, we must read the last converted value 1361 * to clear EOC status and not get a possible interrupt later. 1362 * This value is being read by DMA from LCDR anyway, so it's not lost. 1363 */ 1364 for_each_set_bit(bit, indio_dev->active_scan_mask, 1365 indio_dev->num_channels) { 1366 struct iio_chan_spec const *chan = 1367 at91_adc_chan_get(indio_dev, bit); 1368 1369 if (!chan) 1370 continue; 1371 /* these channel types are virtual, no need to do anything */ 1372 if (chan->type == IIO_POSITIONRELATIVE || 1373 chan->type == IIO_PRESSURE || 1374 chan->type == IIO_TEMP) 1375 continue; 1376 1377 at91_adc_writel(st, CHDR, BIT(chan->channel)); 1378 1379 if (st->dma_st.dma_chan) 1380 at91_adc_read_chan(st, chan->address); 1381 } 1382 1383 if (at91_adc_buffer_check_use_irq(indio_dev, st)) 1384 at91_adc_writel(st, IDR, AT91_SAMA5D2_IER_DRDY); 1385 1386 /* read overflow register to clear possible overflow status */ 1387 at91_adc_readl(st, OVER); 1388 1389 /* if we are using DMA we must clear registers and end DMA */ 1390 if (st->dma_st.dma_chan) 1391 dmaengine_terminate_sync(st->dma_st.dma_chan); 1392 1393 pm_runtime_mark_last_busy(st->dev); 1394 pm_runtime_put_autosuspend(st->dev); 1395 1396 return 0; 1397 } 1398 1399 static const struct iio_buffer_setup_ops at91_buffer_setup_ops = { 1400 .postdisable = &at91_adc_buffer_postdisable, 1401 }; 1402 1403 static struct iio_trigger *at91_adc_allocate_trigger(struct iio_dev *indio, 1404 char *trigger_name) 1405 { 1406 struct iio_trigger *trig; 1407 int ret; 1408 1409 trig = devm_iio_trigger_alloc(&indio->dev, "%s-dev%d-%s", indio->name, 1410 iio_device_id(indio), trigger_name); 1411 if (!trig) 1412 return NULL; 1413 1414 trig->dev.parent = indio->dev.parent; 1415 iio_trigger_set_drvdata(trig, indio); 1416 trig->ops = &at91_adc_trigger_ops; 1417 1418 ret = devm_iio_trigger_register(&indio->dev, trig); 1419 if (ret) 1420 return ERR_PTR(ret); 1421 1422 return trig; 1423 } 1424 1425 static void at91_adc_trigger_handler_nodma(struct iio_dev *indio_dev, 1426 struct iio_poll_func *pf) 1427 { 1428 struct at91_adc_state *st = iio_priv(indio_dev); 1429 int i = 0; 1430 int val; 1431 u8 bit; 1432 u32 mask = at91_adc_active_scan_mask_to_reg(indio_dev); 1433 unsigned int timeout = 50; 1434 u32 status, imr, eoc = 0, eoc_imr; 1435 1436 /* 1437 * Check if the conversion is ready. If not, wait a little bit, and 1438 * in case of timeout exit with an error. 1439 */ 1440 while (((eoc & mask) != mask) && timeout) { 1441 at91_adc_irq_status(st, &status, &eoc); 1442 at91_adc_irq_mask(st, &imr, &eoc_imr); 1443 usleep_range(50, 100); 1444 timeout--; 1445 } 1446 1447 /* Cannot read data, not ready. Continue without reporting data */ 1448 if (!timeout) 1449 return; 1450 1451 for_each_set_bit(bit, indio_dev->active_scan_mask, 1452 indio_dev->num_channels) { 1453 struct iio_chan_spec const *chan = 1454 at91_adc_chan_get(indio_dev, bit); 1455 1456 if (!chan) 1457 continue; 1458 /* 1459 * Our external trigger only supports the voltage channels. 1460 * In case someone requested a different type of channel 1461 * just put zeroes to buffer. 1462 * This should not happen because we check the scan mode 1463 * and scan mask when we enable the buffer, and we don't allow 1464 * the buffer to start with a mixed mask (voltage and something 1465 * else). 1466 * Thus, emit a warning. 1467 */ 1468 if (chan->type == IIO_VOLTAGE) { 1469 val = at91_adc_read_chan(st, chan->address); 1470 at91_adc_adjust_val_osr(st, &val); 1471 st->buffer[i] = val; 1472 } else { 1473 st->buffer[i] = 0; 1474 WARN(true, "This trigger cannot handle this type of channel"); 1475 } 1476 i++; 1477 } 1478 iio_push_to_buffers_with_timestamp(indio_dev, st->buffer, 1479 pf->timestamp); 1480 } 1481 1482 static void at91_adc_trigger_handler_dma(struct iio_dev *indio_dev) 1483 { 1484 struct at91_adc_state *st = iio_priv(indio_dev); 1485 int transferred_len = at91_adc_dma_size_done(st); 1486 s64 ns = iio_get_time_ns(indio_dev); 1487 s64 interval; 1488 int sample_index = 0, sample_count, sample_size; 1489 1490 u32 status = at91_adc_readl(st, ISR); 1491 /* if we reached this point, we cannot sample faster */ 1492 if (status & AT91_SAMA5D2_IER_GOVRE) 1493 pr_info_ratelimited("%s: conversion overrun detected\n", 1494 indio_dev->name); 1495 1496 sample_size = div_s64(st->dma_st.rx_buf_sz, st->dma_st.watermark); 1497 1498 sample_count = div_s64(transferred_len, sample_size); 1499 1500 /* 1501 * interval between samples is total time since last transfer handling 1502 * divided by the number of samples (total size divided by sample size) 1503 */ 1504 interval = div_s64((ns - st->dma_st.dma_ts), sample_count); 1505 1506 while (transferred_len >= sample_size) { 1507 /* 1508 * for all the values in the current sample, 1509 * adjust the values inside the buffer for oversampling 1510 */ 1511 at91_adc_adjust_val_osr_array(st, 1512 &st->dma_st.rx_buf[st->dma_st.buf_idx], 1513 sample_size); 1514 1515 iio_push_to_buffers_with_timestamp(indio_dev, 1516 (st->dma_st.rx_buf + st->dma_st.buf_idx), 1517 (st->dma_st.dma_ts + interval * sample_index)); 1518 /* adjust remaining length */ 1519 transferred_len -= sample_size; 1520 /* adjust buffer index */ 1521 st->dma_st.buf_idx += sample_size; 1522 /* in case of reaching end of buffer, reset index */ 1523 if (st->dma_st.buf_idx >= st->dma_st.rx_buf_sz) 1524 st->dma_st.buf_idx = 0; 1525 sample_index++; 1526 } 1527 /* adjust saved time for next transfer handling */ 1528 st->dma_st.dma_ts = iio_get_time_ns(indio_dev); 1529 } 1530 1531 static irqreturn_t at91_adc_trigger_handler(int irq, void *p) 1532 { 1533 struct iio_poll_func *pf = p; 1534 struct iio_dev *indio_dev = pf->indio_dev; 1535 struct at91_adc_state *st = iio_priv(indio_dev); 1536 1537 /* 1538 * If it's not our trigger, start a conversion now, as we are 1539 * actually polling the trigger now. 1540 */ 1541 if (iio_trigger_validate_own_device(indio_dev->trig, indio_dev)) 1542 at91_adc_writel(st, CR, AT91_SAMA5D2_CR_START); 1543 1544 if (st->dma_st.dma_chan) 1545 at91_adc_trigger_handler_dma(indio_dev); 1546 else 1547 at91_adc_trigger_handler_nodma(indio_dev, pf); 1548 1549 iio_trigger_notify_done(indio_dev->trig); 1550 1551 return IRQ_HANDLED; 1552 } 1553 1554 static unsigned at91_adc_startup_time(unsigned startup_time_min, 1555 unsigned adc_clk_khz) 1556 { 1557 static const unsigned int startup_lookup[] = { 1558 0, 8, 16, 24, 1559 64, 80, 96, 112, 1560 512, 576, 640, 704, 1561 768, 832, 896, 960 1562 }; 1563 unsigned ticks_min, i; 1564 1565 /* 1566 * Since the adc frequency is checked before, there is no reason 1567 * to not meet the startup time constraint. 1568 */ 1569 1570 ticks_min = startup_time_min * adc_clk_khz / 1000; 1571 for (i = 0; i < ARRAY_SIZE(startup_lookup); i++) 1572 if (startup_lookup[i] > ticks_min) 1573 break; 1574 1575 return i; 1576 } 1577 1578 static void at91_adc_setup_samp_freq(struct iio_dev *indio_dev, unsigned freq, 1579 unsigned int startup_time, 1580 unsigned int tracktim) 1581 { 1582 struct at91_adc_state *st = iio_priv(indio_dev); 1583 unsigned f_per, prescal, startup, mr; 1584 int ret; 1585 1586 f_per = clk_get_rate(st->per_clk); 1587 prescal = (f_per / (2 * freq)) - 1; 1588 1589 startup = at91_adc_startup_time(startup_time, freq / 1000); 1590 1591 ret = pm_runtime_resume_and_get(st->dev); 1592 if (ret < 0) 1593 return; 1594 1595 mr = at91_adc_readl(st, MR); 1596 mr &= ~(AT91_SAMA5D2_MR_STARTUP_MASK | AT91_SAMA5D2_MR_PRESCAL_MASK); 1597 mr |= AT91_SAMA5D2_MR_STARTUP(startup); 1598 mr |= AT91_SAMA5D2_MR_PRESCAL(prescal); 1599 mr |= AT91_SAMA5D2_MR_TRACKTIM(tracktim); 1600 at91_adc_writel(st, MR, mr); 1601 1602 pm_runtime_mark_last_busy(st->dev); 1603 pm_runtime_put_autosuspend(st->dev); 1604 1605 dev_dbg(&indio_dev->dev, "freq: %u, startup: %u, prescal: %u, tracktim=%u\n", 1606 freq, startup, prescal, tracktim); 1607 st->current_sample_rate = freq; 1608 } 1609 1610 static inline unsigned at91_adc_get_sample_freq(struct at91_adc_state *st) 1611 { 1612 return st->current_sample_rate; 1613 } 1614 1615 static void at91_adc_touch_data_handler(struct iio_dev *indio_dev) 1616 { 1617 struct at91_adc_state *st = iio_priv(indio_dev); 1618 u8 bit; 1619 u16 val; 1620 int i = 0; 1621 1622 for_each_set_bit(bit, indio_dev->active_scan_mask, 1623 st->soc_info.platform->max_index + 1) { 1624 struct iio_chan_spec const *chan = 1625 at91_adc_chan_get(indio_dev, bit); 1626 1627 if (chan->type == IIO_POSITIONRELATIVE) 1628 at91_adc_read_position(st, chan->channel, &val); 1629 else if (chan->type == IIO_PRESSURE) 1630 at91_adc_read_pressure(st, chan->channel, &val); 1631 else 1632 continue; 1633 st->buffer[i] = val; 1634 i++; 1635 } 1636 /* 1637 * Schedule work to push to buffers. 1638 * This is intended to push to the callback buffer that another driver 1639 * registered. We are still in a handler from our IRQ. If we push 1640 * directly, it means the other driver has it's callback called 1641 * from our IRQ context. Which is something we better avoid. 1642 * Let's schedule it after our IRQ is completed. 1643 */ 1644 schedule_work(&st->touch_st.workq); 1645 } 1646 1647 static void at91_adc_pen_detect_interrupt(struct at91_adc_state *st) 1648 { 1649 at91_adc_writel(st, IDR, AT91_SAMA5D2_IER_PEN); 1650 at91_adc_writel(st, IER, AT91_SAMA5D2_IER_NOPEN | 1651 AT91_SAMA5D2_IER_XRDY | AT91_SAMA5D2_IER_YRDY | 1652 AT91_SAMA5D2_IER_PRDY); 1653 at91_adc_writel(st, TRGR, AT91_SAMA5D2_TRGR_TRGMOD_PERIODIC | 1654 AT91_SAMA5D2_TRGR_TRGPER(st->touch_st.sample_period_val)); 1655 st->touch_st.touching = true; 1656 } 1657 1658 static void at91_adc_no_pen_detect_interrupt(struct iio_dev *indio_dev) 1659 { 1660 struct at91_adc_state *st = iio_priv(indio_dev); 1661 1662 at91_adc_writel(st, TRGR, AT91_SAMA5D2_TRGR_TRGMOD_NO_TRIGGER); 1663 at91_adc_writel(st, IDR, AT91_SAMA5D2_IER_NOPEN | 1664 AT91_SAMA5D2_IER_XRDY | AT91_SAMA5D2_IER_YRDY | 1665 AT91_SAMA5D2_IER_PRDY); 1666 st->touch_st.touching = false; 1667 1668 at91_adc_touch_data_handler(indio_dev); 1669 1670 at91_adc_writel(st, IER, AT91_SAMA5D2_IER_PEN); 1671 } 1672 1673 static void at91_adc_workq_handler(struct work_struct *workq) 1674 { 1675 struct at91_adc_touch *touch_st = container_of(workq, 1676 struct at91_adc_touch, workq); 1677 struct at91_adc_state *st = container_of(touch_st, 1678 struct at91_adc_state, touch_st); 1679 struct iio_dev *indio_dev = st->indio_dev; 1680 1681 iio_push_to_buffers(indio_dev, st->buffer); 1682 } 1683 1684 static irqreturn_t at91_adc_interrupt(int irq, void *private) 1685 { 1686 struct iio_dev *indio = private; 1687 struct at91_adc_state *st = iio_priv(indio); 1688 u32 status, eoc, imr, eoc_imr; 1689 u32 rdy_mask = AT91_SAMA5D2_IER_XRDY | AT91_SAMA5D2_IER_YRDY | 1690 AT91_SAMA5D2_IER_PRDY; 1691 1692 at91_adc_irq_status(st, &status, &eoc); 1693 at91_adc_irq_mask(st, &imr, &eoc_imr); 1694 1695 if (!(status & imr) && !(eoc & eoc_imr)) 1696 return IRQ_NONE; 1697 if (status & AT91_SAMA5D2_IER_PEN) { 1698 /* pen detected IRQ */ 1699 at91_adc_pen_detect_interrupt(st); 1700 } else if ((status & AT91_SAMA5D2_IER_NOPEN)) { 1701 /* nopen detected IRQ */ 1702 at91_adc_no_pen_detect_interrupt(indio); 1703 } else if ((status & AT91_SAMA5D2_ISR_PENS) && 1704 ((status & rdy_mask) == rdy_mask)) { 1705 /* periodic trigger IRQ - during pen sense */ 1706 at91_adc_touch_data_handler(indio); 1707 } else if (status & AT91_SAMA5D2_ISR_PENS) { 1708 /* 1709 * touching, but the measurements are not ready yet. 1710 * read and ignore. 1711 */ 1712 status = at91_adc_readl(st, XPOSR); 1713 status = at91_adc_readl(st, YPOSR); 1714 status = at91_adc_readl(st, PRESSR); 1715 } else if (iio_buffer_enabled(indio) && 1716 (status & AT91_SAMA5D2_IER_DRDY)) { 1717 /* triggered buffer without DMA */ 1718 disable_irq_nosync(irq); 1719 iio_trigger_poll(indio->trig); 1720 } else if (iio_buffer_enabled(indio) && st->dma_st.dma_chan) { 1721 /* triggered buffer with DMA - should not happen */ 1722 disable_irq_nosync(irq); 1723 WARN(true, "Unexpected irq occurred\n"); 1724 } else if (!iio_buffer_enabled(indio)) { 1725 /* software requested conversion */ 1726 st->conversion_value = at91_adc_read_chan(st, st->chan->address); 1727 st->conversion_done = true; 1728 wake_up_interruptible(&st->wq_data_available); 1729 } 1730 return IRQ_HANDLED; 1731 } 1732 1733 /* This needs to be called with direct mode claimed and st->lock locked. */ 1734 static int at91_adc_read_info_raw(struct iio_dev *indio_dev, 1735 struct iio_chan_spec const *chan, int *val) 1736 { 1737 struct at91_adc_state *st = iio_priv(indio_dev); 1738 u16 tmp_val; 1739 int ret; 1740 1741 ret = pm_runtime_resume_and_get(st->dev); 1742 if (ret < 0) 1743 return ret; 1744 1745 /* 1746 * Keep in mind that we cannot use software trigger or touchscreen 1747 * if external trigger is enabled 1748 */ 1749 if (chan->type == IIO_POSITIONRELATIVE) { 1750 ret = at91_adc_read_position(st, chan->channel, 1751 &tmp_val); 1752 *val = tmp_val; 1753 if (ret > 0) 1754 ret = at91_adc_adjust_val_osr(st, val); 1755 1756 goto pm_runtime_put; 1757 } 1758 if (chan->type == IIO_PRESSURE) { 1759 ret = at91_adc_read_pressure(st, chan->channel, 1760 &tmp_val); 1761 *val = tmp_val; 1762 if (ret > 0) 1763 ret = at91_adc_adjust_val_osr(st, val); 1764 1765 goto pm_runtime_put; 1766 } 1767 1768 /* in this case we have a voltage or temperature channel */ 1769 1770 st->chan = chan; 1771 1772 at91_adc_cor(st, chan); 1773 at91_adc_writel(st, CHER, BIT(chan->channel)); 1774 /* 1775 * TEMPMR.TEMPON needs to update after CHER otherwise if none 1776 * of the channels are enabled and TEMPMR.TEMPON = 1 will 1777 * trigger DRDY interruption while preparing for temperature read. 1778 */ 1779 if (chan->type == IIO_TEMP) 1780 at91_adc_writel(st, TEMPMR, AT91_SAMA5D2_TEMPMR_TEMPON); 1781 at91_adc_eoc_ena(st, chan->channel); 1782 at91_adc_writel(st, CR, AT91_SAMA5D2_CR_START); 1783 1784 ret = wait_event_interruptible_timeout(st->wq_data_available, 1785 st->conversion_done, 1786 msecs_to_jiffies(1000)); 1787 if (ret == 0) 1788 ret = -ETIMEDOUT; 1789 1790 if (ret > 0) { 1791 *val = st->conversion_value; 1792 ret = at91_adc_adjust_val_osr(st, val); 1793 if (chan->scan_type.sign == 's') 1794 *val = sign_extend32(*val, 1795 chan->scan_type.realbits - 1); 1796 st->conversion_done = false; 1797 } 1798 1799 at91_adc_eoc_dis(st, st->chan->channel); 1800 if (chan->type == IIO_TEMP) 1801 at91_adc_writel(st, TEMPMR, 0U); 1802 at91_adc_writel(st, CHDR, BIT(chan->channel)); 1803 1804 /* Needed to ACK the DRDY interruption */ 1805 at91_adc_readl(st, LCDR); 1806 1807 pm_runtime_put: 1808 pm_runtime_mark_last_busy(st->dev); 1809 pm_runtime_put_autosuspend(st->dev); 1810 return ret; 1811 } 1812 1813 static int at91_adc_read_info_locked(struct iio_dev *indio_dev, 1814 struct iio_chan_spec const *chan, int *val) 1815 { 1816 struct at91_adc_state *st = iio_priv(indio_dev); 1817 int ret; 1818 1819 ret = iio_device_claim_direct_mode(indio_dev); 1820 if (ret) 1821 return ret; 1822 1823 mutex_lock(&st->lock); 1824 ret = at91_adc_read_info_raw(indio_dev, chan, val); 1825 mutex_unlock(&st->lock); 1826 1827 iio_device_release_direct_mode(indio_dev); 1828 1829 return ret; 1830 } 1831 1832 static void at91_adc_temp_sensor_configure(struct at91_adc_state *st, 1833 bool start) 1834 { 1835 u32 sample_rate, oversampling_ratio; 1836 u32 startup_time, tracktim, trackx; 1837 1838 if (start) { 1839 /* 1840 * Configure the sensor for best accuracy: 10MHz frequency, 1841 * oversampling rate of 256, tracktim=0xf and trackx=1. 1842 */ 1843 sample_rate = 10 * MEGA; 1844 oversampling_ratio = 256; 1845 startup_time = AT91_SAMA5D2_MR_STARTUP_TS_MIN; 1846 tracktim = AT91_SAMA5D2_MR_TRACKTIM_TS; 1847 trackx = AT91_SAMA5D2_TRACKX_TS; 1848 1849 st->temp_st.saved_sample_rate = st->current_sample_rate; 1850 st->temp_st.saved_oversampling = st->oversampling_ratio; 1851 } else { 1852 /* Go back to previous settings. */ 1853 sample_rate = st->temp_st.saved_sample_rate; 1854 oversampling_ratio = st->temp_st.saved_oversampling; 1855 startup_time = st->soc_info.startup_time; 1856 tracktim = 0; 1857 trackx = 0; 1858 } 1859 1860 at91_adc_setup_samp_freq(st->indio_dev, sample_rate, startup_time, 1861 tracktim); 1862 at91_adc_config_emr(st, oversampling_ratio, trackx); 1863 } 1864 1865 static int at91_adc_read_temp(struct iio_dev *indio_dev, 1866 struct iio_chan_spec const *chan, int *val) 1867 { 1868 struct at91_adc_state *st = iio_priv(indio_dev); 1869 struct at91_adc_temp_sensor_clb *clb = &st->soc_info.temp_sensor_clb; 1870 u64 div1, div2; 1871 u32 tmp; 1872 int ret, vbg, vtemp; 1873 1874 ret = iio_device_claim_direct_mode(indio_dev); 1875 if (ret) 1876 return ret; 1877 mutex_lock(&st->lock); 1878 1879 ret = pm_runtime_resume_and_get(st->dev); 1880 if (ret < 0) 1881 goto unlock; 1882 1883 at91_adc_temp_sensor_configure(st, true); 1884 1885 /* Read VBG. */ 1886 tmp = at91_adc_readl(st, ACR); 1887 tmp |= AT91_SAMA5D2_ACR_SRCLCH; 1888 at91_adc_writel(st, ACR, tmp); 1889 ret = at91_adc_read_info_raw(indio_dev, chan, &vbg); 1890 if (ret < 0) 1891 goto restore_config; 1892 1893 /* Read VTEMP. */ 1894 tmp &= ~AT91_SAMA5D2_ACR_SRCLCH; 1895 at91_adc_writel(st, ACR, tmp); 1896 ret = at91_adc_read_info_raw(indio_dev, chan, &vtemp); 1897 1898 restore_config: 1899 /* Revert previous settings. */ 1900 at91_adc_temp_sensor_configure(st, false); 1901 pm_runtime_mark_last_busy(st->dev); 1902 pm_runtime_put_autosuspend(st->dev); 1903 unlock: 1904 mutex_unlock(&st->lock); 1905 iio_device_release_direct_mode(indio_dev); 1906 if (ret < 0) 1907 return ret; 1908 1909 /* 1910 * Temp[milli] = p1[milli] + (vtemp * clb->p6 - clb->p4 * vbg)/ 1911 * (vbg * AT91_ADC_TS_VTEMP_DT) 1912 */ 1913 div1 = DIV_ROUND_CLOSEST_ULL(((u64)vtemp * clb->p6), vbg); 1914 div1 = DIV_ROUND_CLOSEST_ULL((div1 * 1000), AT91_ADC_TS_VTEMP_DT); 1915 div2 = DIV_ROUND_CLOSEST_ULL((u64)clb->p4, AT91_ADC_TS_VTEMP_DT); 1916 div2 *= 1000; 1917 *val = clb->p1 + (int)div1 - (int)div2; 1918 1919 return ret; 1920 } 1921 1922 static int at91_adc_read_raw(struct iio_dev *indio_dev, 1923 struct iio_chan_spec const *chan, 1924 int *val, int *val2, long mask) 1925 { 1926 struct at91_adc_state *st = iio_priv(indio_dev); 1927 1928 switch (mask) { 1929 case IIO_CHAN_INFO_RAW: 1930 return at91_adc_read_info_locked(indio_dev, chan, val); 1931 1932 case IIO_CHAN_INFO_SCALE: 1933 *val = st->vref_uv / 1000; 1934 if (chan->differential) 1935 *val *= 2; 1936 *val2 = chan->scan_type.realbits; 1937 return IIO_VAL_FRACTIONAL_LOG2; 1938 1939 case IIO_CHAN_INFO_PROCESSED: 1940 if (chan->type != IIO_TEMP) 1941 return -EINVAL; 1942 return at91_adc_read_temp(indio_dev, chan, val); 1943 1944 case IIO_CHAN_INFO_SAMP_FREQ: 1945 *val = at91_adc_get_sample_freq(st); 1946 return IIO_VAL_INT; 1947 1948 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 1949 *val = st->oversampling_ratio; 1950 return IIO_VAL_INT; 1951 1952 default: 1953 return -EINVAL; 1954 } 1955 } 1956 1957 static int at91_adc_write_raw(struct iio_dev *indio_dev, 1958 struct iio_chan_spec const *chan, 1959 int val, int val2, long mask) 1960 { 1961 struct at91_adc_state *st = iio_priv(indio_dev); 1962 int ret; 1963 1964 switch (mask) { 1965 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 1966 /* if no change, optimize out */ 1967 if (val == st->oversampling_ratio) 1968 return 0; 1969 1970 ret = iio_device_claim_direct_mode(indio_dev); 1971 if (ret) 1972 return ret; 1973 mutex_lock(&st->lock); 1974 /* update ratio */ 1975 ret = at91_adc_config_emr(st, val, 0); 1976 mutex_unlock(&st->lock); 1977 iio_device_release_direct_mode(indio_dev); 1978 return ret; 1979 case IIO_CHAN_INFO_SAMP_FREQ: 1980 if (val < st->soc_info.min_sample_rate || 1981 val > st->soc_info.max_sample_rate) 1982 return -EINVAL; 1983 1984 ret = iio_device_claim_direct_mode(indio_dev); 1985 if (ret) 1986 return ret; 1987 mutex_lock(&st->lock); 1988 at91_adc_setup_samp_freq(indio_dev, val, 1989 st->soc_info.startup_time, 0); 1990 mutex_unlock(&st->lock); 1991 iio_device_release_direct_mode(indio_dev); 1992 return 0; 1993 default: 1994 return -EINVAL; 1995 } 1996 } 1997 1998 static int at91_adc_read_avail(struct iio_dev *indio_dev, 1999 struct iio_chan_spec const *chan, 2000 const int **vals, int *type, int *length, 2001 long mask) 2002 { 2003 struct at91_adc_state *st = iio_priv(indio_dev); 2004 2005 switch (mask) { 2006 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 2007 *vals = (int *)st->soc_info.platform->oversampling_avail; 2008 *type = IIO_VAL_INT; 2009 *length = st->soc_info.platform->oversampling_avail_no; 2010 return IIO_AVAIL_LIST; 2011 default: 2012 return -EINVAL; 2013 } 2014 } 2015 2016 static void at91_adc_dma_init(struct at91_adc_state *st) 2017 { 2018 struct device *dev = &st->indio_dev->dev; 2019 struct dma_slave_config config = {0}; 2020 /* we have 2 bytes for each channel */ 2021 unsigned int sample_size = st->soc_info.platform->nr_channels * 2; 2022 /* 2023 * We make the buffer double the size of the fifo, 2024 * such that DMA uses one half of the buffer (full fifo size) 2025 * and the software uses the other half to read/write. 2026 */ 2027 unsigned int pages = DIV_ROUND_UP(AT91_HWFIFO_MAX_SIZE * 2028 sample_size * 2, PAGE_SIZE); 2029 2030 if (st->dma_st.dma_chan) 2031 return; 2032 2033 st->dma_st.dma_chan = dma_request_chan(dev, "rx"); 2034 if (IS_ERR(st->dma_st.dma_chan)) { 2035 dev_info(dev, "can't get DMA channel\n"); 2036 st->dma_st.dma_chan = NULL; 2037 goto dma_exit; 2038 } 2039 2040 st->dma_st.rx_buf = dma_alloc_coherent(st->dma_st.dma_chan->device->dev, 2041 pages * PAGE_SIZE, 2042 &st->dma_st.rx_dma_buf, 2043 GFP_KERNEL); 2044 if (!st->dma_st.rx_buf) { 2045 dev_info(dev, "can't allocate coherent DMA area\n"); 2046 goto dma_chan_disable; 2047 } 2048 2049 /* Configure DMA channel to read data register */ 2050 config.direction = DMA_DEV_TO_MEM; 2051 config.src_addr = (phys_addr_t)(st->dma_st.phys_addr 2052 + st->soc_info.platform->layout->LCDR); 2053 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 2054 config.src_maxburst = 1; 2055 config.dst_maxburst = 1; 2056 2057 if (dmaengine_slave_config(st->dma_st.dma_chan, &config)) { 2058 dev_info(dev, "can't configure DMA slave\n"); 2059 goto dma_free_area; 2060 } 2061 2062 dev_info(dev, "using %s for rx DMA transfers\n", 2063 dma_chan_name(st->dma_st.dma_chan)); 2064 2065 return; 2066 2067 dma_free_area: 2068 dma_free_coherent(st->dma_st.dma_chan->device->dev, pages * PAGE_SIZE, 2069 st->dma_st.rx_buf, st->dma_st.rx_dma_buf); 2070 dma_chan_disable: 2071 dma_release_channel(st->dma_st.dma_chan); 2072 st->dma_st.dma_chan = NULL; 2073 dma_exit: 2074 dev_info(dev, "continuing without DMA support\n"); 2075 } 2076 2077 static void at91_adc_dma_disable(struct at91_adc_state *st) 2078 { 2079 struct device *dev = &st->indio_dev->dev; 2080 /* we have 2 bytes for each channel */ 2081 unsigned int sample_size = st->soc_info.platform->nr_channels * 2; 2082 unsigned int pages = DIV_ROUND_UP(AT91_HWFIFO_MAX_SIZE * 2083 sample_size * 2, PAGE_SIZE); 2084 2085 /* if we are not using DMA, just return */ 2086 if (!st->dma_st.dma_chan) 2087 return; 2088 2089 /* wait for all transactions to be terminated first*/ 2090 dmaengine_terminate_sync(st->dma_st.dma_chan); 2091 2092 dma_free_coherent(st->dma_st.dma_chan->device->dev, pages * PAGE_SIZE, 2093 st->dma_st.rx_buf, st->dma_st.rx_dma_buf); 2094 dma_release_channel(st->dma_st.dma_chan); 2095 st->dma_st.dma_chan = NULL; 2096 2097 dev_info(dev, "continuing without DMA support\n"); 2098 } 2099 2100 static int at91_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val) 2101 { 2102 struct at91_adc_state *st = iio_priv(indio_dev); 2103 int ret; 2104 2105 if (val > AT91_HWFIFO_MAX_SIZE) 2106 val = AT91_HWFIFO_MAX_SIZE; 2107 2108 if (!st->selected_trig->hw_trig) { 2109 dev_dbg(&indio_dev->dev, "we need hw trigger for DMA\n"); 2110 return 0; 2111 } 2112 2113 dev_dbg(&indio_dev->dev, "new watermark is %u\n", val); 2114 st->dma_st.watermark = val; 2115 2116 /* 2117 * The logic here is: if we have watermark 1, it means we do 2118 * each conversion with it's own IRQ, thus we don't need DMA. 2119 * If the watermark is higher, we do DMA to do all the transfers in bulk 2120 */ 2121 2122 if (val == 1) 2123 at91_adc_dma_disable(st); 2124 else if (val > 1) 2125 at91_adc_dma_init(st); 2126 2127 /* 2128 * We can start the DMA only after setting the watermark and 2129 * having the DMA initialization completed 2130 */ 2131 ret = at91_adc_buffer_prepare(indio_dev); 2132 if (ret) 2133 at91_adc_dma_disable(st); 2134 2135 return ret; 2136 } 2137 2138 static int at91_adc_update_scan_mode(struct iio_dev *indio_dev, 2139 const unsigned long *scan_mask) 2140 { 2141 struct at91_adc_state *st = iio_priv(indio_dev); 2142 2143 if (bitmap_subset(scan_mask, &st->touch_st.channels_bitmask, 2144 st->soc_info.platform->max_index + 1)) 2145 return 0; 2146 /* 2147 * if the new bitmap is a combination of touchscreen and regular 2148 * channels, then we are not fine 2149 */ 2150 if (bitmap_intersects(&st->touch_st.channels_bitmask, scan_mask, 2151 st->soc_info.platform->max_index + 1)) 2152 return -EINVAL; 2153 return 0; 2154 } 2155 2156 static void at91_adc_hw_init(struct iio_dev *indio_dev) 2157 { 2158 struct at91_adc_state *st = iio_priv(indio_dev); 2159 2160 at91_adc_writel(st, CR, AT91_SAMA5D2_CR_SWRST); 2161 if (st->soc_info.platform->layout->EOC_IDR) 2162 at91_adc_writel(st, EOC_IDR, 0xffffffff); 2163 at91_adc_writel(st, IDR, 0xffffffff); 2164 /* 2165 * Transfer field must be set to 2 according to the datasheet and 2166 * allows different analog settings for each channel. 2167 */ 2168 at91_adc_writel(st, MR, 2169 AT91_SAMA5D2_MR_TRANSFER(2) | AT91_SAMA5D2_MR_ANACH); 2170 2171 at91_adc_setup_samp_freq(indio_dev, st->soc_info.min_sample_rate, 2172 st->soc_info.startup_time, 0); 2173 2174 /* configure extended mode register */ 2175 at91_adc_config_emr(st, st->oversampling_ratio, 0); 2176 } 2177 2178 static ssize_t at91_adc_get_fifo_state(struct device *dev, 2179 struct device_attribute *attr, char *buf) 2180 { 2181 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 2182 struct at91_adc_state *st = iio_priv(indio_dev); 2183 2184 return scnprintf(buf, PAGE_SIZE, "%d\n", !!st->dma_st.dma_chan); 2185 } 2186 2187 static ssize_t at91_adc_get_watermark(struct device *dev, 2188 struct device_attribute *attr, char *buf) 2189 { 2190 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 2191 struct at91_adc_state *st = iio_priv(indio_dev); 2192 2193 return scnprintf(buf, PAGE_SIZE, "%d\n", st->dma_st.watermark); 2194 } 2195 2196 static ssize_t hwfifo_watermark_min_show(struct device *dev, 2197 struct device_attribute *attr, 2198 char *buf) 2199 { 2200 return sysfs_emit(buf, "%s\n", "2"); 2201 } 2202 2203 static ssize_t hwfifo_watermark_max_show(struct device *dev, 2204 struct device_attribute *attr, 2205 char *buf) 2206 { 2207 return sysfs_emit(buf, "%s\n", AT91_HWFIFO_MAX_SIZE_STR); 2208 } 2209 2210 static IIO_DEVICE_ATTR(hwfifo_enabled, 0444, 2211 at91_adc_get_fifo_state, NULL, 0); 2212 static IIO_DEVICE_ATTR(hwfifo_watermark, 0444, 2213 at91_adc_get_watermark, NULL, 0); 2214 static IIO_DEVICE_ATTR_RO(hwfifo_watermark_min, 0); 2215 static IIO_DEVICE_ATTR_RO(hwfifo_watermark_max, 0); 2216 2217 static const struct attribute *at91_adc_fifo_attributes[] = { 2218 &iio_dev_attr_hwfifo_watermark_min.dev_attr.attr, 2219 &iio_dev_attr_hwfifo_watermark_max.dev_attr.attr, 2220 &iio_dev_attr_hwfifo_watermark.dev_attr.attr, 2221 &iio_dev_attr_hwfifo_enabled.dev_attr.attr, 2222 NULL, 2223 }; 2224 2225 static const struct iio_info at91_adc_info = { 2226 .read_avail = &at91_adc_read_avail, 2227 .read_raw = &at91_adc_read_raw, 2228 .write_raw = &at91_adc_write_raw, 2229 .update_scan_mode = &at91_adc_update_scan_mode, 2230 .fwnode_xlate = &at91_adc_fwnode_xlate, 2231 .hwfifo_set_watermark = &at91_adc_set_watermark, 2232 }; 2233 2234 static int at91_adc_buffer_and_trigger_init(struct device *dev, 2235 struct iio_dev *indio) 2236 { 2237 struct at91_adc_state *st = iio_priv(indio); 2238 const struct attribute **fifo_attrs; 2239 int ret; 2240 2241 if (st->selected_trig->hw_trig) 2242 fifo_attrs = at91_adc_fifo_attributes; 2243 else 2244 fifo_attrs = NULL; 2245 2246 ret = devm_iio_triggered_buffer_setup_ext(&indio->dev, indio, 2247 &iio_pollfunc_store_time, &at91_adc_trigger_handler, 2248 IIO_BUFFER_DIRECTION_IN, &at91_buffer_setup_ops, fifo_attrs); 2249 if (ret < 0) { 2250 dev_err(dev, "couldn't initialize the buffer.\n"); 2251 return ret; 2252 } 2253 2254 if (!st->selected_trig->hw_trig) 2255 return 0; 2256 2257 st->trig = at91_adc_allocate_trigger(indio, st->selected_trig->name); 2258 if (IS_ERR(st->trig)) { 2259 dev_err(dev, "could not allocate trigger\n"); 2260 return PTR_ERR(st->trig); 2261 } 2262 2263 /* 2264 * Initially the iio buffer has a length of 2 and 2265 * a watermark of 1 2266 */ 2267 st->dma_st.watermark = 1; 2268 2269 return 0; 2270 } 2271 2272 static int at91_adc_temp_sensor_init(struct at91_adc_state *st, 2273 struct device *dev) 2274 { 2275 struct at91_adc_temp_sensor_clb *clb = &st->soc_info.temp_sensor_clb; 2276 struct nvmem_cell *temp_calib; 2277 u32 *buf; 2278 size_t len; 2279 int ret = 0; 2280 2281 if (!st->soc_info.platform->temp_sensor) 2282 return 0; 2283 2284 /* Get the calibration data from NVMEM. */ 2285 temp_calib = devm_nvmem_cell_get(dev, "temperature_calib"); 2286 if (IS_ERR(temp_calib)) { 2287 ret = PTR_ERR(temp_calib); 2288 if (ret != -ENOENT) 2289 dev_err(dev, "Failed to get temperature_calib cell!\n"); 2290 return ret; 2291 } 2292 2293 buf = nvmem_cell_read(temp_calib, &len); 2294 if (IS_ERR(buf)) { 2295 dev_err(dev, "Failed to read calibration data!\n"); 2296 return PTR_ERR(buf); 2297 } 2298 if (len < AT91_ADC_TS_CLB_IDX_MAX * 4) { 2299 dev_err(dev, "Invalid calibration data!\n"); 2300 ret = -EINVAL; 2301 goto free_buf; 2302 } 2303 2304 /* Store calibration data for later use. */ 2305 clb->p1 = buf[AT91_ADC_TS_CLB_IDX_P1]; 2306 clb->p4 = buf[AT91_ADC_TS_CLB_IDX_P4]; 2307 clb->p6 = buf[AT91_ADC_TS_CLB_IDX_P6]; 2308 2309 /* 2310 * We prepare here the conversion to milli to avoid doing it on hotpath. 2311 */ 2312 clb->p1 = clb->p1 * 1000; 2313 2314 free_buf: 2315 kfree(buf); 2316 return ret; 2317 } 2318 2319 static int at91_adc_probe(struct platform_device *pdev) 2320 { 2321 struct device *dev = &pdev->dev; 2322 struct iio_dev *indio_dev; 2323 struct at91_adc_state *st; 2324 struct resource *res; 2325 int ret, i, num_channels; 2326 u32 edge_type = IRQ_TYPE_NONE; 2327 2328 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*st)); 2329 if (!indio_dev) 2330 return -ENOMEM; 2331 2332 st = iio_priv(indio_dev); 2333 st->indio_dev = indio_dev; 2334 2335 st->soc_info.platform = device_get_match_data(dev); 2336 2337 ret = at91_adc_temp_sensor_init(st, &pdev->dev); 2338 /* Don't register temperature channel if initialization failed. */ 2339 if (ret) 2340 num_channels = st->soc_info.platform->max_channels - 1; 2341 else 2342 num_channels = st->soc_info.platform->max_channels; 2343 2344 indio_dev->name = dev_name(&pdev->dev); 2345 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE; 2346 indio_dev->info = &at91_adc_info; 2347 indio_dev->channels = *st->soc_info.platform->adc_channels; 2348 indio_dev->num_channels = num_channels; 2349 2350 bitmap_set(&st->touch_st.channels_bitmask, 2351 st->soc_info.platform->touch_chan_x, 1); 2352 bitmap_set(&st->touch_st.channels_bitmask, 2353 st->soc_info.platform->touch_chan_y, 1); 2354 bitmap_set(&st->touch_st.channels_bitmask, 2355 st->soc_info.platform->touch_chan_p, 1); 2356 2357 st->oversampling_ratio = 1; 2358 2359 ret = device_property_read_u32(dev, "atmel,min-sample-rate-hz", 2360 &st->soc_info.min_sample_rate); 2361 if (ret) { 2362 dev_err(&pdev->dev, 2363 "invalid or missing value for atmel,min-sample-rate-hz\n"); 2364 return ret; 2365 } 2366 2367 ret = device_property_read_u32(dev, "atmel,max-sample-rate-hz", 2368 &st->soc_info.max_sample_rate); 2369 if (ret) { 2370 dev_err(&pdev->dev, 2371 "invalid or missing value for atmel,max-sample-rate-hz\n"); 2372 return ret; 2373 } 2374 2375 ret = device_property_read_u32(dev, "atmel,startup-time-ms", 2376 &st->soc_info.startup_time); 2377 if (ret) { 2378 dev_err(&pdev->dev, 2379 "invalid or missing value for atmel,startup-time-ms\n"); 2380 return ret; 2381 } 2382 2383 ret = device_property_read_u32(dev, "atmel,trigger-edge-type", 2384 &edge_type); 2385 if (ret) { 2386 dev_dbg(&pdev->dev, 2387 "atmel,trigger-edge-type not specified, only software trigger available\n"); 2388 } 2389 2390 st->selected_trig = NULL; 2391 2392 /* find the right trigger, or no trigger at all */ 2393 for (i = 0; i < st->soc_info.platform->hw_trig_cnt + 1; i++) 2394 if (at91_adc_trigger_list[i].edge_type == edge_type) { 2395 st->selected_trig = &at91_adc_trigger_list[i]; 2396 break; 2397 } 2398 2399 if (!st->selected_trig) { 2400 dev_err(&pdev->dev, "invalid external trigger edge value\n"); 2401 return -EINVAL; 2402 } 2403 2404 init_waitqueue_head(&st->wq_data_available); 2405 mutex_init(&st->lock); 2406 INIT_WORK(&st->touch_st.workq, at91_adc_workq_handler); 2407 2408 st->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 2409 if (IS_ERR(st->base)) 2410 return PTR_ERR(st->base); 2411 2412 /* if we plan to use DMA, we need the physical address of the regs */ 2413 st->dma_st.phys_addr = res->start; 2414 2415 st->irq = platform_get_irq(pdev, 0); 2416 if (st->irq <= 0) { 2417 if (!st->irq) 2418 st->irq = -ENXIO; 2419 2420 return st->irq; 2421 } 2422 2423 st->per_clk = devm_clk_get(&pdev->dev, "adc_clk"); 2424 if (IS_ERR(st->per_clk)) 2425 return PTR_ERR(st->per_clk); 2426 2427 st->reg = devm_regulator_get(&pdev->dev, "vddana"); 2428 if (IS_ERR(st->reg)) 2429 return PTR_ERR(st->reg); 2430 2431 st->vref = devm_regulator_get(&pdev->dev, "vref"); 2432 if (IS_ERR(st->vref)) 2433 return PTR_ERR(st->vref); 2434 2435 ret = devm_request_irq(&pdev->dev, st->irq, at91_adc_interrupt, 0, 2436 pdev->dev.driver->name, indio_dev); 2437 if (ret) 2438 return ret; 2439 2440 ret = regulator_enable(st->reg); 2441 if (ret) 2442 return ret; 2443 2444 ret = regulator_enable(st->vref); 2445 if (ret) 2446 goto reg_disable; 2447 2448 st->vref_uv = regulator_get_voltage(st->vref); 2449 if (st->vref_uv <= 0) { 2450 ret = -EINVAL; 2451 goto vref_disable; 2452 } 2453 2454 ret = clk_prepare_enable(st->per_clk); 2455 if (ret) 2456 goto vref_disable; 2457 2458 platform_set_drvdata(pdev, indio_dev); 2459 st->dev = &pdev->dev; 2460 pm_runtime_set_autosuspend_delay(st->dev, 500); 2461 pm_runtime_use_autosuspend(st->dev); 2462 pm_runtime_set_active(st->dev); 2463 pm_runtime_enable(st->dev); 2464 pm_runtime_get_noresume(st->dev); 2465 2466 at91_adc_hw_init(indio_dev); 2467 2468 ret = at91_adc_buffer_and_trigger_init(&pdev->dev, indio_dev); 2469 if (ret < 0) 2470 goto err_pm_disable; 2471 2472 if (dma_coerce_mask_and_coherent(&indio_dev->dev, DMA_BIT_MASK(32))) 2473 dev_info(&pdev->dev, "cannot set DMA mask to 32-bit\n"); 2474 2475 ret = iio_device_register(indio_dev); 2476 if (ret < 0) 2477 goto dma_disable; 2478 2479 if (st->selected_trig->hw_trig) 2480 dev_info(&pdev->dev, "setting up trigger as %s\n", 2481 st->selected_trig->name); 2482 2483 dev_info(&pdev->dev, "version: %x\n", 2484 readl_relaxed(st->base + st->soc_info.platform->layout->VERSION)); 2485 2486 pm_runtime_mark_last_busy(st->dev); 2487 pm_runtime_put_autosuspend(st->dev); 2488 2489 return 0; 2490 2491 dma_disable: 2492 at91_adc_dma_disable(st); 2493 err_pm_disable: 2494 pm_runtime_put_noidle(st->dev); 2495 pm_runtime_disable(st->dev); 2496 pm_runtime_set_suspended(st->dev); 2497 pm_runtime_dont_use_autosuspend(st->dev); 2498 clk_disable_unprepare(st->per_clk); 2499 vref_disable: 2500 regulator_disable(st->vref); 2501 reg_disable: 2502 regulator_disable(st->reg); 2503 return ret; 2504 } 2505 2506 static int at91_adc_remove(struct platform_device *pdev) 2507 { 2508 struct iio_dev *indio_dev = platform_get_drvdata(pdev); 2509 struct at91_adc_state *st = iio_priv(indio_dev); 2510 2511 iio_device_unregister(indio_dev); 2512 2513 at91_adc_dma_disable(st); 2514 2515 pm_runtime_disable(st->dev); 2516 pm_runtime_set_suspended(st->dev); 2517 clk_disable_unprepare(st->per_clk); 2518 2519 regulator_disable(st->vref); 2520 regulator_disable(st->reg); 2521 2522 return 0; 2523 } 2524 2525 static int at91_adc_suspend(struct device *dev) 2526 { 2527 struct iio_dev *indio_dev = dev_get_drvdata(dev); 2528 struct at91_adc_state *st = iio_priv(indio_dev); 2529 int ret; 2530 2531 ret = pm_runtime_resume_and_get(st->dev); 2532 if (ret < 0) 2533 return ret; 2534 2535 if (iio_buffer_enabled(indio_dev)) 2536 at91_adc_buffer_postdisable(indio_dev); 2537 2538 /* 2539 * Do a sofware reset of the ADC before we go to suspend. 2540 * this will ensure that all pins are free from being muxed by the ADC 2541 * and can be used by for other devices. 2542 * Otherwise, ADC will hog them and we can't go to suspend mode. 2543 */ 2544 at91_adc_writel(st, CR, AT91_SAMA5D2_CR_SWRST); 2545 2546 pm_runtime_mark_last_busy(st->dev); 2547 pm_runtime_put_noidle(st->dev); 2548 clk_disable_unprepare(st->per_clk); 2549 regulator_disable(st->vref); 2550 regulator_disable(st->reg); 2551 2552 return pinctrl_pm_select_sleep_state(dev); 2553 } 2554 2555 static int at91_adc_resume(struct device *dev) 2556 { 2557 struct iio_dev *indio_dev = dev_get_drvdata(dev); 2558 struct at91_adc_state *st = iio_priv(indio_dev); 2559 int ret; 2560 2561 ret = pinctrl_pm_select_default_state(dev); 2562 if (ret) 2563 goto resume_failed; 2564 2565 ret = regulator_enable(st->reg); 2566 if (ret) 2567 goto resume_failed; 2568 2569 ret = regulator_enable(st->vref); 2570 if (ret) 2571 goto reg_disable_resume; 2572 2573 ret = clk_prepare_enable(st->per_clk); 2574 if (ret) 2575 goto vref_disable_resume; 2576 2577 pm_runtime_get_noresume(st->dev); 2578 2579 at91_adc_hw_init(indio_dev); 2580 2581 /* reconfiguring trigger hardware state */ 2582 if (iio_buffer_enabled(indio_dev)) { 2583 ret = at91_adc_buffer_prepare(indio_dev); 2584 if (ret) 2585 goto pm_runtime_put; 2586 2587 at91_adc_configure_trigger_registers(st, true); 2588 } 2589 2590 pm_runtime_mark_last_busy(st->dev); 2591 pm_runtime_put_autosuspend(st->dev); 2592 2593 return 0; 2594 2595 pm_runtime_put: 2596 pm_runtime_mark_last_busy(st->dev); 2597 pm_runtime_put_noidle(st->dev); 2598 clk_disable_unprepare(st->per_clk); 2599 vref_disable_resume: 2600 regulator_disable(st->vref); 2601 reg_disable_resume: 2602 regulator_disable(st->reg); 2603 resume_failed: 2604 dev_err(&indio_dev->dev, "failed to resume\n"); 2605 return ret; 2606 } 2607 2608 static int at91_adc_runtime_suspend(struct device *dev) 2609 { 2610 struct iio_dev *indio_dev = dev_get_drvdata(dev); 2611 struct at91_adc_state *st = iio_priv(indio_dev); 2612 2613 clk_disable(st->per_clk); 2614 2615 return 0; 2616 } 2617 2618 static int at91_adc_runtime_resume(struct device *dev) 2619 { 2620 struct iio_dev *indio_dev = dev_get_drvdata(dev); 2621 struct at91_adc_state *st = iio_priv(indio_dev); 2622 2623 return clk_enable(st->per_clk); 2624 } 2625 2626 static const struct dev_pm_ops at91_adc_pm_ops = { 2627 SYSTEM_SLEEP_PM_OPS(at91_adc_suspend, at91_adc_resume) 2628 RUNTIME_PM_OPS(at91_adc_runtime_suspend, at91_adc_runtime_resume, 2629 NULL) 2630 }; 2631 2632 static const struct of_device_id at91_adc_dt_match[] = { 2633 { 2634 .compatible = "atmel,sama5d2-adc", 2635 .data = (const void *)&sama5d2_platform, 2636 }, { 2637 .compatible = "microchip,sama7g5-adc", 2638 .data = (const void *)&sama7g5_platform, 2639 }, { 2640 /* sentinel */ 2641 } 2642 }; 2643 MODULE_DEVICE_TABLE(of, at91_adc_dt_match); 2644 2645 static struct platform_driver at91_adc_driver = { 2646 .probe = at91_adc_probe, 2647 .remove = at91_adc_remove, 2648 .driver = { 2649 .name = "at91-sama5d2_adc", 2650 .of_match_table = at91_adc_dt_match, 2651 .pm = pm_ptr(&at91_adc_pm_ops), 2652 }, 2653 }; 2654 module_platform_driver(at91_adc_driver) 2655 2656 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@microchip.com>"); 2657 MODULE_AUTHOR("Eugen Hristev <eugen.hristev@microchip.com"); 2658 MODULE_DESCRIPTION("Atmel AT91 SAMA5D2 ADC"); 2659 MODULE_LICENSE("GPL v2"); 2660