xref: /openbmc/linux/drivers/iio/adc/aspeed_adc.c (revision 0c6dfa75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Aspeed AST2400/2500/2600 ADC
4  *
5  * Copyright (C) 2017 Google, Inc.
6  * Copyright (C) 2021 Aspeed Technology Inc.
7  *
8  * ADC clock formula:
9  * Ast2400/Ast2500:
10  * clock period = period of PCLK * 2 * (ADC0C[31:17] + 1) * (ADC0C[9:0] + 1)
11  * Ast2600:
12  * clock period = period of PCLK * 2 * (ADC0C[15:0] + 1)
13  */
14 
15 #include <linux/clk.h>
16 #include <linux/clk-provider.h>
17 #include <linux/err.h>
18 #include <linux/errno.h>
19 #include <linux/io.h>
20 #include <linux/module.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/reset.h>
25 #include <linux/spinlock.h>
26 #include <linux/types.h>
27 #include <linux/bitfield.h>
28 #include <linux/regmap.h>
29 #include <linux/mfd/syscon.h>
30 
31 #include <linux/iio/iio.h>
32 #include <linux/iio/driver.h>
33 #include <linux/iopoll.h>
34 
35 #define ASPEED_RESOLUTION_BITS		10
36 #define ASPEED_CLOCKS_PER_SAMPLE	12
37 
38 #define ASPEED_REG_ENGINE_CONTROL	0x00
39 #define ASPEED_REG_INTERRUPT_CONTROL	0x04
40 #define ASPEED_REG_VGA_DETECT_CONTROL	0x08
41 #define ASPEED_REG_CLOCK_CONTROL	0x0C
42 #define ASPEED_REG_COMPENSATION_TRIM	0xC4
43 /*
44  * The register offset between 0xC8~0xCC can be read and won't affect the
45  * hardware logic in each version of ADC.
46  */
47 #define ASPEED_REG_MAX			0xD0
48 
49 #define ASPEED_ADC_ENGINE_ENABLE		BIT(0)
50 #define ASPEED_ADC_OP_MODE			GENMASK(3, 1)
51 #define ASPEED_ADC_OP_MODE_PWR_DOWN		0
52 #define ASPEED_ADC_OP_MODE_STANDBY		1
53 #define ASPEED_ADC_OP_MODE_NORMAL		7
54 #define ASPEED_ADC_CTRL_COMPENSATION		BIT(4)
55 #define ASPEED_ADC_AUTO_COMPENSATION		BIT(5)
56 /*
57  * Bit 6 determines not only the reference voltage range but also the dividing
58  * circuit for battery sensing.
59  */
60 #define ASPEED_ADC_REF_VOLTAGE			GENMASK(7, 6)
61 #define ASPEED_ADC_REF_VOLTAGE_2500mV		0
62 #define ASPEED_ADC_REF_VOLTAGE_1200mV		1
63 #define ASPEED_ADC_REF_VOLTAGE_EXT_HIGH		2
64 #define ASPEED_ADC_REF_VOLTAGE_EXT_LOW		3
65 #define ASPEED_ADC_BAT_SENSING_DIV		BIT(6)
66 #define ASPEED_ADC_BAT_SENSING_DIV_2_3		0
67 #define ASPEED_ADC_BAT_SENSING_DIV_1_3		1
68 #define ASPEED_ADC_CTRL_INIT_RDY		BIT(8)
69 #define ASPEED_ADC_CH7_MODE			BIT(12)
70 #define ASPEED_ADC_CH7_NORMAL			0
71 #define ASPEED_ADC_CH7_BAT			1
72 #define ASPEED_ADC_BAT_SENSING_ENABLE		BIT(13)
73 #define ASPEED_ADC_CTRL_CHANNEL			GENMASK(31, 16)
74 #define ASPEED_ADC_CTRL_CHANNEL_ENABLE(ch)	FIELD_PREP(ASPEED_ADC_CTRL_CHANNEL, BIT(ch))
75 
76 #define ASPEED_ADC_INIT_POLLING_TIME	500
77 #define ASPEED_ADC_INIT_TIMEOUT		500000
78 /*
79  * When the sampling rate is too high, the ADC may not have enough charging
80  * time, resulting in a low voltage value. Thus, the default uses a slow
81  * sampling rate for most use cases.
82  */
83 #define ASPEED_ADC_DEF_SAMPLING_RATE	65000
84 
85 struct aspeed_adc_trim_locate {
86 	const unsigned int offset;
87 	const unsigned int field;
88 };
89 
90 struct aspeed_adc_model_data {
91 	const char *model_name;
92 	unsigned int min_sampling_rate;	// Hz
93 	unsigned int max_sampling_rate;	// Hz
94 	unsigned int vref_fixed_mv;
95 	bool wait_init_sequence;
96 	bool need_prescaler;
97 	bool bat_sense_sup;
98 	u8 scaler_bit_width;
99 	unsigned int num_channels;
100 	const struct aspeed_adc_trim_locate *trim_locate;
101 };
102 
103 struct adc_gain {
104 	u8 mult;
105 	u8 div;
106 };
107 
108 struct aspeed_adc_data {
109 	struct device		*dev;
110 	const struct aspeed_adc_model_data *model_data;
111 	struct regulator	*regulator;
112 	void __iomem		*base;
113 	spinlock_t		clk_lock;
114 	struct clk_hw		*fixed_div_clk;
115 	struct clk_hw		*clk_prescaler;
116 	struct clk_hw		*clk_scaler;
117 	struct reset_control	*rst;
118 	int			vref_mv;
119 	u32			sample_period_ns;
120 	int			cv;
121 	bool			battery_sensing;
122 	struct adc_gain		battery_mode_gain;
123 };
124 
125 #define ASPEED_CHAN(_idx, _data_reg_addr) {			\
126 	.type = IIO_VOLTAGE,					\
127 	.indexed = 1,						\
128 	.channel = (_idx),					\
129 	.address = (_data_reg_addr),				\
130 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
131 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |	\
132 				BIT(IIO_CHAN_INFO_SAMP_FREQ) |	\
133 				BIT(IIO_CHAN_INFO_OFFSET),	\
134 }
135 
136 static const struct iio_chan_spec aspeed_adc_iio_channels[] = {
137 	ASPEED_CHAN(0, 0x10),
138 	ASPEED_CHAN(1, 0x12),
139 	ASPEED_CHAN(2, 0x14),
140 	ASPEED_CHAN(3, 0x16),
141 	ASPEED_CHAN(4, 0x18),
142 	ASPEED_CHAN(5, 0x1A),
143 	ASPEED_CHAN(6, 0x1C),
144 	ASPEED_CHAN(7, 0x1E),
145 	ASPEED_CHAN(8, 0x20),
146 	ASPEED_CHAN(9, 0x22),
147 	ASPEED_CHAN(10, 0x24),
148 	ASPEED_CHAN(11, 0x26),
149 	ASPEED_CHAN(12, 0x28),
150 	ASPEED_CHAN(13, 0x2A),
151 	ASPEED_CHAN(14, 0x2C),
152 	ASPEED_CHAN(15, 0x2E),
153 };
154 
155 #define ASPEED_BAT_CHAN(_idx, _data_reg_addr) {					\
156 		.type = IIO_VOLTAGE,						\
157 		.indexed = 1,							\
158 		.channel = (_idx),						\
159 		.address = (_data_reg_addr),					\
160 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
161 				      BIT(IIO_CHAN_INFO_OFFSET),		\
162 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
163 					    BIT(IIO_CHAN_INFO_SAMP_FREQ),	\
164 }
165 static const struct iio_chan_spec aspeed_adc_iio_bat_channels[] = {
166 	ASPEED_CHAN(0, 0x10),
167 	ASPEED_CHAN(1, 0x12),
168 	ASPEED_CHAN(2, 0x14),
169 	ASPEED_CHAN(3, 0x16),
170 	ASPEED_CHAN(4, 0x18),
171 	ASPEED_CHAN(5, 0x1A),
172 	ASPEED_CHAN(6, 0x1C),
173 	ASPEED_BAT_CHAN(7, 0x1E),
174 };
175 
176 static int aspeed_adc_set_trim_data(struct iio_dev *indio_dev)
177 {
178 	struct device_node *syscon;
179 	struct regmap *scu;
180 	u32 scu_otp, trimming_val;
181 	struct aspeed_adc_data *data = iio_priv(indio_dev);
182 
183 	syscon = of_find_node_by_name(NULL, "syscon");
184 	if (syscon == NULL) {
185 		dev_warn(data->dev, "Couldn't find syscon node\n");
186 		return -EOPNOTSUPP;
187 	}
188 	scu = syscon_node_to_regmap(syscon);
189 	of_node_put(syscon);
190 	if (IS_ERR(scu)) {
191 		dev_warn(data->dev, "Failed to get syscon regmap\n");
192 		return -EOPNOTSUPP;
193 	}
194 	if (data->model_data->trim_locate) {
195 		if (regmap_read(scu, data->model_data->trim_locate->offset,
196 				&scu_otp)) {
197 			dev_warn(data->dev,
198 				 "Failed to get adc trimming data\n");
199 			trimming_val = 0x8;
200 		} else {
201 			trimming_val =
202 				((scu_otp) &
203 				 (data->model_data->trim_locate->field)) >>
204 				__ffs(data->model_data->trim_locate->field);
205 			if (!trimming_val)
206 				trimming_val = 0x8;
207 		}
208 		dev_dbg(data->dev,
209 			"trimming val = %d, offset = %08x, fields = %08x\n",
210 			trimming_val, data->model_data->trim_locate->offset,
211 			data->model_data->trim_locate->field);
212 		writel(trimming_val, data->base + ASPEED_REG_COMPENSATION_TRIM);
213 	}
214 	return 0;
215 }
216 
217 static int aspeed_adc_compensation(struct iio_dev *indio_dev)
218 {
219 	struct aspeed_adc_data *data = iio_priv(indio_dev);
220 	u32 index, adc_raw = 0;
221 	u32 adc_engine_control_reg_val;
222 
223 	adc_engine_control_reg_val =
224 		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
225 	adc_engine_control_reg_val &= ~ASPEED_ADC_OP_MODE;
226 	adc_engine_control_reg_val |=
227 		(FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_NORMAL) |
228 		 ASPEED_ADC_ENGINE_ENABLE);
229 	/*
230 	 * Enable compensating sensing:
231 	 * After that, the input voltage of ADC will force to half of the reference
232 	 * voltage. So the expected reading raw data will become half of the max
233 	 * value. We can get compensating value = 0x200 - ADC read raw value.
234 	 * It is recommended to average at least 10 samples to get a final CV.
235 	 */
236 	writel(adc_engine_control_reg_val | ASPEED_ADC_CTRL_COMPENSATION |
237 		       ASPEED_ADC_CTRL_CHANNEL_ENABLE(0),
238 	       data->base + ASPEED_REG_ENGINE_CONTROL);
239 	/*
240 	 * After enable compensating sensing mode need to wait some time for ADC stable
241 	 * Experiment result is 1ms.
242 	 */
243 	mdelay(1);
244 
245 	for (index = 0; index < 16; index++) {
246 		/*
247 		 * Waiting for the sampling period ensures that the value acquired
248 		 * is fresh each time.
249 		 */
250 		ndelay(data->sample_period_ns);
251 		adc_raw += readw(data->base + aspeed_adc_iio_channels[0].address);
252 	}
253 	adc_raw >>= 4;
254 	data->cv = BIT(ASPEED_RESOLUTION_BITS - 1) - adc_raw;
255 	writel(adc_engine_control_reg_val,
256 	       data->base + ASPEED_REG_ENGINE_CONTROL);
257 	dev_dbg(data->dev, "Compensating value = %d\n", data->cv);
258 
259 	return 0;
260 }
261 
262 static int aspeed_adc_set_sampling_rate(struct iio_dev *indio_dev, u32 rate)
263 {
264 	struct aspeed_adc_data *data = iio_priv(indio_dev);
265 
266 	if (rate < data->model_data->min_sampling_rate ||
267 	    rate > data->model_data->max_sampling_rate)
268 		return -EINVAL;
269 	/* Each sampling needs 12 clocks to convert.*/
270 	clk_set_rate(data->clk_scaler->clk, rate * ASPEED_CLOCKS_PER_SAMPLE);
271 	rate = clk_get_rate(data->clk_scaler->clk);
272 	data->sample_period_ns = DIV_ROUND_UP_ULL(
273 		(u64)NSEC_PER_SEC * ASPEED_CLOCKS_PER_SAMPLE, rate);
274 	dev_dbg(data->dev, "Adc clock = %d sample period = %d ns", rate,
275 		data->sample_period_ns);
276 
277 	return 0;
278 }
279 
280 static int aspeed_adc_read_raw(struct iio_dev *indio_dev,
281 			       struct iio_chan_spec const *chan,
282 			       int *val, int *val2, long mask)
283 {
284 	struct aspeed_adc_data *data = iio_priv(indio_dev);
285 	u32 adc_engine_control_reg_val;
286 
287 	switch (mask) {
288 	case IIO_CHAN_INFO_RAW:
289 		if (data->battery_sensing && chan->channel == 7) {
290 			adc_engine_control_reg_val =
291 				readl(data->base + ASPEED_REG_ENGINE_CONTROL);
292 			writel(adc_engine_control_reg_val |
293 				       FIELD_PREP(ASPEED_ADC_CH7_MODE,
294 						  ASPEED_ADC_CH7_BAT) |
295 				       ASPEED_ADC_BAT_SENSING_ENABLE,
296 			       data->base + ASPEED_REG_ENGINE_CONTROL);
297 			/*
298 			 * After enable battery sensing mode need to wait some time for adc stable
299 			 * Experiment result is 1ms.
300 			 */
301 			mdelay(1);
302 			*val = readw(data->base + chan->address);
303 			*val = (*val * data->battery_mode_gain.mult) /
304 			       data->battery_mode_gain.div;
305 			/* Restore control register value */
306 			writel(adc_engine_control_reg_val,
307 			       data->base + ASPEED_REG_ENGINE_CONTROL);
308 		} else
309 			*val = readw(data->base + chan->address);
310 		return IIO_VAL_INT;
311 
312 	case IIO_CHAN_INFO_OFFSET:
313 		if (data->battery_sensing && chan->channel == 7)
314 			*val = (data->cv * data->battery_mode_gain.mult) /
315 			       data->battery_mode_gain.div;
316 		else
317 			*val = data->cv;
318 		return IIO_VAL_INT;
319 
320 	case IIO_CHAN_INFO_SCALE:
321 		*val = data->vref_mv;
322 		*val2 = ASPEED_RESOLUTION_BITS;
323 		return IIO_VAL_FRACTIONAL_LOG2;
324 
325 	case IIO_CHAN_INFO_SAMP_FREQ:
326 		*val = clk_get_rate(data->clk_scaler->clk) /
327 				ASPEED_CLOCKS_PER_SAMPLE;
328 		return IIO_VAL_INT;
329 
330 	default:
331 		return -EINVAL;
332 	}
333 }
334 
335 static int aspeed_adc_write_raw(struct iio_dev *indio_dev,
336 				struct iio_chan_spec const *chan,
337 				int val, int val2, long mask)
338 {
339 	switch (mask) {
340 	case IIO_CHAN_INFO_SAMP_FREQ:
341 		return aspeed_adc_set_sampling_rate(indio_dev, val);
342 
343 	case IIO_CHAN_INFO_SCALE:
344 	case IIO_CHAN_INFO_RAW:
345 		/*
346 		 * Technically, these could be written but the only reasons
347 		 * for doing so seem better handled in userspace.  EPERM is
348 		 * returned to signal this is a policy choice rather than a
349 		 * hardware limitation.
350 		 */
351 		return -EPERM;
352 
353 	default:
354 		return -EINVAL;
355 	}
356 }
357 
358 static int aspeed_adc_reg_access(struct iio_dev *indio_dev,
359 				 unsigned int reg, unsigned int writeval,
360 				 unsigned int *readval)
361 {
362 	struct aspeed_adc_data *data = iio_priv(indio_dev);
363 
364 	if (!readval || reg % 4 || reg > ASPEED_REG_MAX)
365 		return -EINVAL;
366 
367 	*readval = readl(data->base + reg);
368 
369 	return 0;
370 }
371 
372 static const struct iio_info aspeed_adc_iio_info = {
373 	.read_raw = aspeed_adc_read_raw,
374 	.write_raw = aspeed_adc_write_raw,
375 	.debugfs_reg_access = aspeed_adc_reg_access,
376 };
377 
378 static void aspeed_adc_unregister_fixed_divider(void *data)
379 {
380 	struct clk_hw *clk = data;
381 
382 	clk_hw_unregister_fixed_factor(clk);
383 }
384 
385 static void aspeed_adc_reset_assert(void *data)
386 {
387 	struct reset_control *rst = data;
388 
389 	reset_control_assert(rst);
390 }
391 
392 static void aspeed_adc_clk_disable_unprepare(void *data)
393 {
394 	struct clk *clk = data;
395 
396 	clk_disable_unprepare(clk);
397 }
398 
399 static void aspeed_adc_power_down(void *data)
400 {
401 	struct aspeed_adc_data *priv_data = data;
402 
403 	writel(FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_PWR_DOWN),
404 	       priv_data->base + ASPEED_REG_ENGINE_CONTROL);
405 }
406 
407 static void aspeed_adc_reg_disable(void *data)
408 {
409 	struct regulator *reg = data;
410 
411 	regulator_disable(reg);
412 }
413 
414 static int aspeed_adc_vref_config(struct iio_dev *indio_dev)
415 {
416 	struct aspeed_adc_data *data = iio_priv(indio_dev);
417 	int ret;
418 	u32 adc_engine_control_reg_val;
419 
420 	if (data->model_data->vref_fixed_mv) {
421 		data->vref_mv = data->model_data->vref_fixed_mv;
422 		return 0;
423 	}
424 	adc_engine_control_reg_val =
425 		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
426 	data->regulator = devm_regulator_get_optional(data->dev, "vref");
427 	if (!IS_ERR(data->regulator)) {
428 		ret = regulator_enable(data->regulator);
429 		if (ret)
430 			return ret;
431 		ret = devm_add_action_or_reset(
432 			data->dev, aspeed_adc_reg_disable, data->regulator);
433 		if (ret)
434 			return ret;
435 		data->vref_mv = regulator_get_voltage(data->regulator);
436 		/* Conversion from uV to mV */
437 		data->vref_mv /= 1000;
438 		if ((data->vref_mv >= 1550) && (data->vref_mv <= 2700))
439 			writel(adc_engine_control_reg_val |
440 				FIELD_PREP(
441 					ASPEED_ADC_REF_VOLTAGE,
442 					ASPEED_ADC_REF_VOLTAGE_EXT_HIGH),
443 			data->base + ASPEED_REG_ENGINE_CONTROL);
444 		else if ((data->vref_mv >= 900) && (data->vref_mv <= 1650))
445 			writel(adc_engine_control_reg_val |
446 				FIELD_PREP(
447 					ASPEED_ADC_REF_VOLTAGE,
448 					ASPEED_ADC_REF_VOLTAGE_EXT_LOW),
449 			data->base + ASPEED_REG_ENGINE_CONTROL);
450 		else {
451 			dev_err(data->dev, "Regulator voltage %d not support",
452 				data->vref_mv);
453 			return -EOPNOTSUPP;
454 		}
455 	} else {
456 		if (PTR_ERR(data->regulator) != -ENODEV)
457 			return PTR_ERR(data->regulator);
458 		data->vref_mv = 2500000;
459 		of_property_read_u32(data->dev->of_node,
460 				     "aspeed,int-vref-microvolt",
461 				     &data->vref_mv);
462 		/* Conversion from uV to mV */
463 		data->vref_mv /= 1000;
464 		if (data->vref_mv == 2500)
465 			writel(adc_engine_control_reg_val |
466 				FIELD_PREP(ASPEED_ADC_REF_VOLTAGE,
467 						ASPEED_ADC_REF_VOLTAGE_2500mV),
468 			data->base + ASPEED_REG_ENGINE_CONTROL);
469 		else if (data->vref_mv == 1200)
470 			writel(adc_engine_control_reg_val |
471 				FIELD_PREP(ASPEED_ADC_REF_VOLTAGE,
472 						ASPEED_ADC_REF_VOLTAGE_1200mV),
473 			data->base + ASPEED_REG_ENGINE_CONTROL);
474 		else {
475 			dev_err(data->dev, "Voltage %d not support", data->vref_mv);
476 			return -EOPNOTSUPP;
477 		}
478 	}
479 
480 	return 0;
481 }
482 
483 static int aspeed_adc_probe(struct platform_device *pdev)
484 {
485 	struct iio_dev *indio_dev;
486 	struct aspeed_adc_data *data;
487 	int ret;
488 	u32 adc_engine_control_reg_val;
489 	unsigned long scaler_flags = 0;
490 	char clk_name[32], clk_parent_name[32];
491 
492 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*data));
493 	if (!indio_dev)
494 		return -ENOMEM;
495 
496 	data = iio_priv(indio_dev);
497 	data->dev = &pdev->dev;
498 	data->model_data = of_device_get_match_data(&pdev->dev);
499 	platform_set_drvdata(pdev, indio_dev);
500 
501 	data->base = devm_platform_ioremap_resource(pdev, 0);
502 	if (IS_ERR(data->base))
503 		return PTR_ERR(data->base);
504 
505 	/* Register ADC clock prescaler with source specified by device tree. */
506 	spin_lock_init(&data->clk_lock);
507 	snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name), "%s",
508 		 of_clk_get_parent_name(pdev->dev.of_node, 0));
509 	snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-fixed-div",
510 		 data->model_data->model_name);
511 	data->fixed_div_clk = clk_hw_register_fixed_factor(
512 		&pdev->dev, clk_name, clk_parent_name, 0, 1, 2);
513 	if (IS_ERR(data->fixed_div_clk))
514 		return PTR_ERR(data->fixed_div_clk);
515 
516 	ret = devm_add_action_or_reset(data->dev,
517 				       aspeed_adc_unregister_fixed_divider,
518 				       data->fixed_div_clk);
519 	if (ret)
520 		return ret;
521 	snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name), clk_name);
522 
523 	if (data->model_data->need_prescaler) {
524 		snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-prescaler",
525 			 data->model_data->model_name);
526 		data->clk_prescaler = devm_clk_hw_register_divider(
527 			&pdev->dev, clk_name, clk_parent_name, 0,
528 			data->base + ASPEED_REG_CLOCK_CONTROL, 17, 15, 0,
529 			&data->clk_lock);
530 		if (IS_ERR(data->clk_prescaler))
531 			return PTR_ERR(data->clk_prescaler);
532 		snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name),
533 			 clk_name);
534 		scaler_flags = CLK_SET_RATE_PARENT;
535 	}
536 	/*
537 	 * Register ADC clock scaler downstream from the prescaler. Allow rate
538 	 * setting to adjust the prescaler as well.
539 	 */
540 	snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-scaler",
541 		 data->model_data->model_name);
542 	data->clk_scaler = devm_clk_hw_register_divider(
543 		&pdev->dev, clk_name, clk_parent_name, scaler_flags,
544 		data->base + ASPEED_REG_CLOCK_CONTROL, 0,
545 		data->model_data->scaler_bit_width,
546 		data->model_data->need_prescaler ? CLK_DIVIDER_ONE_BASED : 0,
547 		&data->clk_lock);
548 	if (IS_ERR(data->clk_scaler))
549 		return PTR_ERR(data->clk_scaler);
550 
551 	data->rst = devm_reset_control_get_shared(&pdev->dev, NULL);
552 	if (IS_ERR(data->rst)) {
553 		dev_err(&pdev->dev,
554 			"invalid or missing reset controller device tree entry");
555 		return PTR_ERR(data->rst);
556 	}
557 	reset_control_deassert(data->rst);
558 
559 	ret = devm_add_action_or_reset(data->dev, aspeed_adc_reset_assert,
560 				       data->rst);
561 	if (ret)
562 		return ret;
563 
564 	ret = aspeed_adc_vref_config(indio_dev);
565 	if (ret)
566 		return ret;
567 
568 	ret = aspeed_adc_set_trim_data(indio_dev);
569 	if (ret)
570 		return ret;
571 
572 	if (of_find_property(data->dev->of_node, "aspeed,battery-sensing",
573 			     NULL)) {
574 		if (data->model_data->bat_sense_sup) {
575 			data->battery_sensing = 1;
576 			if (readl(data->base + ASPEED_REG_ENGINE_CONTROL) &
577 			    ASPEED_ADC_BAT_SENSING_DIV) {
578 				data->battery_mode_gain.mult = 3;
579 				data->battery_mode_gain.div = 1;
580 			} else {
581 				data->battery_mode_gain.mult = 3;
582 				data->battery_mode_gain.div = 2;
583 			}
584 		} else
585 			dev_warn(&pdev->dev,
586 				 "Failed to enable battery-sensing mode\n");
587 	}
588 
589 	ret = clk_prepare_enable(data->clk_scaler->clk);
590 	if (ret)
591 		return ret;
592 	ret = devm_add_action_or_reset(data->dev,
593 				       aspeed_adc_clk_disable_unprepare,
594 				       data->clk_scaler->clk);
595 	if (ret)
596 		return ret;
597 	ret = aspeed_adc_set_sampling_rate(indio_dev,
598 					   ASPEED_ADC_DEF_SAMPLING_RATE);
599 	if (ret)
600 		return ret;
601 
602 	adc_engine_control_reg_val =
603 		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
604 	adc_engine_control_reg_val |=
605 		FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_NORMAL) |
606 		ASPEED_ADC_ENGINE_ENABLE;
607 	/* Enable engine in normal mode. */
608 	writel(adc_engine_control_reg_val,
609 	       data->base + ASPEED_REG_ENGINE_CONTROL);
610 
611 	ret = devm_add_action_or_reset(data->dev, aspeed_adc_power_down,
612 					data);
613 	if (ret)
614 		return ret;
615 
616 	if (data->model_data->wait_init_sequence) {
617 		/* Wait for initial sequence complete. */
618 		ret = readl_poll_timeout(data->base + ASPEED_REG_ENGINE_CONTROL,
619 					 adc_engine_control_reg_val,
620 					 adc_engine_control_reg_val &
621 					 ASPEED_ADC_CTRL_INIT_RDY,
622 					 ASPEED_ADC_INIT_POLLING_TIME,
623 					 ASPEED_ADC_INIT_TIMEOUT);
624 		if (ret)
625 			return ret;
626 	}
627 
628 	aspeed_adc_compensation(indio_dev);
629 	/* Start all channels in normal mode. */
630 	adc_engine_control_reg_val =
631 		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
632 	adc_engine_control_reg_val |= ASPEED_ADC_CTRL_CHANNEL;
633 	writel(adc_engine_control_reg_val,
634 	       data->base + ASPEED_REG_ENGINE_CONTROL);
635 
636 	indio_dev->name = data->model_data->model_name;
637 	indio_dev->info = &aspeed_adc_iio_info;
638 	indio_dev->modes = INDIO_DIRECT_MODE;
639 	indio_dev->channels = data->battery_sensing ?
640 					    aspeed_adc_iio_bat_channels :
641 					    aspeed_adc_iio_channels;
642 	indio_dev->num_channels = data->model_data->num_channels;
643 
644 	ret = devm_iio_device_register(data->dev, indio_dev);
645 	return ret;
646 }
647 
648 static const struct aspeed_adc_trim_locate ast2500_adc_trim = {
649 	.offset = 0x154,
650 	.field = GENMASK(31, 28),
651 };
652 
653 static const struct aspeed_adc_trim_locate ast2600_adc0_trim = {
654 	.offset = 0x5d0,
655 	.field = GENMASK(3, 0),
656 };
657 
658 static const struct aspeed_adc_trim_locate ast2600_adc1_trim = {
659 	.offset = 0x5d0,
660 	.field = GENMASK(7, 4),
661 };
662 
663 static const struct aspeed_adc_model_data ast2400_model_data = {
664 	.model_name = "ast2400-adc",
665 	.vref_fixed_mv = 2500,
666 	.min_sampling_rate = 10000,
667 	.max_sampling_rate = 500000,
668 	.need_prescaler = true,
669 	.scaler_bit_width = 10,
670 	.num_channels = 16,
671 };
672 
673 static const struct aspeed_adc_model_data ast2500_model_data = {
674 	.model_name = "ast2500-adc",
675 	.vref_fixed_mv = 1800,
676 	.min_sampling_rate = 1,
677 	.max_sampling_rate = 1000000,
678 	.wait_init_sequence = true,
679 	.need_prescaler = true,
680 	.scaler_bit_width = 10,
681 	.num_channels = 16,
682 	.trim_locate = &ast2500_adc_trim,
683 };
684 
685 static const struct aspeed_adc_model_data ast2600_adc0_model_data = {
686 	.model_name = "ast2600-adc0",
687 	.min_sampling_rate = 10000,
688 	.max_sampling_rate = 500000,
689 	.wait_init_sequence = true,
690 	.bat_sense_sup = true,
691 	.scaler_bit_width = 16,
692 	.num_channels = 8,
693 	.trim_locate = &ast2600_adc0_trim,
694 };
695 
696 static const struct aspeed_adc_model_data ast2600_adc1_model_data = {
697 	.model_name = "ast2600-adc1",
698 	.min_sampling_rate = 10000,
699 	.max_sampling_rate = 500000,
700 	.wait_init_sequence = true,
701 	.bat_sense_sup = true,
702 	.scaler_bit_width = 16,
703 	.num_channels = 8,
704 	.trim_locate = &ast2600_adc1_trim,
705 };
706 
707 static const struct of_device_id aspeed_adc_matches[] = {
708 	{ .compatible = "aspeed,ast2400-adc", .data = &ast2400_model_data },
709 	{ .compatible = "aspeed,ast2500-adc", .data = &ast2500_model_data },
710 	{ .compatible = "aspeed,ast2600-adc0", .data = &ast2600_adc0_model_data },
711 	{ .compatible = "aspeed,ast2600-adc1", .data = &ast2600_adc1_model_data },
712 	{},
713 };
714 MODULE_DEVICE_TABLE(of, aspeed_adc_matches);
715 
716 static struct platform_driver aspeed_adc_driver = {
717 	.probe = aspeed_adc_probe,
718 	.driver = {
719 		.name = KBUILD_MODNAME,
720 		.of_match_table = aspeed_adc_matches,
721 	}
722 };
723 
724 module_platform_driver(aspeed_adc_driver);
725 
726 MODULE_AUTHOR("Rick Altherr <raltherr@google.com>");
727 MODULE_DESCRIPTION("Aspeed AST2400/2500/2600 ADC Driver");
728 MODULE_LICENSE("GPL");
729