xref: /openbmc/linux/drivers/iio/adc/aspeed_adc.c (revision 7ae9fb1b7ecbb5d85d07857943f677fd1a559b18)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Aspeed AST2400/2500/2600 ADC
4   *
5   * Copyright (C) 2017 Google, Inc.
6   * Copyright (C) 2021 Aspeed Technology Inc.
7   *
8   * ADC clock formula:
9   * Ast2400/Ast2500:
10   * clock period = period of PCLK * 2 * (ADC0C[31:17] + 1) * (ADC0C[9:0] + 1)
11   * Ast2600:
12   * clock period = period of PCLK * 2 * (ADC0C[15:0] + 1)
13   */
14  
15  #include <linux/clk.h>
16  #include <linux/clk-provider.h>
17  #include <linux/err.h>
18  #include <linux/errno.h>
19  #include <linux/io.h>
20  #include <linux/module.h>
21  #include <linux/of_platform.h>
22  #include <linux/platform_device.h>
23  #include <linux/regulator/consumer.h>
24  #include <linux/reset.h>
25  #include <linux/spinlock.h>
26  #include <linux/types.h>
27  #include <linux/bitfield.h>
28  #include <linux/regmap.h>
29  #include <linux/mfd/syscon.h>
30  
31  #include <linux/iio/iio.h>
32  #include <linux/iio/driver.h>
33  #include <linux/iopoll.h>
34  
35  #define ASPEED_RESOLUTION_BITS		10
36  #define ASPEED_CLOCKS_PER_SAMPLE	12
37  
38  #define ASPEED_REG_ENGINE_CONTROL	0x00
39  #define ASPEED_REG_INTERRUPT_CONTROL	0x04
40  #define ASPEED_REG_VGA_DETECT_CONTROL	0x08
41  #define ASPEED_REG_CLOCK_CONTROL	0x0C
42  #define ASPEED_REG_COMPENSATION_TRIM	0xC4
43  /*
44   * The register offset between 0xC8~0xCC can be read and won't affect the
45   * hardware logic in each version of ADC.
46   */
47  #define ASPEED_REG_MAX			0xD0
48  
49  #define ASPEED_ADC_ENGINE_ENABLE		BIT(0)
50  #define ASPEED_ADC_OP_MODE			GENMASK(3, 1)
51  #define ASPEED_ADC_OP_MODE_PWR_DOWN		0
52  #define ASPEED_ADC_OP_MODE_STANDBY		1
53  #define ASPEED_ADC_OP_MODE_NORMAL		7
54  #define ASPEED_ADC_CTRL_COMPENSATION		BIT(4)
55  #define ASPEED_ADC_AUTO_COMPENSATION		BIT(5)
56  /*
57   * Bit 6 determines not only the reference voltage range but also the dividing
58   * circuit for battery sensing.
59   */
60  #define ASPEED_ADC_REF_VOLTAGE			GENMASK(7, 6)
61  #define ASPEED_ADC_REF_VOLTAGE_2500mV		0
62  #define ASPEED_ADC_REF_VOLTAGE_1200mV		1
63  #define ASPEED_ADC_REF_VOLTAGE_EXT_HIGH		2
64  #define ASPEED_ADC_REF_VOLTAGE_EXT_LOW		3
65  #define ASPEED_ADC_BAT_SENSING_DIV		BIT(6)
66  #define ASPEED_ADC_BAT_SENSING_DIV_2_3		0
67  #define ASPEED_ADC_BAT_SENSING_DIV_1_3		1
68  #define ASPEED_ADC_CTRL_INIT_RDY		BIT(8)
69  #define ASPEED_ADC_CH7_MODE			BIT(12)
70  #define ASPEED_ADC_CH7_NORMAL			0
71  #define ASPEED_ADC_CH7_BAT			1
72  #define ASPEED_ADC_BAT_SENSING_ENABLE		BIT(13)
73  #define ASPEED_ADC_CTRL_CHANNEL			GENMASK(31, 16)
74  #define ASPEED_ADC_CTRL_CHANNEL_ENABLE(ch)	FIELD_PREP(ASPEED_ADC_CTRL_CHANNEL, BIT(ch))
75  
76  #define ASPEED_ADC_INIT_POLLING_TIME	500
77  #define ASPEED_ADC_INIT_TIMEOUT		500000
78  /*
79   * When the sampling rate is too high, the ADC may not have enough charging
80   * time, resulting in a low voltage value. Thus, the default uses a slow
81   * sampling rate for most use cases.
82   */
83  #define ASPEED_ADC_DEF_SAMPLING_RATE	65000
84  
85  struct aspeed_adc_trim_locate {
86  	const unsigned int offset;
87  	const unsigned int field;
88  };
89  
90  struct aspeed_adc_model_data {
91  	const char *model_name;
92  	unsigned int min_sampling_rate;	// Hz
93  	unsigned int max_sampling_rate;	// Hz
94  	unsigned int vref_fixed_mv;
95  	bool wait_init_sequence;
96  	bool need_prescaler;
97  	bool bat_sense_sup;
98  	u8 scaler_bit_width;
99  	unsigned int num_channels;
100  	const struct aspeed_adc_trim_locate *trim_locate;
101  };
102  
103  struct adc_gain {
104  	u8 mult;
105  	u8 div;
106  };
107  
108  struct aspeed_adc_data {
109  	struct device		*dev;
110  	const struct aspeed_adc_model_data *model_data;
111  	struct regulator	*regulator;
112  	void __iomem		*base;
113  	spinlock_t		clk_lock;
114  	struct clk_hw		*fixed_div_clk;
115  	struct clk_hw		*clk_prescaler;
116  	struct clk_hw		*clk_scaler;
117  	struct reset_control	*rst;
118  	int			vref_mv;
119  	u32			sample_period_ns;
120  	int			cv;
121  	bool			battery_sensing;
122  	struct adc_gain		battery_mode_gain;
123  };
124  
125  #define ASPEED_CHAN(_idx, _data_reg_addr) {			\
126  	.type = IIO_VOLTAGE,					\
127  	.indexed = 1,						\
128  	.channel = (_idx),					\
129  	.address = (_data_reg_addr),				\
130  	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
131  	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |	\
132  				BIT(IIO_CHAN_INFO_SAMP_FREQ) |	\
133  				BIT(IIO_CHAN_INFO_OFFSET),	\
134  }
135  
136  static const struct iio_chan_spec aspeed_adc_iio_channels[] = {
137  	ASPEED_CHAN(0, 0x10),
138  	ASPEED_CHAN(1, 0x12),
139  	ASPEED_CHAN(2, 0x14),
140  	ASPEED_CHAN(3, 0x16),
141  	ASPEED_CHAN(4, 0x18),
142  	ASPEED_CHAN(5, 0x1A),
143  	ASPEED_CHAN(6, 0x1C),
144  	ASPEED_CHAN(7, 0x1E),
145  	ASPEED_CHAN(8, 0x20),
146  	ASPEED_CHAN(9, 0x22),
147  	ASPEED_CHAN(10, 0x24),
148  	ASPEED_CHAN(11, 0x26),
149  	ASPEED_CHAN(12, 0x28),
150  	ASPEED_CHAN(13, 0x2A),
151  	ASPEED_CHAN(14, 0x2C),
152  	ASPEED_CHAN(15, 0x2E),
153  };
154  
155  #define ASPEED_BAT_CHAN(_idx, _data_reg_addr) {					\
156  		.type = IIO_VOLTAGE,						\
157  		.indexed = 1,							\
158  		.channel = (_idx),						\
159  		.address = (_data_reg_addr),					\
160  		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
161  				      BIT(IIO_CHAN_INFO_OFFSET),		\
162  		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
163  					    BIT(IIO_CHAN_INFO_SAMP_FREQ),	\
164  }
165  static const struct iio_chan_spec aspeed_adc_iio_bat_channels[] = {
166  	ASPEED_CHAN(0, 0x10),
167  	ASPEED_CHAN(1, 0x12),
168  	ASPEED_CHAN(2, 0x14),
169  	ASPEED_CHAN(3, 0x16),
170  	ASPEED_CHAN(4, 0x18),
171  	ASPEED_CHAN(5, 0x1A),
172  	ASPEED_CHAN(6, 0x1C),
173  	ASPEED_BAT_CHAN(7, 0x1E),
174  };
175  
aspeed_adc_set_trim_data(struct iio_dev * indio_dev)176  static int aspeed_adc_set_trim_data(struct iio_dev *indio_dev)
177  {
178  	struct device_node *syscon;
179  	struct regmap *scu;
180  	u32 scu_otp, trimming_val;
181  	struct aspeed_adc_data *data = iio_priv(indio_dev);
182  
183  	syscon = of_find_node_by_name(NULL, "syscon");
184  	if (syscon == NULL) {
185  		dev_warn(data->dev, "Couldn't find syscon node\n");
186  		return -EOPNOTSUPP;
187  	}
188  	scu = syscon_node_to_regmap(syscon);
189  	of_node_put(syscon);
190  	if (IS_ERR(scu)) {
191  		dev_warn(data->dev, "Failed to get syscon regmap\n");
192  		return -EOPNOTSUPP;
193  	}
194  	if (data->model_data->trim_locate) {
195  		if (regmap_read(scu, data->model_data->trim_locate->offset,
196  				&scu_otp)) {
197  			dev_warn(data->dev,
198  				 "Failed to get adc trimming data\n");
199  			trimming_val = 0x8;
200  		} else {
201  			trimming_val =
202  				((scu_otp) &
203  				 (data->model_data->trim_locate->field)) >>
204  				__ffs(data->model_data->trim_locate->field);
205  			if (!trimming_val)
206  				trimming_val = 0x8;
207  		}
208  		dev_dbg(data->dev,
209  			"trimming val = %d, offset = %08x, fields = %08x\n",
210  			trimming_val, data->model_data->trim_locate->offset,
211  			data->model_data->trim_locate->field);
212  		writel(trimming_val, data->base + ASPEED_REG_COMPENSATION_TRIM);
213  	}
214  	return 0;
215  }
216  
aspeed_adc_compensation(struct iio_dev * indio_dev)217  static int aspeed_adc_compensation(struct iio_dev *indio_dev)
218  {
219  	struct aspeed_adc_data *data = iio_priv(indio_dev);
220  	u32 index, adc_raw = 0;
221  	u32 adc_engine_control_reg_val;
222  
223  	adc_engine_control_reg_val =
224  		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
225  	adc_engine_control_reg_val &= ~ASPEED_ADC_OP_MODE;
226  	adc_engine_control_reg_val |=
227  		(FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_NORMAL) |
228  		 ASPEED_ADC_ENGINE_ENABLE);
229  	/*
230  	 * Enable compensating sensing:
231  	 * After that, the input voltage of ADC will force to half of the reference
232  	 * voltage. So the expected reading raw data will become half of the max
233  	 * value. We can get compensating value = 0x200 - ADC read raw value.
234  	 * It is recommended to average at least 10 samples to get a final CV.
235  	 */
236  	writel(adc_engine_control_reg_val | ASPEED_ADC_CTRL_COMPENSATION |
237  		       ASPEED_ADC_CTRL_CHANNEL_ENABLE(0),
238  	       data->base + ASPEED_REG_ENGINE_CONTROL);
239  	/*
240  	 * After enable compensating sensing mode need to wait some time for ADC stable
241  	 * Experiment result is 1ms.
242  	 */
243  	mdelay(1);
244  
245  	for (index = 0; index < 16; index++) {
246  		/*
247  		 * Waiting for the sampling period ensures that the value acquired
248  		 * is fresh each time.
249  		 */
250  		ndelay(data->sample_period_ns);
251  		adc_raw += readw(data->base + aspeed_adc_iio_channels[0].address);
252  	}
253  	adc_raw >>= 4;
254  	data->cv = BIT(ASPEED_RESOLUTION_BITS - 1) - adc_raw;
255  	writel(adc_engine_control_reg_val,
256  	       data->base + ASPEED_REG_ENGINE_CONTROL);
257  	dev_dbg(data->dev, "Compensating value = %d\n", data->cv);
258  
259  	return 0;
260  }
261  
aspeed_adc_set_sampling_rate(struct iio_dev * indio_dev,u32 rate)262  static int aspeed_adc_set_sampling_rate(struct iio_dev *indio_dev, u32 rate)
263  {
264  	struct aspeed_adc_data *data = iio_priv(indio_dev);
265  
266  	if (rate < data->model_data->min_sampling_rate ||
267  	    rate > data->model_data->max_sampling_rate)
268  		return -EINVAL;
269  	/* Each sampling needs 12 clocks to convert.*/
270  	clk_set_rate(data->clk_scaler->clk, rate * ASPEED_CLOCKS_PER_SAMPLE);
271  	rate = clk_get_rate(data->clk_scaler->clk);
272  	data->sample_period_ns = DIV_ROUND_UP_ULL(
273  		(u64)NSEC_PER_SEC * ASPEED_CLOCKS_PER_SAMPLE, rate);
274  	dev_dbg(data->dev, "Adc clock = %d sample period = %d ns", rate,
275  		data->sample_period_ns);
276  
277  	return 0;
278  }
279  
aspeed_adc_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)280  static int aspeed_adc_read_raw(struct iio_dev *indio_dev,
281  			       struct iio_chan_spec const *chan,
282  			       int *val, int *val2, long mask)
283  {
284  	struct aspeed_adc_data *data = iio_priv(indio_dev);
285  	u32 adc_engine_control_reg_val;
286  
287  	switch (mask) {
288  	case IIO_CHAN_INFO_RAW:
289  		if (data->battery_sensing && chan->channel == 7) {
290  			adc_engine_control_reg_val =
291  				readl(data->base + ASPEED_REG_ENGINE_CONTROL);
292  			writel(adc_engine_control_reg_val |
293  				       FIELD_PREP(ASPEED_ADC_CH7_MODE,
294  						  ASPEED_ADC_CH7_BAT) |
295  				       ASPEED_ADC_BAT_SENSING_ENABLE,
296  			       data->base + ASPEED_REG_ENGINE_CONTROL);
297  			/*
298  			 * After enable battery sensing mode need to wait some time for adc stable
299  			 * Experiment result is 1ms.
300  			 */
301  			mdelay(1);
302  			*val = readw(data->base + chan->address);
303  			*val = (*val * data->battery_mode_gain.mult) /
304  			       data->battery_mode_gain.div;
305  			/* Restore control register value */
306  			writel(adc_engine_control_reg_val,
307  			       data->base + ASPEED_REG_ENGINE_CONTROL);
308  		} else
309  			*val = readw(data->base + chan->address);
310  		return IIO_VAL_INT;
311  
312  	case IIO_CHAN_INFO_OFFSET:
313  		if (data->battery_sensing && chan->channel == 7)
314  			*val = (data->cv * data->battery_mode_gain.mult) /
315  			       data->battery_mode_gain.div;
316  		else
317  			*val = data->cv;
318  		return IIO_VAL_INT;
319  
320  	case IIO_CHAN_INFO_SCALE:
321  		*val = data->vref_mv;
322  		*val2 = ASPEED_RESOLUTION_BITS;
323  		return IIO_VAL_FRACTIONAL_LOG2;
324  
325  	case IIO_CHAN_INFO_SAMP_FREQ:
326  		*val = clk_get_rate(data->clk_scaler->clk) /
327  				ASPEED_CLOCKS_PER_SAMPLE;
328  		return IIO_VAL_INT;
329  
330  	default:
331  		return -EINVAL;
332  	}
333  }
334  
aspeed_adc_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)335  static int aspeed_adc_write_raw(struct iio_dev *indio_dev,
336  				struct iio_chan_spec const *chan,
337  				int val, int val2, long mask)
338  {
339  	switch (mask) {
340  	case IIO_CHAN_INFO_SAMP_FREQ:
341  		return aspeed_adc_set_sampling_rate(indio_dev, val);
342  
343  	case IIO_CHAN_INFO_SCALE:
344  	case IIO_CHAN_INFO_RAW:
345  		/*
346  		 * Technically, these could be written but the only reasons
347  		 * for doing so seem better handled in userspace.  EPERM is
348  		 * returned to signal this is a policy choice rather than a
349  		 * hardware limitation.
350  		 */
351  		return -EPERM;
352  
353  	default:
354  		return -EINVAL;
355  	}
356  }
357  
aspeed_adc_reg_access(struct iio_dev * indio_dev,unsigned int reg,unsigned int writeval,unsigned int * readval)358  static int aspeed_adc_reg_access(struct iio_dev *indio_dev,
359  				 unsigned int reg, unsigned int writeval,
360  				 unsigned int *readval)
361  {
362  	struct aspeed_adc_data *data = iio_priv(indio_dev);
363  
364  	if (!readval || reg % 4 || reg > ASPEED_REG_MAX)
365  		return -EINVAL;
366  
367  	*readval = readl(data->base + reg);
368  
369  	return 0;
370  }
371  
372  static const struct iio_info aspeed_adc_iio_info = {
373  	.read_raw = aspeed_adc_read_raw,
374  	.write_raw = aspeed_adc_write_raw,
375  	.debugfs_reg_access = aspeed_adc_reg_access,
376  };
377  
aspeed_adc_unregister_fixed_divider(void * data)378  static void aspeed_adc_unregister_fixed_divider(void *data)
379  {
380  	struct clk_hw *clk = data;
381  
382  	clk_hw_unregister_fixed_factor(clk);
383  }
384  
aspeed_adc_reset_assert(void * data)385  static void aspeed_adc_reset_assert(void *data)
386  {
387  	struct reset_control *rst = data;
388  
389  	reset_control_assert(rst);
390  }
391  
aspeed_adc_clk_disable_unprepare(void * data)392  static void aspeed_adc_clk_disable_unprepare(void *data)
393  {
394  	struct clk *clk = data;
395  
396  	clk_disable_unprepare(clk);
397  }
398  
aspeed_adc_power_down(void * data)399  static void aspeed_adc_power_down(void *data)
400  {
401  	struct aspeed_adc_data *priv_data = data;
402  
403  	writel(FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_PWR_DOWN),
404  	       priv_data->base + ASPEED_REG_ENGINE_CONTROL);
405  }
406  
aspeed_adc_reg_disable(void * data)407  static void aspeed_adc_reg_disable(void *data)
408  {
409  	struct regulator *reg = data;
410  
411  	regulator_disable(reg);
412  }
413  
aspeed_adc_vref_config(struct iio_dev * indio_dev)414  static int aspeed_adc_vref_config(struct iio_dev *indio_dev)
415  {
416  	struct aspeed_adc_data *data = iio_priv(indio_dev);
417  	int ret;
418  	u32 adc_engine_control_reg_val;
419  
420  	if (data->model_data->vref_fixed_mv) {
421  		data->vref_mv = data->model_data->vref_fixed_mv;
422  		return 0;
423  	}
424  	adc_engine_control_reg_val =
425  		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
426  	data->regulator = devm_regulator_get_optional(data->dev, "vref");
427  	if (!IS_ERR(data->regulator)) {
428  		ret = regulator_enable(data->regulator);
429  		if (ret)
430  			return ret;
431  		ret = devm_add_action_or_reset(
432  			data->dev, aspeed_adc_reg_disable, data->regulator);
433  		if (ret)
434  			return ret;
435  		data->vref_mv = regulator_get_voltage(data->regulator);
436  		/* Conversion from uV to mV */
437  		data->vref_mv /= 1000;
438  		if ((data->vref_mv >= 1550) && (data->vref_mv <= 2700))
439  			writel(adc_engine_control_reg_val |
440  				FIELD_PREP(
441  					ASPEED_ADC_REF_VOLTAGE,
442  					ASPEED_ADC_REF_VOLTAGE_EXT_HIGH),
443  			data->base + ASPEED_REG_ENGINE_CONTROL);
444  		else if ((data->vref_mv >= 900) && (data->vref_mv <= 1650))
445  			writel(adc_engine_control_reg_val |
446  				FIELD_PREP(
447  					ASPEED_ADC_REF_VOLTAGE,
448  					ASPEED_ADC_REF_VOLTAGE_EXT_LOW),
449  			data->base + ASPEED_REG_ENGINE_CONTROL);
450  		else {
451  			dev_err(data->dev, "Regulator voltage %d not support",
452  				data->vref_mv);
453  			return -EOPNOTSUPP;
454  		}
455  	} else {
456  		if (PTR_ERR(data->regulator) != -ENODEV)
457  			return PTR_ERR(data->regulator);
458  		data->vref_mv = 2500000;
459  		of_property_read_u32(data->dev->of_node,
460  				     "aspeed,int-vref-microvolt",
461  				     &data->vref_mv);
462  		/* Conversion from uV to mV */
463  		data->vref_mv /= 1000;
464  		if (data->vref_mv == 2500)
465  			writel(adc_engine_control_reg_val |
466  				FIELD_PREP(ASPEED_ADC_REF_VOLTAGE,
467  						ASPEED_ADC_REF_VOLTAGE_2500mV),
468  			data->base + ASPEED_REG_ENGINE_CONTROL);
469  		else if (data->vref_mv == 1200)
470  			writel(adc_engine_control_reg_val |
471  				FIELD_PREP(ASPEED_ADC_REF_VOLTAGE,
472  						ASPEED_ADC_REF_VOLTAGE_1200mV),
473  			data->base + ASPEED_REG_ENGINE_CONTROL);
474  		else {
475  			dev_err(data->dev, "Voltage %d not support", data->vref_mv);
476  			return -EOPNOTSUPP;
477  		}
478  	}
479  
480  	return 0;
481  }
482  
aspeed_adc_probe(struct platform_device * pdev)483  static int aspeed_adc_probe(struct platform_device *pdev)
484  {
485  	struct iio_dev *indio_dev;
486  	struct aspeed_adc_data *data;
487  	int ret;
488  	u32 adc_engine_control_reg_val;
489  	unsigned long scaler_flags = 0;
490  	char clk_name[32], clk_parent_name[32];
491  
492  	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*data));
493  	if (!indio_dev)
494  		return -ENOMEM;
495  
496  	data = iio_priv(indio_dev);
497  	data->dev = &pdev->dev;
498  	data->model_data = of_device_get_match_data(&pdev->dev);
499  	platform_set_drvdata(pdev, indio_dev);
500  
501  	data->base = devm_platform_ioremap_resource(pdev, 0);
502  	if (IS_ERR(data->base))
503  		return PTR_ERR(data->base);
504  
505  	/* Register ADC clock prescaler with source specified by device tree. */
506  	spin_lock_init(&data->clk_lock);
507  	snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name), "%s",
508  		 of_clk_get_parent_name(pdev->dev.of_node, 0));
509  	snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-fixed-div",
510  		 data->model_data->model_name);
511  	data->fixed_div_clk = clk_hw_register_fixed_factor(
512  		&pdev->dev, clk_name, clk_parent_name, 0, 1, 2);
513  	if (IS_ERR(data->fixed_div_clk))
514  		return PTR_ERR(data->fixed_div_clk);
515  
516  	ret = devm_add_action_or_reset(data->dev,
517  				       aspeed_adc_unregister_fixed_divider,
518  				       data->fixed_div_clk);
519  	if (ret)
520  		return ret;
521  	snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name), clk_name);
522  
523  	if (data->model_data->need_prescaler) {
524  		snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-prescaler",
525  			 data->model_data->model_name);
526  		data->clk_prescaler = devm_clk_hw_register_divider(
527  			&pdev->dev, clk_name, clk_parent_name, 0,
528  			data->base + ASPEED_REG_CLOCK_CONTROL, 17, 15, 0,
529  			&data->clk_lock);
530  		if (IS_ERR(data->clk_prescaler))
531  			return PTR_ERR(data->clk_prescaler);
532  		snprintf(clk_parent_name, ARRAY_SIZE(clk_parent_name),
533  			 clk_name);
534  		scaler_flags = CLK_SET_RATE_PARENT;
535  	}
536  	/*
537  	 * Register ADC clock scaler downstream from the prescaler. Allow rate
538  	 * setting to adjust the prescaler as well.
539  	 */
540  	snprintf(clk_name, ARRAY_SIZE(clk_name), "%s-scaler",
541  		 data->model_data->model_name);
542  	data->clk_scaler = devm_clk_hw_register_divider(
543  		&pdev->dev, clk_name, clk_parent_name, scaler_flags,
544  		data->base + ASPEED_REG_CLOCK_CONTROL, 0,
545  		data->model_data->scaler_bit_width,
546  		data->model_data->need_prescaler ? CLK_DIVIDER_ONE_BASED : 0,
547  		&data->clk_lock);
548  	if (IS_ERR(data->clk_scaler))
549  		return PTR_ERR(data->clk_scaler);
550  
551  	data->rst = devm_reset_control_get_shared(&pdev->dev, NULL);
552  	if (IS_ERR(data->rst)) {
553  		dev_err(&pdev->dev,
554  			"invalid or missing reset controller device tree entry");
555  		return PTR_ERR(data->rst);
556  	}
557  	reset_control_deassert(data->rst);
558  
559  	ret = devm_add_action_or_reset(data->dev, aspeed_adc_reset_assert,
560  				       data->rst);
561  	if (ret)
562  		return ret;
563  
564  	ret = aspeed_adc_vref_config(indio_dev);
565  	if (ret)
566  		return ret;
567  
568  	ret = aspeed_adc_set_trim_data(indio_dev);
569  	if (ret)
570  		return ret;
571  
572  	if (of_find_property(data->dev->of_node, "aspeed,battery-sensing",
573  			     NULL)) {
574  		if (data->model_data->bat_sense_sup) {
575  			data->battery_sensing = 1;
576  			if (readl(data->base + ASPEED_REG_ENGINE_CONTROL) &
577  			    ASPEED_ADC_BAT_SENSING_DIV) {
578  				data->battery_mode_gain.mult = 3;
579  				data->battery_mode_gain.div = 1;
580  			} else {
581  				data->battery_mode_gain.mult = 3;
582  				data->battery_mode_gain.div = 2;
583  			}
584  		} else
585  			dev_warn(&pdev->dev,
586  				 "Failed to enable battery-sensing mode\n");
587  	}
588  
589  	ret = clk_prepare_enable(data->clk_scaler->clk);
590  	if (ret)
591  		return ret;
592  	ret = devm_add_action_or_reset(data->dev,
593  				       aspeed_adc_clk_disable_unprepare,
594  				       data->clk_scaler->clk);
595  	if (ret)
596  		return ret;
597  	ret = aspeed_adc_set_sampling_rate(indio_dev,
598  					   ASPEED_ADC_DEF_SAMPLING_RATE);
599  	if (ret)
600  		return ret;
601  
602  	adc_engine_control_reg_val =
603  		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
604  	adc_engine_control_reg_val |=
605  		FIELD_PREP(ASPEED_ADC_OP_MODE, ASPEED_ADC_OP_MODE_NORMAL) |
606  		ASPEED_ADC_ENGINE_ENABLE;
607  	/* Enable engine in normal mode. */
608  	writel(adc_engine_control_reg_val,
609  	       data->base + ASPEED_REG_ENGINE_CONTROL);
610  
611  	ret = devm_add_action_or_reset(data->dev, aspeed_adc_power_down,
612  					data);
613  	if (ret)
614  		return ret;
615  
616  	if (data->model_data->wait_init_sequence) {
617  		/* Wait for initial sequence complete. */
618  		ret = readl_poll_timeout(data->base + ASPEED_REG_ENGINE_CONTROL,
619  					 adc_engine_control_reg_val,
620  					 adc_engine_control_reg_val &
621  					 ASPEED_ADC_CTRL_INIT_RDY,
622  					 ASPEED_ADC_INIT_POLLING_TIME,
623  					 ASPEED_ADC_INIT_TIMEOUT);
624  		if (ret)
625  			return ret;
626  	}
627  
628  	aspeed_adc_compensation(indio_dev);
629  	/* Start all channels in normal mode. */
630  	adc_engine_control_reg_val =
631  		readl(data->base + ASPEED_REG_ENGINE_CONTROL);
632  	adc_engine_control_reg_val |= ASPEED_ADC_CTRL_CHANNEL;
633  	writel(adc_engine_control_reg_val,
634  	       data->base + ASPEED_REG_ENGINE_CONTROL);
635  
636  	indio_dev->name = data->model_data->model_name;
637  	indio_dev->info = &aspeed_adc_iio_info;
638  	indio_dev->modes = INDIO_DIRECT_MODE;
639  	indio_dev->channels = data->battery_sensing ?
640  					    aspeed_adc_iio_bat_channels :
641  					    aspeed_adc_iio_channels;
642  	indio_dev->num_channels = data->model_data->num_channels;
643  
644  	ret = devm_iio_device_register(data->dev, indio_dev);
645  	return ret;
646  }
647  
648  static const struct aspeed_adc_trim_locate ast2500_adc_trim = {
649  	.offset = 0x154,
650  	.field = GENMASK(31, 28),
651  };
652  
653  static const struct aspeed_adc_trim_locate ast2600_adc0_trim = {
654  	.offset = 0x5d0,
655  	.field = GENMASK(3, 0),
656  };
657  
658  static const struct aspeed_adc_trim_locate ast2600_adc1_trim = {
659  	.offset = 0x5d0,
660  	.field = GENMASK(7, 4),
661  };
662  
663  static const struct aspeed_adc_model_data ast2400_model_data = {
664  	.model_name = "ast2400-adc",
665  	.vref_fixed_mv = 2500,
666  	.min_sampling_rate = 10000,
667  	.max_sampling_rate = 500000,
668  	.need_prescaler = true,
669  	.scaler_bit_width = 10,
670  	.num_channels = 16,
671  };
672  
673  static const struct aspeed_adc_model_data ast2500_model_data = {
674  	.model_name = "ast2500-adc",
675  	.vref_fixed_mv = 1800,
676  	.min_sampling_rate = 1,
677  	.max_sampling_rate = 1000000,
678  	.wait_init_sequence = true,
679  	.need_prescaler = true,
680  	.scaler_bit_width = 10,
681  	.num_channels = 16,
682  	.trim_locate = &ast2500_adc_trim,
683  };
684  
685  static const struct aspeed_adc_model_data ast2600_adc0_model_data = {
686  	.model_name = "ast2600-adc0",
687  	.min_sampling_rate = 10000,
688  	.max_sampling_rate = 500000,
689  	.wait_init_sequence = true,
690  	.bat_sense_sup = true,
691  	.scaler_bit_width = 16,
692  	.num_channels = 8,
693  	.trim_locate = &ast2600_adc0_trim,
694  };
695  
696  static const struct aspeed_adc_model_data ast2600_adc1_model_data = {
697  	.model_name = "ast2600-adc1",
698  	.min_sampling_rate = 10000,
699  	.max_sampling_rate = 500000,
700  	.wait_init_sequence = true,
701  	.bat_sense_sup = true,
702  	.scaler_bit_width = 16,
703  	.num_channels = 8,
704  	.trim_locate = &ast2600_adc1_trim,
705  };
706  
707  static const struct of_device_id aspeed_adc_matches[] = {
708  	{ .compatible = "aspeed,ast2400-adc", .data = &ast2400_model_data },
709  	{ .compatible = "aspeed,ast2500-adc", .data = &ast2500_model_data },
710  	{ .compatible = "aspeed,ast2600-adc0", .data = &ast2600_adc0_model_data },
711  	{ .compatible = "aspeed,ast2600-adc1", .data = &ast2600_adc1_model_data },
712  	{},
713  };
714  MODULE_DEVICE_TABLE(of, aspeed_adc_matches);
715  
716  static struct platform_driver aspeed_adc_driver = {
717  	.probe = aspeed_adc_probe,
718  	.driver = {
719  		.name = KBUILD_MODNAME,
720  		.of_match_table = aspeed_adc_matches,
721  	}
722  };
723  
724  module_platform_driver(aspeed_adc_driver);
725  
726  MODULE_AUTHOR("Rick Altherr <raltherr@google.com>");
727  MODULE_DESCRIPTION("Aspeed AST2400/2500/2600 ADC Driver");
728  MODULE_LICENSE("GPL");
729