1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Analog Devices AD7768-1 SPI ADC driver 4 * 5 * Copyright 2017 Analog Devices Inc. 6 */ 7 #include <linux/bitfield.h> 8 #include <linux/clk.h> 9 #include <linux/delay.h> 10 #include <linux/device.h> 11 #include <linux/err.h> 12 #include <linux/gpio/consumer.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/regulator/consumer.h> 16 #include <linux/sysfs.h> 17 #include <linux/spi/spi.h> 18 19 #include <linux/iio/buffer.h> 20 #include <linux/iio/iio.h> 21 #include <linux/iio/sysfs.h> 22 #include <linux/iio/trigger.h> 23 #include <linux/iio/triggered_buffer.h> 24 #include <linux/iio/trigger_consumer.h> 25 26 /* AD7768 registers definition */ 27 #define AD7768_REG_CHIP_TYPE 0x3 28 #define AD7768_REG_PROD_ID_L 0x4 29 #define AD7768_REG_PROD_ID_H 0x5 30 #define AD7768_REG_CHIP_GRADE 0x6 31 #define AD7768_REG_SCRATCH_PAD 0x0A 32 #define AD7768_REG_VENDOR_L 0x0C 33 #define AD7768_REG_VENDOR_H 0x0D 34 #define AD7768_REG_INTERFACE_FORMAT 0x14 35 #define AD7768_REG_POWER_CLOCK 0x15 36 #define AD7768_REG_ANALOG 0x16 37 #define AD7768_REG_ANALOG2 0x17 38 #define AD7768_REG_CONVERSION 0x18 39 #define AD7768_REG_DIGITAL_FILTER 0x19 40 #define AD7768_REG_SINC3_DEC_RATE_MSB 0x1A 41 #define AD7768_REG_SINC3_DEC_RATE_LSB 0x1B 42 #define AD7768_REG_DUTY_CYCLE_RATIO 0x1C 43 #define AD7768_REG_SYNC_RESET 0x1D 44 #define AD7768_REG_GPIO_CONTROL 0x1E 45 #define AD7768_REG_GPIO_WRITE 0x1F 46 #define AD7768_REG_GPIO_READ 0x20 47 #define AD7768_REG_OFFSET_HI 0x21 48 #define AD7768_REG_OFFSET_MID 0x22 49 #define AD7768_REG_OFFSET_LO 0x23 50 #define AD7768_REG_GAIN_HI 0x24 51 #define AD7768_REG_GAIN_MID 0x25 52 #define AD7768_REG_GAIN_LO 0x26 53 #define AD7768_REG_SPI_DIAG_ENABLE 0x28 54 #define AD7768_REG_ADC_DIAG_ENABLE 0x29 55 #define AD7768_REG_DIG_DIAG_ENABLE 0x2A 56 #define AD7768_REG_ADC_DATA 0x2C 57 #define AD7768_REG_MASTER_STATUS 0x2D 58 #define AD7768_REG_SPI_DIAG_STATUS 0x2E 59 #define AD7768_REG_ADC_DIAG_STATUS 0x2F 60 #define AD7768_REG_DIG_DIAG_STATUS 0x30 61 #define AD7768_REG_MCLK_COUNTER 0x31 62 63 /* AD7768_REG_POWER_CLOCK */ 64 #define AD7768_PWR_MCLK_DIV_MSK GENMASK(5, 4) 65 #define AD7768_PWR_MCLK_DIV(x) FIELD_PREP(AD7768_PWR_MCLK_DIV_MSK, x) 66 #define AD7768_PWR_PWRMODE_MSK GENMASK(1, 0) 67 #define AD7768_PWR_PWRMODE(x) FIELD_PREP(AD7768_PWR_PWRMODE_MSK, x) 68 69 /* AD7768_REG_DIGITAL_FILTER */ 70 #define AD7768_DIG_FIL_FIL_MSK GENMASK(6, 4) 71 #define AD7768_DIG_FIL_FIL(x) FIELD_PREP(AD7768_DIG_FIL_FIL_MSK, x) 72 #define AD7768_DIG_FIL_DEC_MSK GENMASK(2, 0) 73 #define AD7768_DIG_FIL_DEC_RATE(x) FIELD_PREP(AD7768_DIG_FIL_DEC_MSK, x) 74 75 /* AD7768_REG_CONVERSION */ 76 #define AD7768_CONV_MODE_MSK GENMASK(2, 0) 77 #define AD7768_CONV_MODE(x) FIELD_PREP(AD7768_CONV_MODE_MSK, x) 78 79 #define AD7768_RD_FLAG_MSK(x) (BIT(6) | ((x) & 0x3F)) 80 #define AD7768_WR_FLAG_MSK(x) ((x) & 0x3F) 81 82 enum ad7768_conv_mode { 83 AD7768_CONTINUOUS, 84 AD7768_ONE_SHOT, 85 AD7768_SINGLE, 86 AD7768_PERIODIC, 87 AD7768_STANDBY 88 }; 89 90 enum ad7768_pwrmode { 91 AD7768_ECO_MODE = 0, 92 AD7768_MED_MODE = 2, 93 AD7768_FAST_MODE = 3 94 }; 95 96 enum ad7768_mclk_div { 97 AD7768_MCLK_DIV_16, 98 AD7768_MCLK_DIV_8, 99 AD7768_MCLK_DIV_4, 100 AD7768_MCLK_DIV_2 101 }; 102 103 enum ad7768_dec_rate { 104 AD7768_DEC_RATE_32 = 0, 105 AD7768_DEC_RATE_64 = 1, 106 AD7768_DEC_RATE_128 = 2, 107 AD7768_DEC_RATE_256 = 3, 108 AD7768_DEC_RATE_512 = 4, 109 AD7768_DEC_RATE_1024 = 5, 110 AD7768_DEC_RATE_8 = 9, 111 AD7768_DEC_RATE_16 = 10 112 }; 113 114 struct ad7768_clk_configuration { 115 enum ad7768_mclk_div mclk_div; 116 enum ad7768_dec_rate dec_rate; 117 unsigned int clk_div; 118 enum ad7768_pwrmode pwrmode; 119 }; 120 121 static const struct ad7768_clk_configuration ad7768_clk_config[] = { 122 { AD7768_MCLK_DIV_2, AD7768_DEC_RATE_8, 16, AD7768_FAST_MODE }, 123 { AD7768_MCLK_DIV_2, AD7768_DEC_RATE_16, 32, AD7768_FAST_MODE }, 124 { AD7768_MCLK_DIV_2, AD7768_DEC_RATE_32, 64, AD7768_FAST_MODE }, 125 { AD7768_MCLK_DIV_2, AD7768_DEC_RATE_64, 128, AD7768_FAST_MODE }, 126 { AD7768_MCLK_DIV_2, AD7768_DEC_RATE_128, 256, AD7768_FAST_MODE }, 127 { AD7768_MCLK_DIV_4, AD7768_DEC_RATE_128, 512, AD7768_MED_MODE }, 128 { AD7768_MCLK_DIV_4, AD7768_DEC_RATE_256, 1024, AD7768_MED_MODE }, 129 { AD7768_MCLK_DIV_4, AD7768_DEC_RATE_512, 2048, AD7768_MED_MODE }, 130 { AD7768_MCLK_DIV_4, AD7768_DEC_RATE_1024, 4096, AD7768_MED_MODE }, 131 { AD7768_MCLK_DIV_8, AD7768_DEC_RATE_1024, 8192, AD7768_MED_MODE }, 132 { AD7768_MCLK_DIV_16, AD7768_DEC_RATE_1024, 16384, AD7768_ECO_MODE }, 133 }; 134 135 static const struct iio_chan_spec ad7768_channels[] = { 136 { 137 .type = IIO_VOLTAGE, 138 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), 139 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), 140 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), 141 .indexed = 1, 142 .channel = 0, 143 .scan_index = 0, 144 .scan_type = { 145 .sign = 'u', 146 .realbits = 24, 147 .storagebits = 32, 148 .shift = 8, 149 .endianness = IIO_BE, 150 }, 151 }, 152 }; 153 154 struct ad7768_state { 155 struct spi_device *spi; 156 struct regulator *vref; 157 struct mutex lock; 158 struct clk *mclk; 159 unsigned int mclk_freq; 160 unsigned int samp_freq; 161 struct completion completion; 162 struct iio_trigger *trig; 163 struct gpio_desc *gpio_sync_in; 164 /* 165 * DMA (thus cache coherency maintenance) requires the 166 * transfer buffers to live in their own cache lines. 167 */ 168 union { 169 __be32 d32; 170 u8 d8[2]; 171 } data ____cacheline_aligned; 172 }; 173 174 static int ad7768_spi_reg_read(struct ad7768_state *st, unsigned int addr, 175 unsigned int len) 176 { 177 unsigned int shift; 178 int ret; 179 180 shift = 32 - (8 * len); 181 st->data.d8[0] = AD7768_RD_FLAG_MSK(addr); 182 183 ret = spi_write_then_read(st->spi, st->data.d8, 1, 184 &st->data.d32, len); 185 if (ret < 0) 186 return ret; 187 188 return (be32_to_cpu(st->data.d32) >> shift); 189 } 190 191 static int ad7768_spi_reg_write(struct ad7768_state *st, 192 unsigned int addr, 193 unsigned int val) 194 { 195 st->data.d8[0] = AD7768_WR_FLAG_MSK(addr); 196 st->data.d8[1] = val & 0xFF; 197 198 return spi_write(st->spi, st->data.d8, 2); 199 } 200 201 static int ad7768_set_mode(struct ad7768_state *st, 202 enum ad7768_conv_mode mode) 203 { 204 int regval; 205 206 regval = ad7768_spi_reg_read(st, AD7768_REG_CONVERSION, 1); 207 if (regval < 0) 208 return regval; 209 210 regval &= ~AD7768_CONV_MODE_MSK; 211 regval |= AD7768_CONV_MODE(mode); 212 213 return ad7768_spi_reg_write(st, AD7768_REG_CONVERSION, regval); 214 } 215 216 static int ad7768_scan_direct(struct iio_dev *indio_dev) 217 { 218 struct ad7768_state *st = iio_priv(indio_dev); 219 int readval, ret; 220 221 reinit_completion(&st->completion); 222 223 ret = ad7768_set_mode(st, AD7768_ONE_SHOT); 224 if (ret < 0) 225 return ret; 226 227 ret = wait_for_completion_timeout(&st->completion, 228 msecs_to_jiffies(1000)); 229 if (!ret) 230 return -ETIMEDOUT; 231 232 readval = ad7768_spi_reg_read(st, AD7768_REG_ADC_DATA, 3); 233 if (readval < 0) 234 return readval; 235 /* 236 * Any SPI configuration of the AD7768-1 can only be 237 * performed in continuous conversion mode. 238 */ 239 ret = ad7768_set_mode(st, AD7768_CONTINUOUS); 240 if (ret < 0) 241 return ret; 242 243 return readval; 244 } 245 246 static int ad7768_reg_access(struct iio_dev *indio_dev, 247 unsigned int reg, 248 unsigned int writeval, 249 unsigned int *readval) 250 { 251 struct ad7768_state *st = iio_priv(indio_dev); 252 int ret; 253 254 mutex_lock(&st->lock); 255 if (readval) { 256 ret = ad7768_spi_reg_read(st, reg, 1); 257 if (ret < 0) 258 goto err_unlock; 259 *readval = ret; 260 ret = 0; 261 } else { 262 ret = ad7768_spi_reg_write(st, reg, writeval); 263 } 264 err_unlock: 265 mutex_unlock(&st->lock); 266 267 return ret; 268 } 269 270 static int ad7768_set_dig_fil(struct ad7768_state *st, 271 enum ad7768_dec_rate dec_rate) 272 { 273 unsigned int mode; 274 int ret; 275 276 if (dec_rate == AD7768_DEC_RATE_8 || dec_rate == AD7768_DEC_RATE_16) 277 mode = AD7768_DIG_FIL_FIL(dec_rate); 278 else 279 mode = AD7768_DIG_FIL_DEC_RATE(dec_rate); 280 281 ret = ad7768_spi_reg_write(st, AD7768_REG_DIGITAL_FILTER, mode); 282 if (ret < 0) 283 return ret; 284 285 /* A sync-in pulse is required every time the filter dec rate changes */ 286 gpiod_set_value(st->gpio_sync_in, 1); 287 gpiod_set_value(st->gpio_sync_in, 0); 288 289 return 0; 290 } 291 292 static int ad7768_set_freq(struct ad7768_state *st, 293 unsigned int freq) 294 { 295 unsigned int diff_new, diff_old, pwr_mode, i, idx; 296 int res, ret; 297 298 diff_old = U32_MAX; 299 idx = 0; 300 301 res = DIV_ROUND_CLOSEST(st->mclk_freq, freq); 302 303 /* Find the closest match for the desired sampling frequency */ 304 for (i = 0; i < ARRAY_SIZE(ad7768_clk_config); i++) { 305 diff_new = abs(res - ad7768_clk_config[i].clk_div); 306 if (diff_new < diff_old) { 307 diff_old = diff_new; 308 idx = i; 309 } 310 } 311 312 /* 313 * Set both the mclk_div and pwrmode with a single write to the 314 * POWER_CLOCK register 315 */ 316 pwr_mode = AD7768_PWR_MCLK_DIV(ad7768_clk_config[idx].mclk_div) | 317 AD7768_PWR_PWRMODE(ad7768_clk_config[idx].pwrmode); 318 ret = ad7768_spi_reg_write(st, AD7768_REG_POWER_CLOCK, pwr_mode); 319 if (ret < 0) 320 return ret; 321 322 ret = ad7768_set_dig_fil(st, ad7768_clk_config[idx].dec_rate); 323 if (ret < 0) 324 return ret; 325 326 st->samp_freq = DIV_ROUND_CLOSEST(st->mclk_freq, 327 ad7768_clk_config[idx].clk_div); 328 329 return 0; 330 } 331 332 static ssize_t ad7768_sampling_freq_avail(struct device *dev, 333 struct device_attribute *attr, 334 char *buf) 335 { 336 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 337 struct ad7768_state *st = iio_priv(indio_dev); 338 unsigned int freq; 339 int i, len = 0; 340 341 for (i = 0; i < ARRAY_SIZE(ad7768_clk_config); i++) { 342 freq = DIV_ROUND_CLOSEST(st->mclk_freq, 343 ad7768_clk_config[i].clk_div); 344 len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", freq); 345 } 346 347 buf[len - 1] = '\n'; 348 349 return len; 350 } 351 352 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(ad7768_sampling_freq_avail); 353 354 static int ad7768_read_raw(struct iio_dev *indio_dev, 355 struct iio_chan_spec const *chan, 356 int *val, int *val2, long info) 357 { 358 struct ad7768_state *st = iio_priv(indio_dev); 359 int scale_uv, ret; 360 361 switch (info) { 362 case IIO_CHAN_INFO_RAW: 363 ret = iio_device_claim_direct_mode(indio_dev); 364 if (ret) 365 return ret; 366 367 ret = ad7768_scan_direct(indio_dev); 368 if (ret >= 0) 369 *val = ret; 370 371 iio_device_release_direct_mode(indio_dev); 372 if (ret < 0) 373 return ret; 374 375 return IIO_VAL_INT; 376 377 case IIO_CHAN_INFO_SCALE: 378 scale_uv = regulator_get_voltage(st->vref); 379 if (scale_uv < 0) 380 return scale_uv; 381 382 *val = (scale_uv * 2) / 1000; 383 *val2 = chan->scan_type.realbits; 384 385 return IIO_VAL_FRACTIONAL_LOG2; 386 387 case IIO_CHAN_INFO_SAMP_FREQ: 388 *val = st->samp_freq; 389 390 return IIO_VAL_INT; 391 } 392 393 return -EINVAL; 394 } 395 396 static int ad7768_write_raw(struct iio_dev *indio_dev, 397 struct iio_chan_spec const *chan, 398 int val, int val2, long info) 399 { 400 struct ad7768_state *st = iio_priv(indio_dev); 401 402 switch (info) { 403 case IIO_CHAN_INFO_SAMP_FREQ: 404 return ad7768_set_freq(st, val); 405 default: 406 return -EINVAL; 407 } 408 } 409 410 static struct attribute *ad7768_attributes[] = { 411 &iio_dev_attr_sampling_frequency_available.dev_attr.attr, 412 NULL 413 }; 414 415 static const struct attribute_group ad7768_group = { 416 .attrs = ad7768_attributes, 417 }; 418 419 static const struct iio_info ad7768_info = { 420 .attrs = &ad7768_group, 421 .read_raw = &ad7768_read_raw, 422 .write_raw = &ad7768_write_raw, 423 .debugfs_reg_access = &ad7768_reg_access, 424 }; 425 426 static int ad7768_setup(struct ad7768_state *st) 427 { 428 int ret; 429 430 /* 431 * Two writes to the SPI_RESET[1:0] bits are required to initiate 432 * a software reset. The bits must first be set to 11, and then 433 * to 10. When the sequence is detected, the reset occurs. 434 * See the datasheet, page 70. 435 */ 436 ret = ad7768_spi_reg_write(st, AD7768_REG_SYNC_RESET, 0x3); 437 if (ret) 438 return ret; 439 440 ret = ad7768_spi_reg_write(st, AD7768_REG_SYNC_RESET, 0x2); 441 if (ret) 442 return ret; 443 444 st->gpio_sync_in = devm_gpiod_get(&st->spi->dev, "adi,sync-in", 445 GPIOD_OUT_LOW); 446 if (IS_ERR(st->gpio_sync_in)) 447 return PTR_ERR(st->gpio_sync_in); 448 449 /* Set the default sampling frequency to 32000 kSPS */ 450 return ad7768_set_freq(st, 32000); 451 } 452 453 static irqreturn_t ad7768_trigger_handler(int irq, void *p) 454 { 455 struct iio_poll_func *pf = p; 456 struct iio_dev *indio_dev = pf->indio_dev; 457 struct ad7768_state *st = iio_priv(indio_dev); 458 int ret; 459 460 mutex_lock(&st->lock); 461 462 ret = spi_read(st->spi, &st->data.d32, 3); 463 if (ret < 0) 464 goto err_unlock; 465 466 iio_push_to_buffers_with_timestamp(indio_dev, &st->data.d32, 467 iio_get_time_ns(indio_dev)); 468 469 iio_trigger_notify_done(indio_dev->trig); 470 err_unlock: 471 mutex_unlock(&st->lock); 472 473 return IRQ_HANDLED; 474 } 475 476 static irqreturn_t ad7768_interrupt(int irq, void *dev_id) 477 { 478 struct iio_dev *indio_dev = dev_id; 479 struct ad7768_state *st = iio_priv(indio_dev); 480 481 if (iio_buffer_enabled(indio_dev)) 482 iio_trigger_poll(st->trig); 483 else 484 complete(&st->completion); 485 486 return IRQ_HANDLED; 487 }; 488 489 static int ad7768_buffer_postenable(struct iio_dev *indio_dev) 490 { 491 struct ad7768_state *st = iio_priv(indio_dev); 492 493 /* 494 * Write a 1 to the LSB of the INTERFACE_FORMAT register to enter 495 * continuous read mode. Subsequent data reads do not require an 496 * initial 8-bit write to query the ADC_DATA register. 497 */ 498 return ad7768_spi_reg_write(st, AD7768_REG_INTERFACE_FORMAT, 0x01); 499 } 500 501 static int ad7768_buffer_predisable(struct iio_dev *indio_dev) 502 { 503 struct ad7768_state *st = iio_priv(indio_dev); 504 505 /* 506 * To exit continuous read mode, perform a single read of the ADC_DATA 507 * reg (0x2C), which allows further configuration of the device. 508 */ 509 return ad7768_spi_reg_read(st, AD7768_REG_ADC_DATA, 3); 510 } 511 512 static const struct iio_buffer_setup_ops ad7768_buffer_ops = { 513 .postenable = &ad7768_buffer_postenable, 514 .predisable = &ad7768_buffer_predisable, 515 }; 516 517 static const struct iio_trigger_ops ad7768_trigger_ops = { 518 .validate_device = iio_trigger_validate_own_device, 519 }; 520 521 static void ad7768_regulator_disable(void *data) 522 { 523 struct ad7768_state *st = data; 524 525 regulator_disable(st->vref); 526 } 527 528 static void ad7768_clk_disable(void *data) 529 { 530 struct ad7768_state *st = data; 531 532 clk_disable_unprepare(st->mclk); 533 } 534 535 static int ad7768_probe(struct spi_device *spi) 536 { 537 struct ad7768_state *st; 538 struct iio_dev *indio_dev; 539 int ret; 540 541 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); 542 if (!indio_dev) 543 return -ENOMEM; 544 545 st = iio_priv(indio_dev); 546 st->spi = spi; 547 548 st->vref = devm_regulator_get(&spi->dev, "vref"); 549 if (IS_ERR(st->vref)) 550 return PTR_ERR(st->vref); 551 552 ret = regulator_enable(st->vref); 553 if (ret) { 554 dev_err(&spi->dev, "Failed to enable specified vref supply\n"); 555 return ret; 556 } 557 558 ret = devm_add_action_or_reset(&spi->dev, ad7768_regulator_disable, st); 559 if (ret) 560 return ret; 561 562 st->mclk = devm_clk_get(&spi->dev, "mclk"); 563 if (IS_ERR(st->mclk)) 564 return PTR_ERR(st->mclk); 565 566 ret = clk_prepare_enable(st->mclk); 567 if (ret < 0) 568 return ret; 569 570 ret = devm_add_action_or_reset(&spi->dev, ad7768_clk_disable, st); 571 if (ret) 572 return ret; 573 574 st->mclk_freq = clk_get_rate(st->mclk); 575 576 spi_set_drvdata(spi, indio_dev); 577 mutex_init(&st->lock); 578 579 indio_dev->channels = ad7768_channels; 580 indio_dev->num_channels = ARRAY_SIZE(ad7768_channels); 581 indio_dev->name = spi_get_device_id(spi)->name; 582 indio_dev->info = &ad7768_info; 583 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_TRIGGERED; 584 585 ret = ad7768_setup(st); 586 if (ret < 0) { 587 dev_err(&spi->dev, "AD7768 setup failed\n"); 588 return ret; 589 } 590 591 st->trig = devm_iio_trigger_alloc(&spi->dev, "%s-dev%d", 592 indio_dev->name, indio_dev->id); 593 if (!st->trig) 594 return -ENOMEM; 595 596 st->trig->ops = &ad7768_trigger_ops; 597 st->trig->dev.parent = &spi->dev; 598 iio_trigger_set_drvdata(st->trig, indio_dev); 599 ret = devm_iio_trigger_register(&spi->dev, st->trig); 600 if (ret) 601 return ret; 602 603 indio_dev->trig = iio_trigger_get(st->trig); 604 605 init_completion(&st->completion); 606 607 ret = devm_request_irq(&spi->dev, spi->irq, 608 &ad7768_interrupt, 609 IRQF_TRIGGER_RISING | IRQF_ONESHOT, 610 indio_dev->name, indio_dev); 611 if (ret) 612 return ret; 613 614 ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev, 615 &iio_pollfunc_store_time, 616 &ad7768_trigger_handler, 617 &ad7768_buffer_ops); 618 if (ret) 619 return ret; 620 621 return devm_iio_device_register(&spi->dev, indio_dev); 622 } 623 624 static const struct spi_device_id ad7768_id_table[] = { 625 { "ad7768-1", 0 }, 626 {} 627 }; 628 MODULE_DEVICE_TABLE(spi, ad7768_id_table); 629 630 static const struct of_device_id ad7768_of_match[] = { 631 { .compatible = "adi,ad7768-1" }, 632 { }, 633 }; 634 MODULE_DEVICE_TABLE(of, ad7768_of_match); 635 636 static struct spi_driver ad7768_driver = { 637 .driver = { 638 .name = "ad7768-1", 639 .of_match_table = ad7768_of_match, 640 }, 641 .probe = ad7768_probe, 642 .id_table = ad7768_id_table, 643 }; 644 module_spi_driver(ad7768_driver); 645 646 MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>"); 647 MODULE_DESCRIPTION("Analog Devices AD7768-1 ADC driver"); 648 MODULE_LICENSE("GPL v2"); 649