1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * AD7280A Lithium Ion Battery Monitoring System 4 * 5 * Copyright 2011 Analog Devices Inc. 6 */ 7 8 #include <linux/bitfield.h> 9 #include <linux/bits.h> 10 #include <linux/crc8.h> 11 #include <linux/delay.h> 12 #include <linux/device.h> 13 #include <linux/err.h> 14 #include <linux/interrupt.h> 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/mod_devicetable.h> 18 #include <linux/mutex.h> 19 #include <linux/slab.h> 20 #include <linux/sysfs.h> 21 #include <linux/spi/spi.h> 22 23 #include <linux/iio/events.h> 24 #include <linux/iio/iio.h> 25 26 /* Registers */ 27 28 #define AD7280A_CELL_VOLTAGE_1_REG 0x0 /* D11 to D0, Read only */ 29 #define AD7280A_CELL_VOLTAGE_2_REG 0x1 /* D11 to D0, Read only */ 30 #define AD7280A_CELL_VOLTAGE_3_REG 0x2 /* D11 to D0, Read only */ 31 #define AD7280A_CELL_VOLTAGE_4_REG 0x3 /* D11 to D0, Read only */ 32 #define AD7280A_CELL_VOLTAGE_5_REG 0x4 /* D11 to D0, Read only */ 33 #define AD7280A_CELL_VOLTAGE_6_REG 0x5 /* D11 to D0, Read only */ 34 #define AD7280A_AUX_ADC_1_REG 0x6 /* D11 to D0, Read only */ 35 #define AD7280A_AUX_ADC_2_REG 0x7 /* D11 to D0, Read only */ 36 #define AD7280A_AUX_ADC_3_REG 0x8 /* D11 to D0, Read only */ 37 #define AD7280A_AUX_ADC_4_REG 0x9 /* D11 to D0, Read only */ 38 #define AD7280A_AUX_ADC_5_REG 0xA /* D11 to D0, Read only */ 39 #define AD7280A_AUX_ADC_6_REG 0xB /* D11 to D0, Read only */ 40 #define AD7280A_SELF_TEST_REG 0xC /* D11 to D0, Read only */ 41 42 #define AD7280A_CTRL_HB_REG 0xD /* D15 to D8, Read/write */ 43 #define AD7280A_CTRL_HB_CONV_INPUT_MSK GENMASK(7, 6) 44 #define AD7280A_CTRL_HB_CONV_INPUT_ALL 0 45 #define AD7280A_CTRL_HB_CONV_INPUT_6CELL_AUX1_3_5 1 46 #define AD7280A_CTRL_HB_CONV_INPUT_6CELL 2 47 #define AD7280A_CTRL_HB_CONV_INPUT_SELF_TEST 3 48 #define AD7280A_CTRL_HB_CONV_RREAD_MSK GENMASK(5, 4) 49 #define AD7280A_CTRL_HB_CONV_RREAD_ALL 0 50 #define AD7280A_CTRL_HB_CONV_RREAD_6CELL_AUX1_3_5 1 51 #define AD7280A_CTRL_HB_CONV_RREAD_6CELL 2 52 #define AD7280A_CTRL_HB_CONV_RREAD_NO 3 53 #define AD7280A_CTRL_HB_CONV_START_MSK BIT(3) 54 #define AD7280A_CTRL_HB_CONV_START_CNVST 0 55 #define AD7280A_CTRL_HB_CONV_START_CS 1 56 #define AD7280A_CTRL_HB_CONV_AVG_MSK GENMASK(2, 1) 57 #define AD7280A_CTRL_HB_CONV_AVG_DIS 0 58 #define AD7280A_CTRL_HB_CONV_AVG_2 1 59 #define AD7280A_CTRL_HB_CONV_AVG_4 2 60 #define AD7280A_CTRL_HB_CONV_AVG_8 3 61 #define AD7280A_CTRL_HB_PWRDN_SW BIT(0) 62 63 #define AD7280A_CTRL_LB_REG 0xE /* D7 to D0, Read/write */ 64 #define AD7280A_CTRL_LB_SWRST_MSK BIT(7) 65 #define AD7280A_CTRL_LB_ACQ_TIME_MSK GENMASK(6, 5) 66 #define AD7280A_CTRL_LB_ACQ_TIME_400ns 0 67 #define AD7280A_CTRL_LB_ACQ_TIME_800ns 1 68 #define AD7280A_CTRL_LB_ACQ_TIME_1200ns 2 69 #define AD7280A_CTRL_LB_ACQ_TIME_1600ns 3 70 #define AD7280A_CTRL_LB_MUST_SET BIT(4) 71 #define AD7280A_CTRL_LB_THERMISTOR_MSK BIT(3) 72 #define AD7280A_CTRL_LB_LOCK_DEV_ADDR_MSK BIT(2) 73 #define AD7280A_CTRL_LB_INC_DEV_ADDR_MSK BIT(1) 74 #define AD7280A_CTRL_LB_DAISY_CHAIN_RB_MSK BIT(0) 75 76 #define AD7280A_CELL_OVERVOLTAGE_REG 0xF /* D7 to D0, Read/write */ 77 #define AD7280A_CELL_UNDERVOLTAGE_REG 0x10 /* D7 to D0, Read/write */ 78 #define AD7280A_AUX_ADC_OVERVOLTAGE_REG 0x11 /* D7 to D0, Read/write */ 79 #define AD7280A_AUX_ADC_UNDERVOLTAGE_REG 0x12 /* D7 to D0, Read/write */ 80 81 #define AD7280A_ALERT_REG 0x13 /* D7 to D0, Read/write */ 82 #define AD7280A_ALERT_REMOVE_MSK GENMASK(3, 0) 83 #define AD7280A_ALERT_REMOVE_AUX5 BIT(0) 84 #define AD7280A_ALERT_REMOVE_AUX3_AUX5 BIT(1) 85 #define AD7280A_ALERT_REMOVE_VIN5 BIT(2) 86 #define AD7280A_ALERT_REMOVE_VIN4_VIN5 BIT(3) 87 #define AD7280A_ALERT_GEN_STATIC_HIGH BIT(6) 88 #define AD7280A_ALERT_RELAY_SIG_CHAIN_DOWN (BIT(7) | BIT(6)) 89 90 #define AD7280A_CELL_BALANCE_REG 0x14 /* D7 to D0, Read/write */ 91 #define AD7280A_CELL_BALANCE_CHAN_BITMAP_MSK GENMASK(7, 2) 92 #define AD7280A_CB1_TIMER_REG 0x15 /* D7 to D0, Read/write */ 93 #define AD7280A_CB_TIMER_VAL_MSK GENMASK(7, 3) 94 #define AD7280A_CB2_TIMER_REG 0x16 /* D7 to D0, Read/write */ 95 #define AD7280A_CB3_TIMER_REG 0x17 /* D7 to D0, Read/write */ 96 #define AD7280A_CB4_TIMER_REG 0x18 /* D7 to D0, Read/write */ 97 #define AD7280A_CB5_TIMER_REG 0x19 /* D7 to D0, Read/write */ 98 #define AD7280A_CB6_TIMER_REG 0x1A /* D7 to D0, Read/write */ 99 #define AD7280A_PD_TIMER_REG 0x1B /* D7 to D0, Read/write */ 100 #define AD7280A_READ_REG 0x1C /* D7 to D0, Read/write */ 101 #define AD7280A_READ_ADDR_MSK GENMASK(7, 2) 102 #define AD7280A_CNVST_CTRL_REG 0x1D /* D7 to D0, Read/write */ 103 104 /* Transfer fields */ 105 #define AD7280A_TRANS_WRITE_DEVADDR_MSK GENMASK(31, 27) 106 #define AD7280A_TRANS_WRITE_ADDR_MSK GENMASK(26, 21) 107 #define AD7280A_TRANS_WRITE_VAL_MSK GENMASK(20, 13) 108 #define AD7280A_TRANS_WRITE_ALL_MSK BIT(12) 109 #define AD7280A_TRANS_WRITE_CRC_MSK GENMASK(10, 3) 110 #define AD7280A_TRANS_WRITE_RES_PATTERN 0x2 111 112 /* Layouts differ for channel vs other registers */ 113 #define AD7280A_TRANS_READ_DEVADDR_MSK GENMASK(31, 27) 114 #define AD7280A_TRANS_READ_CONV_CHANADDR_MSK GENMASK(26, 23) 115 #define AD7280A_TRANS_READ_CONV_DATA_MSK GENMASK(22, 11) 116 #define AD7280A_TRANS_READ_REG_REGADDR_MSK GENMASK(26, 21) 117 #define AD7280A_TRANS_READ_REG_DATA_MSK GENMASK(20, 13) 118 #define AD7280A_TRANS_READ_WRITE_ACK_MSK BIT(10) 119 #define AD7280A_TRANS_READ_CRC_MSK GENMASK(9, 2) 120 121 /* Magic value used to indicate this special case */ 122 #define AD7280A_ALL_CELLS (0xAD << 16) 123 124 #define AD7280A_MAX_SPI_CLK_HZ 700000 /* < 1MHz */ 125 #define AD7280A_MAX_CHAIN 8 126 #define AD7280A_CELLS_PER_DEV 6 127 #define AD7280A_BITS 12 128 #define AD7280A_NUM_CH (AD7280A_AUX_ADC_6_REG - \ 129 AD7280A_CELL_VOLTAGE_1_REG + 1) 130 131 #define AD7280A_CALC_VOLTAGE_CHAN_NUM(d, c) (((d) * AD7280A_CELLS_PER_DEV) + \ 132 (c)) 133 #define AD7280A_CALC_TEMP_CHAN_NUM(d, c) (((d) * AD7280A_CELLS_PER_DEV) + \ 134 (c) - AD7280A_CELLS_PER_DEV) 135 136 #define AD7280A_DEVADDR_MASTER 0 137 #define AD7280A_DEVADDR_ALL 0x1F 138 139 static const unsigned short ad7280a_n_avg[4] = {1, 2, 4, 8}; 140 static const unsigned short ad7280a_t_acq_ns[4] = {470, 1030, 1510, 1945}; 141 142 /* 5-bit device address is sent LSB first */ 143 static unsigned int ad7280a_devaddr(unsigned int addr) 144 { 145 return ((addr & 0x1) << 4) | 146 ((addr & 0x2) << 2) | 147 (addr & 0x4) | 148 ((addr & 0x8) >> 2) | 149 ((addr & 0x10) >> 4); 150 } 151 152 /* 153 * During a read a valid write is mandatory. 154 * So writing to the highest available address (Address 0x1F) and setting the 155 * address all parts bit to 0 is recommended. 156 * So the TXVAL is AD7280A_DEVADDR_ALL + CRC 157 */ 158 #define AD7280A_READ_TXVAL 0xF800030A 159 160 /* 161 * AD7280 CRC 162 * 163 * P(x) = x^8 + x^5 + x^3 + x^2 + x^1 + x^0 = 0b100101111 => 0x2F 164 */ 165 #define POLYNOM 0x2F 166 167 struct ad7280_state { 168 struct spi_device *spi; 169 struct iio_chan_spec *channels; 170 unsigned int chain_last_alert_ignore; 171 bool thermistor_term_en; 172 int slave_num; 173 int scan_cnt; 174 int readback_delay_us; 175 unsigned char crc_tab[CRC8_TABLE_SIZE]; 176 u8 oversampling_ratio; 177 u8 acquisition_time; 178 unsigned char ctrl_lb; 179 unsigned char cell_threshhigh; 180 unsigned char cell_threshlow; 181 unsigned char aux_threshhigh; 182 unsigned char aux_threshlow; 183 unsigned char cb_mask[AD7280A_MAX_CHAIN]; 184 struct mutex lock; /* protect sensor state */ 185 186 __be32 tx ____cacheline_aligned; 187 __be32 rx; 188 }; 189 190 static unsigned char ad7280_calc_crc8(unsigned char *crc_tab, unsigned int val) 191 { 192 unsigned char crc; 193 194 crc = crc_tab[val >> 16 & 0xFF]; 195 crc = crc_tab[crc ^ (val >> 8 & 0xFF)]; 196 197 return crc ^ (val & 0xFF); 198 } 199 200 static int ad7280_check_crc(struct ad7280_state *st, unsigned int val) 201 { 202 unsigned char crc = ad7280_calc_crc8(st->crc_tab, val >> 10); 203 204 if (crc != ((val >> 2) & 0xFF)) 205 return -EIO; 206 207 return 0; 208 } 209 210 /* 211 * After initiating a conversion sequence we need to wait until the conversion 212 * is done. The delay is typically in the range of 15..30us however depending on 213 * the number of devices in the daisy chain, the number of averages taken, 214 * conversion delays and acquisition time options it may take up to 250us, in 215 * this case we better sleep instead of busy wait. 216 */ 217 218 static void ad7280_delay(struct ad7280_state *st) 219 { 220 if (st->readback_delay_us < 50) 221 udelay(st->readback_delay_us); 222 else 223 usleep_range(250, 500); 224 } 225 226 static int __ad7280_read32(struct ad7280_state *st, unsigned int *val) 227 { 228 int ret; 229 struct spi_transfer t = { 230 .tx_buf = &st->tx, 231 .rx_buf = &st->rx, 232 .len = sizeof(st->tx), 233 }; 234 235 st->tx = cpu_to_be32(AD7280A_READ_TXVAL); 236 237 ret = spi_sync_transfer(st->spi, &t, 1); 238 if (ret) 239 return ret; 240 241 *val = be32_to_cpu(st->rx); 242 243 return 0; 244 } 245 246 static int ad7280_write(struct ad7280_state *st, unsigned int devaddr, 247 unsigned int addr, bool all, unsigned int val) 248 { 249 unsigned int reg = FIELD_PREP(AD7280A_TRANS_WRITE_DEVADDR_MSK, devaddr) | 250 FIELD_PREP(AD7280A_TRANS_WRITE_ADDR_MSK, addr) | 251 FIELD_PREP(AD7280A_TRANS_WRITE_VAL_MSK, val) | 252 FIELD_PREP(AD7280A_TRANS_WRITE_ALL_MSK, all); 253 254 reg |= FIELD_PREP(AD7280A_TRANS_WRITE_CRC_MSK, 255 ad7280_calc_crc8(st->crc_tab, reg >> 11)); 256 /* Reserved b010 pattern not included crc calc */ 257 reg |= AD7280A_TRANS_WRITE_RES_PATTERN; 258 259 st->tx = cpu_to_be32(reg); 260 261 return spi_write(st->spi, &st->tx, sizeof(st->tx)); 262 } 263 264 static int ad7280_read_reg(struct ad7280_state *st, unsigned int devaddr, 265 unsigned int addr) 266 { 267 int ret; 268 unsigned int tmp; 269 270 /* turns off the read operation on all parts */ 271 ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1, 272 FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK, 273 AD7280A_CTRL_HB_CONV_INPUT_ALL) | 274 FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK, 275 AD7280A_CTRL_HB_CONV_RREAD_NO) | 276 FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK, 277 st->oversampling_ratio)); 278 if (ret) 279 return ret; 280 281 /* turns on the read operation on the addressed part */ 282 ret = ad7280_write(st, devaddr, AD7280A_CTRL_HB_REG, 0, 283 FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK, 284 AD7280A_CTRL_HB_CONV_INPUT_ALL) | 285 FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK, 286 AD7280A_CTRL_HB_CONV_RREAD_ALL) | 287 FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK, 288 st->oversampling_ratio)); 289 if (ret) 290 return ret; 291 292 /* Set register address on the part to be read from */ 293 ret = ad7280_write(st, devaddr, AD7280A_READ_REG, 0, 294 FIELD_PREP(AD7280A_READ_ADDR_MSK, addr)); 295 if (ret) 296 return ret; 297 298 ret = __ad7280_read32(st, &tmp); 299 if (ret) 300 return ret; 301 302 if (ad7280_check_crc(st, tmp)) 303 return -EIO; 304 305 if ((FIELD_GET(AD7280A_TRANS_READ_DEVADDR_MSK, tmp) != devaddr) || 306 (FIELD_GET(AD7280A_TRANS_READ_REG_REGADDR_MSK, tmp) != addr)) 307 return -EFAULT; 308 309 return FIELD_GET(AD7280A_TRANS_READ_REG_DATA_MSK, tmp); 310 } 311 312 static int ad7280_read_channel(struct ad7280_state *st, unsigned int devaddr, 313 unsigned int addr) 314 { 315 int ret; 316 unsigned int tmp; 317 318 ret = ad7280_write(st, devaddr, AD7280A_READ_REG, 0, 319 FIELD_PREP(AD7280A_READ_ADDR_MSK, addr)); 320 if (ret) 321 return ret; 322 323 ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1, 324 FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK, 325 AD7280A_CTRL_HB_CONV_INPUT_ALL) | 326 FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK, 327 AD7280A_CTRL_HB_CONV_RREAD_NO) | 328 FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK, 329 st->oversampling_ratio)); 330 if (ret) 331 return ret; 332 333 ret = ad7280_write(st, devaddr, AD7280A_CTRL_HB_REG, 0, 334 FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK, 335 AD7280A_CTRL_HB_CONV_INPUT_ALL) | 336 FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK, 337 AD7280A_CTRL_HB_CONV_RREAD_ALL) | 338 FIELD_PREP(AD7280A_CTRL_HB_CONV_START_MSK, 339 AD7280A_CTRL_HB_CONV_START_CS) | 340 FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK, 341 st->oversampling_ratio)); 342 if (ret) 343 return ret; 344 345 ad7280_delay(st); 346 347 ret = __ad7280_read32(st, &tmp); 348 if (ret) 349 return ret; 350 351 if (ad7280_check_crc(st, tmp)) 352 return -EIO; 353 354 if ((FIELD_GET(AD7280A_TRANS_READ_DEVADDR_MSK, tmp) != devaddr) || 355 (FIELD_GET(AD7280A_TRANS_READ_CONV_CHANADDR_MSK, tmp) != addr)) 356 return -EFAULT; 357 358 return FIELD_GET(AD7280A_TRANS_READ_CONV_DATA_MSK, tmp); 359 } 360 361 static int ad7280_read_all_channels(struct ad7280_state *st, unsigned int cnt, 362 unsigned int *array) 363 { 364 int i, ret; 365 unsigned int tmp, sum = 0; 366 367 ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_READ_REG, 1, 368 AD7280A_CELL_VOLTAGE_1_REG << 2); 369 if (ret) 370 return ret; 371 372 ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1, 373 FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK, 374 AD7280A_CTRL_HB_CONV_INPUT_ALL) | 375 FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK, 376 AD7280A_CTRL_HB_CONV_RREAD_ALL) | 377 FIELD_PREP(AD7280A_CTRL_HB_CONV_START_MSK, 378 AD7280A_CTRL_HB_CONV_START_CS) | 379 FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK, 380 st->oversampling_ratio)); 381 if (ret) 382 return ret; 383 384 ad7280_delay(st); 385 386 for (i = 0; i < cnt; i++) { 387 ret = __ad7280_read32(st, &tmp); 388 if (ret) 389 return ret; 390 391 if (ad7280_check_crc(st, tmp)) 392 return -EIO; 393 394 if (array) 395 array[i] = tmp; 396 /* only sum cell voltages */ 397 if (FIELD_GET(AD7280A_TRANS_READ_CONV_CHANADDR_MSK, tmp) <= 398 AD7280A_CELL_VOLTAGE_6_REG) 399 sum += FIELD_GET(AD7280A_TRANS_READ_CONV_DATA_MSK, tmp); 400 } 401 402 return sum; 403 } 404 405 static void ad7280_sw_power_down(void *data) 406 { 407 struct ad7280_state *st = data; 408 409 ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1, 410 AD7280A_CTRL_HB_PWRDN_SW | 411 FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK, st->oversampling_ratio)); 412 } 413 414 static int ad7280_chain_setup(struct ad7280_state *st) 415 { 416 unsigned int val, n; 417 int ret; 418 419 ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_LB_REG, 1, 420 FIELD_PREP(AD7280A_CTRL_LB_DAISY_CHAIN_RB_MSK, 1) | 421 FIELD_PREP(AD7280A_CTRL_LB_LOCK_DEV_ADDR_MSK, 1) | 422 AD7280A_CTRL_LB_MUST_SET | 423 FIELD_PREP(AD7280A_CTRL_LB_SWRST_MSK, 1) | 424 st->ctrl_lb); 425 if (ret) 426 return ret; 427 428 ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_LB_REG, 1, 429 FIELD_PREP(AD7280A_CTRL_LB_DAISY_CHAIN_RB_MSK, 1) | 430 FIELD_PREP(AD7280A_CTRL_LB_LOCK_DEV_ADDR_MSK, 1) | 431 AD7280A_CTRL_LB_MUST_SET | 432 FIELD_PREP(AD7280A_CTRL_LB_SWRST_MSK, 0) | 433 st->ctrl_lb); 434 if (ret) 435 goto error_power_down; 436 437 ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_READ_REG, 1, 438 FIELD_PREP(AD7280A_READ_ADDR_MSK, AD7280A_CTRL_LB_REG)); 439 if (ret) 440 goto error_power_down; 441 442 for (n = 0; n <= AD7280A_MAX_CHAIN; n++) { 443 ret = __ad7280_read32(st, &val); 444 if (ret) 445 goto error_power_down; 446 447 if (val == 0) 448 return n - 1; 449 450 if (ad7280_check_crc(st, val)) { 451 ret = -EIO; 452 goto error_power_down; 453 } 454 455 if (n != ad7280a_devaddr(FIELD_GET(AD7280A_TRANS_READ_DEVADDR_MSK, val))) { 456 ret = -EIO; 457 goto error_power_down; 458 } 459 } 460 ret = -EFAULT; 461 462 error_power_down: 463 ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1, 464 AD7280A_CTRL_HB_PWRDN_SW | 465 FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK, st->oversampling_ratio)); 466 467 return ret; 468 } 469 470 static ssize_t ad7280_show_balance_sw(struct iio_dev *indio_dev, 471 uintptr_t private, 472 const struct iio_chan_spec *chan, char *buf) 473 { 474 struct ad7280_state *st = iio_priv(indio_dev); 475 476 return sysfs_emit(buf, "%d\n", 477 !!(st->cb_mask[chan->address >> 8] & 478 BIT(chan->address & 0xFF))); 479 } 480 481 static ssize_t ad7280_store_balance_sw(struct iio_dev *indio_dev, 482 uintptr_t private, 483 const struct iio_chan_spec *chan, 484 const char *buf, size_t len) 485 { 486 struct ad7280_state *st = iio_priv(indio_dev); 487 unsigned int devaddr, ch; 488 bool readin; 489 int ret; 490 491 ret = strtobool(buf, &readin); 492 if (ret) 493 return ret; 494 495 devaddr = chan->address >> 8; 496 ch = chan->address & 0xFF; 497 498 mutex_lock(&st->lock); 499 if (readin) 500 st->cb_mask[devaddr] |= BIT(ch); 501 else 502 st->cb_mask[devaddr] &= ~BIT(ch); 503 504 ret = ad7280_write(st, devaddr, AD7280A_CELL_BALANCE_REG, 0, 505 FIELD_PREP(AD7280A_CELL_BALANCE_CHAN_BITMAP_MSK, 506 st->cb_mask[devaddr])); 507 mutex_unlock(&st->lock); 508 509 return ret ? ret : len; 510 } 511 512 static ssize_t ad7280_show_balance_timer(struct iio_dev *indio_dev, 513 uintptr_t private, 514 const struct iio_chan_spec *chan, 515 char *buf) 516 { 517 struct ad7280_state *st = iio_priv(indio_dev); 518 unsigned int msecs; 519 int ret; 520 521 mutex_lock(&st->lock); 522 ret = ad7280_read_reg(st, chan->address >> 8, 523 (chan->address & 0xFF) + AD7280A_CB1_TIMER_REG); 524 mutex_unlock(&st->lock); 525 526 if (ret < 0) 527 return ret; 528 529 msecs = FIELD_GET(AD7280A_CB_TIMER_VAL_MSK, ret) * 71500; 530 531 return sysfs_emit(buf, "%u.%u\n", msecs / 1000, msecs % 1000); 532 } 533 534 static ssize_t ad7280_store_balance_timer(struct iio_dev *indio_dev, 535 uintptr_t private, 536 const struct iio_chan_spec *chan, 537 const char *buf, size_t len) 538 { 539 struct ad7280_state *st = iio_priv(indio_dev); 540 int val, val2; 541 int ret; 542 543 ret = iio_str_to_fixpoint(buf, 1000, &val, &val2); 544 if (ret) 545 return ret; 546 547 val = val * 1000 + val2; 548 val /= 71500; 549 550 if (val > 31) 551 return -EINVAL; 552 553 mutex_lock(&st->lock); 554 ret = ad7280_write(st, chan->address >> 8, 555 (chan->address & 0xFF) + AD7280A_CB1_TIMER_REG, 0, 556 FIELD_PREP(AD7280A_CB_TIMER_VAL_MSK, val)); 557 mutex_unlock(&st->lock); 558 559 return ret ? ret : len; 560 } 561 562 static const struct iio_chan_spec_ext_info ad7280_cell_ext_info[] = { 563 { 564 .name = "balance_switch_en", 565 .read = ad7280_show_balance_sw, 566 .write = ad7280_store_balance_sw, 567 .shared = IIO_SEPARATE, 568 }, { 569 .name = "balance_switch_timer", 570 .read = ad7280_show_balance_timer, 571 .write = ad7280_store_balance_timer, 572 .shared = IIO_SEPARATE, 573 }, 574 {} 575 }; 576 577 static const struct iio_event_spec ad7280_events[] = { 578 { 579 .type = IIO_EV_TYPE_THRESH, 580 .dir = IIO_EV_DIR_RISING, 581 .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE), 582 }, { 583 .type = IIO_EV_TYPE_THRESH, 584 .dir = IIO_EV_DIR_FALLING, 585 .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE), 586 }, 587 }; 588 589 static void ad7280_voltage_channel_init(struct iio_chan_spec *chan, int i, 590 bool irq_present) 591 { 592 chan->type = IIO_VOLTAGE; 593 chan->differential = 1; 594 chan->channel = i; 595 chan->channel2 = chan->channel + 1; 596 if (irq_present) { 597 chan->event_spec = ad7280_events; 598 chan->num_event_specs = ARRAY_SIZE(ad7280_events); 599 } 600 chan->ext_info = ad7280_cell_ext_info; 601 } 602 603 static void ad7280_temp_channel_init(struct iio_chan_spec *chan, int i, 604 bool irq_present) 605 { 606 chan->type = IIO_TEMP; 607 chan->channel = i; 608 if (irq_present) { 609 chan->event_spec = ad7280_events; 610 chan->num_event_specs = ARRAY_SIZE(ad7280_events); 611 } 612 } 613 614 static void ad7280_common_fields_init(struct iio_chan_spec *chan, int addr, 615 int cnt) 616 { 617 chan->indexed = 1; 618 chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW); 619 chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE); 620 chan->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO); 621 chan->address = addr; 622 chan->scan_index = cnt; 623 chan->scan_type.sign = 'u'; 624 chan->scan_type.realbits = 12; 625 chan->scan_type.storagebits = 32; 626 } 627 628 static void ad7280_total_voltage_channel_init(struct iio_chan_spec *chan, 629 int cnt, int dev) 630 { 631 chan->type = IIO_VOLTAGE; 632 chan->differential = 1; 633 chan->channel = 0; 634 chan->channel2 = dev * AD7280A_CELLS_PER_DEV; 635 chan->address = AD7280A_ALL_CELLS; 636 chan->indexed = 1; 637 chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW); 638 chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE); 639 chan->scan_index = cnt; 640 chan->scan_type.sign = 'u'; 641 chan->scan_type.realbits = 32; 642 chan->scan_type.storagebits = 32; 643 } 644 645 static void ad7280_init_dev_channels(struct ad7280_state *st, int dev, int *cnt, 646 bool irq_present) 647 { 648 int addr, ch, i; 649 struct iio_chan_spec *chan; 650 651 for (ch = AD7280A_CELL_VOLTAGE_1_REG; ch <= AD7280A_AUX_ADC_6_REG; ch++) { 652 chan = &st->channels[*cnt]; 653 654 if (ch < AD7280A_AUX_ADC_1_REG) { 655 i = AD7280A_CALC_VOLTAGE_CHAN_NUM(dev, ch); 656 ad7280_voltage_channel_init(chan, i, irq_present); 657 } else { 658 i = AD7280A_CALC_TEMP_CHAN_NUM(dev, ch); 659 ad7280_temp_channel_init(chan, i, irq_present); 660 } 661 662 addr = ad7280a_devaddr(dev) << 8 | ch; 663 ad7280_common_fields_init(chan, addr, *cnt); 664 665 (*cnt)++; 666 } 667 } 668 669 static int ad7280_channel_init(struct ad7280_state *st, bool irq_present) 670 { 671 int dev, cnt = 0; 672 673 st->channels = devm_kcalloc(&st->spi->dev, (st->slave_num + 1) * 12 + 1, 674 sizeof(*st->channels), GFP_KERNEL); 675 if (!st->channels) 676 return -ENOMEM; 677 678 for (dev = 0; dev <= st->slave_num; dev++) 679 ad7280_init_dev_channels(st, dev, &cnt, irq_present); 680 681 ad7280_total_voltage_channel_init(&st->channels[cnt], cnt, dev); 682 683 return cnt + 1; 684 } 685 686 static int ad7280a_read_thresh(struct iio_dev *indio_dev, 687 const struct iio_chan_spec *chan, 688 enum iio_event_type type, 689 enum iio_event_direction dir, 690 enum iio_event_info info, int *val, int *val2) 691 { 692 struct ad7280_state *st = iio_priv(indio_dev); 693 694 switch (chan->type) { 695 case IIO_VOLTAGE: 696 switch (dir) { 697 case IIO_EV_DIR_RISING: 698 *val = 1000 + (st->cell_threshhigh * 1568L) / 100; 699 return IIO_VAL_INT; 700 case IIO_EV_DIR_FALLING: 701 *val = 1000 + (st->cell_threshlow * 1568L) / 100; 702 return IIO_VAL_INT; 703 default: 704 return -EINVAL; 705 } 706 break; 707 case IIO_TEMP: 708 switch (dir) { 709 case IIO_EV_DIR_RISING: 710 *val = ((st->aux_threshhigh) * 196L) / 10; 711 return IIO_VAL_INT; 712 case IIO_EV_DIR_FALLING: 713 *val = (st->aux_threshlow * 196L) / 10; 714 return IIO_VAL_INT; 715 default: 716 return -EINVAL; 717 } 718 break; 719 default: 720 return -EINVAL; 721 } 722 } 723 724 static int ad7280a_write_thresh(struct iio_dev *indio_dev, 725 const struct iio_chan_spec *chan, 726 enum iio_event_type type, 727 enum iio_event_direction dir, 728 enum iio_event_info info, 729 int val, int val2) 730 { 731 struct ad7280_state *st = iio_priv(indio_dev); 732 unsigned int addr; 733 long value; 734 int ret; 735 736 if (val2 != 0) 737 return -EINVAL; 738 739 mutex_lock(&st->lock); 740 switch (chan->type) { 741 case IIO_VOLTAGE: 742 value = ((val - 1000) * 100) / 1568; /* LSB 15.68mV */ 743 value = clamp(value, 0L, 0xFFL); 744 switch (dir) { 745 case IIO_EV_DIR_RISING: 746 addr = AD7280A_CELL_OVERVOLTAGE_REG; 747 ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr, 748 1, value); 749 if (ret) 750 break; 751 st->cell_threshhigh = value; 752 break; 753 case IIO_EV_DIR_FALLING: 754 addr = AD7280A_CELL_UNDERVOLTAGE_REG; 755 ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr, 756 1, value); 757 if (ret) 758 break; 759 st->cell_threshlow = value; 760 break; 761 default: 762 ret = -EINVAL; 763 goto err_unlock; 764 } 765 break; 766 case IIO_TEMP: 767 value = (val * 10) / 196; /* LSB 19.6mV */ 768 value = clamp(value, 0L, 0xFFL); 769 switch (dir) { 770 case IIO_EV_DIR_RISING: 771 addr = AD7280A_AUX_ADC_OVERVOLTAGE_REG; 772 ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr, 773 1, value); 774 if (ret) 775 break; 776 st->aux_threshhigh = value; 777 break; 778 case IIO_EV_DIR_FALLING: 779 addr = AD7280A_AUX_ADC_UNDERVOLTAGE_REG; 780 ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr, 781 1, value); 782 if (ret) 783 break; 784 st->aux_threshlow = value; 785 break; 786 default: 787 ret = -EINVAL; 788 goto err_unlock; 789 } 790 break; 791 default: 792 ret = -EINVAL; 793 goto err_unlock; 794 } 795 796 err_unlock: 797 mutex_unlock(&st->lock); 798 799 return ret; 800 } 801 802 static irqreturn_t ad7280_event_handler(int irq, void *private) 803 { 804 struct iio_dev *indio_dev = private; 805 struct ad7280_state *st = iio_priv(indio_dev); 806 unsigned int *channels; 807 int i, ret; 808 809 channels = kcalloc(st->scan_cnt, sizeof(*channels), GFP_KERNEL); 810 if (!channels) 811 return IRQ_HANDLED; 812 813 ret = ad7280_read_all_channels(st, st->scan_cnt, channels); 814 if (ret < 0) 815 goto out; 816 817 for (i = 0; i < st->scan_cnt; i++) { 818 unsigned int val; 819 820 val = FIELD_GET(AD7280A_TRANS_READ_CONV_DATA_MSK, channels[i]); 821 if (FIELD_GET(AD7280A_TRANS_READ_CONV_CHANADDR_MSK, channels[i]) <= 822 AD7280A_CELL_VOLTAGE_6_REG) { 823 if (val >= st->cell_threshhigh) { 824 u64 tmp = IIO_EVENT_CODE(IIO_VOLTAGE, 1, 0, 825 IIO_EV_DIR_RISING, 826 IIO_EV_TYPE_THRESH, 827 0, 0, 0); 828 iio_push_event(indio_dev, tmp, 829 iio_get_time_ns(indio_dev)); 830 } else if (val <= st->cell_threshlow) { 831 u64 tmp = IIO_EVENT_CODE(IIO_VOLTAGE, 1, 0, 832 IIO_EV_DIR_FALLING, 833 IIO_EV_TYPE_THRESH, 834 0, 0, 0); 835 iio_push_event(indio_dev, tmp, 836 iio_get_time_ns(indio_dev)); 837 } 838 } else { 839 if (val >= st->aux_threshhigh) { 840 u64 tmp = IIO_UNMOD_EVENT_CODE(IIO_TEMP, 0, 841 IIO_EV_TYPE_THRESH, 842 IIO_EV_DIR_RISING); 843 iio_push_event(indio_dev, tmp, 844 iio_get_time_ns(indio_dev)); 845 } else if (val <= st->aux_threshlow) { 846 u64 tmp = IIO_UNMOD_EVENT_CODE(IIO_TEMP, 0, 847 IIO_EV_TYPE_THRESH, 848 IIO_EV_DIR_FALLING); 849 iio_push_event(indio_dev, tmp, 850 iio_get_time_ns(indio_dev)); 851 } 852 } 853 } 854 855 out: 856 kfree(channels); 857 858 return IRQ_HANDLED; 859 } 860 861 static void ad7280_update_delay(struct ad7280_state *st) 862 { 863 /* 864 * Total Conversion Time = ((tACQ + tCONV) * 865 * (Number of Conversions per Part)) − 866 * tACQ + ((N - 1) * tDELAY) 867 * 868 * Readback Delay = Total Conversion Time + tWAIT 869 */ 870 871 st->readback_delay_us = 872 ((ad7280a_t_acq_ns[st->acquisition_time & 0x3] + 720) * 873 (AD7280A_NUM_CH * ad7280a_n_avg[st->oversampling_ratio & 0x3])) - 874 ad7280a_t_acq_ns[st->acquisition_time & 0x3] + st->slave_num * 250; 875 876 /* Convert to usecs */ 877 st->readback_delay_us = DIV_ROUND_UP(st->readback_delay_us, 1000); 878 st->readback_delay_us += 5; /* Add tWAIT */ 879 } 880 881 static int ad7280_read_raw(struct iio_dev *indio_dev, 882 struct iio_chan_spec const *chan, 883 int *val, 884 int *val2, 885 long m) 886 { 887 struct ad7280_state *st = iio_priv(indio_dev); 888 int ret; 889 890 switch (m) { 891 case IIO_CHAN_INFO_RAW: 892 mutex_lock(&st->lock); 893 if (chan->address == AD7280A_ALL_CELLS) 894 ret = ad7280_read_all_channels(st, st->scan_cnt, NULL); 895 else 896 ret = ad7280_read_channel(st, chan->address >> 8, 897 chan->address & 0xFF); 898 mutex_unlock(&st->lock); 899 900 if (ret < 0) 901 return ret; 902 903 *val = ret; 904 905 return IIO_VAL_INT; 906 case IIO_CHAN_INFO_SCALE: 907 if ((chan->address & 0xFF) <= AD7280A_CELL_VOLTAGE_6_REG) 908 *val = 4000; 909 else 910 *val = 5000; 911 912 *val2 = AD7280A_BITS; 913 return IIO_VAL_FRACTIONAL_LOG2; 914 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 915 *val = ad7280a_n_avg[st->oversampling_ratio]; 916 return IIO_VAL_INT; 917 } 918 return -EINVAL; 919 } 920 921 static int ad7280_write_raw(struct iio_dev *indio_dev, 922 struct iio_chan_spec const *chan, 923 int val, int val2, long mask) 924 { 925 struct ad7280_state *st = iio_priv(indio_dev); 926 int i; 927 928 switch (mask) { 929 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 930 if (val2 != 0) 931 return -EINVAL; 932 for (i = 0; i < ARRAY_SIZE(ad7280a_n_avg); i++) { 933 if (val == ad7280a_n_avg[i]) { 934 st->oversampling_ratio = i; 935 ad7280_update_delay(st); 936 return 0; 937 } 938 } 939 return -EINVAL; 940 default: 941 return -EINVAL; 942 } 943 } 944 945 static const struct iio_info ad7280_info = { 946 .read_raw = ad7280_read_raw, 947 .write_raw = ad7280_write_raw, 948 .read_event_value = &ad7280a_read_thresh, 949 .write_event_value = &ad7280a_write_thresh, 950 }; 951 952 static const struct iio_info ad7280_info_no_irq = { 953 .read_raw = ad7280_read_raw, 954 .write_raw = ad7280_write_raw, 955 }; 956 957 static int ad7280_probe(struct spi_device *spi) 958 { 959 struct device *dev = &spi->dev; 960 struct ad7280_state *st; 961 int ret; 962 struct iio_dev *indio_dev; 963 964 indio_dev = devm_iio_device_alloc(dev, sizeof(*st)); 965 if (!indio_dev) 966 return -ENOMEM; 967 968 st = iio_priv(indio_dev); 969 spi_set_drvdata(spi, indio_dev); 970 st->spi = spi; 971 mutex_init(&st->lock); 972 973 st->thermistor_term_en = 974 device_property_read_bool(dev, "adi,thermistor-termination"); 975 976 if (device_property_present(dev, "adi,acquisition-time-ns")) { 977 u32 val; 978 979 ret = device_property_read_u32(dev, "adi,acquisition-time-ns", &val); 980 if (ret) 981 return ret; 982 983 switch (val) { 984 case 400: 985 st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_400ns; 986 break; 987 case 800: 988 st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_800ns; 989 break; 990 case 1200: 991 st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_1200ns; 992 break; 993 case 1600: 994 st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_1600ns; 995 break; 996 default: 997 dev_err(dev, "Firmware provided acquisition time is invalid\n"); 998 return -EINVAL; 999 } 1000 } else { 1001 st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_400ns; 1002 } 1003 1004 /* Alert masks are intended for when particular inputs are not wired up */ 1005 if (device_property_present(dev, "adi,voltage-alert-last-chan")) { 1006 u32 val; 1007 1008 ret = device_property_read_u32(dev, "adi,voltage-alert-last-chan", &val); 1009 if (ret) 1010 return ret; 1011 1012 switch (val) { 1013 case 3: 1014 st->chain_last_alert_ignore |= AD7280A_ALERT_REMOVE_VIN4_VIN5; 1015 break; 1016 case 4: 1017 st->chain_last_alert_ignore |= AD7280A_ALERT_REMOVE_VIN5; 1018 break; 1019 case 5: 1020 break; 1021 default: 1022 dev_err(dev, 1023 "Firmware provided last voltage alert channel invalid\n"); 1024 break; 1025 } 1026 } 1027 crc8_populate_msb(st->crc_tab, POLYNOM); 1028 1029 st->spi->max_speed_hz = AD7280A_MAX_SPI_CLK_HZ; 1030 st->spi->mode = SPI_MODE_1; 1031 spi_setup(st->spi); 1032 1033 st->ctrl_lb = FIELD_PREP(AD7280A_CTRL_LB_ACQ_TIME_MSK, st->acquisition_time) | 1034 FIELD_PREP(AD7280A_CTRL_LB_THERMISTOR_MSK, st->thermistor_term_en); 1035 st->oversampling_ratio = 0; /* No oversampling */ 1036 1037 ret = ad7280_chain_setup(st); 1038 if (ret < 0) 1039 return ret; 1040 1041 st->slave_num = ret; 1042 st->scan_cnt = (st->slave_num + 1) * AD7280A_NUM_CH; 1043 st->cell_threshhigh = 0xFF; 1044 st->aux_threshhigh = 0xFF; 1045 1046 ret = devm_add_action_or_reset(dev, ad7280_sw_power_down, st); 1047 if (ret) 1048 return ret; 1049 1050 ad7280_update_delay(st); 1051 1052 indio_dev->name = spi_get_device_id(spi)->name; 1053 indio_dev->modes = INDIO_DIRECT_MODE; 1054 1055 ret = ad7280_channel_init(st, spi->irq > 0); 1056 if (ret < 0) 1057 return ret; 1058 1059 indio_dev->num_channels = ret; 1060 indio_dev->channels = st->channels; 1061 if (spi->irq > 0) { 1062 ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, 1063 AD7280A_ALERT_REG, 1, 1064 AD7280A_ALERT_RELAY_SIG_CHAIN_DOWN); 1065 if (ret) 1066 return ret; 1067 1068 ret = ad7280_write(st, ad7280a_devaddr(st->slave_num), 1069 AD7280A_ALERT_REG, 0, 1070 AD7280A_ALERT_GEN_STATIC_HIGH | 1071 FIELD_PREP(AD7280A_ALERT_REMOVE_MSK, 1072 st->chain_last_alert_ignore)); 1073 if (ret) 1074 return ret; 1075 1076 ret = devm_request_threaded_irq(dev, spi->irq, 1077 NULL, 1078 ad7280_event_handler, 1079 IRQF_TRIGGER_FALLING | 1080 IRQF_ONESHOT, 1081 indio_dev->name, 1082 indio_dev); 1083 if (ret) 1084 return ret; 1085 1086 indio_dev->info = &ad7280_info; 1087 } else { 1088 indio_dev->info = &ad7280_info_no_irq; 1089 } 1090 1091 return devm_iio_device_register(dev, indio_dev); 1092 } 1093 1094 static const struct spi_device_id ad7280_id[] = { 1095 {"ad7280a", 0}, 1096 {} 1097 }; 1098 MODULE_DEVICE_TABLE(spi, ad7280_id); 1099 1100 static struct spi_driver ad7280_driver = { 1101 .driver = { 1102 .name = "ad7280", 1103 }, 1104 .probe = ad7280_probe, 1105 .id_table = ad7280_id, 1106 }; 1107 module_spi_driver(ad7280_driver); 1108 1109 MODULE_AUTHOR("Michael Hennerich <michael.hennerich@analog.com>"); 1110 MODULE_DESCRIPTION("Analog Devices AD7280A"); 1111 MODULE_LICENSE("GPL v2"); 1112