1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * STMicroelectronics accelerometers driver 4 * 5 * Copyright 2012-2013 STMicroelectronics Inc. 6 * 7 * Denis Ciocca <denis.ciocca@st.com> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/module.h> 12 #include <linux/slab.h> 13 #include <linux/acpi.h> 14 #include <linux/errno.h> 15 #include <linux/types.h> 16 #include <linux/mutex.h> 17 #include <linux/interrupt.h> 18 #include <linux/i2c.h> 19 #include <linux/gpio.h> 20 #include <linux/irq.h> 21 #include <linux/iio/iio.h> 22 #include <linux/iio/sysfs.h> 23 #include <linux/iio/trigger.h> 24 #include <linux/iio/buffer.h> 25 26 #include <linux/iio/common/st_sensors.h> 27 #include "st_accel.h" 28 29 #define ST_ACCEL_NUMBER_DATA_CHANNELS 3 30 31 /* DEFAULT VALUE FOR SENSORS */ 32 #define ST_ACCEL_DEFAULT_OUT_X_L_ADDR 0x28 33 #define ST_ACCEL_DEFAULT_OUT_Y_L_ADDR 0x2a 34 #define ST_ACCEL_DEFAULT_OUT_Z_L_ADDR 0x2c 35 36 /* FULLSCALE */ 37 #define ST_ACCEL_FS_AVL_2G 2 38 #define ST_ACCEL_FS_AVL_4G 4 39 #define ST_ACCEL_FS_AVL_6G 6 40 #define ST_ACCEL_FS_AVL_8G 8 41 #define ST_ACCEL_FS_AVL_16G 16 42 #define ST_ACCEL_FS_AVL_100G 100 43 #define ST_ACCEL_FS_AVL_200G 200 44 #define ST_ACCEL_FS_AVL_400G 400 45 46 static const struct iio_chan_spec st_accel_8bit_channels[] = { 47 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, 48 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 49 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 8, 8, 50 ST_ACCEL_DEFAULT_OUT_X_L_ADDR+1), 51 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, 52 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 53 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 8, 8, 54 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR+1), 55 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, 56 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 57 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 8, 8, 58 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR+1), 59 IIO_CHAN_SOFT_TIMESTAMP(3) 60 }; 61 62 static const struct iio_chan_spec st_accel_12bit_channels[] = { 63 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, 64 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 65 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 12, 16, 66 ST_ACCEL_DEFAULT_OUT_X_L_ADDR), 67 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, 68 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 69 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 12, 16, 70 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR), 71 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, 72 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 73 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 12, 16, 74 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR), 75 IIO_CHAN_SOFT_TIMESTAMP(3) 76 }; 77 78 static const struct iio_chan_spec st_accel_16bit_channels[] = { 79 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, 80 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 81 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 16, 16, 82 ST_ACCEL_DEFAULT_OUT_X_L_ADDR), 83 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, 84 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 85 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 16, 16, 86 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR), 87 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, 88 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 89 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 16, 16, 90 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR), 91 IIO_CHAN_SOFT_TIMESTAMP(3) 92 }; 93 94 static const struct st_sensor_settings st_accel_sensors_settings[] = { 95 { 96 .wai = 0x33, 97 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 98 .sensors_supported = { 99 [0] = LIS3DH_ACCEL_DEV_NAME, 100 [1] = LSM303DLHC_ACCEL_DEV_NAME, 101 [2] = LSM330D_ACCEL_DEV_NAME, 102 [3] = LSM330DL_ACCEL_DEV_NAME, 103 [4] = LSM330DLC_ACCEL_DEV_NAME, 104 [5] = LSM303AGR_ACCEL_DEV_NAME, 105 [6] = LIS2DH12_ACCEL_DEV_NAME, 106 [7] = LIS3DE_ACCEL_DEV_NAME, 107 }, 108 .ch = (struct iio_chan_spec *)st_accel_12bit_channels, 109 .odr = { 110 .addr = 0x20, 111 .mask = 0xf0, 112 .odr_avl = { 113 { .hz = 1, .value = 0x01, }, 114 { .hz = 10, .value = 0x02, }, 115 { .hz = 25, .value = 0x03, }, 116 { .hz = 50, .value = 0x04, }, 117 { .hz = 100, .value = 0x05, }, 118 { .hz = 200, .value = 0x06, }, 119 { .hz = 400, .value = 0x07, }, 120 { .hz = 1600, .value = 0x08, }, 121 }, 122 }, 123 .pw = { 124 .addr = 0x20, 125 .mask = 0xf0, 126 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 127 }, 128 .enable_axis = { 129 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, 130 .mask = ST_SENSORS_DEFAULT_AXIS_MASK, 131 }, 132 .fs = { 133 .addr = 0x23, 134 .mask = 0x30, 135 .fs_avl = { 136 [0] = { 137 .num = ST_ACCEL_FS_AVL_2G, 138 .value = 0x00, 139 .gain = IIO_G_TO_M_S_2(1000), 140 }, 141 [1] = { 142 .num = ST_ACCEL_FS_AVL_4G, 143 .value = 0x01, 144 .gain = IIO_G_TO_M_S_2(2000), 145 }, 146 [2] = { 147 .num = ST_ACCEL_FS_AVL_8G, 148 .value = 0x02, 149 .gain = IIO_G_TO_M_S_2(4000), 150 }, 151 [3] = { 152 .num = ST_ACCEL_FS_AVL_16G, 153 .value = 0x03, 154 .gain = IIO_G_TO_M_S_2(12000), 155 }, 156 }, 157 }, 158 .bdu = { 159 .addr = 0x23, 160 .mask = 0x80, 161 }, 162 .drdy_irq = { 163 .int1 = { 164 .addr = 0x22, 165 .mask = 0x10, 166 }, 167 .addr_ihl = 0x25, 168 .mask_ihl = 0x02, 169 .stat_drdy = { 170 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 171 .mask = 0x07, 172 }, 173 }, 174 .sim = { 175 .addr = 0x23, 176 .value = BIT(0), 177 }, 178 .multi_read_bit = true, 179 .bootime = 2, 180 }, 181 { 182 .wai = 0x32, 183 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 184 .sensors_supported = { 185 [0] = LIS331DLH_ACCEL_DEV_NAME, 186 [1] = LSM303DL_ACCEL_DEV_NAME, 187 [2] = LSM303DLH_ACCEL_DEV_NAME, 188 [3] = LSM303DLM_ACCEL_DEV_NAME, 189 }, 190 .ch = (struct iio_chan_spec *)st_accel_12bit_channels, 191 .odr = { 192 .addr = 0x20, 193 .mask = 0x18, 194 .odr_avl = { 195 { .hz = 50, .value = 0x00, }, 196 { .hz = 100, .value = 0x01, }, 197 { .hz = 400, .value = 0x02, }, 198 { .hz = 1000, .value = 0x03, }, 199 }, 200 }, 201 .pw = { 202 .addr = 0x20, 203 .mask = 0xe0, 204 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, 205 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 206 }, 207 .enable_axis = { 208 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, 209 .mask = ST_SENSORS_DEFAULT_AXIS_MASK, 210 }, 211 .fs = { 212 .addr = 0x23, 213 .mask = 0x30, 214 .fs_avl = { 215 [0] = { 216 .num = ST_ACCEL_FS_AVL_2G, 217 .value = 0x00, 218 .gain = IIO_G_TO_M_S_2(1000), 219 }, 220 [1] = { 221 .num = ST_ACCEL_FS_AVL_4G, 222 .value = 0x01, 223 .gain = IIO_G_TO_M_S_2(2000), 224 }, 225 [2] = { 226 .num = ST_ACCEL_FS_AVL_8G, 227 .value = 0x03, 228 .gain = IIO_G_TO_M_S_2(3900), 229 }, 230 }, 231 }, 232 .bdu = { 233 .addr = 0x23, 234 .mask = 0x80, 235 }, 236 .drdy_irq = { 237 .int1 = { 238 .addr = 0x22, 239 .mask = 0x02, 240 .addr_od = 0x22, 241 .mask_od = 0x40, 242 }, 243 .int2 = { 244 .addr = 0x22, 245 .mask = 0x10, 246 .addr_od = 0x22, 247 .mask_od = 0x40, 248 }, 249 .addr_ihl = 0x22, 250 .mask_ihl = 0x80, 251 .stat_drdy = { 252 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 253 .mask = 0x07, 254 }, 255 }, 256 .sim = { 257 .addr = 0x23, 258 .value = BIT(0), 259 }, 260 .multi_read_bit = true, 261 .bootime = 2, 262 }, 263 { 264 .wai = 0x40, 265 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 266 .sensors_supported = { 267 [0] = LSM330_ACCEL_DEV_NAME, 268 }, 269 .ch = (struct iio_chan_spec *)st_accel_16bit_channels, 270 .odr = { 271 .addr = 0x20, 272 .mask = 0xf0, 273 .odr_avl = { 274 { .hz = 3, .value = 0x01, }, 275 { .hz = 6, .value = 0x02, }, 276 { .hz = 12, .value = 0x03, }, 277 { .hz = 25, .value = 0x04, }, 278 { .hz = 50, .value = 0x05, }, 279 { .hz = 100, .value = 0x06, }, 280 { .hz = 200, .value = 0x07, }, 281 { .hz = 400, .value = 0x08, }, 282 { .hz = 800, .value = 0x09, }, 283 { .hz = 1600, .value = 0x0a, }, 284 }, 285 }, 286 .pw = { 287 .addr = 0x20, 288 .mask = 0xf0, 289 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 290 }, 291 .enable_axis = { 292 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, 293 .mask = ST_SENSORS_DEFAULT_AXIS_MASK, 294 }, 295 .fs = { 296 .addr = 0x24, 297 .mask = 0x38, 298 .fs_avl = { 299 [0] = { 300 .num = ST_ACCEL_FS_AVL_2G, 301 .value = 0x00, 302 .gain = IIO_G_TO_M_S_2(61), 303 }, 304 [1] = { 305 .num = ST_ACCEL_FS_AVL_4G, 306 .value = 0x01, 307 .gain = IIO_G_TO_M_S_2(122), 308 }, 309 [2] = { 310 .num = ST_ACCEL_FS_AVL_6G, 311 .value = 0x02, 312 .gain = IIO_G_TO_M_S_2(183), 313 }, 314 [3] = { 315 .num = ST_ACCEL_FS_AVL_8G, 316 .value = 0x03, 317 .gain = IIO_G_TO_M_S_2(244), 318 }, 319 [4] = { 320 .num = ST_ACCEL_FS_AVL_16G, 321 .value = 0x04, 322 .gain = IIO_G_TO_M_S_2(732), 323 }, 324 }, 325 }, 326 .bdu = { 327 .addr = 0x20, 328 .mask = 0x08, 329 }, 330 .drdy_irq = { 331 .int1 = { 332 .addr = 0x23, 333 .mask = 0x80, 334 }, 335 .addr_ihl = 0x23, 336 .mask_ihl = 0x40, 337 .stat_drdy = { 338 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 339 .mask = 0x07, 340 }, 341 .ig1 = { 342 .en_addr = 0x23, 343 .en_mask = 0x08, 344 }, 345 }, 346 .sim = { 347 .addr = 0x24, 348 .value = BIT(0), 349 }, 350 .multi_read_bit = false, 351 .bootime = 2, 352 }, 353 { 354 .wai = 0x3a, 355 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 356 .sensors_supported = { 357 [0] = LIS3LV02DL_ACCEL_DEV_NAME, 358 }, 359 .ch = (struct iio_chan_spec *)st_accel_12bit_channels, 360 .odr = { 361 .addr = 0x20, 362 .mask = 0x30, /* DF1 and DF0 */ 363 .odr_avl = { 364 { .hz = 40, .value = 0x00, }, 365 { .hz = 160, .value = 0x01, }, 366 { .hz = 640, .value = 0x02, }, 367 { .hz = 2560, .value = 0x03, }, 368 }, 369 }, 370 .pw = { 371 .addr = 0x20, 372 .mask = 0xc0, 373 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, 374 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 375 }, 376 .enable_axis = { 377 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, 378 .mask = ST_SENSORS_DEFAULT_AXIS_MASK, 379 }, 380 .fs = { 381 .addr = 0x21, 382 .mask = 0x80, 383 .fs_avl = { 384 [0] = { 385 .num = ST_ACCEL_FS_AVL_2G, 386 .value = 0x00, 387 .gain = IIO_G_TO_M_S_2(1000), 388 }, 389 [1] = { 390 .num = ST_ACCEL_FS_AVL_6G, 391 .value = 0x01, 392 .gain = IIO_G_TO_M_S_2(3000), 393 }, 394 }, 395 }, 396 .bdu = { 397 .addr = 0x21, 398 .mask = 0x40, 399 }, 400 /* 401 * Data Alignment Setting - needs to be set to get 402 * left-justified data like all other sensors. 403 */ 404 .das = { 405 .addr = 0x21, 406 .mask = 0x01, 407 }, 408 .drdy_irq = { 409 .int1 = { 410 .addr = 0x21, 411 .mask = 0x04, 412 }, 413 .stat_drdy = { 414 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 415 .mask = 0x07, 416 }, 417 }, 418 .sim = { 419 .addr = 0x21, 420 .value = BIT(1), 421 }, 422 .multi_read_bit = true, 423 .bootime = 2, /* guess */ 424 }, 425 { 426 .wai = 0x3b, 427 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 428 .sensors_supported = { 429 [0] = LIS331DL_ACCEL_DEV_NAME, 430 }, 431 .ch = (struct iio_chan_spec *)st_accel_8bit_channels, 432 .odr = { 433 .addr = 0x20, 434 .mask = 0x80, 435 .odr_avl = { 436 { .hz = 100, .value = 0x00, }, 437 { .hz = 400, .value = 0x01, }, 438 }, 439 }, 440 .pw = { 441 .addr = 0x20, 442 .mask = 0x40, 443 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, 444 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 445 }, 446 .enable_axis = { 447 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, 448 .mask = ST_SENSORS_DEFAULT_AXIS_MASK, 449 }, 450 .fs = { 451 .addr = 0x20, 452 .mask = 0x20, 453 /* 454 * TODO: check these resulting gain settings, these are 455 * not in the datsheet 456 */ 457 .fs_avl = { 458 [0] = { 459 .num = ST_ACCEL_FS_AVL_2G, 460 .value = 0x00, 461 .gain = IIO_G_TO_M_S_2(18000), 462 }, 463 [1] = { 464 .num = ST_ACCEL_FS_AVL_8G, 465 .value = 0x01, 466 .gain = IIO_G_TO_M_S_2(72000), 467 }, 468 }, 469 }, 470 .drdy_irq = { 471 .int1 = { 472 .addr = 0x22, 473 .mask = 0x04, 474 .addr_od = 0x22, 475 .mask_od = 0x40, 476 }, 477 .int2 = { 478 .addr = 0x22, 479 .mask = 0x20, 480 .addr_od = 0x22, 481 .mask_od = 0x40, 482 }, 483 .addr_ihl = 0x22, 484 .mask_ihl = 0x80, 485 .stat_drdy = { 486 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 487 .mask = 0x07, 488 }, 489 }, 490 .sim = { 491 .addr = 0x21, 492 .value = BIT(7), 493 }, 494 .multi_read_bit = false, 495 .bootime = 2, /* guess */ 496 }, 497 { 498 .wai = 0x32, 499 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 500 .sensors_supported = { 501 [0] = H3LIS331DL_ACCEL_DEV_NAME, 502 }, 503 .ch = (struct iio_chan_spec *)st_accel_12bit_channels, 504 .odr = { 505 .addr = 0x20, 506 .mask = 0x18, 507 .odr_avl = { 508 { .hz = 50, .value = 0x00, }, 509 { .hz = 100, .value = 0x01, }, 510 { .hz = 400, .value = 0x02, }, 511 { .hz = 1000, .value = 0x03, }, 512 }, 513 }, 514 .pw = { 515 .addr = 0x20, 516 .mask = 0x20, 517 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, 518 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 519 }, 520 .enable_axis = { 521 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, 522 .mask = ST_SENSORS_DEFAULT_AXIS_MASK, 523 }, 524 .fs = { 525 .addr = 0x23, 526 .mask = 0x30, 527 .fs_avl = { 528 [0] = { 529 .num = ST_ACCEL_FS_AVL_100G, 530 .value = 0x00, 531 .gain = IIO_G_TO_M_S_2(49000), 532 }, 533 [1] = { 534 .num = ST_ACCEL_FS_AVL_200G, 535 .value = 0x01, 536 .gain = IIO_G_TO_M_S_2(98000), 537 }, 538 [2] = { 539 .num = ST_ACCEL_FS_AVL_400G, 540 .value = 0x03, 541 .gain = IIO_G_TO_M_S_2(195000), 542 }, 543 }, 544 }, 545 .bdu = { 546 .addr = 0x23, 547 .mask = 0x80, 548 }, 549 .drdy_irq = { 550 .int1 = { 551 .addr = 0x22, 552 .mask = 0x02, 553 }, 554 .int2 = { 555 .addr = 0x22, 556 .mask = 0x10, 557 }, 558 .addr_ihl = 0x22, 559 .mask_ihl = 0x80, 560 }, 561 .sim = { 562 .addr = 0x23, 563 .value = BIT(0), 564 }, 565 .multi_read_bit = true, 566 .bootime = 2, 567 }, 568 { 569 /* No WAI register present */ 570 .sensors_supported = { 571 [0] = LIS3L02DQ_ACCEL_DEV_NAME, 572 }, 573 .ch = (struct iio_chan_spec *)st_accel_12bit_channels, 574 .odr = { 575 .addr = 0x20, 576 .mask = 0x30, 577 .odr_avl = { 578 { .hz = 280, .value = 0x00, }, 579 { .hz = 560, .value = 0x01, }, 580 { .hz = 1120, .value = 0x02, }, 581 { .hz = 4480, .value = 0x03, }, 582 }, 583 }, 584 .pw = { 585 .addr = 0x20, 586 .mask = 0xc0, 587 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, 588 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 589 }, 590 .enable_axis = { 591 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, 592 .mask = ST_SENSORS_DEFAULT_AXIS_MASK, 593 }, 594 .fs = { 595 .fs_avl = { 596 [0] = { 597 .num = ST_ACCEL_FS_AVL_2G, 598 .gain = IIO_G_TO_M_S_2(488), 599 }, 600 }, 601 }, 602 /* 603 * The part has a BDU bit but if set the data is never 604 * updated so don't set it. 605 */ 606 .bdu = { 607 }, 608 .drdy_irq = { 609 .int1 = { 610 .addr = 0x21, 611 .mask = 0x04, 612 }, 613 .stat_drdy = { 614 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 615 .mask = 0x07, 616 }, 617 }, 618 .sim = { 619 .addr = 0x21, 620 .value = BIT(1), 621 }, 622 .multi_read_bit = false, 623 .bootime = 2, 624 }, 625 { 626 .wai = 0x33, 627 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 628 .sensors_supported = { 629 [0] = LNG2DM_ACCEL_DEV_NAME, 630 }, 631 .ch = (struct iio_chan_spec *)st_accel_8bit_channels, 632 .odr = { 633 .addr = 0x20, 634 .mask = 0xf0, 635 .odr_avl = { 636 { .hz = 1, .value = 0x01, }, 637 { .hz = 10, .value = 0x02, }, 638 { .hz = 25, .value = 0x03, }, 639 { .hz = 50, .value = 0x04, }, 640 { .hz = 100, .value = 0x05, }, 641 { .hz = 200, .value = 0x06, }, 642 { .hz = 400, .value = 0x07, }, 643 { .hz = 1600, .value = 0x08, }, 644 }, 645 }, 646 .pw = { 647 .addr = 0x20, 648 .mask = 0xf0, 649 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 650 }, 651 .enable_axis = { 652 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, 653 .mask = ST_SENSORS_DEFAULT_AXIS_MASK, 654 }, 655 .fs = { 656 .addr = 0x23, 657 .mask = 0x30, 658 .fs_avl = { 659 [0] = { 660 .num = ST_ACCEL_FS_AVL_2G, 661 .value = 0x00, 662 .gain = IIO_G_TO_M_S_2(15600), 663 }, 664 [1] = { 665 .num = ST_ACCEL_FS_AVL_4G, 666 .value = 0x01, 667 .gain = IIO_G_TO_M_S_2(31200), 668 }, 669 [2] = { 670 .num = ST_ACCEL_FS_AVL_8G, 671 .value = 0x02, 672 .gain = IIO_G_TO_M_S_2(62500), 673 }, 674 [3] = { 675 .num = ST_ACCEL_FS_AVL_16G, 676 .value = 0x03, 677 .gain = IIO_G_TO_M_S_2(187500), 678 }, 679 }, 680 }, 681 .drdy_irq = { 682 .int1 = { 683 .addr = 0x22, 684 .mask = 0x10, 685 }, 686 .addr_ihl = 0x25, 687 .mask_ihl = 0x02, 688 .stat_drdy = { 689 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 690 .mask = 0x07, 691 }, 692 }, 693 .sim = { 694 .addr = 0x23, 695 .value = BIT(0), 696 }, 697 .multi_read_bit = true, 698 .bootime = 2, 699 }, 700 { 701 .wai = 0x44, 702 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 703 .sensors_supported = { 704 [0] = LIS2DW12_ACCEL_DEV_NAME, 705 }, 706 .ch = (struct iio_chan_spec *)st_accel_12bit_channels, 707 .odr = { 708 .addr = 0x20, 709 .mask = 0xf0, 710 .odr_avl = { 711 { .hz = 1, .value = 0x01, }, 712 { .hz = 12, .value = 0x02, }, 713 { .hz = 25, .value = 0x03, }, 714 { .hz = 50, .value = 0x04, }, 715 { .hz = 100, .value = 0x05, }, 716 { .hz = 200, .value = 0x06, }, 717 }, 718 }, 719 .pw = { 720 .addr = 0x20, 721 .mask = 0xf0, 722 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 723 }, 724 .fs = { 725 .addr = 0x25, 726 .mask = 0x30, 727 .fs_avl = { 728 [0] = { 729 .num = ST_ACCEL_FS_AVL_2G, 730 .value = 0x00, 731 .gain = IIO_G_TO_M_S_2(976), 732 }, 733 [1] = { 734 .num = ST_ACCEL_FS_AVL_4G, 735 .value = 0x01, 736 .gain = IIO_G_TO_M_S_2(1952), 737 }, 738 [2] = { 739 .num = ST_ACCEL_FS_AVL_8G, 740 .value = 0x02, 741 .gain = IIO_G_TO_M_S_2(3904), 742 }, 743 [3] = { 744 .num = ST_ACCEL_FS_AVL_16G, 745 .value = 0x03, 746 .gain = IIO_G_TO_M_S_2(7808), 747 }, 748 }, 749 }, 750 .bdu = { 751 .addr = 0x21, 752 .mask = 0x08, 753 }, 754 .drdy_irq = { 755 .int1 = { 756 .addr = 0x23, 757 .mask = 0x01, 758 .addr_od = 0x22, 759 .mask_od = 0x20, 760 }, 761 .int2 = { 762 .addr = 0x24, 763 .mask = 0x01, 764 .addr_od = 0x22, 765 .mask_od = 0x20, 766 }, 767 .addr_ihl = 0x22, 768 .mask_ihl = 0x08, 769 .stat_drdy = { 770 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 771 .mask = 0x01, 772 }, 773 }, 774 .sim = { 775 .addr = 0x21, 776 .value = BIT(0), 777 }, 778 .multi_read_bit = false, 779 .bootime = 2, 780 }, 781 { 782 .wai = 0x11, 783 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 784 .sensors_supported = { 785 [0] = LIS3DHH_ACCEL_DEV_NAME, 786 }, 787 .ch = (struct iio_chan_spec *)st_accel_16bit_channels, 788 .odr = { 789 /* just ODR = 1100Hz available */ 790 .odr_avl = { 791 { .hz = 1100, .value = 0x00, }, 792 }, 793 }, 794 .pw = { 795 .addr = 0x20, 796 .mask = 0x80, 797 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, 798 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 799 }, 800 .fs = { 801 .fs_avl = { 802 [0] = { 803 .num = ST_ACCEL_FS_AVL_2G, 804 .gain = IIO_G_TO_M_S_2(76), 805 }, 806 }, 807 }, 808 .bdu = { 809 .addr = 0x20, 810 .mask = 0x01, 811 }, 812 .drdy_irq = { 813 .int1 = { 814 .addr = 0x21, 815 .mask = 0x80, 816 .addr_od = 0x23, 817 .mask_od = 0x04, 818 }, 819 .int2 = { 820 .addr = 0x22, 821 .mask = 0x80, 822 .addr_od = 0x23, 823 .mask_od = 0x08, 824 }, 825 .stat_drdy = { 826 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 827 .mask = 0x07, 828 }, 829 }, 830 .multi_read_bit = false, 831 .bootime = 2, 832 }, 833 { 834 .wai = 0x33, 835 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS, 836 .sensors_supported = { 837 [0] = LIS2DE12_ACCEL_DEV_NAME, 838 }, 839 .ch = (struct iio_chan_spec *)st_accel_8bit_channels, 840 .odr = { 841 .addr = 0x20, 842 .mask = 0xf0, 843 .odr_avl = { 844 { .hz = 1, .value = 0x01, }, 845 { .hz = 10, .value = 0x02, }, 846 { .hz = 25, .value = 0x03, }, 847 { .hz = 50, .value = 0x04, }, 848 { .hz = 100, .value = 0x05, }, 849 { .hz = 200, .value = 0x06, }, 850 { .hz = 400, .value = 0x07, }, 851 { .hz = 1620, .value = 0x08, }, 852 { .hz = 5376, .value = 0x09, }, 853 }, 854 }, 855 .pw = { 856 .addr = 0x20, 857 .mask = 0xf0, 858 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, 859 }, 860 .enable_axis = { 861 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, 862 .mask = ST_SENSORS_DEFAULT_AXIS_MASK, 863 }, 864 .fs = { 865 .addr = 0x23, 866 .mask = 0x30, 867 .fs_avl = { 868 [0] = { 869 .num = ST_ACCEL_FS_AVL_2G, 870 .value = 0x00, 871 .gain = IIO_G_TO_M_S_2(15600), 872 }, 873 [1] = { 874 .num = ST_ACCEL_FS_AVL_4G, 875 .value = 0x01, 876 .gain = IIO_G_TO_M_S_2(31200), 877 }, 878 [2] = { 879 .num = ST_ACCEL_FS_AVL_8G, 880 .value = 0x02, 881 .gain = IIO_G_TO_M_S_2(62500), 882 }, 883 [3] = { 884 .num = ST_ACCEL_FS_AVL_16G, 885 .value = 0x03, 886 .gain = IIO_G_TO_M_S_2(187500), 887 }, 888 }, 889 }, 890 .drdy_irq = { 891 .int1 = { 892 .addr = 0x22, 893 .mask = 0x10, 894 }, 895 .addr_ihl = 0x25, 896 .mask_ihl = 0x02, 897 .stat_drdy = { 898 .addr = ST_SENSORS_DEFAULT_STAT_ADDR, 899 .mask = 0x07, 900 }, 901 }, 902 .sim = { 903 .addr = 0x23, 904 .value = BIT(0), 905 }, 906 .multi_read_bit = true, 907 .bootime = 2, 908 }, 909 }; 910 911 static int st_accel_read_raw(struct iio_dev *indio_dev, 912 struct iio_chan_spec const *ch, int *val, 913 int *val2, long mask) 914 { 915 int err; 916 struct st_sensor_data *adata = iio_priv(indio_dev); 917 918 switch (mask) { 919 case IIO_CHAN_INFO_RAW: 920 err = st_sensors_read_info_raw(indio_dev, ch, val); 921 if (err < 0) 922 goto read_error; 923 924 return IIO_VAL_INT; 925 case IIO_CHAN_INFO_SCALE: 926 *val = adata->current_fullscale->gain / 1000000; 927 *val2 = adata->current_fullscale->gain % 1000000; 928 return IIO_VAL_INT_PLUS_MICRO; 929 case IIO_CHAN_INFO_SAMP_FREQ: 930 *val = adata->odr; 931 return IIO_VAL_INT; 932 default: 933 return -EINVAL; 934 } 935 936 read_error: 937 return err; 938 } 939 940 static int st_accel_write_raw(struct iio_dev *indio_dev, 941 struct iio_chan_spec const *chan, int val, int val2, long mask) 942 { 943 int err; 944 945 switch (mask) { 946 case IIO_CHAN_INFO_SCALE: { 947 int gain; 948 949 gain = val * 1000000 + val2; 950 err = st_sensors_set_fullscale_by_gain(indio_dev, gain); 951 break; 952 } 953 case IIO_CHAN_INFO_SAMP_FREQ: 954 if (val2) 955 return -EINVAL; 956 mutex_lock(&indio_dev->mlock); 957 err = st_sensors_set_odr(indio_dev, val); 958 mutex_unlock(&indio_dev->mlock); 959 return err; 960 default: 961 return -EINVAL; 962 } 963 964 return err; 965 } 966 967 static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL(); 968 static ST_SENSORS_DEV_ATTR_SCALE_AVAIL(in_accel_scale_available); 969 970 static struct attribute *st_accel_attributes[] = { 971 &iio_dev_attr_sampling_frequency_available.dev_attr.attr, 972 &iio_dev_attr_in_accel_scale_available.dev_attr.attr, 973 NULL, 974 }; 975 976 static const struct attribute_group st_accel_attribute_group = { 977 .attrs = st_accel_attributes, 978 }; 979 980 static const struct iio_info accel_info = { 981 .attrs = &st_accel_attribute_group, 982 .read_raw = &st_accel_read_raw, 983 .write_raw = &st_accel_write_raw, 984 .debugfs_reg_access = &st_sensors_debugfs_reg_access, 985 }; 986 987 #ifdef CONFIG_IIO_TRIGGER 988 static const struct iio_trigger_ops st_accel_trigger_ops = { 989 .set_trigger_state = ST_ACCEL_TRIGGER_SET_STATE, 990 .validate_device = st_sensors_validate_device, 991 }; 992 #define ST_ACCEL_TRIGGER_OPS (&st_accel_trigger_ops) 993 #else 994 #define ST_ACCEL_TRIGGER_OPS NULL 995 #endif 996 997 static const struct iio_mount_matrix * 998 get_mount_matrix(const struct iio_dev *indio_dev, 999 const struct iio_chan_spec *chan) 1000 { 1001 struct st_sensor_data *adata = iio_priv(indio_dev); 1002 1003 return adata->mount_matrix; 1004 } 1005 1006 static const struct iio_chan_spec_ext_info mount_matrix_ext_info[] = { 1007 IIO_MOUNT_MATRIX(IIO_SHARED_BY_ALL, get_mount_matrix), 1008 { }, 1009 }; 1010 1011 /* Read ST-specific _ONT orientation data from ACPI and generate an 1012 * appropriate mount matrix. 1013 */ 1014 static int apply_acpi_orientation(struct iio_dev *indio_dev, 1015 struct iio_chan_spec *channels) 1016 { 1017 #ifdef CONFIG_ACPI 1018 struct st_sensor_data *adata = iio_priv(indio_dev); 1019 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 1020 struct acpi_device *adev; 1021 union acpi_object *ont; 1022 union acpi_object *elements; 1023 acpi_status status; 1024 int ret = -EINVAL; 1025 unsigned int val; 1026 int i, j; 1027 int final_ont[3][3] = { { 0 }, }; 1028 1029 /* For some reason, ST's _ONT translation does not apply directly 1030 * to the data read from the sensor. Another translation must be 1031 * performed first, as described by the matrix below. Perhaps 1032 * ST required this specific translation for the first product 1033 * where the device was mounted? 1034 */ 1035 const int default_ont[3][3] = { 1036 { 0, 1, 0 }, 1037 { -1, 0, 0 }, 1038 { 0, 0, -1 }, 1039 }; 1040 1041 1042 adev = ACPI_COMPANION(adata->dev); 1043 if (!adev) 1044 return 0; 1045 1046 /* Read _ONT data, which should be a package of 6 integers. */ 1047 status = acpi_evaluate_object(adev->handle, "_ONT", NULL, &buffer); 1048 if (status == AE_NOT_FOUND) { 1049 return 0; 1050 } else if (ACPI_FAILURE(status)) { 1051 dev_warn(&indio_dev->dev, "failed to execute _ONT: %d\n", 1052 status); 1053 return status; 1054 } 1055 1056 ont = buffer.pointer; 1057 if (ont->type != ACPI_TYPE_PACKAGE || ont->package.count != 6) 1058 goto out; 1059 1060 /* The first 3 integers provide axis order information. 1061 * e.g. 0 1 2 would indicate normal X,Y,Z ordering. 1062 * e.g. 1 0 2 indicates that data arrives in order Y,X,Z. 1063 */ 1064 elements = ont->package.elements; 1065 for (i = 0; i < 3; i++) { 1066 if (elements[i].type != ACPI_TYPE_INTEGER) 1067 goto out; 1068 1069 val = elements[i].integer.value; 1070 if (val > 2) 1071 goto out; 1072 1073 /* Avoiding full matrix multiplication, we simply reorder the 1074 * columns in the default_ont matrix according to the 1075 * ordering provided by _ONT. 1076 */ 1077 final_ont[0][i] = default_ont[0][val]; 1078 final_ont[1][i] = default_ont[1][val]; 1079 final_ont[2][i] = default_ont[2][val]; 1080 } 1081 1082 /* The final 3 integers provide sign flip information. 1083 * 0 means no change, 1 means flip. 1084 * e.g. 0 0 1 means that Z data should be sign-flipped. 1085 * This is applied after the axis reordering from above. 1086 */ 1087 elements += 3; 1088 for (i = 0; i < 3; i++) { 1089 if (elements[i].type != ACPI_TYPE_INTEGER) 1090 goto out; 1091 1092 val = elements[i].integer.value; 1093 if (val != 0 && val != 1) 1094 goto out; 1095 if (!val) 1096 continue; 1097 1098 /* Flip the values in the indicated column */ 1099 final_ont[0][i] *= -1; 1100 final_ont[1][i] *= -1; 1101 final_ont[2][i] *= -1; 1102 } 1103 1104 /* Convert our integer matrix to a string-based iio_mount_matrix */ 1105 adata->mount_matrix = devm_kmalloc(&indio_dev->dev, 1106 sizeof(*adata->mount_matrix), 1107 GFP_KERNEL); 1108 if (!adata->mount_matrix) { 1109 ret = -ENOMEM; 1110 goto out; 1111 } 1112 1113 for (i = 0; i < 3; i++) { 1114 for (j = 0; j < 3; j++) { 1115 int matrix_val = final_ont[i][j]; 1116 char *str_value; 1117 1118 switch (matrix_val) { 1119 case -1: 1120 str_value = "-1"; 1121 break; 1122 case 0: 1123 str_value = "0"; 1124 break; 1125 case 1: 1126 str_value = "1"; 1127 break; 1128 default: 1129 goto out; 1130 } 1131 adata->mount_matrix->rotation[i * 3 + j] = str_value; 1132 } 1133 } 1134 1135 /* Expose the mount matrix via ext_info */ 1136 for (i = 0; i < indio_dev->num_channels; i++) 1137 channels[i].ext_info = mount_matrix_ext_info; 1138 1139 ret = 0; 1140 dev_info(&indio_dev->dev, "computed mount matrix from ACPI\n"); 1141 1142 out: 1143 kfree(buffer.pointer); 1144 return ret; 1145 #else /* !CONFIG_ACPI */ 1146 return 0; 1147 #endif 1148 } 1149 1150 int st_accel_common_probe(struct iio_dev *indio_dev) 1151 { 1152 struct st_sensor_data *adata = iio_priv(indio_dev); 1153 struct st_sensors_platform_data *pdata = 1154 (struct st_sensors_platform_data *)adata->dev->platform_data; 1155 int irq = adata->get_irq_data_ready(indio_dev); 1156 struct iio_chan_spec *channels; 1157 size_t channels_size; 1158 int err; 1159 1160 indio_dev->modes = INDIO_DIRECT_MODE; 1161 indio_dev->info = &accel_info; 1162 mutex_init(&adata->tb.buf_lock); 1163 1164 err = st_sensors_power_enable(indio_dev); 1165 if (err) 1166 return err; 1167 1168 err = st_sensors_check_device_support(indio_dev, 1169 ARRAY_SIZE(st_accel_sensors_settings), 1170 st_accel_sensors_settings); 1171 if (err < 0) 1172 goto st_accel_power_off; 1173 1174 adata->num_data_channels = ST_ACCEL_NUMBER_DATA_CHANNELS; 1175 adata->multiread_bit = adata->sensor_settings->multi_read_bit; 1176 indio_dev->num_channels = ST_SENSORS_NUMBER_ALL_CHANNELS; 1177 1178 channels_size = indio_dev->num_channels * sizeof(struct iio_chan_spec); 1179 channels = devm_kmemdup(&indio_dev->dev, 1180 adata->sensor_settings->ch, 1181 channels_size, GFP_KERNEL); 1182 if (!channels) { 1183 err = -ENOMEM; 1184 goto st_accel_power_off; 1185 } 1186 1187 if (apply_acpi_orientation(indio_dev, channels)) 1188 dev_warn(&indio_dev->dev, 1189 "failed to apply ACPI orientation data: %d\n", err); 1190 1191 indio_dev->channels = channels; 1192 adata->current_fullscale = (struct st_sensor_fullscale_avl *) 1193 &adata->sensor_settings->fs.fs_avl[0]; 1194 adata->odr = adata->sensor_settings->odr.odr_avl[0].hz; 1195 1196 if (!pdata) 1197 pdata = (struct st_sensors_platform_data *)&default_accel_pdata; 1198 1199 err = st_sensors_init_sensor(indio_dev, pdata); 1200 if (err < 0) 1201 goto st_accel_power_off; 1202 1203 err = st_accel_allocate_ring(indio_dev); 1204 if (err < 0) 1205 goto st_accel_power_off; 1206 1207 if (irq > 0) { 1208 err = st_sensors_allocate_trigger(indio_dev, 1209 ST_ACCEL_TRIGGER_OPS); 1210 if (err < 0) 1211 goto st_accel_probe_trigger_error; 1212 } 1213 1214 err = iio_device_register(indio_dev); 1215 if (err) 1216 goto st_accel_device_register_error; 1217 1218 dev_info(&indio_dev->dev, "registered accelerometer %s\n", 1219 indio_dev->name); 1220 1221 return 0; 1222 1223 st_accel_device_register_error: 1224 if (irq > 0) 1225 st_sensors_deallocate_trigger(indio_dev); 1226 st_accel_probe_trigger_error: 1227 st_accel_deallocate_ring(indio_dev); 1228 st_accel_power_off: 1229 st_sensors_power_disable(indio_dev); 1230 1231 return err; 1232 } 1233 EXPORT_SYMBOL(st_accel_common_probe); 1234 1235 void st_accel_common_remove(struct iio_dev *indio_dev) 1236 { 1237 struct st_sensor_data *adata = iio_priv(indio_dev); 1238 1239 st_sensors_power_disable(indio_dev); 1240 1241 iio_device_unregister(indio_dev); 1242 if (adata->get_irq_data_ready(indio_dev) > 0) 1243 st_sensors_deallocate_trigger(indio_dev); 1244 1245 st_accel_deallocate_ring(indio_dev); 1246 } 1247 EXPORT_SYMBOL(st_accel_common_remove); 1248 1249 MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>"); 1250 MODULE_DESCRIPTION("STMicroelectronics accelerometers driver"); 1251 MODULE_LICENSE("GPL v2"); 1252