1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sca3000_core.c -- support VTI sca3000 series accelerometers via SPI 4 * 5 * Copyright (c) 2009 Jonathan Cameron <jic23@kernel.org> 6 * 7 * See industrialio/accels/sca3000.h for comments. 8 */ 9 10 #include <linux/interrupt.h> 11 #include <linux/fs.h> 12 #include <linux/device.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/spi/spi.h> 16 #include <linux/sysfs.h> 17 #include <linux/module.h> 18 #include <linux/uaccess.h> 19 #include <linux/iio/iio.h> 20 #include <linux/iio/sysfs.h> 21 #include <linux/iio/events.h> 22 #include <linux/iio/buffer.h> 23 #include <linux/iio/kfifo_buf.h> 24 25 #define SCA3000_WRITE_REG(a) (((a) << 2) | 0x02) 26 #define SCA3000_READ_REG(a) ((a) << 2) 27 28 #define SCA3000_REG_REVID_ADDR 0x00 29 #define SCA3000_REG_REVID_MAJOR_MASK GENMASK(8, 4) 30 #define SCA3000_REG_REVID_MINOR_MASK GENMASK(3, 0) 31 32 #define SCA3000_REG_STATUS_ADDR 0x02 33 #define SCA3000_LOCKED BIT(5) 34 #define SCA3000_EEPROM_CS_ERROR BIT(1) 35 #define SCA3000_SPI_FRAME_ERROR BIT(0) 36 37 /* All reads done using register decrement so no need to directly access LSBs */ 38 #define SCA3000_REG_X_MSB_ADDR 0x05 39 #define SCA3000_REG_Y_MSB_ADDR 0x07 40 #define SCA3000_REG_Z_MSB_ADDR 0x09 41 42 #define SCA3000_REG_RING_OUT_ADDR 0x0f 43 44 /* Temp read untested - the e05 doesn't have the sensor */ 45 #define SCA3000_REG_TEMP_MSB_ADDR 0x13 46 47 #define SCA3000_REG_MODE_ADDR 0x14 48 #define SCA3000_MODE_PROT_MASK 0x28 49 #define SCA3000_REG_MODE_RING_BUF_ENABLE BIT(7) 50 #define SCA3000_REG_MODE_RING_BUF_8BIT BIT(6) 51 52 /* 53 * Free fall detection triggers an interrupt if the acceleration 54 * is below a threshold for equivalent of 25cm drop 55 */ 56 #define SCA3000_REG_MODE_FREE_FALL_DETECT BIT(4) 57 #define SCA3000_REG_MODE_MEAS_MODE_NORMAL 0x00 58 #define SCA3000_REG_MODE_MEAS_MODE_OP_1 0x01 59 #define SCA3000_REG_MODE_MEAS_MODE_OP_2 0x02 60 61 /* 62 * In motion detection mode the accelerations are band pass filtered 63 * (approx 1 - 25Hz) and then a programmable threshold used to trigger 64 * and interrupt. 65 */ 66 #define SCA3000_REG_MODE_MEAS_MODE_MOT_DET 0x03 67 #define SCA3000_REG_MODE_MODE_MASK 0x03 68 69 #define SCA3000_REG_BUF_COUNT_ADDR 0x15 70 71 #define SCA3000_REG_INT_STATUS_ADDR 0x16 72 #define SCA3000_REG_INT_STATUS_THREE_QUARTERS BIT(7) 73 #define SCA3000_REG_INT_STATUS_HALF BIT(6) 74 75 #define SCA3000_INT_STATUS_FREE_FALL BIT(3) 76 #define SCA3000_INT_STATUS_Y_TRIGGER BIT(2) 77 #define SCA3000_INT_STATUS_X_TRIGGER BIT(1) 78 #define SCA3000_INT_STATUS_Z_TRIGGER BIT(0) 79 80 /* Used to allow access to multiplexed registers */ 81 #define SCA3000_REG_CTRL_SEL_ADDR 0x18 82 /* Only available for SCA3000-D03 and SCA3000-D01 */ 83 #define SCA3000_REG_CTRL_SEL_I2C_DISABLE 0x01 84 #define SCA3000_REG_CTRL_SEL_MD_CTRL 0x02 85 #define SCA3000_REG_CTRL_SEL_MD_Y_TH 0x03 86 #define SCA3000_REG_CTRL_SEL_MD_X_TH 0x04 87 #define SCA3000_REG_CTRL_SEL_MD_Z_TH 0x05 88 /* 89 * BE VERY CAREFUL WITH THIS, IF 3 BITS ARE NOT SET the device 90 * will not function 91 */ 92 #define SCA3000_REG_CTRL_SEL_OUT_CTRL 0x0B 93 94 #define SCA3000_REG_OUT_CTRL_PROT_MASK 0xE0 95 #define SCA3000_REG_OUT_CTRL_BUF_X_EN 0x10 96 #define SCA3000_REG_OUT_CTRL_BUF_Y_EN 0x08 97 #define SCA3000_REG_OUT_CTRL_BUF_Z_EN 0x04 98 #define SCA3000_REG_OUT_CTRL_BUF_DIV_MASK 0x03 99 #define SCA3000_REG_OUT_CTRL_BUF_DIV_4 0x02 100 #define SCA3000_REG_OUT_CTRL_BUF_DIV_2 0x01 101 102 103 /* 104 * Control which motion detector interrupts are on. 105 * For now only OR combinations are supported. 106 */ 107 #define SCA3000_MD_CTRL_PROT_MASK 0xC0 108 #define SCA3000_MD_CTRL_OR_Y BIT(0) 109 #define SCA3000_MD_CTRL_OR_X BIT(1) 110 #define SCA3000_MD_CTRL_OR_Z BIT(2) 111 /* Currently unsupported */ 112 #define SCA3000_MD_CTRL_AND_Y BIT(3) 113 #define SCA3000_MD_CTRL_AND_X BIT(4) 114 #define SCA3000_MD_CTRL_AND_Z BIT(5) 115 116 /* 117 * Some control registers of complex access methods requiring this register to 118 * be used to remove a lock. 119 */ 120 #define SCA3000_REG_UNLOCK_ADDR 0x1e 121 122 #define SCA3000_REG_INT_MASK_ADDR 0x21 123 #define SCA3000_REG_INT_MASK_PROT_MASK 0x1C 124 125 #define SCA3000_REG_INT_MASK_RING_THREE_QUARTER BIT(7) 126 #define SCA3000_REG_INT_MASK_RING_HALF BIT(6) 127 128 #define SCA3000_REG_INT_MASK_ALL_INTS 0x02 129 #define SCA3000_REG_INT_MASK_ACTIVE_HIGH 0x01 130 #define SCA3000_REG_INT_MASK_ACTIVE_LOW 0x00 131 /* Values of multiplexed registers (write to ctrl_data after select) */ 132 #define SCA3000_REG_CTRL_DATA_ADDR 0x22 133 134 /* 135 * Measurement modes available on some sca3000 series chips. Code assumes others 136 * may become available in the future. 137 * 138 * Bypass - Bypass the low-pass filter in the signal channel so as to increase 139 * signal bandwidth. 140 * 141 * Narrow - Narrow low-pass filtering of the signal channel and half output 142 * data rate by decimation. 143 * 144 * Wide - Widen low-pass filtering of signal channel to increase bandwidth 145 */ 146 #define SCA3000_OP_MODE_BYPASS 0x01 147 #define SCA3000_OP_MODE_NARROW 0x02 148 #define SCA3000_OP_MODE_WIDE 0x04 149 #define SCA3000_MAX_TX 6 150 #define SCA3000_MAX_RX 2 151 152 /** 153 * struct sca3000_state - device instance state information 154 * @us: the associated spi device 155 * @info: chip variant information 156 * @last_timestamp: the timestamp of the last event 157 * @mo_det_use_count: reference counter for the motion detection unit 158 * @lock: lock used to protect elements of sca3000_state 159 * and the underlying device state. 160 * @tx: dma-able transmit buffer 161 * @rx: dma-able receive buffer 162 **/ 163 struct sca3000_state { 164 struct spi_device *us; 165 const struct sca3000_chip_info *info; 166 s64 last_timestamp; 167 int mo_det_use_count; 168 struct mutex lock; 169 /* Can these share a cacheline ? */ 170 u8 rx[384] ____cacheline_aligned; 171 u8 tx[6] ____cacheline_aligned; 172 }; 173 174 /** 175 * struct sca3000_chip_info - model dependent parameters 176 * @scale: scale * 10^-6 177 * @temp_output: some devices have temperature sensors. 178 * @measurement_mode_freq: normal mode sampling frequency 179 * @measurement_mode_3db_freq: 3db cutoff frequency of the low pass filter for 180 * the normal measurement mode. 181 * @option_mode_1: first optional mode. Not all models have one 182 * @option_mode_1_freq: option mode 1 sampling frequency 183 * @option_mode_1_3db_freq: 3db cutoff frequency of the low pass filter for 184 * the first option mode. 185 * @option_mode_2: second optional mode. Not all chips have one 186 * @option_mode_2_freq: option mode 2 sampling frequency 187 * @option_mode_2_3db_freq: 3db cutoff frequency of the low pass filter for 188 * the second option mode. 189 * @mod_det_mult_xz: Bit wise multipliers to calculate the threshold 190 * for motion detection in the x and z axis. 191 * @mod_det_mult_y: Bit wise multipliers to calculate the threshold 192 * for motion detection in the y axis. 193 * 194 * This structure is used to hold information about the functionality of a given 195 * sca3000 variant. 196 **/ 197 struct sca3000_chip_info { 198 unsigned int scale; 199 bool temp_output; 200 int measurement_mode_freq; 201 int measurement_mode_3db_freq; 202 int option_mode_1; 203 int option_mode_1_freq; 204 int option_mode_1_3db_freq; 205 int option_mode_2; 206 int option_mode_2_freq; 207 int option_mode_2_3db_freq; 208 int mot_det_mult_xz[6]; 209 int mot_det_mult_y[7]; 210 }; 211 212 enum sca3000_variant { 213 d01, 214 e02, 215 e04, 216 e05, 217 }; 218 219 /* 220 * Note where option modes are not defined, the chip simply does not 221 * support any. 222 * Other chips in the sca3000 series use i2c and are not included here. 223 * 224 * Some of these devices are only listed in the family data sheet and 225 * do not actually appear to be available. 226 */ 227 static const struct sca3000_chip_info sca3000_spi_chip_info_tbl[] = { 228 [d01] = { 229 .scale = 7357, 230 .temp_output = true, 231 .measurement_mode_freq = 250, 232 .measurement_mode_3db_freq = 45, 233 .option_mode_1 = SCA3000_OP_MODE_BYPASS, 234 .option_mode_1_freq = 250, 235 .option_mode_1_3db_freq = 70, 236 .mot_det_mult_xz = {50, 100, 200, 350, 650, 1300}, 237 .mot_det_mult_y = {50, 100, 150, 250, 450, 850, 1750}, 238 }, 239 [e02] = { 240 .scale = 9810, 241 .measurement_mode_freq = 125, 242 .measurement_mode_3db_freq = 40, 243 .option_mode_1 = SCA3000_OP_MODE_NARROW, 244 .option_mode_1_freq = 63, 245 .option_mode_1_3db_freq = 11, 246 .mot_det_mult_xz = {100, 150, 300, 550, 1050, 2050}, 247 .mot_det_mult_y = {50, 100, 200, 350, 700, 1350, 2700}, 248 }, 249 [e04] = { 250 .scale = 19620, 251 .measurement_mode_freq = 100, 252 .measurement_mode_3db_freq = 38, 253 .option_mode_1 = SCA3000_OP_MODE_NARROW, 254 .option_mode_1_freq = 50, 255 .option_mode_1_3db_freq = 9, 256 .option_mode_2 = SCA3000_OP_MODE_WIDE, 257 .option_mode_2_freq = 400, 258 .option_mode_2_3db_freq = 70, 259 .mot_det_mult_xz = {200, 300, 600, 1100, 2100, 4100}, 260 .mot_det_mult_y = {100, 200, 400, 7000, 1400, 2700, 54000}, 261 }, 262 [e05] = { 263 .scale = 61313, 264 .measurement_mode_freq = 200, 265 .measurement_mode_3db_freq = 60, 266 .option_mode_1 = SCA3000_OP_MODE_NARROW, 267 .option_mode_1_freq = 50, 268 .option_mode_1_3db_freq = 9, 269 .option_mode_2 = SCA3000_OP_MODE_WIDE, 270 .option_mode_2_freq = 400, 271 .option_mode_2_3db_freq = 75, 272 .mot_det_mult_xz = {600, 900, 1700, 3200, 6100, 11900}, 273 .mot_det_mult_y = {300, 600, 1200, 2000, 4100, 7800, 15600}, 274 }, 275 }; 276 277 static int sca3000_write_reg(struct sca3000_state *st, u8 address, u8 val) 278 { 279 st->tx[0] = SCA3000_WRITE_REG(address); 280 st->tx[1] = val; 281 return spi_write(st->us, st->tx, 2); 282 } 283 284 static int sca3000_read_data_short(struct sca3000_state *st, 285 u8 reg_address_high, 286 int len) 287 { 288 struct spi_transfer xfer[2] = { 289 { 290 .len = 1, 291 .tx_buf = st->tx, 292 }, { 293 .len = len, 294 .rx_buf = st->rx, 295 } 296 }; 297 st->tx[0] = SCA3000_READ_REG(reg_address_high); 298 299 return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer)); 300 } 301 302 /** 303 * sca3000_reg_lock_on() - test if the ctrl register lock is on 304 * @st: Driver specific device instance data. 305 * 306 * Lock must be held. 307 **/ 308 static int sca3000_reg_lock_on(struct sca3000_state *st) 309 { 310 int ret; 311 312 ret = sca3000_read_data_short(st, SCA3000_REG_STATUS_ADDR, 1); 313 if (ret < 0) 314 return ret; 315 316 return !(st->rx[0] & SCA3000_LOCKED); 317 } 318 319 /** 320 * __sca3000_unlock_reg_lock() - unlock the control registers 321 * @st: Driver specific device instance data. 322 * 323 * Note the device does not appear to support doing this in a single transfer. 324 * This should only ever be used as part of ctrl reg read. 325 * Lock must be held before calling this 326 */ 327 static int __sca3000_unlock_reg_lock(struct sca3000_state *st) 328 { 329 struct spi_transfer xfer[3] = { 330 { 331 .len = 2, 332 .cs_change = 1, 333 .tx_buf = st->tx, 334 }, { 335 .len = 2, 336 .cs_change = 1, 337 .tx_buf = st->tx + 2, 338 }, { 339 .len = 2, 340 .tx_buf = st->tx + 4, 341 }, 342 }; 343 st->tx[0] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR); 344 st->tx[1] = 0x00; 345 st->tx[2] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR); 346 st->tx[3] = 0x50; 347 st->tx[4] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR); 348 st->tx[5] = 0xA0; 349 350 return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer)); 351 } 352 353 /** 354 * sca3000_write_ctrl_reg() write to a lock protect ctrl register 355 * @st: Driver specific device instance data. 356 * @sel: selects which registers we wish to write to 357 * @val: the value to be written 358 * 359 * Certain control registers are protected against overwriting by the lock 360 * register and use a shared write address. This function allows writing of 361 * these registers. 362 * Lock must be held. 363 */ 364 static int sca3000_write_ctrl_reg(struct sca3000_state *st, 365 u8 sel, 366 uint8_t val) 367 { 368 int ret; 369 370 ret = sca3000_reg_lock_on(st); 371 if (ret < 0) 372 goto error_ret; 373 if (ret) { 374 ret = __sca3000_unlock_reg_lock(st); 375 if (ret) 376 goto error_ret; 377 } 378 379 /* Set the control select register */ 380 ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, sel); 381 if (ret) 382 goto error_ret; 383 384 /* Write the actual value into the register */ 385 ret = sca3000_write_reg(st, SCA3000_REG_CTRL_DATA_ADDR, val); 386 387 error_ret: 388 return ret; 389 } 390 391 /** 392 * sca3000_read_ctrl_reg() read from lock protected control register. 393 * @st: Driver specific device instance data. 394 * @ctrl_reg: Which ctrl register do we want to read. 395 * 396 * Lock must be held. 397 */ 398 static int sca3000_read_ctrl_reg(struct sca3000_state *st, 399 u8 ctrl_reg) 400 { 401 int ret; 402 403 ret = sca3000_reg_lock_on(st); 404 if (ret < 0) 405 goto error_ret; 406 if (ret) { 407 ret = __sca3000_unlock_reg_lock(st); 408 if (ret) 409 goto error_ret; 410 } 411 /* Set the control select register */ 412 ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, ctrl_reg); 413 if (ret) 414 goto error_ret; 415 ret = sca3000_read_data_short(st, SCA3000_REG_CTRL_DATA_ADDR, 1); 416 if (ret) 417 goto error_ret; 418 return st->rx[0]; 419 error_ret: 420 return ret; 421 } 422 423 /** 424 * sca3000_show_rev() - sysfs interface to read the chip revision number 425 * @indio_dev: Device instance specific generic IIO data. 426 * Driver specific device instance data can be obtained via 427 * via iio_priv(indio_dev) 428 */ 429 static int sca3000_print_rev(struct iio_dev *indio_dev) 430 { 431 int ret; 432 struct sca3000_state *st = iio_priv(indio_dev); 433 434 mutex_lock(&st->lock); 435 ret = sca3000_read_data_short(st, SCA3000_REG_REVID_ADDR, 1); 436 if (ret < 0) 437 goto error_ret; 438 dev_info(&indio_dev->dev, 439 "sca3000 revision major=%lu, minor=%lu\n", 440 st->rx[0] & SCA3000_REG_REVID_MAJOR_MASK, 441 st->rx[0] & SCA3000_REG_REVID_MINOR_MASK); 442 error_ret: 443 mutex_unlock(&st->lock); 444 445 return ret; 446 } 447 448 static ssize_t 449 sca3000_show_available_3db_freqs(struct device *dev, 450 struct device_attribute *attr, 451 char *buf) 452 { 453 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 454 struct sca3000_state *st = iio_priv(indio_dev); 455 int len; 456 457 len = sprintf(buf, "%d", st->info->measurement_mode_3db_freq); 458 if (st->info->option_mode_1) 459 len += sprintf(buf + len, " %d", 460 st->info->option_mode_1_3db_freq); 461 if (st->info->option_mode_2) 462 len += sprintf(buf + len, " %d", 463 st->info->option_mode_2_3db_freq); 464 len += sprintf(buf + len, "\n"); 465 466 return len; 467 } 468 469 static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available, 470 S_IRUGO, sca3000_show_available_3db_freqs, 471 NULL, 0); 472 473 static const struct iio_event_spec sca3000_event = { 474 .type = IIO_EV_TYPE_MAG, 475 .dir = IIO_EV_DIR_RISING, 476 .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE), 477 }; 478 479 /* 480 * Note the hack in the number of bits to pretend we have 2 more than 481 * we do in the fifo. 482 */ 483 #define SCA3000_CHAN(index, mod) \ 484 { \ 485 .type = IIO_ACCEL, \ 486 .modified = 1, \ 487 .channel2 = mod, \ 488 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 489 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |\ 490 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),\ 491 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\ 492 .address = index, \ 493 .scan_index = index, \ 494 .scan_type = { \ 495 .sign = 's', \ 496 .realbits = 13, \ 497 .storagebits = 16, \ 498 .shift = 3, \ 499 .endianness = IIO_BE, \ 500 }, \ 501 .event_spec = &sca3000_event, \ 502 .num_event_specs = 1, \ 503 } 504 505 static const struct iio_event_spec sca3000_freefall_event_spec = { 506 .type = IIO_EV_TYPE_MAG, 507 .dir = IIO_EV_DIR_FALLING, 508 .mask_separate = BIT(IIO_EV_INFO_ENABLE) | 509 BIT(IIO_EV_INFO_PERIOD), 510 }; 511 512 static const struct iio_chan_spec sca3000_channels[] = { 513 SCA3000_CHAN(0, IIO_MOD_X), 514 SCA3000_CHAN(1, IIO_MOD_Y), 515 SCA3000_CHAN(2, IIO_MOD_Z), 516 { 517 .type = IIO_ACCEL, 518 .modified = 1, 519 .channel2 = IIO_MOD_X_AND_Y_AND_Z, 520 .scan_index = -1, /* Fake channel */ 521 .event_spec = &sca3000_freefall_event_spec, 522 .num_event_specs = 1, 523 }, 524 }; 525 526 static const struct iio_chan_spec sca3000_channels_with_temp[] = { 527 SCA3000_CHAN(0, IIO_MOD_X), 528 SCA3000_CHAN(1, IIO_MOD_Y), 529 SCA3000_CHAN(2, IIO_MOD_Z), 530 { 531 .type = IIO_TEMP, 532 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), 533 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | 534 BIT(IIO_CHAN_INFO_OFFSET), 535 /* No buffer support */ 536 .scan_index = -1, 537 }, 538 { 539 .type = IIO_ACCEL, 540 .modified = 1, 541 .channel2 = IIO_MOD_X_AND_Y_AND_Z, 542 .scan_index = -1, /* Fake channel */ 543 .event_spec = &sca3000_freefall_event_spec, 544 .num_event_specs = 1, 545 }, 546 }; 547 548 static u8 sca3000_addresses[3][3] = { 549 [0] = {SCA3000_REG_X_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_X_TH, 550 SCA3000_MD_CTRL_OR_X}, 551 [1] = {SCA3000_REG_Y_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Y_TH, 552 SCA3000_MD_CTRL_OR_Y}, 553 [2] = {SCA3000_REG_Z_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Z_TH, 554 SCA3000_MD_CTRL_OR_Z}, 555 }; 556 557 /** 558 * __sca3000_get_base_freq() - obtain mode specific base frequency 559 * @st: Private driver specific device instance specific state. 560 * @info: chip type specific information. 561 * @base_freq: Base frequency for the current measurement mode. 562 * 563 * lock must be held 564 */ 565 static inline int __sca3000_get_base_freq(struct sca3000_state *st, 566 const struct sca3000_chip_info *info, 567 int *base_freq) 568 { 569 int ret; 570 571 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); 572 if (ret) 573 goto error_ret; 574 switch (SCA3000_REG_MODE_MODE_MASK & st->rx[0]) { 575 case SCA3000_REG_MODE_MEAS_MODE_NORMAL: 576 *base_freq = info->measurement_mode_freq; 577 break; 578 case SCA3000_REG_MODE_MEAS_MODE_OP_1: 579 *base_freq = info->option_mode_1_freq; 580 break; 581 case SCA3000_REG_MODE_MEAS_MODE_OP_2: 582 *base_freq = info->option_mode_2_freq; 583 break; 584 default: 585 ret = -EINVAL; 586 } 587 error_ret: 588 return ret; 589 } 590 591 /** 592 * sca3000_read_raw_samp_freq() - read_raw handler for IIO_CHAN_INFO_SAMP_FREQ 593 * @st: Private driver specific device instance specific state. 594 * @val: The frequency read back. 595 * 596 * lock must be held 597 **/ 598 static int sca3000_read_raw_samp_freq(struct sca3000_state *st, int *val) 599 { 600 int ret; 601 602 ret = __sca3000_get_base_freq(st, st->info, val); 603 if (ret) 604 return ret; 605 606 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL); 607 if (ret < 0) 608 return ret; 609 610 if (*val > 0) { 611 ret &= SCA3000_REG_OUT_CTRL_BUF_DIV_MASK; 612 switch (ret) { 613 case SCA3000_REG_OUT_CTRL_BUF_DIV_2: 614 *val /= 2; 615 break; 616 case SCA3000_REG_OUT_CTRL_BUF_DIV_4: 617 *val /= 4; 618 break; 619 } 620 } 621 622 return 0; 623 } 624 625 /** 626 * sca3000_write_raw_samp_freq() - write_raw handler for IIO_CHAN_INFO_SAMP_FREQ 627 * @st: Private driver specific device instance specific state. 628 * @val: The frequency desired. 629 * 630 * lock must be held 631 */ 632 static int sca3000_write_raw_samp_freq(struct sca3000_state *st, int val) 633 { 634 int ret, base_freq, ctrlval; 635 636 ret = __sca3000_get_base_freq(st, st->info, &base_freq); 637 if (ret) 638 return ret; 639 640 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL); 641 if (ret < 0) 642 return ret; 643 644 ctrlval = ret & ~SCA3000_REG_OUT_CTRL_BUF_DIV_MASK; 645 646 if (val == base_freq / 2) 647 ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_2; 648 if (val == base_freq / 4) 649 ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_4; 650 else if (val != base_freq) 651 return -EINVAL; 652 653 return sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL, 654 ctrlval); 655 } 656 657 static int sca3000_read_3db_freq(struct sca3000_state *st, int *val) 658 { 659 int ret; 660 661 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); 662 if (ret) 663 return ret; 664 665 /* mask bottom 2 bits - only ones that are relevant */ 666 st->rx[0] &= SCA3000_REG_MODE_MODE_MASK; 667 switch (st->rx[0]) { 668 case SCA3000_REG_MODE_MEAS_MODE_NORMAL: 669 *val = st->info->measurement_mode_3db_freq; 670 return IIO_VAL_INT; 671 case SCA3000_REG_MODE_MEAS_MODE_MOT_DET: 672 return -EBUSY; 673 case SCA3000_REG_MODE_MEAS_MODE_OP_1: 674 *val = st->info->option_mode_1_3db_freq; 675 return IIO_VAL_INT; 676 case SCA3000_REG_MODE_MEAS_MODE_OP_2: 677 *val = st->info->option_mode_2_3db_freq; 678 return IIO_VAL_INT; 679 default: 680 return -EINVAL; 681 } 682 } 683 684 static int sca3000_write_3db_freq(struct sca3000_state *st, int val) 685 { 686 int ret; 687 int mode; 688 689 if (val == st->info->measurement_mode_3db_freq) 690 mode = SCA3000_REG_MODE_MEAS_MODE_NORMAL; 691 else if (st->info->option_mode_1 && 692 (val == st->info->option_mode_1_3db_freq)) 693 mode = SCA3000_REG_MODE_MEAS_MODE_OP_1; 694 else if (st->info->option_mode_2 && 695 (val == st->info->option_mode_2_3db_freq)) 696 mode = SCA3000_REG_MODE_MEAS_MODE_OP_2; 697 else 698 return -EINVAL; 699 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); 700 if (ret) 701 return ret; 702 703 st->rx[0] &= ~SCA3000_REG_MODE_MODE_MASK; 704 st->rx[0] |= (mode & SCA3000_REG_MODE_MODE_MASK); 705 706 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, st->rx[0]); 707 } 708 709 static int sca3000_read_raw(struct iio_dev *indio_dev, 710 struct iio_chan_spec const *chan, 711 int *val, 712 int *val2, 713 long mask) 714 { 715 struct sca3000_state *st = iio_priv(indio_dev); 716 int ret; 717 u8 address; 718 719 switch (mask) { 720 case IIO_CHAN_INFO_RAW: 721 mutex_lock(&st->lock); 722 if (chan->type == IIO_ACCEL) { 723 if (st->mo_det_use_count) { 724 mutex_unlock(&st->lock); 725 return -EBUSY; 726 } 727 address = sca3000_addresses[chan->address][0]; 728 ret = sca3000_read_data_short(st, address, 2); 729 if (ret < 0) { 730 mutex_unlock(&st->lock); 731 return ret; 732 } 733 *val = (be16_to_cpup((__be16 *)st->rx) >> 3) & 0x1FFF; 734 *val = ((*val) << (sizeof(*val) * 8 - 13)) >> 735 (sizeof(*val) * 8 - 13); 736 } else { 737 /* get the temperature when available */ 738 ret = sca3000_read_data_short(st, 739 SCA3000_REG_TEMP_MSB_ADDR, 740 2); 741 if (ret < 0) { 742 mutex_unlock(&st->lock); 743 return ret; 744 } 745 *val = ((st->rx[0] & 0x3F) << 3) | 746 ((st->rx[1] & 0xE0) >> 5); 747 } 748 mutex_unlock(&st->lock); 749 return IIO_VAL_INT; 750 case IIO_CHAN_INFO_SCALE: 751 *val = 0; 752 if (chan->type == IIO_ACCEL) 753 *val2 = st->info->scale; 754 else /* temperature */ 755 *val2 = 555556; 756 return IIO_VAL_INT_PLUS_MICRO; 757 case IIO_CHAN_INFO_OFFSET: 758 *val = -214; 759 *val2 = 600000; 760 return IIO_VAL_INT_PLUS_MICRO; 761 case IIO_CHAN_INFO_SAMP_FREQ: 762 mutex_lock(&st->lock); 763 ret = sca3000_read_raw_samp_freq(st, val); 764 mutex_unlock(&st->lock); 765 return ret ? ret : IIO_VAL_INT; 766 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 767 mutex_lock(&st->lock); 768 ret = sca3000_read_3db_freq(st, val); 769 mutex_unlock(&st->lock); 770 return ret; 771 default: 772 return -EINVAL; 773 } 774 } 775 776 static int sca3000_write_raw(struct iio_dev *indio_dev, 777 struct iio_chan_spec const *chan, 778 int val, int val2, long mask) 779 { 780 struct sca3000_state *st = iio_priv(indio_dev); 781 int ret; 782 783 switch (mask) { 784 case IIO_CHAN_INFO_SAMP_FREQ: 785 if (val2) 786 return -EINVAL; 787 mutex_lock(&st->lock); 788 ret = sca3000_write_raw_samp_freq(st, val); 789 mutex_unlock(&st->lock); 790 return ret; 791 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 792 if (val2) 793 return -EINVAL; 794 mutex_lock(&st->lock); 795 ret = sca3000_write_3db_freq(st, val); 796 mutex_unlock(&st->lock); 797 return ret; 798 default: 799 return -EINVAL; 800 } 801 802 return ret; 803 } 804 805 /** 806 * sca3000_read_av_freq() - sysfs function to get available frequencies 807 * @dev: Device structure for this device. 808 * @attr: Description of the attribute. 809 * @buf: Incoming string 810 * 811 * The later modes are only relevant to the ring buffer - and depend on current 812 * mode. Note that data sheet gives rather wide tolerances for these so integer 813 * division will give good enough answer and not all chips have them specified 814 * at all. 815 **/ 816 static ssize_t sca3000_read_av_freq(struct device *dev, 817 struct device_attribute *attr, 818 char *buf) 819 { 820 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 821 struct sca3000_state *st = iio_priv(indio_dev); 822 int len = 0, ret, val; 823 824 mutex_lock(&st->lock); 825 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); 826 val = st->rx[0]; 827 mutex_unlock(&st->lock); 828 if (ret) 829 goto error_ret; 830 831 switch (val & SCA3000_REG_MODE_MODE_MASK) { 832 case SCA3000_REG_MODE_MEAS_MODE_NORMAL: 833 len += sprintf(buf + len, "%d %d %d\n", 834 st->info->measurement_mode_freq, 835 st->info->measurement_mode_freq / 2, 836 st->info->measurement_mode_freq / 4); 837 break; 838 case SCA3000_REG_MODE_MEAS_MODE_OP_1: 839 len += sprintf(buf + len, "%d %d %d\n", 840 st->info->option_mode_1_freq, 841 st->info->option_mode_1_freq / 2, 842 st->info->option_mode_1_freq / 4); 843 break; 844 case SCA3000_REG_MODE_MEAS_MODE_OP_2: 845 len += sprintf(buf + len, "%d %d %d\n", 846 st->info->option_mode_2_freq, 847 st->info->option_mode_2_freq / 2, 848 st->info->option_mode_2_freq / 4); 849 break; 850 } 851 return len; 852 error_ret: 853 return ret; 854 } 855 856 /* 857 * Should only really be registered if ring buffer support is compiled in. 858 * Does no harm however and doing it right would add a fair bit of complexity 859 */ 860 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(sca3000_read_av_freq); 861 862 /** 863 * sca3000_read_event_value() - query of a threshold or period 864 **/ 865 static int sca3000_read_event_value(struct iio_dev *indio_dev, 866 const struct iio_chan_spec *chan, 867 enum iio_event_type type, 868 enum iio_event_direction dir, 869 enum iio_event_info info, 870 int *val, int *val2) 871 { 872 struct sca3000_state *st = iio_priv(indio_dev); 873 long ret; 874 int i; 875 876 switch (info) { 877 case IIO_EV_INFO_VALUE: 878 mutex_lock(&st->lock); 879 ret = sca3000_read_ctrl_reg(st, 880 sca3000_addresses[chan->address][1]); 881 mutex_unlock(&st->lock); 882 if (ret < 0) 883 return ret; 884 *val = 0; 885 if (chan->channel2 == IIO_MOD_Y) 886 for_each_set_bit(i, &ret, 887 ARRAY_SIZE(st->info->mot_det_mult_y)) 888 *val += st->info->mot_det_mult_y[i]; 889 else 890 for_each_set_bit(i, &ret, 891 ARRAY_SIZE(st->info->mot_det_mult_xz)) 892 *val += st->info->mot_det_mult_xz[i]; 893 894 return IIO_VAL_INT; 895 case IIO_EV_INFO_PERIOD: 896 *val = 0; 897 *val2 = 226000; 898 return IIO_VAL_INT_PLUS_MICRO; 899 default: 900 return -EINVAL; 901 } 902 } 903 904 /** 905 * sca3000_write_value() - control of threshold and period 906 * @indio_dev: Device instance specific IIO information. 907 * @chan: Description of the channel for which the event is being 908 * configured. 909 * @type: The type of event being configured, here magnitude rising 910 * as everything else is read only. 911 * @dir: Direction of the event (here rising) 912 * @info: What information about the event are we configuring. 913 * Here the threshold only. 914 * @val: Integer part of the value being written.. 915 * @val2: Non integer part of the value being written. Here always 0. 916 */ 917 static int sca3000_write_event_value(struct iio_dev *indio_dev, 918 const struct iio_chan_spec *chan, 919 enum iio_event_type type, 920 enum iio_event_direction dir, 921 enum iio_event_info info, 922 int val, int val2) 923 { 924 struct sca3000_state *st = iio_priv(indio_dev); 925 int ret; 926 int i; 927 u8 nonlinear = 0; 928 929 if (chan->channel2 == IIO_MOD_Y) { 930 i = ARRAY_SIZE(st->info->mot_det_mult_y); 931 while (i > 0) 932 if (val >= st->info->mot_det_mult_y[--i]) { 933 nonlinear |= (1 << i); 934 val -= st->info->mot_det_mult_y[i]; 935 } 936 } else { 937 i = ARRAY_SIZE(st->info->mot_det_mult_xz); 938 while (i > 0) 939 if (val >= st->info->mot_det_mult_xz[--i]) { 940 nonlinear |= (1 << i); 941 val -= st->info->mot_det_mult_xz[i]; 942 } 943 } 944 945 mutex_lock(&st->lock); 946 ret = sca3000_write_ctrl_reg(st, 947 sca3000_addresses[chan->address][1], 948 nonlinear); 949 mutex_unlock(&st->lock); 950 951 return ret; 952 } 953 954 static struct attribute *sca3000_attributes[] = { 955 &iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.dev_attr.attr, 956 &iio_dev_attr_sampling_frequency_available.dev_attr.attr, 957 NULL, 958 }; 959 960 static const struct attribute_group sca3000_attribute_group = { 961 .attrs = sca3000_attributes, 962 }; 963 964 static int sca3000_read_data(struct sca3000_state *st, 965 u8 reg_address_high, 966 u8 *rx, 967 int len) 968 { 969 int ret; 970 struct spi_transfer xfer[2] = { 971 { 972 .len = 1, 973 .tx_buf = st->tx, 974 }, { 975 .len = len, 976 .rx_buf = rx, 977 } 978 }; 979 980 st->tx[0] = SCA3000_READ_REG(reg_address_high); 981 ret = spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer)); 982 if (ret) { 983 dev_err(get_device(&st->us->dev), "problem reading register"); 984 return ret; 985 } 986 987 return 0; 988 } 989 990 /** 991 * sca3000_ring_int_process() - ring specific interrupt handling. 992 * @val: Value of the interrupt status register. 993 * @indio_dev: Device instance specific IIO device structure. 994 */ 995 static void sca3000_ring_int_process(u8 val, struct iio_dev *indio_dev) 996 { 997 struct sca3000_state *st = iio_priv(indio_dev); 998 int ret, i, num_available; 999 1000 mutex_lock(&st->lock); 1001 1002 if (val & SCA3000_REG_INT_STATUS_HALF) { 1003 ret = sca3000_read_data_short(st, SCA3000_REG_BUF_COUNT_ADDR, 1004 1); 1005 if (ret) 1006 goto error_ret; 1007 num_available = st->rx[0]; 1008 /* 1009 * num_available is the total number of samples available 1010 * i.e. number of time points * number of channels. 1011 */ 1012 ret = sca3000_read_data(st, SCA3000_REG_RING_OUT_ADDR, st->rx, 1013 num_available * 2); 1014 if (ret) 1015 goto error_ret; 1016 for (i = 0; i < num_available / 3; i++) { 1017 /* 1018 * Dirty hack to cover for 11 bit in fifo, 13 bit 1019 * direct reading. 1020 * 1021 * In theory the bottom two bits are undefined. 1022 * In reality they appear to always be 0. 1023 */ 1024 iio_push_to_buffers(indio_dev, st->rx + i * 3 * 2); 1025 } 1026 } 1027 error_ret: 1028 mutex_unlock(&st->lock); 1029 } 1030 1031 /** 1032 * sca3000_event_handler() - handling ring and non ring events 1033 * @irq: The irq being handled. 1034 * @private: struct iio_device pointer for the device. 1035 * 1036 * Ring related interrupt handler. Depending on event, push to 1037 * the ring buffer event chrdev or the event one. 1038 * 1039 * This function is complicated by the fact that the devices can signify ring 1040 * and non ring events via the same interrupt line and they can only 1041 * be distinguished via a read of the relevant status register. 1042 */ 1043 static irqreturn_t sca3000_event_handler(int irq, void *private) 1044 { 1045 struct iio_dev *indio_dev = private; 1046 struct sca3000_state *st = iio_priv(indio_dev); 1047 int ret, val; 1048 s64 last_timestamp = iio_get_time_ns(indio_dev); 1049 1050 /* 1051 * Could lead if badly timed to an extra read of status reg, 1052 * but ensures no interrupt is missed. 1053 */ 1054 mutex_lock(&st->lock); 1055 ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1); 1056 val = st->rx[0]; 1057 mutex_unlock(&st->lock); 1058 if (ret) 1059 goto done; 1060 1061 sca3000_ring_int_process(val, indio_dev); 1062 1063 if (val & SCA3000_INT_STATUS_FREE_FALL) 1064 iio_push_event(indio_dev, 1065 IIO_MOD_EVENT_CODE(IIO_ACCEL, 1066 0, 1067 IIO_MOD_X_AND_Y_AND_Z, 1068 IIO_EV_TYPE_MAG, 1069 IIO_EV_DIR_FALLING), 1070 last_timestamp); 1071 1072 if (val & SCA3000_INT_STATUS_Y_TRIGGER) 1073 iio_push_event(indio_dev, 1074 IIO_MOD_EVENT_CODE(IIO_ACCEL, 1075 0, 1076 IIO_MOD_Y, 1077 IIO_EV_TYPE_MAG, 1078 IIO_EV_DIR_RISING), 1079 last_timestamp); 1080 1081 if (val & SCA3000_INT_STATUS_X_TRIGGER) 1082 iio_push_event(indio_dev, 1083 IIO_MOD_EVENT_CODE(IIO_ACCEL, 1084 0, 1085 IIO_MOD_X, 1086 IIO_EV_TYPE_MAG, 1087 IIO_EV_DIR_RISING), 1088 last_timestamp); 1089 1090 if (val & SCA3000_INT_STATUS_Z_TRIGGER) 1091 iio_push_event(indio_dev, 1092 IIO_MOD_EVENT_CODE(IIO_ACCEL, 1093 0, 1094 IIO_MOD_Z, 1095 IIO_EV_TYPE_MAG, 1096 IIO_EV_DIR_RISING), 1097 last_timestamp); 1098 1099 done: 1100 return IRQ_HANDLED; 1101 } 1102 1103 /** 1104 * sca3000_read_event_config() what events are enabled 1105 **/ 1106 static int sca3000_read_event_config(struct iio_dev *indio_dev, 1107 const struct iio_chan_spec *chan, 1108 enum iio_event_type type, 1109 enum iio_event_direction dir) 1110 { 1111 struct sca3000_state *st = iio_priv(indio_dev); 1112 int ret; 1113 /* read current value of mode register */ 1114 mutex_lock(&st->lock); 1115 1116 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); 1117 if (ret) 1118 goto error_ret; 1119 1120 switch (chan->channel2) { 1121 case IIO_MOD_X_AND_Y_AND_Z: 1122 ret = !!(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT); 1123 break; 1124 case IIO_MOD_X: 1125 case IIO_MOD_Y: 1126 case IIO_MOD_Z: 1127 /* 1128 * Motion detection mode cannot run at the same time as 1129 * acceleration data being read. 1130 */ 1131 if ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK) 1132 != SCA3000_REG_MODE_MEAS_MODE_MOT_DET) { 1133 ret = 0; 1134 } else { 1135 ret = sca3000_read_ctrl_reg(st, 1136 SCA3000_REG_CTRL_SEL_MD_CTRL); 1137 if (ret < 0) 1138 goto error_ret; 1139 /* only supporting logical or's for now */ 1140 ret = !!(ret & sca3000_addresses[chan->address][2]); 1141 } 1142 break; 1143 default: 1144 ret = -EINVAL; 1145 } 1146 1147 error_ret: 1148 mutex_unlock(&st->lock); 1149 1150 return ret; 1151 } 1152 1153 static int sca3000_freefall_set_state(struct iio_dev *indio_dev, int state) 1154 { 1155 struct sca3000_state *st = iio_priv(indio_dev); 1156 int ret; 1157 1158 /* read current value of mode register */ 1159 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); 1160 if (ret) 1161 return ret; 1162 1163 /* if off and should be on */ 1164 if (state && !(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT)) 1165 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, 1166 st->rx[0] | SCA3000_REG_MODE_FREE_FALL_DETECT); 1167 /* if on and should be off */ 1168 else if (!state && (st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT)) 1169 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, 1170 st->rx[0] & ~SCA3000_REG_MODE_FREE_FALL_DETECT); 1171 else 1172 return 0; 1173 } 1174 1175 static int sca3000_motion_detect_set_state(struct iio_dev *indio_dev, int axis, 1176 int state) 1177 { 1178 struct sca3000_state *st = iio_priv(indio_dev); 1179 int ret, ctrlval; 1180 1181 /* 1182 * First read the motion detector config to find out if 1183 * this axis is on 1184 */ 1185 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL); 1186 if (ret < 0) 1187 return ret; 1188 ctrlval = ret; 1189 /* if off and should be on */ 1190 if (state && !(ctrlval & sca3000_addresses[axis][2])) { 1191 ret = sca3000_write_ctrl_reg(st, 1192 SCA3000_REG_CTRL_SEL_MD_CTRL, 1193 ctrlval | 1194 sca3000_addresses[axis][2]); 1195 if (ret) 1196 return ret; 1197 st->mo_det_use_count++; 1198 } else if (!state && (ctrlval & sca3000_addresses[axis][2])) { 1199 ret = sca3000_write_ctrl_reg(st, 1200 SCA3000_REG_CTRL_SEL_MD_CTRL, 1201 ctrlval & 1202 ~(sca3000_addresses[axis][2])); 1203 if (ret) 1204 return ret; 1205 st->mo_det_use_count--; 1206 } 1207 1208 /* read current value of mode register */ 1209 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); 1210 if (ret) 1211 return ret; 1212 /* if off and should be on */ 1213 if ((st->mo_det_use_count) && 1214 ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK) 1215 != SCA3000_REG_MODE_MEAS_MODE_MOT_DET)) 1216 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, 1217 (st->rx[0] & ~SCA3000_REG_MODE_MODE_MASK) 1218 | SCA3000_REG_MODE_MEAS_MODE_MOT_DET); 1219 /* if on and should be off */ 1220 else if (!(st->mo_det_use_count) && 1221 ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK) 1222 == SCA3000_REG_MODE_MEAS_MODE_MOT_DET)) 1223 return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, 1224 st->rx[0] & SCA3000_REG_MODE_MODE_MASK); 1225 else 1226 return 0; 1227 } 1228 1229 /** 1230 * sca3000_write_event_config() - simple on off control for motion detector 1231 * @indio_dev: IIO device instance specific structure. Data specific to this 1232 * particular driver may be accessed via iio_priv(indio_dev). 1233 * @chan: Description of the channel whose event we are configuring. 1234 * @type: The type of event. 1235 * @dir: The direction of the event. 1236 * @state: Desired state of event being configured. 1237 * 1238 * This is a per axis control, but enabling any will result in the 1239 * motion detector unit being enabled. 1240 * N.B. enabling motion detector stops normal data acquisition. 1241 * There is a complexity in knowing which mode to return to when 1242 * this mode is disabled. Currently normal mode is assumed. 1243 **/ 1244 static int sca3000_write_event_config(struct iio_dev *indio_dev, 1245 const struct iio_chan_spec *chan, 1246 enum iio_event_type type, 1247 enum iio_event_direction dir, 1248 int state) 1249 { 1250 struct sca3000_state *st = iio_priv(indio_dev); 1251 int ret; 1252 1253 mutex_lock(&st->lock); 1254 switch (chan->channel2) { 1255 case IIO_MOD_X_AND_Y_AND_Z: 1256 ret = sca3000_freefall_set_state(indio_dev, state); 1257 break; 1258 1259 case IIO_MOD_X: 1260 case IIO_MOD_Y: 1261 case IIO_MOD_Z: 1262 ret = sca3000_motion_detect_set_state(indio_dev, 1263 chan->address, 1264 state); 1265 break; 1266 default: 1267 ret = -EINVAL; 1268 break; 1269 } 1270 mutex_unlock(&st->lock); 1271 1272 return ret; 1273 } 1274 1275 static int sca3000_configure_ring(struct iio_dev *indio_dev) 1276 { 1277 struct iio_buffer *buffer; 1278 1279 buffer = devm_iio_kfifo_allocate(&indio_dev->dev); 1280 if (!buffer) 1281 return -ENOMEM; 1282 1283 iio_device_attach_buffer(indio_dev, buffer); 1284 indio_dev->modes |= INDIO_BUFFER_SOFTWARE; 1285 1286 return 0; 1287 } 1288 1289 static inline 1290 int __sca3000_hw_ring_state_set(struct iio_dev *indio_dev, bool state) 1291 { 1292 struct sca3000_state *st = iio_priv(indio_dev); 1293 int ret; 1294 1295 mutex_lock(&st->lock); 1296 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); 1297 if (ret) 1298 goto error_ret; 1299 if (state) { 1300 dev_info(&indio_dev->dev, "supposedly enabling ring buffer\n"); 1301 ret = sca3000_write_reg(st, 1302 SCA3000_REG_MODE_ADDR, 1303 (st->rx[0] | SCA3000_REG_MODE_RING_BUF_ENABLE)); 1304 } else 1305 ret = sca3000_write_reg(st, 1306 SCA3000_REG_MODE_ADDR, 1307 (st->rx[0] & ~SCA3000_REG_MODE_RING_BUF_ENABLE)); 1308 error_ret: 1309 mutex_unlock(&st->lock); 1310 1311 return ret; 1312 } 1313 1314 /** 1315 * sca3000_hw_ring_preenable() - hw ring buffer preenable function 1316 * @indio_dev: structure representing the IIO device. Device instance 1317 * specific state can be accessed via iio_priv(indio_dev). 1318 * 1319 * Very simple enable function as the chip will allows normal reads 1320 * during ring buffer operation so as long as it is indeed running 1321 * before we notify the core, the precise ordering does not matter. 1322 */ 1323 static int sca3000_hw_ring_preenable(struct iio_dev *indio_dev) 1324 { 1325 int ret; 1326 struct sca3000_state *st = iio_priv(indio_dev); 1327 1328 mutex_lock(&st->lock); 1329 1330 /* Enable the 50% full interrupt */ 1331 ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1); 1332 if (ret) 1333 goto error_unlock; 1334 ret = sca3000_write_reg(st, 1335 SCA3000_REG_INT_MASK_ADDR, 1336 st->rx[0] | SCA3000_REG_INT_MASK_RING_HALF); 1337 if (ret) 1338 goto error_unlock; 1339 1340 mutex_unlock(&st->lock); 1341 1342 return __sca3000_hw_ring_state_set(indio_dev, 1); 1343 1344 error_unlock: 1345 mutex_unlock(&st->lock); 1346 1347 return ret; 1348 } 1349 1350 static int sca3000_hw_ring_postdisable(struct iio_dev *indio_dev) 1351 { 1352 int ret; 1353 struct sca3000_state *st = iio_priv(indio_dev); 1354 1355 ret = __sca3000_hw_ring_state_set(indio_dev, 0); 1356 if (ret) 1357 return ret; 1358 1359 /* Disable the 50% full interrupt */ 1360 mutex_lock(&st->lock); 1361 1362 ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1); 1363 if (ret) 1364 goto unlock; 1365 ret = sca3000_write_reg(st, 1366 SCA3000_REG_INT_MASK_ADDR, 1367 st->rx[0] & ~SCA3000_REG_INT_MASK_RING_HALF); 1368 unlock: 1369 mutex_unlock(&st->lock); 1370 return ret; 1371 } 1372 1373 static const struct iio_buffer_setup_ops sca3000_ring_setup_ops = { 1374 .preenable = &sca3000_hw_ring_preenable, 1375 .postdisable = &sca3000_hw_ring_postdisable, 1376 }; 1377 1378 /** 1379 * sca3000_clean_setup() - get the device into a predictable state 1380 * @st: Device instance specific private data structure 1381 * 1382 * Devices use flash memory to store many of the register values 1383 * and hence can come up in somewhat unpredictable states. 1384 * Hence reset everything on driver load. 1385 */ 1386 static int sca3000_clean_setup(struct sca3000_state *st) 1387 { 1388 int ret; 1389 1390 mutex_lock(&st->lock); 1391 /* Ensure all interrupts have been acknowledged */ 1392 ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1); 1393 if (ret) 1394 goto error_ret; 1395 1396 /* Turn off all motion detection channels */ 1397 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL); 1398 if (ret < 0) 1399 goto error_ret; 1400 ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL, 1401 ret & SCA3000_MD_CTRL_PROT_MASK); 1402 if (ret) 1403 goto error_ret; 1404 1405 /* Disable ring buffer */ 1406 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL); 1407 if (ret < 0) 1408 goto error_ret; 1409 ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL, 1410 (ret & SCA3000_REG_OUT_CTRL_PROT_MASK) 1411 | SCA3000_REG_OUT_CTRL_BUF_X_EN 1412 | SCA3000_REG_OUT_CTRL_BUF_Y_EN 1413 | SCA3000_REG_OUT_CTRL_BUF_Z_EN 1414 | SCA3000_REG_OUT_CTRL_BUF_DIV_4); 1415 if (ret) 1416 goto error_ret; 1417 /* Enable interrupts, relevant to mode and set up as active low */ 1418 ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1); 1419 if (ret) 1420 goto error_ret; 1421 ret = sca3000_write_reg(st, 1422 SCA3000_REG_INT_MASK_ADDR, 1423 (ret & SCA3000_REG_INT_MASK_PROT_MASK) 1424 | SCA3000_REG_INT_MASK_ACTIVE_LOW); 1425 if (ret) 1426 goto error_ret; 1427 /* 1428 * Select normal measurement mode, free fall off, ring off 1429 * Ring in 12 bit mode - it is fine to overwrite reserved bits 3,5 1430 * as that occurs in one of the example on the datasheet 1431 */ 1432 ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1); 1433 if (ret) 1434 goto error_ret; 1435 ret = sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, 1436 (st->rx[0] & SCA3000_MODE_PROT_MASK)); 1437 1438 error_ret: 1439 mutex_unlock(&st->lock); 1440 return ret; 1441 } 1442 1443 static const struct iio_info sca3000_info = { 1444 .attrs = &sca3000_attribute_group, 1445 .read_raw = &sca3000_read_raw, 1446 .write_raw = &sca3000_write_raw, 1447 .read_event_value = &sca3000_read_event_value, 1448 .write_event_value = &sca3000_write_event_value, 1449 .read_event_config = &sca3000_read_event_config, 1450 .write_event_config = &sca3000_write_event_config, 1451 }; 1452 1453 static int sca3000_probe(struct spi_device *spi) 1454 { 1455 int ret; 1456 struct sca3000_state *st; 1457 struct iio_dev *indio_dev; 1458 1459 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); 1460 if (!indio_dev) 1461 return -ENOMEM; 1462 1463 st = iio_priv(indio_dev); 1464 spi_set_drvdata(spi, indio_dev); 1465 st->us = spi; 1466 mutex_init(&st->lock); 1467 st->info = &sca3000_spi_chip_info_tbl[spi_get_device_id(spi) 1468 ->driver_data]; 1469 1470 indio_dev->dev.parent = &spi->dev; 1471 indio_dev->name = spi_get_device_id(spi)->name; 1472 indio_dev->info = &sca3000_info; 1473 if (st->info->temp_output) { 1474 indio_dev->channels = sca3000_channels_with_temp; 1475 indio_dev->num_channels = 1476 ARRAY_SIZE(sca3000_channels_with_temp); 1477 } else { 1478 indio_dev->channels = sca3000_channels; 1479 indio_dev->num_channels = ARRAY_SIZE(sca3000_channels); 1480 } 1481 indio_dev->modes = INDIO_DIRECT_MODE; 1482 1483 ret = sca3000_configure_ring(indio_dev); 1484 if (ret) 1485 return ret; 1486 1487 if (spi->irq) { 1488 ret = request_threaded_irq(spi->irq, 1489 NULL, 1490 &sca3000_event_handler, 1491 IRQF_TRIGGER_FALLING | IRQF_ONESHOT, 1492 "sca3000", 1493 indio_dev); 1494 if (ret) 1495 return ret; 1496 } 1497 indio_dev->setup_ops = &sca3000_ring_setup_ops; 1498 ret = sca3000_clean_setup(st); 1499 if (ret) 1500 goto error_free_irq; 1501 1502 ret = sca3000_print_rev(indio_dev); 1503 if (ret) 1504 goto error_free_irq; 1505 1506 return iio_device_register(indio_dev); 1507 1508 error_free_irq: 1509 if (spi->irq) 1510 free_irq(spi->irq, indio_dev); 1511 1512 return ret; 1513 } 1514 1515 static int sca3000_stop_all_interrupts(struct sca3000_state *st) 1516 { 1517 int ret; 1518 1519 mutex_lock(&st->lock); 1520 ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1); 1521 if (ret) 1522 goto error_ret; 1523 ret = sca3000_write_reg(st, SCA3000_REG_INT_MASK_ADDR, 1524 (st->rx[0] & 1525 ~(SCA3000_REG_INT_MASK_RING_THREE_QUARTER | 1526 SCA3000_REG_INT_MASK_RING_HALF | 1527 SCA3000_REG_INT_MASK_ALL_INTS))); 1528 error_ret: 1529 mutex_unlock(&st->lock); 1530 return ret; 1531 } 1532 1533 static int sca3000_remove(struct spi_device *spi) 1534 { 1535 struct iio_dev *indio_dev = spi_get_drvdata(spi); 1536 struct sca3000_state *st = iio_priv(indio_dev); 1537 1538 iio_device_unregister(indio_dev); 1539 1540 /* Must ensure no interrupts can be generated after this! */ 1541 sca3000_stop_all_interrupts(st); 1542 if (spi->irq) 1543 free_irq(spi->irq, indio_dev); 1544 1545 return 0; 1546 } 1547 1548 static const struct spi_device_id sca3000_id[] = { 1549 {"sca3000_d01", d01}, 1550 {"sca3000_e02", e02}, 1551 {"sca3000_e04", e04}, 1552 {"sca3000_e05", e05}, 1553 {} 1554 }; 1555 MODULE_DEVICE_TABLE(spi, sca3000_id); 1556 1557 static struct spi_driver sca3000_driver = { 1558 .driver = { 1559 .name = "sca3000", 1560 }, 1561 .probe = sca3000_probe, 1562 .remove = sca3000_remove, 1563 .id_table = sca3000_id, 1564 }; 1565 module_spi_driver(sca3000_driver); 1566 1567 MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>"); 1568 MODULE_DESCRIPTION("VTI SCA3000 Series Accelerometers SPI driver"); 1569 MODULE_LICENSE("GPL v2"); 1570