xref: /openbmc/linux/drivers/iio/accel/sca3000.c (revision d2574c33)
1 /*
2  * sca3000_core.c -- support VTI sca3000 series accelerometers via SPI
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 as published by
6  * the Free Software Foundation.
7  *
8  * Copyright (c) 2009 Jonathan Cameron <jic23@kernel.org>
9  *
10  * See industrialio/accels/sca3000.h for comments.
11  */
12 
13 #include <linux/interrupt.h>
14 #include <linux/fs.h>
15 #include <linux/device.h>
16 #include <linux/slab.h>
17 #include <linux/kernel.h>
18 #include <linux/spi/spi.h>
19 #include <linux/sysfs.h>
20 #include <linux/module.h>
21 #include <linux/uaccess.h>
22 #include <linux/iio/iio.h>
23 #include <linux/iio/sysfs.h>
24 #include <linux/iio/events.h>
25 #include <linux/iio/buffer.h>
26 #include <linux/iio/kfifo_buf.h>
27 
28 #define SCA3000_WRITE_REG(a) (((a) << 2) | 0x02)
29 #define SCA3000_READ_REG(a) ((a) << 2)
30 
31 #define SCA3000_REG_REVID_ADDR				0x00
32 #define   SCA3000_REG_REVID_MAJOR_MASK			GENMASK(8, 4)
33 #define   SCA3000_REG_REVID_MINOR_MASK			GENMASK(3, 0)
34 
35 #define SCA3000_REG_STATUS_ADDR				0x02
36 #define   SCA3000_LOCKED				BIT(5)
37 #define   SCA3000_EEPROM_CS_ERROR			BIT(1)
38 #define   SCA3000_SPI_FRAME_ERROR			BIT(0)
39 
40 /* All reads done using register decrement so no need to directly access LSBs */
41 #define SCA3000_REG_X_MSB_ADDR				0x05
42 #define SCA3000_REG_Y_MSB_ADDR				0x07
43 #define SCA3000_REG_Z_MSB_ADDR				0x09
44 
45 #define SCA3000_REG_RING_OUT_ADDR			0x0f
46 
47 /* Temp read untested - the e05 doesn't have the sensor */
48 #define SCA3000_REG_TEMP_MSB_ADDR			0x13
49 
50 #define SCA3000_REG_MODE_ADDR				0x14
51 #define SCA3000_MODE_PROT_MASK				0x28
52 #define   SCA3000_REG_MODE_RING_BUF_ENABLE		BIT(7)
53 #define   SCA3000_REG_MODE_RING_BUF_8BIT		BIT(6)
54 
55 /*
56  * Free fall detection triggers an interrupt if the acceleration
57  * is below a threshold for equivalent of 25cm drop
58  */
59 #define   SCA3000_REG_MODE_FREE_FALL_DETECT		BIT(4)
60 #define   SCA3000_REG_MODE_MEAS_MODE_NORMAL		0x00
61 #define   SCA3000_REG_MODE_MEAS_MODE_OP_1		0x01
62 #define   SCA3000_REG_MODE_MEAS_MODE_OP_2		0x02
63 
64 /*
65  * In motion detection mode the accelerations are band pass filtered
66  * (approx 1 - 25Hz) and then a programmable threshold used to trigger
67  * and interrupt.
68  */
69 #define   SCA3000_REG_MODE_MEAS_MODE_MOT_DET		0x03
70 #define   SCA3000_REG_MODE_MODE_MASK			0x03
71 
72 #define SCA3000_REG_BUF_COUNT_ADDR			0x15
73 
74 #define SCA3000_REG_INT_STATUS_ADDR			0x16
75 #define   SCA3000_REG_INT_STATUS_THREE_QUARTERS		BIT(7)
76 #define   SCA3000_REG_INT_STATUS_HALF			BIT(6)
77 
78 #define SCA3000_INT_STATUS_FREE_FALL			BIT(3)
79 #define SCA3000_INT_STATUS_Y_TRIGGER			BIT(2)
80 #define SCA3000_INT_STATUS_X_TRIGGER			BIT(1)
81 #define SCA3000_INT_STATUS_Z_TRIGGER			BIT(0)
82 
83 /* Used to allow access to multiplexed registers */
84 #define SCA3000_REG_CTRL_SEL_ADDR			0x18
85 /* Only available for SCA3000-D03 and SCA3000-D01 */
86 #define   SCA3000_REG_CTRL_SEL_I2C_DISABLE		0x01
87 #define   SCA3000_REG_CTRL_SEL_MD_CTRL			0x02
88 #define   SCA3000_REG_CTRL_SEL_MD_Y_TH			0x03
89 #define   SCA3000_REG_CTRL_SEL_MD_X_TH			0x04
90 #define   SCA3000_REG_CTRL_SEL_MD_Z_TH			0x05
91 /*
92  * BE VERY CAREFUL WITH THIS, IF 3 BITS ARE NOT SET the device
93  * will not function
94  */
95 #define   SCA3000_REG_CTRL_SEL_OUT_CTRL			0x0B
96 
97 #define     SCA3000_REG_OUT_CTRL_PROT_MASK		0xE0
98 #define     SCA3000_REG_OUT_CTRL_BUF_X_EN		0x10
99 #define     SCA3000_REG_OUT_CTRL_BUF_Y_EN		0x08
100 #define     SCA3000_REG_OUT_CTRL_BUF_Z_EN		0x04
101 #define     SCA3000_REG_OUT_CTRL_BUF_DIV_MASK		0x03
102 #define     SCA3000_REG_OUT_CTRL_BUF_DIV_4		0x02
103 #define     SCA3000_REG_OUT_CTRL_BUF_DIV_2		0x01
104 
105 
106 /*
107  * Control which motion detector interrupts are on.
108  * For now only OR combinations are supported.
109  */
110 #define SCA3000_MD_CTRL_PROT_MASK			0xC0
111 #define SCA3000_MD_CTRL_OR_Y				BIT(0)
112 #define SCA3000_MD_CTRL_OR_X				BIT(1)
113 #define SCA3000_MD_CTRL_OR_Z				BIT(2)
114 /* Currently unsupported */
115 #define SCA3000_MD_CTRL_AND_Y				BIT(3)
116 #define SCA3000_MD_CTRL_AND_X				BIT(4)
117 #define SAC3000_MD_CTRL_AND_Z				BIT(5)
118 
119 /*
120  * Some control registers of complex access methods requiring this register to
121  * be used to remove a lock.
122  */
123 #define SCA3000_REG_UNLOCK_ADDR				0x1e
124 
125 #define SCA3000_REG_INT_MASK_ADDR			0x21
126 #define   SCA3000_REG_INT_MASK_PROT_MASK		0x1C
127 
128 #define   SCA3000_REG_INT_MASK_RING_THREE_QUARTER	BIT(7)
129 #define   SCA3000_REG_INT_MASK_RING_HALF		BIT(6)
130 
131 #define SCA3000_REG_INT_MASK_ALL_INTS			0x02
132 #define SCA3000_REG_INT_MASK_ACTIVE_HIGH		0x01
133 #define SCA3000_REG_INT_MASK_ACTIVE_LOW			0x00
134 /* Values of multiplexed registers (write to ctrl_data after select) */
135 #define SCA3000_REG_CTRL_DATA_ADDR			0x22
136 
137 /*
138  * Measurement modes available on some sca3000 series chips. Code assumes others
139  * may become available in the future.
140  *
141  * Bypass - Bypass the low-pass filter in the signal channel so as to increase
142  *          signal bandwidth.
143  *
144  * Narrow - Narrow low-pass filtering of the signal channel and half output
145  *          data rate by decimation.
146  *
147  * Wide - Widen low-pass filtering of signal channel to increase bandwidth
148  */
149 #define SCA3000_OP_MODE_BYPASS				0x01
150 #define SCA3000_OP_MODE_NARROW				0x02
151 #define SCA3000_OP_MODE_WIDE				0x04
152 #define SCA3000_MAX_TX 6
153 #define SCA3000_MAX_RX 2
154 
155 /**
156  * struct sca3000_state - device instance state information
157  * @us:			the associated spi device
158  * @info:			chip variant information
159  * @last_timestamp:		the timestamp of the last event
160  * @mo_det_use_count:		reference counter for the motion detection unit
161  * @lock:			lock used to protect elements of sca3000_state
162  *				and the underlying device state.
163  * @tx:			dma-able transmit buffer
164  * @rx:			dma-able receive buffer
165  **/
166 struct sca3000_state {
167 	struct spi_device		*us;
168 	const struct sca3000_chip_info	*info;
169 	s64				last_timestamp;
170 	int				mo_det_use_count;
171 	struct mutex			lock;
172 	/* Can these share a cacheline ? */
173 	u8				rx[384] ____cacheline_aligned;
174 	u8				tx[6] ____cacheline_aligned;
175 };
176 
177 /**
178  * struct sca3000_chip_info - model dependent parameters
179  * @scale:			scale * 10^-6
180  * @temp_output:		some devices have temperature sensors.
181  * @measurement_mode_freq:	normal mode sampling frequency
182  * @measurement_mode_3db_freq:	3db cutoff frequency of the low pass filter for
183  * the normal measurement mode.
184  * @option_mode_1:		first optional mode. Not all models have one
185  * @option_mode_1_freq:		option mode 1 sampling frequency
186  * @option_mode_1_3db_freq:	3db cutoff frequency of the low pass filter for
187  * the first option mode.
188  * @option_mode_2:		second optional mode. Not all chips have one
189  * @option_mode_2_freq:		option mode 2 sampling frequency
190  * @option_mode_2_3db_freq:	3db cutoff frequency of the low pass filter for
191  * the second option mode.
192  * @mod_det_mult_xz:		Bit wise multipliers to calculate the threshold
193  * for motion detection in the x and z axis.
194  * @mod_det_mult_y:		Bit wise multipliers to calculate the threshold
195  * for motion detection in the y axis.
196  *
197  * This structure is used to hold information about the functionality of a given
198  * sca3000 variant.
199  **/
200 struct sca3000_chip_info {
201 	unsigned int		scale;
202 	bool			temp_output;
203 	int			measurement_mode_freq;
204 	int			measurement_mode_3db_freq;
205 	int			option_mode_1;
206 	int			option_mode_1_freq;
207 	int			option_mode_1_3db_freq;
208 	int			option_mode_2;
209 	int			option_mode_2_freq;
210 	int			option_mode_2_3db_freq;
211 	int			mot_det_mult_xz[6];
212 	int			mot_det_mult_y[7];
213 };
214 
215 enum sca3000_variant {
216 	d01,
217 	e02,
218 	e04,
219 	e05,
220 };
221 
222 /*
223  * Note where option modes are not defined, the chip simply does not
224  * support any.
225  * Other chips in the sca3000 series use i2c and are not included here.
226  *
227  * Some of these devices are only listed in the family data sheet and
228  * do not actually appear to be available.
229  */
230 static const struct sca3000_chip_info sca3000_spi_chip_info_tbl[] = {
231 	[d01] = {
232 		.scale = 7357,
233 		.temp_output = true,
234 		.measurement_mode_freq = 250,
235 		.measurement_mode_3db_freq = 45,
236 		.option_mode_1 = SCA3000_OP_MODE_BYPASS,
237 		.option_mode_1_freq = 250,
238 		.option_mode_1_3db_freq = 70,
239 		.mot_det_mult_xz = {50, 100, 200, 350, 650, 1300},
240 		.mot_det_mult_y = {50, 100, 150, 250, 450, 850, 1750},
241 	},
242 	[e02] = {
243 		.scale = 9810,
244 		.measurement_mode_freq = 125,
245 		.measurement_mode_3db_freq = 40,
246 		.option_mode_1 = SCA3000_OP_MODE_NARROW,
247 		.option_mode_1_freq = 63,
248 		.option_mode_1_3db_freq = 11,
249 		.mot_det_mult_xz = {100, 150, 300, 550, 1050, 2050},
250 		.mot_det_mult_y = {50, 100, 200, 350, 700, 1350, 2700},
251 	},
252 	[e04] = {
253 		.scale = 19620,
254 		.measurement_mode_freq = 100,
255 		.measurement_mode_3db_freq = 38,
256 		.option_mode_1 = SCA3000_OP_MODE_NARROW,
257 		.option_mode_1_freq = 50,
258 		.option_mode_1_3db_freq = 9,
259 		.option_mode_2 = SCA3000_OP_MODE_WIDE,
260 		.option_mode_2_freq = 400,
261 		.option_mode_2_3db_freq = 70,
262 		.mot_det_mult_xz = {200, 300, 600, 1100, 2100, 4100},
263 		.mot_det_mult_y = {100, 200, 400, 7000, 1400, 2700, 54000},
264 	},
265 	[e05] = {
266 		.scale = 61313,
267 		.measurement_mode_freq = 200,
268 		.measurement_mode_3db_freq = 60,
269 		.option_mode_1 = SCA3000_OP_MODE_NARROW,
270 		.option_mode_1_freq = 50,
271 		.option_mode_1_3db_freq = 9,
272 		.option_mode_2 = SCA3000_OP_MODE_WIDE,
273 		.option_mode_2_freq = 400,
274 		.option_mode_2_3db_freq = 75,
275 		.mot_det_mult_xz = {600, 900, 1700, 3200, 6100, 11900},
276 		.mot_det_mult_y = {300, 600, 1200, 2000, 4100, 7800, 15600},
277 	},
278 };
279 
280 static int sca3000_write_reg(struct sca3000_state *st, u8 address, u8 val)
281 {
282 	st->tx[0] = SCA3000_WRITE_REG(address);
283 	st->tx[1] = val;
284 	return spi_write(st->us, st->tx, 2);
285 }
286 
287 static int sca3000_read_data_short(struct sca3000_state *st,
288 				   u8 reg_address_high,
289 				   int len)
290 {
291 	struct spi_transfer xfer[2] = {
292 		{
293 			.len = 1,
294 			.tx_buf = st->tx,
295 		}, {
296 			.len = len,
297 			.rx_buf = st->rx,
298 		}
299 	};
300 	st->tx[0] = SCA3000_READ_REG(reg_address_high);
301 
302 	return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
303 }
304 
305 /**
306  * sca3000_reg_lock_on() - test if the ctrl register lock is on
307  * @st: Driver specific device instance data.
308  *
309  * Lock must be held.
310  **/
311 static int sca3000_reg_lock_on(struct sca3000_state *st)
312 {
313 	int ret;
314 
315 	ret = sca3000_read_data_short(st, SCA3000_REG_STATUS_ADDR, 1);
316 	if (ret < 0)
317 		return ret;
318 
319 	return !(st->rx[0] & SCA3000_LOCKED);
320 }
321 
322 /**
323  * __sca3000_unlock_reg_lock() - unlock the control registers
324  * @st: Driver specific device instance data.
325  *
326  * Note the device does not appear to support doing this in a single transfer.
327  * This should only ever be used as part of ctrl reg read.
328  * Lock must be held before calling this
329  */
330 static int __sca3000_unlock_reg_lock(struct sca3000_state *st)
331 {
332 	struct spi_transfer xfer[3] = {
333 		{
334 			.len = 2,
335 			.cs_change = 1,
336 			.tx_buf = st->tx,
337 		}, {
338 			.len = 2,
339 			.cs_change = 1,
340 			.tx_buf = st->tx + 2,
341 		}, {
342 			.len = 2,
343 			.tx_buf = st->tx + 4,
344 		},
345 	};
346 	st->tx[0] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
347 	st->tx[1] = 0x00;
348 	st->tx[2] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
349 	st->tx[3] = 0x50;
350 	st->tx[4] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
351 	st->tx[5] = 0xA0;
352 
353 	return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
354 }
355 
356 /**
357  * sca3000_write_ctrl_reg() write to a lock protect ctrl register
358  * @st: Driver specific device instance data.
359  * @sel: selects which registers we wish to write to
360  * @val: the value to be written
361  *
362  * Certain control registers are protected against overwriting by the lock
363  * register and use a shared write address. This function allows writing of
364  * these registers.
365  * Lock must be held.
366  */
367 static int sca3000_write_ctrl_reg(struct sca3000_state *st,
368 				  u8 sel,
369 				  uint8_t val)
370 {
371 	int ret;
372 
373 	ret = sca3000_reg_lock_on(st);
374 	if (ret < 0)
375 		goto error_ret;
376 	if (ret) {
377 		ret = __sca3000_unlock_reg_lock(st);
378 		if (ret)
379 			goto error_ret;
380 	}
381 
382 	/* Set the control select register */
383 	ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, sel);
384 	if (ret)
385 		goto error_ret;
386 
387 	/* Write the actual value into the register */
388 	ret = sca3000_write_reg(st, SCA3000_REG_CTRL_DATA_ADDR, val);
389 
390 error_ret:
391 	return ret;
392 }
393 
394 /**
395  * sca3000_read_ctrl_reg() read from lock protected control register.
396  * @st: Driver specific device instance data.
397  * @ctrl_reg: Which ctrl register do we want to read.
398  *
399  * Lock must be held.
400  */
401 static int sca3000_read_ctrl_reg(struct sca3000_state *st,
402 				 u8 ctrl_reg)
403 {
404 	int ret;
405 
406 	ret = sca3000_reg_lock_on(st);
407 	if (ret < 0)
408 		goto error_ret;
409 	if (ret) {
410 		ret = __sca3000_unlock_reg_lock(st);
411 		if (ret)
412 			goto error_ret;
413 	}
414 	/* Set the control select register */
415 	ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, ctrl_reg);
416 	if (ret)
417 		goto error_ret;
418 	ret = sca3000_read_data_short(st, SCA3000_REG_CTRL_DATA_ADDR, 1);
419 	if (ret)
420 		goto error_ret;
421 	return st->rx[0];
422 error_ret:
423 	return ret;
424 }
425 
426 /**
427  * sca3000_show_rev() - sysfs interface to read the chip revision number
428  * @indio_dev: Device instance specific generic IIO data.
429  * Driver specific device instance data can be obtained via
430  * via iio_priv(indio_dev)
431  */
432 static int sca3000_print_rev(struct iio_dev *indio_dev)
433 {
434 	int ret;
435 	struct sca3000_state *st = iio_priv(indio_dev);
436 
437 	mutex_lock(&st->lock);
438 	ret = sca3000_read_data_short(st, SCA3000_REG_REVID_ADDR, 1);
439 	if (ret < 0)
440 		goto error_ret;
441 	dev_info(&indio_dev->dev,
442 		 "sca3000 revision major=%lu, minor=%lu\n",
443 		 st->rx[0] & SCA3000_REG_REVID_MAJOR_MASK,
444 		 st->rx[0] & SCA3000_REG_REVID_MINOR_MASK);
445 error_ret:
446 	mutex_unlock(&st->lock);
447 
448 	return ret;
449 }
450 
451 static ssize_t
452 sca3000_show_available_3db_freqs(struct device *dev,
453 				 struct device_attribute *attr,
454 				 char *buf)
455 {
456 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
457 	struct sca3000_state *st = iio_priv(indio_dev);
458 	int len;
459 
460 	len = sprintf(buf, "%d", st->info->measurement_mode_3db_freq);
461 	if (st->info->option_mode_1)
462 		len += sprintf(buf + len, " %d",
463 			       st->info->option_mode_1_3db_freq);
464 	if (st->info->option_mode_2)
465 		len += sprintf(buf + len, " %d",
466 			       st->info->option_mode_2_3db_freq);
467 	len += sprintf(buf + len, "\n");
468 
469 	return len;
470 }
471 
472 static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available,
473 		       S_IRUGO, sca3000_show_available_3db_freqs,
474 		       NULL, 0);
475 
476 static const struct iio_event_spec sca3000_event = {
477 	.type = IIO_EV_TYPE_MAG,
478 	.dir = IIO_EV_DIR_RISING,
479 	.mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE),
480 };
481 
482 /*
483  * Note the hack in the number of bits to pretend we have 2 more than
484  * we do in the fifo.
485  */
486 #define SCA3000_CHAN(index, mod)				\
487 	{							\
488 		.type = IIO_ACCEL,				\
489 		.modified = 1,					\
490 		.channel2 = mod,				\
491 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),	\
492 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |\
493 			BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),\
494 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
495 		.address = index,				\
496 		.scan_index = index,				\
497 		.scan_type = {					\
498 			.sign = 's',				\
499 			.realbits = 13,				\
500 			.storagebits = 16,			\
501 			.shift = 3,				\
502 			.endianness = IIO_BE,			\
503 		},						\
504 		.event_spec = &sca3000_event,			\
505 		.num_event_specs = 1,				\
506 	}
507 
508 static const struct iio_event_spec sca3000_freefall_event_spec = {
509 	.type = IIO_EV_TYPE_MAG,
510 	.dir = IIO_EV_DIR_FALLING,
511 	.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
512 		BIT(IIO_EV_INFO_PERIOD),
513 };
514 
515 static const struct iio_chan_spec sca3000_channels[] = {
516 	SCA3000_CHAN(0, IIO_MOD_X),
517 	SCA3000_CHAN(1, IIO_MOD_Y),
518 	SCA3000_CHAN(2, IIO_MOD_Z),
519 	{
520 		.type = IIO_ACCEL,
521 		.modified = 1,
522 		.channel2 = IIO_MOD_X_AND_Y_AND_Z,
523 		.scan_index = -1, /* Fake channel */
524 		.event_spec = &sca3000_freefall_event_spec,
525 		.num_event_specs = 1,
526 	},
527 };
528 
529 static const struct iio_chan_spec sca3000_channels_with_temp[] = {
530 	SCA3000_CHAN(0, IIO_MOD_X),
531 	SCA3000_CHAN(1, IIO_MOD_Y),
532 	SCA3000_CHAN(2, IIO_MOD_Z),
533 	{
534 		.type = IIO_TEMP,
535 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
536 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
537 			BIT(IIO_CHAN_INFO_OFFSET),
538 		/* No buffer support */
539 		.scan_index = -1,
540 	},
541 	{
542 		.type = IIO_ACCEL,
543 		.modified = 1,
544 		.channel2 = IIO_MOD_X_AND_Y_AND_Z,
545 		.scan_index = -1, /* Fake channel */
546 		.event_spec = &sca3000_freefall_event_spec,
547 		.num_event_specs = 1,
548 	},
549 };
550 
551 static u8 sca3000_addresses[3][3] = {
552 	[0] = {SCA3000_REG_X_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_X_TH,
553 	       SCA3000_MD_CTRL_OR_X},
554 	[1] = {SCA3000_REG_Y_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Y_TH,
555 	       SCA3000_MD_CTRL_OR_Y},
556 	[2] = {SCA3000_REG_Z_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Z_TH,
557 	       SCA3000_MD_CTRL_OR_Z},
558 };
559 
560 /**
561  * __sca3000_get_base_freq() - obtain mode specific base frequency
562  * @st: Private driver specific device instance specific state.
563  * @info: chip type specific information.
564  * @base_freq: Base frequency for the current measurement mode.
565  *
566  * lock must be held
567  */
568 static inline int __sca3000_get_base_freq(struct sca3000_state *st,
569 					  const struct sca3000_chip_info *info,
570 					  int *base_freq)
571 {
572 	int ret;
573 
574 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
575 	if (ret)
576 		goto error_ret;
577 	switch (SCA3000_REG_MODE_MODE_MASK & st->rx[0]) {
578 	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
579 		*base_freq = info->measurement_mode_freq;
580 		break;
581 	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
582 		*base_freq = info->option_mode_1_freq;
583 		break;
584 	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
585 		*base_freq = info->option_mode_2_freq;
586 		break;
587 	default:
588 		ret = -EINVAL;
589 	}
590 error_ret:
591 	return ret;
592 }
593 
594 /**
595  * sca3000_read_raw_samp_freq() - read_raw handler for IIO_CHAN_INFO_SAMP_FREQ
596  * @st: Private driver specific device instance specific state.
597  * @val: The frequency read back.
598  *
599  * lock must be held
600  **/
601 static int sca3000_read_raw_samp_freq(struct sca3000_state *st, int *val)
602 {
603 	int ret;
604 
605 	ret = __sca3000_get_base_freq(st, st->info, val);
606 	if (ret)
607 		return ret;
608 
609 	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
610 	if (ret < 0)
611 		return ret;
612 
613 	if (*val > 0) {
614 		ret &= SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;
615 		switch (ret) {
616 		case SCA3000_REG_OUT_CTRL_BUF_DIV_2:
617 			*val /= 2;
618 			break;
619 		case SCA3000_REG_OUT_CTRL_BUF_DIV_4:
620 			*val /= 4;
621 			break;
622 		}
623 	}
624 
625 	return 0;
626 }
627 
628 /**
629  * sca3000_write_raw_samp_freq() - write_raw handler for IIO_CHAN_INFO_SAMP_FREQ
630  * @st: Private driver specific device instance specific state.
631  * @val: The frequency desired.
632  *
633  * lock must be held
634  */
635 static int sca3000_write_raw_samp_freq(struct sca3000_state *st, int val)
636 {
637 	int ret, base_freq, ctrlval;
638 
639 	ret = __sca3000_get_base_freq(st, st->info, &base_freq);
640 	if (ret)
641 		return ret;
642 
643 	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
644 	if (ret < 0)
645 		return ret;
646 
647 	ctrlval = ret & ~SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;
648 
649 	if (val == base_freq / 2)
650 		ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_2;
651 	if (val == base_freq / 4)
652 		ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_4;
653 	else if (val != base_freq)
654 		return -EINVAL;
655 
656 	return sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
657 				     ctrlval);
658 }
659 
660 static int sca3000_read_3db_freq(struct sca3000_state *st, int *val)
661 {
662 	int ret;
663 
664 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
665 	if (ret)
666 		return ret;
667 
668 	/* mask bottom 2 bits - only ones that are relevant */
669 	st->rx[0] &= SCA3000_REG_MODE_MODE_MASK;
670 	switch (st->rx[0]) {
671 	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
672 		*val = st->info->measurement_mode_3db_freq;
673 		return IIO_VAL_INT;
674 	case SCA3000_REG_MODE_MEAS_MODE_MOT_DET:
675 		return -EBUSY;
676 	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
677 		*val = st->info->option_mode_1_3db_freq;
678 		return IIO_VAL_INT;
679 	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
680 		*val = st->info->option_mode_2_3db_freq;
681 		return IIO_VAL_INT;
682 	default:
683 		return -EINVAL;
684 	}
685 }
686 
687 static int sca3000_write_3db_freq(struct sca3000_state *st, int val)
688 {
689 	int ret;
690 	int mode;
691 
692 	if (val == st->info->measurement_mode_3db_freq)
693 		mode = SCA3000_REG_MODE_MEAS_MODE_NORMAL;
694 	else if (st->info->option_mode_1 &&
695 		 (val == st->info->option_mode_1_3db_freq))
696 		mode = SCA3000_REG_MODE_MEAS_MODE_OP_1;
697 	else if (st->info->option_mode_2 &&
698 		 (val == st->info->option_mode_2_3db_freq))
699 		mode = SCA3000_REG_MODE_MEAS_MODE_OP_2;
700 	else
701 		return -EINVAL;
702 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
703 	if (ret)
704 		return ret;
705 
706 	st->rx[0] &= ~SCA3000_REG_MODE_MODE_MASK;
707 	st->rx[0] |= (mode & SCA3000_REG_MODE_MODE_MASK);
708 
709 	return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, st->rx[0]);
710 }
711 
712 static int sca3000_read_raw(struct iio_dev *indio_dev,
713 			    struct iio_chan_spec const *chan,
714 			    int *val,
715 			    int *val2,
716 			    long mask)
717 {
718 	struct sca3000_state *st = iio_priv(indio_dev);
719 	int ret;
720 	u8 address;
721 
722 	switch (mask) {
723 	case IIO_CHAN_INFO_RAW:
724 		mutex_lock(&st->lock);
725 		if (chan->type == IIO_ACCEL) {
726 			if (st->mo_det_use_count) {
727 				mutex_unlock(&st->lock);
728 				return -EBUSY;
729 			}
730 			address = sca3000_addresses[chan->address][0];
731 			ret = sca3000_read_data_short(st, address, 2);
732 			if (ret < 0) {
733 				mutex_unlock(&st->lock);
734 				return ret;
735 			}
736 			*val = (be16_to_cpup((__be16 *)st->rx) >> 3) & 0x1FFF;
737 			*val = ((*val) << (sizeof(*val) * 8 - 13)) >>
738 				(sizeof(*val) * 8 - 13);
739 		} else {
740 			/* get the temperature when available */
741 			ret = sca3000_read_data_short(st,
742 						      SCA3000_REG_TEMP_MSB_ADDR,
743 						      2);
744 			if (ret < 0) {
745 				mutex_unlock(&st->lock);
746 				return ret;
747 			}
748 			*val = ((st->rx[0] & 0x3F) << 3) |
749 			       ((st->rx[1] & 0xE0) >> 5);
750 		}
751 		mutex_unlock(&st->lock);
752 		return IIO_VAL_INT;
753 	case IIO_CHAN_INFO_SCALE:
754 		*val = 0;
755 		if (chan->type == IIO_ACCEL)
756 			*val2 = st->info->scale;
757 		else /* temperature */
758 			*val2 = 555556;
759 		return IIO_VAL_INT_PLUS_MICRO;
760 	case IIO_CHAN_INFO_OFFSET:
761 		*val = -214;
762 		*val2 = 600000;
763 		return IIO_VAL_INT_PLUS_MICRO;
764 	case IIO_CHAN_INFO_SAMP_FREQ:
765 		mutex_lock(&st->lock);
766 		ret = sca3000_read_raw_samp_freq(st, val);
767 		mutex_unlock(&st->lock);
768 		return ret ? ret : IIO_VAL_INT;
769 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
770 		mutex_lock(&st->lock);
771 		ret = sca3000_read_3db_freq(st, val);
772 		mutex_unlock(&st->lock);
773 		return ret;
774 	default:
775 		return -EINVAL;
776 	}
777 }
778 
779 static int sca3000_write_raw(struct iio_dev *indio_dev,
780 			     struct iio_chan_spec const *chan,
781 			     int val, int val2, long mask)
782 {
783 	struct sca3000_state *st = iio_priv(indio_dev);
784 	int ret;
785 
786 	switch (mask) {
787 	case IIO_CHAN_INFO_SAMP_FREQ:
788 		if (val2)
789 			return -EINVAL;
790 		mutex_lock(&st->lock);
791 		ret = sca3000_write_raw_samp_freq(st, val);
792 		mutex_unlock(&st->lock);
793 		return ret;
794 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
795 		if (val2)
796 			return -EINVAL;
797 		mutex_lock(&st->lock);
798 		ret = sca3000_write_3db_freq(st, val);
799 		mutex_unlock(&st->lock);
800 		return ret;
801 	default:
802 		return -EINVAL;
803 	}
804 
805 	return ret;
806 }
807 
808 /**
809  * sca3000_read_av_freq() - sysfs function to get available frequencies
810  * @dev: Device structure for this device.
811  * @attr: Description of the attribute.
812  * @buf: Incoming string
813  *
814  * The later modes are only relevant to the ring buffer - and depend on current
815  * mode. Note that data sheet gives rather wide tolerances for these so integer
816  * division will give good enough answer and not all chips have them specified
817  * at all.
818  **/
819 static ssize_t sca3000_read_av_freq(struct device *dev,
820 				    struct device_attribute *attr,
821 				    char *buf)
822 {
823 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
824 	struct sca3000_state *st = iio_priv(indio_dev);
825 	int len = 0, ret, val;
826 
827 	mutex_lock(&st->lock);
828 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
829 	val = st->rx[0];
830 	mutex_unlock(&st->lock);
831 	if (ret)
832 		goto error_ret;
833 
834 	switch (val & SCA3000_REG_MODE_MODE_MASK) {
835 	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
836 		len += sprintf(buf + len, "%d %d %d\n",
837 			       st->info->measurement_mode_freq,
838 			       st->info->measurement_mode_freq / 2,
839 			       st->info->measurement_mode_freq / 4);
840 		break;
841 	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
842 		len += sprintf(buf + len, "%d %d %d\n",
843 			       st->info->option_mode_1_freq,
844 			       st->info->option_mode_1_freq / 2,
845 			       st->info->option_mode_1_freq / 4);
846 		break;
847 	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
848 		len += sprintf(buf + len, "%d %d %d\n",
849 			       st->info->option_mode_2_freq,
850 			       st->info->option_mode_2_freq / 2,
851 			       st->info->option_mode_2_freq / 4);
852 		break;
853 	}
854 	return len;
855 error_ret:
856 	return ret;
857 }
858 
859 /*
860  * Should only really be registered if ring buffer support is compiled in.
861  * Does no harm however and doing it right would add a fair bit of complexity
862  */
863 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(sca3000_read_av_freq);
864 
865 /**
866  * sca3000_read_event_value() - query of a threshold or period
867  **/
868 static int sca3000_read_event_value(struct iio_dev *indio_dev,
869 				    const struct iio_chan_spec *chan,
870 				    enum iio_event_type type,
871 				    enum iio_event_direction dir,
872 				    enum iio_event_info info,
873 				    int *val, int *val2)
874 {
875 	int ret, i;
876 	struct sca3000_state *st = iio_priv(indio_dev);
877 
878 	switch (info) {
879 	case IIO_EV_INFO_VALUE:
880 		mutex_lock(&st->lock);
881 		ret = sca3000_read_ctrl_reg(st,
882 					    sca3000_addresses[chan->address][1]);
883 		mutex_unlock(&st->lock);
884 		if (ret < 0)
885 			return ret;
886 		*val = 0;
887 		if (chan->channel2 == IIO_MOD_Y)
888 			for_each_set_bit(i, (unsigned long *)&ret,
889 					 ARRAY_SIZE(st->info->mot_det_mult_y))
890 				*val += st->info->mot_det_mult_y[i];
891 		else
892 			for_each_set_bit(i, (unsigned long *)&ret,
893 					 ARRAY_SIZE(st->info->mot_det_mult_xz))
894 				*val += st->info->mot_det_mult_xz[i];
895 
896 		return IIO_VAL_INT;
897 	case IIO_EV_INFO_PERIOD:
898 		*val = 0;
899 		*val2 = 226000;
900 		return IIO_VAL_INT_PLUS_MICRO;
901 	default:
902 		return -EINVAL;
903 	}
904 }
905 
906 /**
907  * sca3000_write_value() - control of threshold and period
908  * @indio_dev: Device instance specific IIO information.
909  * @chan: Description of the channel for which the event is being
910  * configured.
911  * @type: The type of event being configured, here magnitude rising
912  * as everything else is read only.
913  * @dir: Direction of the event (here rising)
914  * @info: What information about the event are we configuring.
915  * Here the threshold only.
916  * @val: Integer part of the value being written..
917  * @val2: Non integer part of the value being written. Here always 0.
918  */
919 static int sca3000_write_event_value(struct iio_dev *indio_dev,
920 				     const struct iio_chan_spec *chan,
921 				     enum iio_event_type type,
922 				     enum iio_event_direction dir,
923 				     enum iio_event_info info,
924 				     int val, int val2)
925 {
926 	struct sca3000_state *st = iio_priv(indio_dev);
927 	int ret;
928 	int i;
929 	u8 nonlinear = 0;
930 
931 	if (chan->channel2 == IIO_MOD_Y) {
932 		i = ARRAY_SIZE(st->info->mot_det_mult_y);
933 		while (i > 0)
934 			if (val >= st->info->mot_det_mult_y[--i]) {
935 				nonlinear |= (1 << i);
936 				val -= st->info->mot_det_mult_y[i];
937 			}
938 	} else {
939 		i = ARRAY_SIZE(st->info->mot_det_mult_xz);
940 		while (i > 0)
941 			if (val >= st->info->mot_det_mult_xz[--i]) {
942 				nonlinear |= (1 << i);
943 				val -= st->info->mot_det_mult_xz[i];
944 			}
945 	}
946 
947 	mutex_lock(&st->lock);
948 	ret = sca3000_write_ctrl_reg(st,
949 				     sca3000_addresses[chan->address][1],
950 				     nonlinear);
951 	mutex_unlock(&st->lock);
952 
953 	return ret;
954 }
955 
956 static struct attribute *sca3000_attributes[] = {
957 	&iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.dev_attr.attr,
958 	&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
959 	NULL,
960 };
961 
962 static const struct attribute_group sca3000_attribute_group = {
963 	.attrs = sca3000_attributes,
964 };
965 
966 static int sca3000_read_data(struct sca3000_state *st,
967 			     u8 reg_address_high,
968 			     u8 *rx,
969 			     int len)
970 {
971 	int ret;
972 	struct spi_transfer xfer[2] = {
973 		{
974 			.len = 1,
975 			.tx_buf = st->tx,
976 		}, {
977 			.len = len,
978 			.rx_buf = rx,
979 		}
980 	};
981 
982 	st->tx[0] = SCA3000_READ_REG(reg_address_high);
983 	ret = spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
984 	if (ret) {
985 		dev_err(get_device(&st->us->dev), "problem reading register");
986 		return ret;
987 	}
988 
989 	return 0;
990 }
991 
992 /**
993  * sca3000_ring_int_process() - ring specific interrupt handling.
994  * @val: Value of the interrupt status register.
995  * @indio_dev: Device instance specific IIO device structure.
996  */
997 static void sca3000_ring_int_process(u8 val, struct iio_dev *indio_dev)
998 {
999 	struct sca3000_state *st = iio_priv(indio_dev);
1000 	int ret, i, num_available;
1001 
1002 	mutex_lock(&st->lock);
1003 
1004 	if (val & SCA3000_REG_INT_STATUS_HALF) {
1005 		ret = sca3000_read_data_short(st, SCA3000_REG_BUF_COUNT_ADDR,
1006 					      1);
1007 		if (ret)
1008 			goto error_ret;
1009 		num_available = st->rx[0];
1010 		/*
1011 		 * num_available is the total number of samples available
1012 		 * i.e. number of time points * number of channels.
1013 		 */
1014 		ret = sca3000_read_data(st, SCA3000_REG_RING_OUT_ADDR, st->rx,
1015 					num_available * 2);
1016 		if (ret)
1017 			goto error_ret;
1018 		for (i = 0; i < num_available / 3; i++) {
1019 			/*
1020 			 * Dirty hack to cover for 11 bit in fifo, 13 bit
1021 			 * direct reading.
1022 			 *
1023 			 * In theory the bottom two bits are undefined.
1024 			 * In reality they appear to always be 0.
1025 			 */
1026 			iio_push_to_buffers(indio_dev, st->rx + i * 3 * 2);
1027 		}
1028 	}
1029 error_ret:
1030 	mutex_unlock(&st->lock);
1031 }
1032 
1033 /**
1034  * sca3000_event_handler() - handling ring and non ring events
1035  * @irq: The irq being handled.
1036  * @private: struct iio_device pointer for the device.
1037  *
1038  * Ring related interrupt handler. Depending on event, push to
1039  * the ring buffer event chrdev or the event one.
1040  *
1041  * This function is complicated by the fact that the devices can signify ring
1042  * and non ring events via the same interrupt line and they can only
1043  * be distinguished via a read of the relevant status register.
1044  */
1045 static irqreturn_t sca3000_event_handler(int irq, void *private)
1046 {
1047 	struct iio_dev *indio_dev = private;
1048 	struct sca3000_state *st = iio_priv(indio_dev);
1049 	int ret, val;
1050 	s64 last_timestamp = iio_get_time_ns(indio_dev);
1051 
1052 	/*
1053 	 * Could lead if badly timed to an extra read of status reg,
1054 	 * but ensures no interrupt is missed.
1055 	 */
1056 	mutex_lock(&st->lock);
1057 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
1058 	val = st->rx[0];
1059 	mutex_unlock(&st->lock);
1060 	if (ret)
1061 		goto done;
1062 
1063 	sca3000_ring_int_process(val, indio_dev);
1064 
1065 	if (val & SCA3000_INT_STATUS_FREE_FALL)
1066 		iio_push_event(indio_dev,
1067 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1068 						  0,
1069 						  IIO_MOD_X_AND_Y_AND_Z,
1070 						  IIO_EV_TYPE_MAG,
1071 						  IIO_EV_DIR_FALLING),
1072 			       last_timestamp);
1073 
1074 	if (val & SCA3000_INT_STATUS_Y_TRIGGER)
1075 		iio_push_event(indio_dev,
1076 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1077 						  0,
1078 						  IIO_MOD_Y,
1079 						  IIO_EV_TYPE_MAG,
1080 						  IIO_EV_DIR_RISING),
1081 			       last_timestamp);
1082 
1083 	if (val & SCA3000_INT_STATUS_X_TRIGGER)
1084 		iio_push_event(indio_dev,
1085 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1086 						  0,
1087 						  IIO_MOD_X,
1088 						  IIO_EV_TYPE_MAG,
1089 						  IIO_EV_DIR_RISING),
1090 			       last_timestamp);
1091 
1092 	if (val & SCA3000_INT_STATUS_Z_TRIGGER)
1093 		iio_push_event(indio_dev,
1094 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1095 						  0,
1096 						  IIO_MOD_Z,
1097 						  IIO_EV_TYPE_MAG,
1098 						  IIO_EV_DIR_RISING),
1099 			       last_timestamp);
1100 
1101 done:
1102 	return IRQ_HANDLED;
1103 }
1104 
1105 /**
1106  * sca3000_read_event_config() what events are enabled
1107  **/
1108 static int sca3000_read_event_config(struct iio_dev *indio_dev,
1109 				     const struct iio_chan_spec *chan,
1110 				     enum iio_event_type type,
1111 				     enum iio_event_direction dir)
1112 {
1113 	struct sca3000_state *st = iio_priv(indio_dev);
1114 	int ret;
1115 	/* read current value of mode register */
1116 	mutex_lock(&st->lock);
1117 
1118 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1119 	if (ret)
1120 		goto error_ret;
1121 
1122 	switch (chan->channel2) {
1123 	case IIO_MOD_X_AND_Y_AND_Z:
1124 		ret = !!(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT);
1125 		break;
1126 	case IIO_MOD_X:
1127 	case IIO_MOD_Y:
1128 	case IIO_MOD_Z:
1129 		/*
1130 		 * Motion detection mode cannot run at the same time as
1131 		 * acceleration data being read.
1132 		 */
1133 		if ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1134 		    != SCA3000_REG_MODE_MEAS_MODE_MOT_DET) {
1135 			ret = 0;
1136 		} else {
1137 			ret = sca3000_read_ctrl_reg(st,
1138 						SCA3000_REG_CTRL_SEL_MD_CTRL);
1139 			if (ret < 0)
1140 				goto error_ret;
1141 			/* only supporting logical or's for now */
1142 			ret = !!(ret & sca3000_addresses[chan->address][2]);
1143 		}
1144 		break;
1145 	default:
1146 		ret = -EINVAL;
1147 	}
1148 
1149 error_ret:
1150 	mutex_unlock(&st->lock);
1151 
1152 	return ret;
1153 }
1154 
1155 static int sca3000_freefall_set_state(struct iio_dev *indio_dev, int state)
1156 {
1157 	struct sca3000_state *st = iio_priv(indio_dev);
1158 	int ret;
1159 
1160 	/* read current value of mode register */
1161 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1162 	if (ret)
1163 		return ret;
1164 
1165 	/* if off and should be on */
1166 	if (state && !(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
1167 		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1168 					 st->rx[0] | SCA3000_REG_MODE_FREE_FALL_DETECT);
1169 	/* if on and should be off */
1170 	else if (!state && (st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
1171 		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1172 					 st->rx[0] & ~SCA3000_REG_MODE_FREE_FALL_DETECT);
1173 	else
1174 		return 0;
1175 }
1176 
1177 static int sca3000_motion_detect_set_state(struct iio_dev *indio_dev, int axis,
1178 					   int state)
1179 {
1180 	struct sca3000_state *st = iio_priv(indio_dev);
1181 	int ret, ctrlval;
1182 
1183 	/*
1184 	 * First read the motion detector config to find out if
1185 	 * this axis is on
1186 	 */
1187 	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
1188 	if (ret < 0)
1189 		return ret;
1190 	ctrlval = ret;
1191 	/* if off and should be on */
1192 	if (state && !(ctrlval & sca3000_addresses[axis][2])) {
1193 		ret = sca3000_write_ctrl_reg(st,
1194 					     SCA3000_REG_CTRL_SEL_MD_CTRL,
1195 					     ctrlval |
1196 					     sca3000_addresses[axis][2]);
1197 		if (ret)
1198 			return ret;
1199 		st->mo_det_use_count++;
1200 	} else if (!state && (ctrlval & sca3000_addresses[axis][2])) {
1201 		ret = sca3000_write_ctrl_reg(st,
1202 					     SCA3000_REG_CTRL_SEL_MD_CTRL,
1203 					     ctrlval &
1204 					     ~(sca3000_addresses[axis][2]));
1205 		if (ret)
1206 			return ret;
1207 		st->mo_det_use_count--;
1208 	}
1209 
1210 	/* read current value of mode register */
1211 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1212 	if (ret)
1213 		return ret;
1214 	/* if off and should be on */
1215 	if ((st->mo_det_use_count) &&
1216 	    ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1217 	     != SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
1218 		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1219 			(st->rx[0] & ~SCA3000_REG_MODE_MODE_MASK)
1220 			| SCA3000_REG_MODE_MEAS_MODE_MOT_DET);
1221 	/* if on and should be off */
1222 	else if (!(st->mo_det_use_count) &&
1223 		 ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1224 		  == SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
1225 		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1226 			st->rx[0] & SCA3000_REG_MODE_MODE_MASK);
1227 	else
1228 		return 0;
1229 }
1230 
1231 /**
1232  * sca3000_write_event_config() - simple on off control for motion detector
1233  * @indio_dev: IIO device instance specific structure. Data specific to this
1234  * particular driver may be accessed via iio_priv(indio_dev).
1235  * @chan: Description of the channel whose event we are configuring.
1236  * @type: The type of event.
1237  * @dir: The direction of the event.
1238  * @state: Desired state of event being configured.
1239  *
1240  * This is a per axis control, but enabling any will result in the
1241  * motion detector unit being enabled.
1242  * N.B. enabling motion detector stops normal data acquisition.
1243  * There is a complexity in knowing which mode to return to when
1244  * this mode is disabled.  Currently normal mode is assumed.
1245  **/
1246 static int sca3000_write_event_config(struct iio_dev *indio_dev,
1247 				      const struct iio_chan_spec *chan,
1248 				      enum iio_event_type type,
1249 				      enum iio_event_direction dir,
1250 				      int state)
1251 {
1252 	struct sca3000_state *st = iio_priv(indio_dev);
1253 	int ret;
1254 
1255 	mutex_lock(&st->lock);
1256 	switch (chan->channel2) {
1257 	case IIO_MOD_X_AND_Y_AND_Z:
1258 		ret = sca3000_freefall_set_state(indio_dev, state);
1259 		break;
1260 
1261 	case IIO_MOD_X:
1262 	case IIO_MOD_Y:
1263 	case IIO_MOD_Z:
1264 		ret = sca3000_motion_detect_set_state(indio_dev,
1265 						      chan->address,
1266 						      state);
1267 		break;
1268 	default:
1269 		ret = -EINVAL;
1270 		break;
1271 	}
1272 	mutex_unlock(&st->lock);
1273 
1274 	return ret;
1275 }
1276 
1277 static int sca3000_configure_ring(struct iio_dev *indio_dev)
1278 {
1279 	struct iio_buffer *buffer;
1280 
1281 	buffer = devm_iio_kfifo_allocate(&indio_dev->dev);
1282 	if (!buffer)
1283 		return -ENOMEM;
1284 
1285 	iio_device_attach_buffer(indio_dev, buffer);
1286 	indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1287 
1288 	return 0;
1289 }
1290 
1291 static inline
1292 int __sca3000_hw_ring_state_set(struct iio_dev *indio_dev, bool state)
1293 {
1294 	struct sca3000_state *st = iio_priv(indio_dev);
1295 	int ret;
1296 
1297 	mutex_lock(&st->lock);
1298 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1299 	if (ret)
1300 		goto error_ret;
1301 	if (state) {
1302 		dev_info(&indio_dev->dev, "supposedly enabling ring buffer\n");
1303 		ret = sca3000_write_reg(st,
1304 			SCA3000_REG_MODE_ADDR,
1305 			(st->rx[0] | SCA3000_REG_MODE_RING_BUF_ENABLE));
1306 	} else
1307 		ret = sca3000_write_reg(st,
1308 			SCA3000_REG_MODE_ADDR,
1309 			(st->rx[0] & ~SCA3000_REG_MODE_RING_BUF_ENABLE));
1310 error_ret:
1311 	mutex_unlock(&st->lock);
1312 
1313 	return ret;
1314 }
1315 
1316 /**
1317  * sca3000_hw_ring_preenable() - hw ring buffer preenable function
1318  * @indio_dev: structure representing the IIO device. Device instance
1319  * specific state can be accessed via iio_priv(indio_dev).
1320  *
1321  * Very simple enable function as the chip will allows normal reads
1322  * during ring buffer operation so as long as it is indeed running
1323  * before we notify the core, the precise ordering does not matter.
1324  */
1325 static int sca3000_hw_ring_preenable(struct iio_dev *indio_dev)
1326 {
1327 	int ret;
1328 	struct sca3000_state *st = iio_priv(indio_dev);
1329 
1330 	mutex_lock(&st->lock);
1331 
1332 	/* Enable the 50% full interrupt */
1333 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1334 	if (ret)
1335 		goto error_unlock;
1336 	ret = sca3000_write_reg(st,
1337 				SCA3000_REG_INT_MASK_ADDR,
1338 				st->rx[0] | SCA3000_REG_INT_MASK_RING_HALF);
1339 	if (ret)
1340 		goto error_unlock;
1341 
1342 	mutex_unlock(&st->lock);
1343 
1344 	return __sca3000_hw_ring_state_set(indio_dev, 1);
1345 
1346 error_unlock:
1347 	mutex_unlock(&st->lock);
1348 
1349 	return ret;
1350 }
1351 
1352 static int sca3000_hw_ring_postdisable(struct iio_dev *indio_dev)
1353 {
1354 	int ret;
1355 	struct sca3000_state *st = iio_priv(indio_dev);
1356 
1357 	ret = __sca3000_hw_ring_state_set(indio_dev, 0);
1358 	if (ret)
1359 		return ret;
1360 
1361 	/* Disable the 50% full interrupt */
1362 	mutex_lock(&st->lock);
1363 
1364 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1365 	if (ret)
1366 		goto unlock;
1367 	ret = sca3000_write_reg(st,
1368 				SCA3000_REG_INT_MASK_ADDR,
1369 				st->rx[0] & ~SCA3000_REG_INT_MASK_RING_HALF);
1370 unlock:
1371 	mutex_unlock(&st->lock);
1372 	return ret;
1373 }
1374 
1375 static const struct iio_buffer_setup_ops sca3000_ring_setup_ops = {
1376 	.preenable = &sca3000_hw_ring_preenable,
1377 	.postdisable = &sca3000_hw_ring_postdisable,
1378 };
1379 
1380 /**
1381  * sca3000_clean_setup() - get the device into a predictable state
1382  * @st: Device instance specific private data structure
1383  *
1384  * Devices use flash memory to store many of the register values
1385  * and hence can come up in somewhat unpredictable states.
1386  * Hence reset everything on driver load.
1387  */
1388 static int sca3000_clean_setup(struct sca3000_state *st)
1389 {
1390 	int ret;
1391 
1392 	mutex_lock(&st->lock);
1393 	/* Ensure all interrupts have been acknowledged */
1394 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
1395 	if (ret)
1396 		goto error_ret;
1397 
1398 	/* Turn off all motion detection channels */
1399 	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
1400 	if (ret < 0)
1401 		goto error_ret;
1402 	ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL,
1403 				     ret & SCA3000_MD_CTRL_PROT_MASK);
1404 	if (ret)
1405 		goto error_ret;
1406 
1407 	/* Disable ring buffer */
1408 	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
1409 	if (ret < 0)
1410 		goto error_ret;
1411 	ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
1412 				     (ret & SCA3000_REG_OUT_CTRL_PROT_MASK)
1413 				     | SCA3000_REG_OUT_CTRL_BUF_X_EN
1414 				     | SCA3000_REG_OUT_CTRL_BUF_Y_EN
1415 				     | SCA3000_REG_OUT_CTRL_BUF_Z_EN
1416 				     | SCA3000_REG_OUT_CTRL_BUF_DIV_4);
1417 	if (ret)
1418 		goto error_ret;
1419 	/* Enable interrupts, relevant to mode and set up as active low */
1420 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1421 	if (ret)
1422 		goto error_ret;
1423 	ret = sca3000_write_reg(st,
1424 				SCA3000_REG_INT_MASK_ADDR,
1425 				(ret & SCA3000_REG_INT_MASK_PROT_MASK)
1426 				| SCA3000_REG_INT_MASK_ACTIVE_LOW);
1427 	if (ret)
1428 		goto error_ret;
1429 	/*
1430 	 * Select normal measurement mode, free fall off, ring off
1431 	 * Ring in 12 bit mode - it is fine to overwrite reserved bits 3,5
1432 	 * as that occurs in one of the example on the datasheet
1433 	 */
1434 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1435 	if (ret)
1436 		goto error_ret;
1437 	ret = sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1438 				(st->rx[0] & SCA3000_MODE_PROT_MASK));
1439 
1440 error_ret:
1441 	mutex_unlock(&st->lock);
1442 	return ret;
1443 }
1444 
1445 static const struct iio_info sca3000_info = {
1446 	.attrs = &sca3000_attribute_group,
1447 	.read_raw = &sca3000_read_raw,
1448 	.write_raw = &sca3000_write_raw,
1449 	.read_event_value = &sca3000_read_event_value,
1450 	.write_event_value = &sca3000_write_event_value,
1451 	.read_event_config = &sca3000_read_event_config,
1452 	.write_event_config = &sca3000_write_event_config,
1453 };
1454 
1455 static int sca3000_probe(struct spi_device *spi)
1456 {
1457 	int ret;
1458 	struct sca3000_state *st;
1459 	struct iio_dev *indio_dev;
1460 
1461 	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
1462 	if (!indio_dev)
1463 		return -ENOMEM;
1464 
1465 	st = iio_priv(indio_dev);
1466 	spi_set_drvdata(spi, indio_dev);
1467 	st->us = spi;
1468 	mutex_init(&st->lock);
1469 	st->info = &sca3000_spi_chip_info_tbl[spi_get_device_id(spi)
1470 					      ->driver_data];
1471 
1472 	indio_dev->dev.parent = &spi->dev;
1473 	indio_dev->name = spi_get_device_id(spi)->name;
1474 	indio_dev->info = &sca3000_info;
1475 	if (st->info->temp_output) {
1476 		indio_dev->channels = sca3000_channels_with_temp;
1477 		indio_dev->num_channels =
1478 			ARRAY_SIZE(sca3000_channels_with_temp);
1479 	} else {
1480 		indio_dev->channels = sca3000_channels;
1481 		indio_dev->num_channels = ARRAY_SIZE(sca3000_channels);
1482 	}
1483 	indio_dev->modes = INDIO_DIRECT_MODE;
1484 
1485 	ret = sca3000_configure_ring(indio_dev);
1486 	if (ret)
1487 		return ret;
1488 
1489 	if (spi->irq) {
1490 		ret = request_threaded_irq(spi->irq,
1491 					   NULL,
1492 					   &sca3000_event_handler,
1493 					   IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
1494 					   "sca3000",
1495 					   indio_dev);
1496 		if (ret)
1497 			return ret;
1498 	}
1499 	indio_dev->setup_ops = &sca3000_ring_setup_ops;
1500 	ret = sca3000_clean_setup(st);
1501 	if (ret)
1502 		goto error_free_irq;
1503 
1504 	ret = sca3000_print_rev(indio_dev);
1505 	if (ret)
1506 		goto error_free_irq;
1507 
1508 	return iio_device_register(indio_dev);
1509 
1510 error_free_irq:
1511 	if (spi->irq)
1512 		free_irq(spi->irq, indio_dev);
1513 
1514 	return ret;
1515 }
1516 
1517 static int sca3000_stop_all_interrupts(struct sca3000_state *st)
1518 {
1519 	int ret;
1520 
1521 	mutex_lock(&st->lock);
1522 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1523 	if (ret)
1524 		goto error_ret;
1525 	ret = sca3000_write_reg(st, SCA3000_REG_INT_MASK_ADDR,
1526 				(st->rx[0] &
1527 				 ~(SCA3000_REG_INT_MASK_RING_THREE_QUARTER |
1528 				   SCA3000_REG_INT_MASK_RING_HALF |
1529 				   SCA3000_REG_INT_MASK_ALL_INTS)));
1530 error_ret:
1531 	mutex_unlock(&st->lock);
1532 	return ret;
1533 }
1534 
1535 static int sca3000_remove(struct spi_device *spi)
1536 {
1537 	struct iio_dev *indio_dev = spi_get_drvdata(spi);
1538 	struct sca3000_state *st = iio_priv(indio_dev);
1539 
1540 	iio_device_unregister(indio_dev);
1541 
1542 	/* Must ensure no interrupts can be generated after this! */
1543 	sca3000_stop_all_interrupts(st);
1544 	if (spi->irq)
1545 		free_irq(spi->irq, indio_dev);
1546 
1547 	return 0;
1548 }
1549 
1550 static const struct spi_device_id sca3000_id[] = {
1551 	{"sca3000_d01", d01},
1552 	{"sca3000_e02", e02},
1553 	{"sca3000_e04", e04},
1554 	{"sca3000_e05", e05},
1555 	{}
1556 };
1557 MODULE_DEVICE_TABLE(spi, sca3000_id);
1558 
1559 static struct spi_driver sca3000_driver = {
1560 	.driver = {
1561 		.name = "sca3000",
1562 	},
1563 	.probe = sca3000_probe,
1564 	.remove = sca3000_remove,
1565 	.id_table = sca3000_id,
1566 };
1567 module_spi_driver(sca3000_driver);
1568 
1569 MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
1570 MODULE_DESCRIPTION("VTI SCA3000 Series Accelerometers SPI driver");
1571 MODULE_LICENSE("GPL v2");
1572