xref: /openbmc/linux/drivers/iio/accel/sca3000.c (revision 6396bb221514d2876fd6dc0aa2a1f240d99b37bb)
1 /*
2  * sca3000_core.c -- support VTI sca3000 series accelerometers via SPI
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 as published by
6  * the Free Software Foundation.
7  *
8  * Copyright (c) 2009 Jonathan Cameron <jic23@kernel.org>
9  *
10  * See industrialio/accels/sca3000.h for comments.
11  */
12 
13 #include <linux/interrupt.h>
14 #include <linux/fs.h>
15 #include <linux/device.h>
16 #include <linux/slab.h>
17 #include <linux/kernel.h>
18 #include <linux/spi/spi.h>
19 #include <linux/sysfs.h>
20 #include <linux/module.h>
21 #include <linux/uaccess.h>
22 #include <linux/iio/iio.h>
23 #include <linux/iio/sysfs.h>
24 #include <linux/iio/events.h>
25 #include <linux/iio/buffer.h>
26 #include <linux/iio/kfifo_buf.h>
27 
28 #define SCA3000_WRITE_REG(a) (((a) << 2) | 0x02)
29 #define SCA3000_READ_REG(a) ((a) << 2)
30 
31 #define SCA3000_REG_REVID_ADDR				0x00
32 #define   SCA3000_REG_REVID_MAJOR_MASK			GENMASK(8, 4)
33 #define   SCA3000_REG_REVID_MINOR_MASK			GENMASK(3, 0)
34 
35 #define SCA3000_REG_STATUS_ADDR				0x02
36 #define   SCA3000_LOCKED				BIT(5)
37 #define   SCA3000_EEPROM_CS_ERROR			BIT(1)
38 #define   SCA3000_SPI_FRAME_ERROR			BIT(0)
39 
40 /* All reads done using register decrement so no need to directly access LSBs */
41 #define SCA3000_REG_X_MSB_ADDR				0x05
42 #define SCA3000_REG_Y_MSB_ADDR				0x07
43 #define SCA3000_REG_Z_MSB_ADDR				0x09
44 
45 #define SCA3000_REG_RING_OUT_ADDR			0x0f
46 
47 /* Temp read untested - the e05 doesn't have the sensor */
48 #define SCA3000_REG_TEMP_MSB_ADDR			0x13
49 
50 #define SCA3000_REG_MODE_ADDR				0x14
51 #define SCA3000_MODE_PROT_MASK				0x28
52 #define   SCA3000_REG_MODE_RING_BUF_ENABLE		BIT(7)
53 #define   SCA3000_REG_MODE_RING_BUF_8BIT		BIT(6)
54 
55 /*
56  * Free fall detection triggers an interrupt if the acceleration
57  * is below a threshold for equivalent of 25cm drop
58  */
59 #define   SCA3000_REG_MODE_FREE_FALL_DETECT		BIT(4)
60 #define   SCA3000_REG_MODE_MEAS_MODE_NORMAL		0x00
61 #define   SCA3000_REG_MODE_MEAS_MODE_OP_1		0x01
62 #define   SCA3000_REG_MODE_MEAS_MODE_OP_2		0x02
63 
64 /*
65  * In motion detection mode the accelerations are band pass filtered
66  * (approx 1 - 25Hz) and then a programmable threshold used to trigger
67  * and interrupt.
68  */
69 #define   SCA3000_REG_MODE_MEAS_MODE_MOT_DET		0x03
70 #define   SCA3000_REG_MODE_MODE_MASK			0x03
71 
72 #define SCA3000_REG_BUF_COUNT_ADDR			0x15
73 
74 #define SCA3000_REG_INT_STATUS_ADDR			0x16
75 #define   SCA3000_REG_INT_STATUS_THREE_QUARTERS		BIT(7)
76 #define   SCA3000_REG_INT_STATUS_HALF			BIT(6)
77 
78 #define SCA3000_INT_STATUS_FREE_FALL			BIT(3)
79 #define SCA3000_INT_STATUS_Y_TRIGGER			BIT(2)
80 #define SCA3000_INT_STATUS_X_TRIGGER			BIT(1)
81 #define SCA3000_INT_STATUS_Z_TRIGGER			BIT(0)
82 
83 /* Used to allow access to multiplexed registers */
84 #define SCA3000_REG_CTRL_SEL_ADDR			0x18
85 /* Only available for SCA3000-D03 and SCA3000-D01 */
86 #define   SCA3000_REG_CTRL_SEL_I2C_DISABLE		0x01
87 #define   SCA3000_REG_CTRL_SEL_MD_CTRL			0x02
88 #define   SCA3000_REG_CTRL_SEL_MD_Y_TH			0x03
89 #define   SCA3000_REG_CTRL_SEL_MD_X_TH			0x04
90 #define   SCA3000_REG_CTRL_SEL_MD_Z_TH			0x05
91 /*
92  * BE VERY CAREFUL WITH THIS, IF 3 BITS ARE NOT SET the device
93  * will not function
94  */
95 #define   SCA3000_REG_CTRL_SEL_OUT_CTRL			0x0B
96 
97 #define     SCA3000_REG_OUT_CTRL_PROT_MASK		0xE0
98 #define     SCA3000_REG_OUT_CTRL_BUF_X_EN		0x10
99 #define     SCA3000_REG_OUT_CTRL_BUF_Y_EN		0x08
100 #define     SCA3000_REG_OUT_CTRL_BUF_Z_EN		0x04
101 #define     SCA3000_REG_OUT_CTRL_BUF_DIV_MASK		0x03
102 #define     SCA3000_REG_OUT_CTRL_BUF_DIV_4		0x02
103 #define     SCA3000_REG_OUT_CTRL_BUF_DIV_2		0x01
104 
105 
106 /*
107  * Control which motion detector interrupts are on.
108  * For now only OR combinations are supported.
109  */
110 #define SCA3000_MD_CTRL_PROT_MASK			0xC0
111 #define SCA3000_MD_CTRL_OR_Y				BIT(0)
112 #define SCA3000_MD_CTRL_OR_X				BIT(1)
113 #define SCA3000_MD_CTRL_OR_Z				BIT(2)
114 /* Currently unsupported */
115 #define SCA3000_MD_CTRL_AND_Y				BIT(3)
116 #define SCA3000_MD_CTRL_AND_X				BIT(4)
117 #define SAC3000_MD_CTRL_AND_Z				BIT(5)
118 
119 /*
120  * Some control registers of complex access methods requiring this register to
121  * be used to remove a lock.
122  */
123 #define SCA3000_REG_UNLOCK_ADDR				0x1e
124 
125 #define SCA3000_REG_INT_MASK_ADDR			0x21
126 #define   SCA3000_REG_INT_MASK_PROT_MASK		0x1C
127 
128 #define   SCA3000_REG_INT_MASK_RING_THREE_QUARTER	BIT(7)
129 #define   SCA3000_REG_INT_MASK_RING_HALF		BIT(6)
130 
131 #define SCA3000_REG_INT_MASK_ALL_INTS			0x02
132 #define SCA3000_REG_INT_MASK_ACTIVE_HIGH		0x01
133 #define SCA3000_REG_INT_MASK_ACTIVE_LOW			0x00
134 /* Values of multiplexed registers (write to ctrl_data after select) */
135 #define SCA3000_REG_CTRL_DATA_ADDR			0x22
136 
137 /*
138  * Measurement modes available on some sca3000 series chips. Code assumes others
139  * may become available in the future.
140  *
141  * Bypass - Bypass the low-pass filter in the signal channel so as to increase
142  *          signal bandwidth.
143  *
144  * Narrow - Narrow low-pass filtering of the signal channel and half output
145  *          data rate by decimation.
146  *
147  * Wide - Widen low-pass filtering of signal channel to increase bandwidth
148  */
149 #define SCA3000_OP_MODE_BYPASS				0x01
150 #define SCA3000_OP_MODE_NARROW				0x02
151 #define SCA3000_OP_MODE_WIDE				0x04
152 #define SCA3000_MAX_TX 6
153 #define SCA3000_MAX_RX 2
154 
155 /**
156  * struct sca3000_state - device instance state information
157  * @us:			the associated spi device
158  * @info:			chip variant information
159  * @last_timestamp:		the timestamp of the last event
160  * @mo_det_use_count:		reference counter for the motion detection unit
161  * @lock:			lock used to protect elements of sca3000_state
162  *				and the underlying device state.
163  * @tx:			dma-able transmit buffer
164  * @rx:			dma-able receive buffer
165  **/
166 struct sca3000_state {
167 	struct spi_device		*us;
168 	const struct sca3000_chip_info	*info;
169 	s64				last_timestamp;
170 	int				mo_det_use_count;
171 	struct mutex			lock;
172 	/* Can these share a cacheline ? */
173 	u8				rx[384] ____cacheline_aligned;
174 	u8				tx[6] ____cacheline_aligned;
175 };
176 
177 /**
178  * struct sca3000_chip_info - model dependent parameters
179  * @scale:			scale * 10^-6
180  * @temp_output:		some devices have temperature sensors.
181  * @measurement_mode_freq:	normal mode sampling frequency
182  * @measurement_mode_3db_freq:	3db cutoff frequency of the low pass filter for
183  * the normal measurement mode.
184  * @option_mode_1:		first optional mode. Not all models have one
185  * @option_mode_1_freq:		option mode 1 sampling frequency
186  * @option_mode_1_3db_freq:	3db cutoff frequency of the low pass filter for
187  * the first option mode.
188  * @option_mode_2:		second optional mode. Not all chips have one
189  * @option_mode_2_freq:		option mode 2 sampling frequency
190  * @option_mode_2_3db_freq:	3db cutoff frequency of the low pass filter for
191  * the second option mode.
192  * @mod_det_mult_xz:		Bit wise multipliers to calculate the threshold
193  * for motion detection in the x and z axis.
194  * @mod_det_mult_y:		Bit wise multipliers to calculate the threshold
195  * for motion detection in the y axis.
196  *
197  * This structure is used to hold information about the functionality of a given
198  * sca3000 variant.
199  **/
200 struct sca3000_chip_info {
201 	unsigned int		scale;
202 	bool			temp_output;
203 	int			measurement_mode_freq;
204 	int			measurement_mode_3db_freq;
205 	int			option_mode_1;
206 	int			option_mode_1_freq;
207 	int			option_mode_1_3db_freq;
208 	int			option_mode_2;
209 	int			option_mode_2_freq;
210 	int			option_mode_2_3db_freq;
211 	int			mot_det_mult_xz[6];
212 	int			mot_det_mult_y[7];
213 };
214 
215 enum sca3000_variant {
216 	d01,
217 	e02,
218 	e04,
219 	e05,
220 };
221 
222 /*
223  * Note where option modes are not defined, the chip simply does not
224  * support any.
225  * Other chips in the sca3000 series use i2c and are not included here.
226  *
227  * Some of these devices are only listed in the family data sheet and
228  * do not actually appear to be available.
229  */
230 static const struct sca3000_chip_info sca3000_spi_chip_info_tbl[] = {
231 	[d01] = {
232 		.scale = 7357,
233 		.temp_output = true,
234 		.measurement_mode_freq = 250,
235 		.measurement_mode_3db_freq = 45,
236 		.option_mode_1 = SCA3000_OP_MODE_BYPASS,
237 		.option_mode_1_freq = 250,
238 		.option_mode_1_3db_freq = 70,
239 		.mot_det_mult_xz = {50, 100, 200, 350, 650, 1300},
240 		.mot_det_mult_y = {50, 100, 150, 250, 450, 850, 1750},
241 	},
242 	[e02] = {
243 		.scale = 9810,
244 		.measurement_mode_freq = 125,
245 		.measurement_mode_3db_freq = 40,
246 		.option_mode_1 = SCA3000_OP_MODE_NARROW,
247 		.option_mode_1_freq = 63,
248 		.option_mode_1_3db_freq = 11,
249 		.mot_det_mult_xz = {100, 150, 300, 550, 1050, 2050},
250 		.mot_det_mult_y = {50, 100, 200, 350, 700, 1350, 2700},
251 	},
252 	[e04] = {
253 		.scale = 19620,
254 		.measurement_mode_freq = 100,
255 		.measurement_mode_3db_freq = 38,
256 		.option_mode_1 = SCA3000_OP_MODE_NARROW,
257 		.option_mode_1_freq = 50,
258 		.option_mode_1_3db_freq = 9,
259 		.option_mode_2 = SCA3000_OP_MODE_WIDE,
260 		.option_mode_2_freq = 400,
261 		.option_mode_2_3db_freq = 70,
262 		.mot_det_mult_xz = {200, 300, 600, 1100, 2100, 4100},
263 		.mot_det_mult_y = {100, 200, 400, 7000, 1400, 2700, 54000},
264 	},
265 	[e05] = {
266 		.scale = 61313,
267 		.measurement_mode_freq = 200,
268 		.measurement_mode_3db_freq = 60,
269 		.option_mode_1 = SCA3000_OP_MODE_NARROW,
270 		.option_mode_1_freq = 50,
271 		.option_mode_1_3db_freq = 9,
272 		.option_mode_2 = SCA3000_OP_MODE_WIDE,
273 		.option_mode_2_freq = 400,
274 		.option_mode_2_3db_freq = 75,
275 		.mot_det_mult_xz = {600, 900, 1700, 3200, 6100, 11900},
276 		.mot_det_mult_y = {300, 600, 1200, 2000, 4100, 7800, 15600},
277 	},
278 };
279 
280 static int sca3000_write_reg(struct sca3000_state *st, u8 address, u8 val)
281 {
282 	st->tx[0] = SCA3000_WRITE_REG(address);
283 	st->tx[1] = val;
284 	return spi_write(st->us, st->tx, 2);
285 }
286 
287 static int sca3000_read_data_short(struct sca3000_state *st,
288 				   u8 reg_address_high,
289 				   int len)
290 {
291 	struct spi_transfer xfer[2] = {
292 		{
293 			.len = 1,
294 			.tx_buf = st->tx,
295 		}, {
296 			.len = len,
297 			.rx_buf = st->rx,
298 		}
299 	};
300 	st->tx[0] = SCA3000_READ_REG(reg_address_high);
301 
302 	return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
303 }
304 
305 /**
306  * sca3000_reg_lock_on() - test if the ctrl register lock is on
307  * @st: Driver specific device instance data.
308  *
309  * Lock must be held.
310  **/
311 static int sca3000_reg_lock_on(struct sca3000_state *st)
312 {
313 	int ret;
314 
315 	ret = sca3000_read_data_short(st, SCA3000_REG_STATUS_ADDR, 1);
316 	if (ret < 0)
317 		return ret;
318 
319 	return !(st->rx[0] & SCA3000_LOCKED);
320 }
321 
322 /**
323  * __sca3000_unlock_reg_lock() - unlock the control registers
324  * @st: Driver specific device instance data.
325  *
326  * Note the device does not appear to support doing this in a single transfer.
327  * This should only ever be used as part of ctrl reg read.
328  * Lock must be held before calling this
329  */
330 static int __sca3000_unlock_reg_lock(struct sca3000_state *st)
331 {
332 	struct spi_transfer xfer[3] = {
333 		{
334 			.len = 2,
335 			.cs_change = 1,
336 			.tx_buf = st->tx,
337 		}, {
338 			.len = 2,
339 			.cs_change = 1,
340 			.tx_buf = st->tx + 2,
341 		}, {
342 			.len = 2,
343 			.tx_buf = st->tx + 4,
344 		},
345 	};
346 	st->tx[0] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
347 	st->tx[1] = 0x00;
348 	st->tx[2] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
349 	st->tx[3] = 0x50;
350 	st->tx[4] = SCA3000_WRITE_REG(SCA3000_REG_UNLOCK_ADDR);
351 	st->tx[5] = 0xA0;
352 
353 	return spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
354 }
355 
356 /**
357  * sca3000_write_ctrl_reg() write to a lock protect ctrl register
358  * @st: Driver specific device instance data.
359  * @sel: selects which registers we wish to write to
360  * @val: the value to be written
361  *
362  * Certain control registers are protected against overwriting by the lock
363  * register and use a shared write address. This function allows writing of
364  * these registers.
365  * Lock must be held.
366  */
367 static int sca3000_write_ctrl_reg(struct sca3000_state *st,
368 				  u8 sel,
369 				  uint8_t val)
370 {
371 	int ret;
372 
373 	ret = sca3000_reg_lock_on(st);
374 	if (ret < 0)
375 		goto error_ret;
376 	if (ret) {
377 		ret = __sca3000_unlock_reg_lock(st);
378 		if (ret)
379 			goto error_ret;
380 	}
381 
382 	/* Set the control select register */
383 	ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, sel);
384 	if (ret)
385 		goto error_ret;
386 
387 	/* Write the actual value into the register */
388 	ret = sca3000_write_reg(st, SCA3000_REG_CTRL_DATA_ADDR, val);
389 
390 error_ret:
391 	return ret;
392 }
393 
394 /**
395  * sca3000_read_ctrl_reg() read from lock protected control register.
396  * @st: Driver specific device instance data.
397  * @ctrl_reg: Which ctrl register do we want to read.
398  *
399  * Lock must be held.
400  */
401 static int sca3000_read_ctrl_reg(struct sca3000_state *st,
402 				 u8 ctrl_reg)
403 {
404 	int ret;
405 
406 	ret = sca3000_reg_lock_on(st);
407 	if (ret < 0)
408 		goto error_ret;
409 	if (ret) {
410 		ret = __sca3000_unlock_reg_lock(st);
411 		if (ret)
412 			goto error_ret;
413 	}
414 	/* Set the control select register */
415 	ret = sca3000_write_reg(st, SCA3000_REG_CTRL_SEL_ADDR, ctrl_reg);
416 	if (ret)
417 		goto error_ret;
418 	ret = sca3000_read_data_short(st, SCA3000_REG_CTRL_DATA_ADDR, 1);
419 	if (ret)
420 		goto error_ret;
421 	return st->rx[0];
422 error_ret:
423 	return ret;
424 }
425 
426 /**
427  * sca3000_show_rev() - sysfs interface to read the chip revision number
428  * @indio_dev: Device instance specific generic IIO data.
429  * Driver specific device instance data can be obtained via
430  * via iio_priv(indio_dev)
431  */
432 static int sca3000_print_rev(struct iio_dev *indio_dev)
433 {
434 	int ret;
435 	struct sca3000_state *st = iio_priv(indio_dev);
436 
437 	mutex_lock(&st->lock);
438 	ret = sca3000_read_data_short(st, SCA3000_REG_REVID_ADDR, 1);
439 	if (ret < 0)
440 		goto error_ret;
441 	dev_info(&indio_dev->dev,
442 		 "sca3000 revision major=%lu, minor=%lu\n",
443 		 st->rx[0] & SCA3000_REG_REVID_MAJOR_MASK,
444 		 st->rx[0] & SCA3000_REG_REVID_MINOR_MASK);
445 error_ret:
446 	mutex_unlock(&st->lock);
447 
448 	return ret;
449 }
450 
451 static ssize_t
452 sca3000_show_available_3db_freqs(struct device *dev,
453 				 struct device_attribute *attr,
454 				 char *buf)
455 {
456 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
457 	struct sca3000_state *st = iio_priv(indio_dev);
458 	int len;
459 
460 	len = sprintf(buf, "%d", st->info->measurement_mode_3db_freq);
461 	if (st->info->option_mode_1)
462 		len += sprintf(buf + len, " %d",
463 			       st->info->option_mode_1_3db_freq);
464 	if (st->info->option_mode_2)
465 		len += sprintf(buf + len, " %d",
466 			       st->info->option_mode_2_3db_freq);
467 	len += sprintf(buf + len, "\n");
468 
469 	return len;
470 }
471 
472 static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available,
473 		       S_IRUGO, sca3000_show_available_3db_freqs,
474 		       NULL, 0);
475 
476 static const struct iio_event_spec sca3000_event = {
477 	.type = IIO_EV_TYPE_MAG,
478 	.dir = IIO_EV_DIR_RISING,
479 	.mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE),
480 };
481 
482 /*
483  * Note the hack in the number of bits to pretend we have 2 more than
484  * we do in the fifo.
485  */
486 #define SCA3000_CHAN(index, mod)				\
487 	{							\
488 		.type = IIO_ACCEL,				\
489 		.modified = 1,					\
490 		.channel2 = mod,				\
491 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),	\
492 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |\
493 			BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),\
494 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
495 		.address = index,				\
496 		.scan_index = index,				\
497 		.scan_type = {					\
498 			.sign = 's',				\
499 			.realbits = 13,				\
500 			.storagebits = 16,			\
501 			.shift = 3,				\
502 			.endianness = IIO_BE,			\
503 		},						\
504 		.event_spec = &sca3000_event,			\
505 		.num_event_specs = 1,				\
506 	}
507 
508 static const struct iio_event_spec sca3000_freefall_event_spec = {
509 	.type = IIO_EV_TYPE_MAG,
510 	.dir = IIO_EV_DIR_FALLING,
511 	.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
512 		BIT(IIO_EV_INFO_PERIOD),
513 };
514 
515 static const struct iio_chan_spec sca3000_channels[] = {
516 	SCA3000_CHAN(0, IIO_MOD_X),
517 	SCA3000_CHAN(1, IIO_MOD_Y),
518 	SCA3000_CHAN(2, IIO_MOD_Z),
519 	{
520 		.type = IIO_ACCEL,
521 		.modified = 1,
522 		.channel2 = IIO_MOD_X_AND_Y_AND_Z,
523 		.scan_index = -1, /* Fake channel */
524 		.event_spec = &sca3000_freefall_event_spec,
525 		.num_event_specs = 1,
526 	},
527 };
528 
529 static const struct iio_chan_spec sca3000_channels_with_temp[] = {
530 	SCA3000_CHAN(0, IIO_MOD_X),
531 	SCA3000_CHAN(1, IIO_MOD_Y),
532 	SCA3000_CHAN(2, IIO_MOD_Z),
533 	{
534 		.type = IIO_TEMP,
535 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
536 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
537 			BIT(IIO_CHAN_INFO_OFFSET),
538 		/* No buffer support */
539 		.scan_index = -1,
540 	},
541 	{
542 		.type = IIO_ACCEL,
543 		.modified = 1,
544 		.channel2 = IIO_MOD_X_AND_Y_AND_Z,
545 		.scan_index = -1, /* Fake channel */
546 		.event_spec = &sca3000_freefall_event_spec,
547 		.num_event_specs = 1,
548 	},
549 };
550 
551 static u8 sca3000_addresses[3][3] = {
552 	[0] = {SCA3000_REG_X_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_X_TH,
553 	       SCA3000_MD_CTRL_OR_X},
554 	[1] = {SCA3000_REG_Y_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Y_TH,
555 	       SCA3000_MD_CTRL_OR_Y},
556 	[2] = {SCA3000_REG_Z_MSB_ADDR, SCA3000_REG_CTRL_SEL_MD_Z_TH,
557 	       SCA3000_MD_CTRL_OR_Z},
558 };
559 
560 /**
561  * __sca3000_get_base_freq() - obtain mode specific base frequency
562  * @st: Private driver specific device instance specific state.
563  * @info: chip type specific information.
564  * @base_freq: Base frequency for the current measurement mode.
565  *
566  * lock must be held
567  */
568 static inline int __sca3000_get_base_freq(struct sca3000_state *st,
569 					  const struct sca3000_chip_info *info,
570 					  int *base_freq)
571 {
572 	int ret;
573 
574 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
575 	if (ret)
576 		goto error_ret;
577 	switch (SCA3000_REG_MODE_MODE_MASK & st->rx[0]) {
578 	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
579 		*base_freq = info->measurement_mode_freq;
580 		break;
581 	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
582 		*base_freq = info->option_mode_1_freq;
583 		break;
584 	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
585 		*base_freq = info->option_mode_2_freq;
586 		break;
587 	default:
588 		ret = -EINVAL;
589 	}
590 error_ret:
591 	return ret;
592 }
593 
594 /**
595  * sca3000_read_raw_samp_freq() - read_raw handler for IIO_CHAN_INFO_SAMP_FREQ
596  * @st: Private driver specific device instance specific state.
597  * @val: The frequency read back.
598  *
599  * lock must be held
600  **/
601 static int sca3000_read_raw_samp_freq(struct sca3000_state *st, int *val)
602 {
603 	int ret;
604 
605 	ret = __sca3000_get_base_freq(st, st->info, val);
606 	if (ret)
607 		return ret;
608 
609 	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
610 	if (ret < 0)
611 		return ret;
612 
613 	if (*val > 0) {
614 		ret &= SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;
615 		switch (ret) {
616 		case SCA3000_REG_OUT_CTRL_BUF_DIV_2:
617 			*val /= 2;
618 			break;
619 		case SCA3000_REG_OUT_CTRL_BUF_DIV_4:
620 			*val /= 4;
621 			break;
622 		}
623 	}
624 
625 	return 0;
626 }
627 
628 /**
629  * sca3000_write_raw_samp_freq() - write_raw handler for IIO_CHAN_INFO_SAMP_FREQ
630  * @st: Private driver specific device instance specific state.
631  * @val: The frequency desired.
632  *
633  * lock must be held
634  */
635 static int sca3000_write_raw_samp_freq(struct sca3000_state *st, int val)
636 {
637 	int ret, base_freq, ctrlval;
638 
639 	ret = __sca3000_get_base_freq(st, st->info, &base_freq);
640 	if (ret)
641 		return ret;
642 
643 	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
644 	if (ret < 0)
645 		return ret;
646 
647 	ctrlval = ret & ~SCA3000_REG_OUT_CTRL_BUF_DIV_MASK;
648 
649 	if (val == base_freq / 2)
650 		ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_2;
651 	if (val == base_freq / 4)
652 		ctrlval |= SCA3000_REG_OUT_CTRL_BUF_DIV_4;
653 	else if (val != base_freq)
654 		return -EINVAL;
655 
656 	return sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
657 				     ctrlval);
658 }
659 
660 static int sca3000_read_3db_freq(struct sca3000_state *st, int *val)
661 {
662 	int ret;
663 
664 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
665 	if (ret)
666 		return ret;
667 
668 	/* mask bottom 2 bits - only ones that are relevant */
669 	st->rx[0] &= SCA3000_REG_MODE_MODE_MASK;
670 	switch (st->rx[0]) {
671 	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
672 		*val = st->info->measurement_mode_3db_freq;
673 		return IIO_VAL_INT;
674 	case SCA3000_REG_MODE_MEAS_MODE_MOT_DET:
675 		return -EBUSY;
676 	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
677 		*val = st->info->option_mode_1_3db_freq;
678 		return IIO_VAL_INT;
679 	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
680 		*val = st->info->option_mode_2_3db_freq;
681 		return IIO_VAL_INT;
682 	default:
683 		return -EINVAL;
684 	}
685 }
686 
687 static int sca3000_write_3db_freq(struct sca3000_state *st, int val)
688 {
689 	int ret;
690 	int mode;
691 
692 	if (val == st->info->measurement_mode_3db_freq)
693 		mode = SCA3000_REG_MODE_MEAS_MODE_NORMAL;
694 	else if (st->info->option_mode_1 &&
695 		 (val == st->info->option_mode_1_3db_freq))
696 		mode = SCA3000_REG_MODE_MEAS_MODE_OP_1;
697 	else if (st->info->option_mode_2 &&
698 		 (val == st->info->option_mode_2_3db_freq))
699 		mode = SCA3000_REG_MODE_MEAS_MODE_OP_2;
700 	else
701 		return -EINVAL;
702 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
703 	if (ret)
704 		return ret;
705 
706 	st->rx[0] &= ~SCA3000_REG_MODE_MODE_MASK;
707 	st->rx[0] |= (mode & SCA3000_REG_MODE_MODE_MASK);
708 
709 	return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR, st->rx[0]);
710 }
711 
712 static int sca3000_read_raw(struct iio_dev *indio_dev,
713 			    struct iio_chan_spec const *chan,
714 			    int *val,
715 			    int *val2,
716 			    long mask)
717 {
718 	struct sca3000_state *st = iio_priv(indio_dev);
719 	int ret;
720 	u8 address;
721 
722 	switch (mask) {
723 	case IIO_CHAN_INFO_RAW:
724 		mutex_lock(&st->lock);
725 		if (chan->type == IIO_ACCEL) {
726 			if (st->mo_det_use_count) {
727 				mutex_unlock(&st->lock);
728 				return -EBUSY;
729 			}
730 			address = sca3000_addresses[chan->address][0];
731 			ret = sca3000_read_data_short(st, address, 2);
732 			if (ret < 0) {
733 				mutex_unlock(&st->lock);
734 				return ret;
735 			}
736 			*val = (be16_to_cpup((__be16 *)st->rx) >> 3) & 0x1FFF;
737 			*val = ((*val) << (sizeof(*val) * 8 - 13)) >>
738 				(sizeof(*val) * 8 - 13);
739 		} else {
740 			/* get the temperature when available */
741 			ret = sca3000_read_data_short(st,
742 						      SCA3000_REG_TEMP_MSB_ADDR,
743 						      2);
744 			if (ret < 0) {
745 				mutex_unlock(&st->lock);
746 				return ret;
747 			}
748 			*val = ((st->rx[0] & 0x3F) << 3) |
749 			       ((st->rx[1] & 0xE0) >> 5);
750 		}
751 		mutex_unlock(&st->lock);
752 		return IIO_VAL_INT;
753 	case IIO_CHAN_INFO_SCALE:
754 		*val = 0;
755 		if (chan->type == IIO_ACCEL)
756 			*val2 = st->info->scale;
757 		else /* temperature */
758 			*val2 = 555556;
759 		return IIO_VAL_INT_PLUS_MICRO;
760 	case IIO_CHAN_INFO_OFFSET:
761 		*val = -214;
762 		*val2 = 600000;
763 		return IIO_VAL_INT_PLUS_MICRO;
764 	case IIO_CHAN_INFO_SAMP_FREQ:
765 		mutex_lock(&st->lock);
766 		ret = sca3000_read_raw_samp_freq(st, val);
767 		mutex_unlock(&st->lock);
768 		return ret ? ret : IIO_VAL_INT;
769 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
770 		mutex_lock(&st->lock);
771 		ret = sca3000_read_3db_freq(st, val);
772 		mutex_unlock(&st->lock);
773 		return ret;
774 	default:
775 		return -EINVAL;
776 	}
777 }
778 
779 static int sca3000_write_raw(struct iio_dev *indio_dev,
780 			     struct iio_chan_spec const *chan,
781 			     int val, int val2, long mask)
782 {
783 	struct sca3000_state *st = iio_priv(indio_dev);
784 	int ret;
785 
786 	switch (mask) {
787 	case IIO_CHAN_INFO_SAMP_FREQ:
788 		if (val2)
789 			return -EINVAL;
790 		mutex_lock(&st->lock);
791 		ret = sca3000_write_raw_samp_freq(st, val);
792 		mutex_unlock(&st->lock);
793 		return ret;
794 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
795 		if (val2)
796 			return -EINVAL;
797 		mutex_lock(&st->lock);
798 		ret = sca3000_write_3db_freq(st, val);
799 		mutex_unlock(&st->lock);
800 	default:
801 		return -EINVAL;
802 	}
803 
804 	return ret;
805 }
806 
807 /**
808  * sca3000_read_av_freq() - sysfs function to get available frequencies
809  * @dev: Device structure for this device.
810  * @attr: Description of the attribute.
811  * @buf: Incoming string
812  *
813  * The later modes are only relevant to the ring buffer - and depend on current
814  * mode. Note that data sheet gives rather wide tolerances for these so integer
815  * division will give good enough answer and not all chips have them specified
816  * at all.
817  **/
818 static ssize_t sca3000_read_av_freq(struct device *dev,
819 				    struct device_attribute *attr,
820 				    char *buf)
821 {
822 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
823 	struct sca3000_state *st = iio_priv(indio_dev);
824 	int len = 0, ret, val;
825 
826 	mutex_lock(&st->lock);
827 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
828 	val = st->rx[0];
829 	mutex_unlock(&st->lock);
830 	if (ret)
831 		goto error_ret;
832 
833 	switch (val & SCA3000_REG_MODE_MODE_MASK) {
834 	case SCA3000_REG_MODE_MEAS_MODE_NORMAL:
835 		len += sprintf(buf + len, "%d %d %d\n",
836 			       st->info->measurement_mode_freq,
837 			       st->info->measurement_mode_freq / 2,
838 			       st->info->measurement_mode_freq / 4);
839 		break;
840 	case SCA3000_REG_MODE_MEAS_MODE_OP_1:
841 		len += sprintf(buf + len, "%d %d %d\n",
842 			       st->info->option_mode_1_freq,
843 			       st->info->option_mode_1_freq / 2,
844 			       st->info->option_mode_1_freq / 4);
845 		break;
846 	case SCA3000_REG_MODE_MEAS_MODE_OP_2:
847 		len += sprintf(buf + len, "%d %d %d\n",
848 			       st->info->option_mode_2_freq,
849 			       st->info->option_mode_2_freq / 2,
850 			       st->info->option_mode_2_freq / 4);
851 		break;
852 	}
853 	return len;
854 error_ret:
855 	return ret;
856 }
857 
858 /*
859  * Should only really be registered if ring buffer support is compiled in.
860  * Does no harm however and doing it right would add a fair bit of complexity
861  */
862 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(sca3000_read_av_freq);
863 
864 /**
865  * sca3000_read_event_value() - query of a threshold or period
866  **/
867 static int sca3000_read_event_value(struct iio_dev *indio_dev,
868 				    const struct iio_chan_spec *chan,
869 				    enum iio_event_type type,
870 				    enum iio_event_direction dir,
871 				    enum iio_event_info info,
872 				    int *val, int *val2)
873 {
874 	int ret, i;
875 	struct sca3000_state *st = iio_priv(indio_dev);
876 
877 	switch (info) {
878 	case IIO_EV_INFO_VALUE:
879 		mutex_lock(&st->lock);
880 		ret = sca3000_read_ctrl_reg(st,
881 					    sca3000_addresses[chan->address][1]);
882 		mutex_unlock(&st->lock);
883 		if (ret < 0)
884 			return ret;
885 		*val = 0;
886 		if (chan->channel2 == IIO_MOD_Y)
887 			for_each_set_bit(i, (unsigned long *)&ret,
888 					 ARRAY_SIZE(st->info->mot_det_mult_y))
889 				*val += st->info->mot_det_mult_y[i];
890 		else
891 			for_each_set_bit(i, (unsigned long *)&ret,
892 					 ARRAY_SIZE(st->info->mot_det_mult_xz))
893 				*val += st->info->mot_det_mult_xz[i];
894 
895 		return IIO_VAL_INT;
896 	case IIO_EV_INFO_PERIOD:
897 		*val = 0;
898 		*val2 = 226000;
899 		return IIO_VAL_INT_PLUS_MICRO;
900 	default:
901 		return -EINVAL;
902 	}
903 }
904 
905 /**
906  * sca3000_write_value() - control of threshold and period
907  * @indio_dev: Device instance specific IIO information.
908  * @chan: Description of the channel for which the event is being
909  * configured.
910  * @type: The type of event being configured, here magnitude rising
911  * as everything else is read only.
912  * @dir: Direction of the event (here rising)
913  * @info: What information about the event are we configuring.
914  * Here the threshold only.
915  * @val: Integer part of the value being written..
916  * @val2: Non integer part of the value being written. Here always 0.
917  */
918 static int sca3000_write_event_value(struct iio_dev *indio_dev,
919 				     const struct iio_chan_spec *chan,
920 				     enum iio_event_type type,
921 				     enum iio_event_direction dir,
922 				     enum iio_event_info info,
923 				     int val, int val2)
924 {
925 	struct sca3000_state *st = iio_priv(indio_dev);
926 	int ret;
927 	int i;
928 	u8 nonlinear = 0;
929 
930 	if (chan->channel2 == IIO_MOD_Y) {
931 		i = ARRAY_SIZE(st->info->mot_det_mult_y);
932 		while (i > 0)
933 			if (val >= st->info->mot_det_mult_y[--i]) {
934 				nonlinear |= (1 << i);
935 				val -= st->info->mot_det_mult_y[i];
936 			}
937 	} else {
938 		i = ARRAY_SIZE(st->info->mot_det_mult_xz);
939 		while (i > 0)
940 			if (val >= st->info->mot_det_mult_xz[--i]) {
941 				nonlinear |= (1 << i);
942 				val -= st->info->mot_det_mult_xz[i];
943 			}
944 	}
945 
946 	mutex_lock(&st->lock);
947 	ret = sca3000_write_ctrl_reg(st,
948 				     sca3000_addresses[chan->address][1],
949 				     nonlinear);
950 	mutex_unlock(&st->lock);
951 
952 	return ret;
953 }
954 
955 static struct attribute *sca3000_attributes[] = {
956 	&iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.dev_attr.attr,
957 	&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
958 	NULL,
959 };
960 
961 static const struct attribute_group sca3000_attribute_group = {
962 	.attrs = sca3000_attributes,
963 };
964 
965 static int sca3000_read_data(struct sca3000_state *st,
966 			     u8 reg_address_high,
967 			     u8 *rx,
968 			     int len)
969 {
970 	int ret;
971 	struct spi_transfer xfer[2] = {
972 		{
973 			.len = 1,
974 			.tx_buf = st->tx,
975 		}, {
976 			.len = len,
977 			.rx_buf = rx,
978 		}
979 	};
980 
981 	st->tx[0] = SCA3000_READ_REG(reg_address_high);
982 	ret = spi_sync_transfer(st->us, xfer, ARRAY_SIZE(xfer));
983 	if (ret) {
984 		dev_err(get_device(&st->us->dev), "problem reading register");
985 		return ret;
986 	}
987 
988 	return 0;
989 }
990 
991 /**
992  * sca3000_ring_int_process() - ring specific interrupt handling.
993  * @val: Value of the interrupt status register.
994  * @indio_dev: Device instance specific IIO device structure.
995  */
996 static void sca3000_ring_int_process(u8 val, struct iio_dev *indio_dev)
997 {
998 	struct sca3000_state *st = iio_priv(indio_dev);
999 	int ret, i, num_available;
1000 
1001 	mutex_lock(&st->lock);
1002 
1003 	if (val & SCA3000_REG_INT_STATUS_HALF) {
1004 		ret = sca3000_read_data_short(st, SCA3000_REG_BUF_COUNT_ADDR,
1005 					      1);
1006 		if (ret)
1007 			goto error_ret;
1008 		num_available = st->rx[0];
1009 		/*
1010 		 * num_available is the total number of samples available
1011 		 * i.e. number of time points * number of channels.
1012 		 */
1013 		ret = sca3000_read_data(st, SCA3000_REG_RING_OUT_ADDR, st->rx,
1014 					num_available * 2);
1015 		if (ret)
1016 			goto error_ret;
1017 		for (i = 0; i < num_available / 3; i++) {
1018 			/*
1019 			 * Dirty hack to cover for 11 bit in fifo, 13 bit
1020 			 * direct reading.
1021 			 *
1022 			 * In theory the bottom two bits are undefined.
1023 			 * In reality they appear to always be 0.
1024 			 */
1025 			iio_push_to_buffers(indio_dev, st->rx + i * 3 * 2);
1026 		}
1027 	}
1028 error_ret:
1029 	mutex_unlock(&st->lock);
1030 }
1031 
1032 /**
1033  * sca3000_event_handler() - handling ring and non ring events
1034  * @irq: The irq being handled.
1035  * @private: struct iio_device pointer for the device.
1036  *
1037  * Ring related interrupt handler. Depending on event, push to
1038  * the ring buffer event chrdev or the event one.
1039  *
1040  * This function is complicated by the fact that the devices can signify ring
1041  * and non ring events via the same interrupt line and they can only
1042  * be distinguished via a read of the relevant status register.
1043  */
1044 static irqreturn_t sca3000_event_handler(int irq, void *private)
1045 {
1046 	struct iio_dev *indio_dev = private;
1047 	struct sca3000_state *st = iio_priv(indio_dev);
1048 	int ret, val;
1049 	s64 last_timestamp = iio_get_time_ns(indio_dev);
1050 
1051 	/*
1052 	 * Could lead if badly timed to an extra read of status reg,
1053 	 * but ensures no interrupt is missed.
1054 	 */
1055 	mutex_lock(&st->lock);
1056 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
1057 	val = st->rx[0];
1058 	mutex_unlock(&st->lock);
1059 	if (ret)
1060 		goto done;
1061 
1062 	sca3000_ring_int_process(val, indio_dev);
1063 
1064 	if (val & SCA3000_INT_STATUS_FREE_FALL)
1065 		iio_push_event(indio_dev,
1066 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1067 						  0,
1068 						  IIO_MOD_X_AND_Y_AND_Z,
1069 						  IIO_EV_TYPE_MAG,
1070 						  IIO_EV_DIR_FALLING),
1071 			       last_timestamp);
1072 
1073 	if (val & SCA3000_INT_STATUS_Y_TRIGGER)
1074 		iio_push_event(indio_dev,
1075 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1076 						  0,
1077 						  IIO_MOD_Y,
1078 						  IIO_EV_TYPE_MAG,
1079 						  IIO_EV_DIR_RISING),
1080 			       last_timestamp);
1081 
1082 	if (val & SCA3000_INT_STATUS_X_TRIGGER)
1083 		iio_push_event(indio_dev,
1084 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1085 						  0,
1086 						  IIO_MOD_X,
1087 						  IIO_EV_TYPE_MAG,
1088 						  IIO_EV_DIR_RISING),
1089 			       last_timestamp);
1090 
1091 	if (val & SCA3000_INT_STATUS_Z_TRIGGER)
1092 		iio_push_event(indio_dev,
1093 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1094 						  0,
1095 						  IIO_MOD_Z,
1096 						  IIO_EV_TYPE_MAG,
1097 						  IIO_EV_DIR_RISING),
1098 			       last_timestamp);
1099 
1100 done:
1101 	return IRQ_HANDLED;
1102 }
1103 
1104 /**
1105  * sca3000_read_event_config() what events are enabled
1106  **/
1107 static int sca3000_read_event_config(struct iio_dev *indio_dev,
1108 				     const struct iio_chan_spec *chan,
1109 				     enum iio_event_type type,
1110 				     enum iio_event_direction dir)
1111 {
1112 	struct sca3000_state *st = iio_priv(indio_dev);
1113 	int ret;
1114 	/* read current value of mode register */
1115 	mutex_lock(&st->lock);
1116 
1117 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1118 	if (ret)
1119 		goto error_ret;
1120 
1121 	switch (chan->channel2) {
1122 	case IIO_MOD_X_AND_Y_AND_Z:
1123 		ret = !!(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT);
1124 		break;
1125 	case IIO_MOD_X:
1126 	case IIO_MOD_Y:
1127 	case IIO_MOD_Z:
1128 		/*
1129 		 * Motion detection mode cannot run at the same time as
1130 		 * acceleration data being read.
1131 		 */
1132 		if ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1133 		    != SCA3000_REG_MODE_MEAS_MODE_MOT_DET) {
1134 			ret = 0;
1135 		} else {
1136 			ret = sca3000_read_ctrl_reg(st,
1137 						SCA3000_REG_CTRL_SEL_MD_CTRL);
1138 			if (ret < 0)
1139 				goto error_ret;
1140 			/* only supporting logical or's for now */
1141 			ret = !!(ret & sca3000_addresses[chan->address][2]);
1142 		}
1143 		break;
1144 	default:
1145 		ret = -EINVAL;
1146 	}
1147 
1148 error_ret:
1149 	mutex_unlock(&st->lock);
1150 
1151 	return ret;
1152 }
1153 
1154 static int sca3000_freefall_set_state(struct iio_dev *indio_dev, int state)
1155 {
1156 	struct sca3000_state *st = iio_priv(indio_dev);
1157 	int ret;
1158 
1159 	/* read current value of mode register */
1160 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1161 	if (ret)
1162 		return ret;
1163 
1164 	/* if off and should be on */
1165 	if (state && !(st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
1166 		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1167 					 st->rx[0] | SCA3000_REG_MODE_FREE_FALL_DETECT);
1168 	/* if on and should be off */
1169 	else if (!state && (st->rx[0] & SCA3000_REG_MODE_FREE_FALL_DETECT))
1170 		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1171 					 st->rx[0] & ~SCA3000_REG_MODE_FREE_FALL_DETECT);
1172 	else
1173 		return 0;
1174 }
1175 
1176 static int sca3000_motion_detect_set_state(struct iio_dev *indio_dev, int axis,
1177 					   int state)
1178 {
1179 	struct sca3000_state *st = iio_priv(indio_dev);
1180 	int ret, ctrlval;
1181 
1182 	/*
1183 	 * First read the motion detector config to find out if
1184 	 * this axis is on
1185 	 */
1186 	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
1187 	if (ret < 0)
1188 		return ret;
1189 	ctrlval = ret;
1190 	/* if off and should be on */
1191 	if (state && !(ctrlval & sca3000_addresses[axis][2])) {
1192 		ret = sca3000_write_ctrl_reg(st,
1193 					     SCA3000_REG_CTRL_SEL_MD_CTRL,
1194 					     ctrlval |
1195 					     sca3000_addresses[axis][2]);
1196 		if (ret)
1197 			return ret;
1198 		st->mo_det_use_count++;
1199 	} else if (!state && (ctrlval & sca3000_addresses[axis][2])) {
1200 		ret = sca3000_write_ctrl_reg(st,
1201 					     SCA3000_REG_CTRL_SEL_MD_CTRL,
1202 					     ctrlval &
1203 					     ~(sca3000_addresses[axis][2]));
1204 		if (ret)
1205 			return ret;
1206 		st->mo_det_use_count--;
1207 	}
1208 
1209 	/* read current value of mode register */
1210 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1211 	if (ret)
1212 		return ret;
1213 	/* if off and should be on */
1214 	if ((st->mo_det_use_count) &&
1215 	    ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1216 	     != SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
1217 		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1218 			(st->rx[0] & ~SCA3000_REG_MODE_MODE_MASK)
1219 			| SCA3000_REG_MODE_MEAS_MODE_MOT_DET);
1220 	/* if on and should be off */
1221 	else if (!(st->mo_det_use_count) &&
1222 		 ((st->rx[0] & SCA3000_REG_MODE_MODE_MASK)
1223 		  == SCA3000_REG_MODE_MEAS_MODE_MOT_DET))
1224 		return sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1225 			st->rx[0] & SCA3000_REG_MODE_MODE_MASK);
1226 	else
1227 		return 0;
1228 }
1229 
1230 /**
1231  * sca3000_write_event_config() - simple on off control for motion detector
1232  * @indio_dev: IIO device instance specific structure. Data specific to this
1233  * particular driver may be accessed via iio_priv(indio_dev).
1234  * @chan: Description of the channel whose event we are configuring.
1235  * @type: The type of event.
1236  * @dir: The direction of the event.
1237  * @state: Desired state of event being configured.
1238  *
1239  * This is a per axis control, but enabling any will result in the
1240  * motion detector unit being enabled.
1241  * N.B. enabling motion detector stops normal data acquisition.
1242  * There is a complexity in knowing which mode to return to when
1243  * this mode is disabled.  Currently normal mode is assumed.
1244  **/
1245 static int sca3000_write_event_config(struct iio_dev *indio_dev,
1246 				      const struct iio_chan_spec *chan,
1247 				      enum iio_event_type type,
1248 				      enum iio_event_direction dir,
1249 				      int state)
1250 {
1251 	struct sca3000_state *st = iio_priv(indio_dev);
1252 	int ret;
1253 
1254 	mutex_lock(&st->lock);
1255 	switch (chan->channel2) {
1256 	case IIO_MOD_X_AND_Y_AND_Z:
1257 		ret = sca3000_freefall_set_state(indio_dev, state);
1258 		break;
1259 
1260 	case IIO_MOD_X:
1261 	case IIO_MOD_Y:
1262 	case IIO_MOD_Z:
1263 		ret = sca3000_motion_detect_set_state(indio_dev,
1264 						      chan->address,
1265 						      state);
1266 		break;
1267 	default:
1268 		ret = -EINVAL;
1269 		break;
1270 	}
1271 	mutex_unlock(&st->lock);
1272 
1273 	return ret;
1274 }
1275 
1276 static int sca3000_configure_ring(struct iio_dev *indio_dev)
1277 {
1278 	struct iio_buffer *buffer;
1279 
1280 	buffer = devm_iio_kfifo_allocate(&indio_dev->dev);
1281 	if (!buffer)
1282 		return -ENOMEM;
1283 
1284 	iio_device_attach_buffer(indio_dev, buffer);
1285 	indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1286 
1287 	return 0;
1288 }
1289 
1290 static inline
1291 int __sca3000_hw_ring_state_set(struct iio_dev *indio_dev, bool state)
1292 {
1293 	struct sca3000_state *st = iio_priv(indio_dev);
1294 	int ret;
1295 
1296 	mutex_lock(&st->lock);
1297 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1298 	if (ret)
1299 		goto error_ret;
1300 	if (state) {
1301 		dev_info(&indio_dev->dev, "supposedly enabling ring buffer\n");
1302 		ret = sca3000_write_reg(st,
1303 			SCA3000_REG_MODE_ADDR,
1304 			(st->rx[0] | SCA3000_REG_MODE_RING_BUF_ENABLE));
1305 	} else
1306 		ret = sca3000_write_reg(st,
1307 			SCA3000_REG_MODE_ADDR,
1308 			(st->rx[0] & ~SCA3000_REG_MODE_RING_BUF_ENABLE));
1309 error_ret:
1310 	mutex_unlock(&st->lock);
1311 
1312 	return ret;
1313 }
1314 
1315 /**
1316  * sca3000_hw_ring_preenable() - hw ring buffer preenable function
1317  * @indio_dev: structure representing the IIO device. Device instance
1318  * specific state can be accessed via iio_priv(indio_dev).
1319  *
1320  * Very simple enable function as the chip will allows normal reads
1321  * during ring buffer operation so as long as it is indeed running
1322  * before we notify the core, the precise ordering does not matter.
1323  */
1324 static int sca3000_hw_ring_preenable(struct iio_dev *indio_dev)
1325 {
1326 	int ret;
1327 	struct sca3000_state *st = iio_priv(indio_dev);
1328 
1329 	mutex_lock(&st->lock);
1330 
1331 	/* Enable the 50% full interrupt */
1332 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1333 	if (ret)
1334 		goto error_unlock;
1335 	ret = sca3000_write_reg(st,
1336 				SCA3000_REG_INT_MASK_ADDR,
1337 				st->rx[0] | SCA3000_REG_INT_MASK_RING_HALF);
1338 	if (ret)
1339 		goto error_unlock;
1340 
1341 	mutex_unlock(&st->lock);
1342 
1343 	return __sca3000_hw_ring_state_set(indio_dev, 1);
1344 
1345 error_unlock:
1346 	mutex_unlock(&st->lock);
1347 
1348 	return ret;
1349 }
1350 
1351 static int sca3000_hw_ring_postdisable(struct iio_dev *indio_dev)
1352 {
1353 	int ret;
1354 	struct sca3000_state *st = iio_priv(indio_dev);
1355 
1356 	ret = __sca3000_hw_ring_state_set(indio_dev, 0);
1357 	if (ret)
1358 		return ret;
1359 
1360 	/* Disable the 50% full interrupt */
1361 	mutex_lock(&st->lock);
1362 
1363 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1364 	if (ret)
1365 		goto unlock;
1366 	ret = sca3000_write_reg(st,
1367 				SCA3000_REG_INT_MASK_ADDR,
1368 				st->rx[0] & ~SCA3000_REG_INT_MASK_RING_HALF);
1369 unlock:
1370 	mutex_unlock(&st->lock);
1371 	return ret;
1372 }
1373 
1374 static const struct iio_buffer_setup_ops sca3000_ring_setup_ops = {
1375 	.preenable = &sca3000_hw_ring_preenable,
1376 	.postdisable = &sca3000_hw_ring_postdisable,
1377 };
1378 
1379 /**
1380  * sca3000_clean_setup() - get the device into a predictable state
1381  * @st: Device instance specific private data structure
1382  *
1383  * Devices use flash memory to store many of the register values
1384  * and hence can come up in somewhat unpredictable states.
1385  * Hence reset everything on driver load.
1386  */
1387 static int sca3000_clean_setup(struct sca3000_state *st)
1388 {
1389 	int ret;
1390 
1391 	mutex_lock(&st->lock);
1392 	/* Ensure all interrupts have been acknowledged */
1393 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_STATUS_ADDR, 1);
1394 	if (ret)
1395 		goto error_ret;
1396 
1397 	/* Turn off all motion detection channels */
1398 	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
1399 	if (ret < 0)
1400 		goto error_ret;
1401 	ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL,
1402 				     ret & SCA3000_MD_CTRL_PROT_MASK);
1403 	if (ret)
1404 		goto error_ret;
1405 
1406 	/* Disable ring buffer */
1407 	ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
1408 	if (ret < 0)
1409 		goto error_ret;
1410 	ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
1411 				     (ret & SCA3000_REG_OUT_CTRL_PROT_MASK)
1412 				     | SCA3000_REG_OUT_CTRL_BUF_X_EN
1413 				     | SCA3000_REG_OUT_CTRL_BUF_Y_EN
1414 				     | SCA3000_REG_OUT_CTRL_BUF_Z_EN
1415 				     | SCA3000_REG_OUT_CTRL_BUF_DIV_4);
1416 	if (ret)
1417 		goto error_ret;
1418 	/* Enable interrupts, relevant to mode and set up as active low */
1419 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1420 	if (ret)
1421 		goto error_ret;
1422 	ret = sca3000_write_reg(st,
1423 				SCA3000_REG_INT_MASK_ADDR,
1424 				(ret & SCA3000_REG_INT_MASK_PROT_MASK)
1425 				| SCA3000_REG_INT_MASK_ACTIVE_LOW);
1426 	if (ret)
1427 		goto error_ret;
1428 	/*
1429 	 * Select normal measurement mode, free fall off, ring off
1430 	 * Ring in 12 bit mode - it is fine to overwrite reserved bits 3,5
1431 	 * as that occurs in one of the example on the datasheet
1432 	 */
1433 	ret = sca3000_read_data_short(st, SCA3000_REG_MODE_ADDR, 1);
1434 	if (ret)
1435 		goto error_ret;
1436 	ret = sca3000_write_reg(st, SCA3000_REG_MODE_ADDR,
1437 				(st->rx[0] & SCA3000_MODE_PROT_MASK));
1438 
1439 error_ret:
1440 	mutex_unlock(&st->lock);
1441 	return ret;
1442 }
1443 
1444 static const struct iio_info sca3000_info = {
1445 	.attrs = &sca3000_attribute_group,
1446 	.read_raw = &sca3000_read_raw,
1447 	.write_raw = &sca3000_write_raw,
1448 	.read_event_value = &sca3000_read_event_value,
1449 	.write_event_value = &sca3000_write_event_value,
1450 	.read_event_config = &sca3000_read_event_config,
1451 	.write_event_config = &sca3000_write_event_config,
1452 };
1453 
1454 static int sca3000_probe(struct spi_device *spi)
1455 {
1456 	int ret;
1457 	struct sca3000_state *st;
1458 	struct iio_dev *indio_dev;
1459 
1460 	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
1461 	if (!indio_dev)
1462 		return -ENOMEM;
1463 
1464 	st = iio_priv(indio_dev);
1465 	spi_set_drvdata(spi, indio_dev);
1466 	st->us = spi;
1467 	mutex_init(&st->lock);
1468 	st->info = &sca3000_spi_chip_info_tbl[spi_get_device_id(spi)
1469 					      ->driver_data];
1470 
1471 	indio_dev->dev.parent = &spi->dev;
1472 	indio_dev->name = spi_get_device_id(spi)->name;
1473 	indio_dev->info = &sca3000_info;
1474 	if (st->info->temp_output) {
1475 		indio_dev->channels = sca3000_channels_with_temp;
1476 		indio_dev->num_channels =
1477 			ARRAY_SIZE(sca3000_channels_with_temp);
1478 	} else {
1479 		indio_dev->channels = sca3000_channels;
1480 		indio_dev->num_channels = ARRAY_SIZE(sca3000_channels);
1481 	}
1482 	indio_dev->modes = INDIO_DIRECT_MODE;
1483 
1484 	ret = sca3000_configure_ring(indio_dev);
1485 	if (ret)
1486 		return ret;
1487 
1488 	if (spi->irq) {
1489 		ret = request_threaded_irq(spi->irq,
1490 					   NULL,
1491 					   &sca3000_event_handler,
1492 					   IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
1493 					   "sca3000",
1494 					   indio_dev);
1495 		if (ret)
1496 			return ret;
1497 	}
1498 	indio_dev->setup_ops = &sca3000_ring_setup_ops;
1499 	ret = sca3000_clean_setup(st);
1500 	if (ret)
1501 		goto error_free_irq;
1502 
1503 	ret = sca3000_print_rev(indio_dev);
1504 	if (ret)
1505 		goto error_free_irq;
1506 
1507 	return iio_device_register(indio_dev);
1508 
1509 error_free_irq:
1510 	if (spi->irq)
1511 		free_irq(spi->irq, indio_dev);
1512 
1513 	return ret;
1514 }
1515 
1516 static int sca3000_stop_all_interrupts(struct sca3000_state *st)
1517 {
1518 	int ret;
1519 
1520 	mutex_lock(&st->lock);
1521 	ret = sca3000_read_data_short(st, SCA3000_REG_INT_MASK_ADDR, 1);
1522 	if (ret)
1523 		goto error_ret;
1524 	ret = sca3000_write_reg(st, SCA3000_REG_INT_MASK_ADDR,
1525 				(st->rx[0] &
1526 				 ~(SCA3000_REG_INT_MASK_RING_THREE_QUARTER |
1527 				   SCA3000_REG_INT_MASK_RING_HALF |
1528 				   SCA3000_REG_INT_MASK_ALL_INTS)));
1529 error_ret:
1530 	mutex_unlock(&st->lock);
1531 	return ret;
1532 }
1533 
1534 static int sca3000_remove(struct spi_device *spi)
1535 {
1536 	struct iio_dev *indio_dev = spi_get_drvdata(spi);
1537 	struct sca3000_state *st = iio_priv(indio_dev);
1538 
1539 	iio_device_unregister(indio_dev);
1540 
1541 	/* Must ensure no interrupts can be generated after this! */
1542 	sca3000_stop_all_interrupts(st);
1543 	if (spi->irq)
1544 		free_irq(spi->irq, indio_dev);
1545 
1546 	return 0;
1547 }
1548 
1549 static const struct spi_device_id sca3000_id[] = {
1550 	{"sca3000_d01", d01},
1551 	{"sca3000_e02", e02},
1552 	{"sca3000_e04", e04},
1553 	{"sca3000_e05", e05},
1554 	{}
1555 };
1556 MODULE_DEVICE_TABLE(spi, sca3000_id);
1557 
1558 static struct spi_driver sca3000_driver = {
1559 	.driver = {
1560 		.name = "sca3000",
1561 	},
1562 	.probe = sca3000_probe,
1563 	.remove = sca3000_remove,
1564 	.id_table = sca3000_id,
1565 };
1566 module_spi_driver(sca3000_driver);
1567 
1568 MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
1569 MODULE_DESCRIPTION("VTI SCA3000 Series Accelerometers SPI driver");
1570 MODULE_LICENSE("GPL v2");
1571