xref: /openbmc/linux/drivers/iio/accel/msa311.c (revision c4a7b9b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * MEMSensing digital 3-Axis accelerometer
4  *
5  * MSA311 is a tri-axial, low-g accelerometer with I2C digital output for
6  * sensitivity consumer applications. It has dynamic user-selectable full
7  * scales range of +-2g/+-4g/+-8g/+-16g and allows acceleration measurements
8  * with output data rates from 1Hz to 1000Hz.
9  *
10  * MSA311 is available in an ultra small (2mm x 2mm, height 0.95mm) LGA package
11  * and is guaranteed to operate over -40C to +85C.
12  *
13  * This driver supports following MSA311 features:
14  *     - IIO interface
15  *     - Different power modes: NORMAL, SUSPEND
16  *     - ODR (Output Data Rate) selection
17  *     - Scale selection
18  *     - IIO triggered buffer
19  *     - NEW_DATA interrupt + trigger
20  *
21  * Below features to be done:
22  *     - Motion Events: ACTIVE, TAP, ORIENT, FREEFALL
23  *     - Low Power mode
24  *
25  * Copyright (c) 2022, SberDevices. All Rights Reserved.
26  *
27  * Author: Dmitry Rokosov <ddrokosov@sberdevices.ru>
28  */
29 
30 #include <linux/i2c.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/module.h>
33 #include <linux/pm.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/regmap.h>
36 #include <linux/string_helpers.h>
37 #include <linux/units.h>
38 
39 #include <linux/iio/buffer.h>
40 #include <linux/iio/iio.h>
41 #include <linux/iio/sysfs.h>
42 #include <linux/iio/trigger.h>
43 #include <linux/iio/trigger_consumer.h>
44 #include <linux/iio/triggered_buffer.h>
45 
46 #define MSA311_SOFT_RESET_REG     0x00
47 #define MSA311_PARTID_REG         0x01
48 #define MSA311_ACC_X_REG          0x02
49 #define MSA311_ACC_Y_REG          0x04
50 #define MSA311_ACC_Z_REG          0x06
51 #define MSA311_MOTION_INT_REG     0x09
52 #define MSA311_DATA_INT_REG       0x0A
53 #define MSA311_TAP_ACTIVE_STS_REG 0x0B
54 #define MSA311_ORIENT_STS_REG     0x0C
55 #define MSA311_RANGE_REG          0x0F
56 #define MSA311_ODR_REG            0x10
57 #define MSA311_PWR_MODE_REG       0x11
58 #define MSA311_SWAP_POLARITY_REG  0x12
59 #define MSA311_INT_SET_0_REG      0x16
60 #define MSA311_INT_SET_1_REG      0x17
61 #define MSA311_INT_MAP_0_REG      0x19
62 #define MSA311_INT_MAP_1_REG      0x1A
63 #define MSA311_INT_CONFIG_REG     0x20
64 #define MSA311_INT_LATCH_REG      0x21
65 #define MSA311_FREEFALL_DUR_REG   0x22
66 #define MSA311_FREEFALL_TH_REG    0x23
67 #define MSA311_FREEFALL_HY_REG    0x24
68 #define MSA311_ACTIVE_DUR_REG     0x27
69 #define MSA311_ACTIVE_TH_REG      0x28
70 #define MSA311_TAP_DUR_REG        0x2A
71 #define MSA311_TAP_TH_REG         0x2B
72 #define MSA311_ORIENT_HY_REG      0x2C
73 #define MSA311_Z_BLOCK_REG        0x2D
74 #define MSA311_OFFSET_X_REG       0x38
75 #define MSA311_OFFSET_Y_REG       0x39
76 #define MSA311_OFFSET_Z_REG       0x3A
77 
78 enum msa311_fields {
79 	/* Soft_Reset */
80 	F_SOFT_RESET_I2C, F_SOFT_RESET_SPI,
81 	/* Motion_Interrupt */
82 	F_ORIENT_INT, F_S_TAP_INT, F_D_TAP_INT, F_ACTIVE_INT, F_FREEFALL_INT,
83 	/* Data_Interrupt */
84 	F_NEW_DATA_INT,
85 	/* Tap_Active_Status */
86 	F_TAP_SIGN, F_TAP_FIRST_X, F_TAP_FIRST_Y, F_TAP_FIRST_Z, F_ACTV_SIGN,
87 	F_ACTV_FIRST_X, F_ACTV_FIRST_Y, F_ACTV_FIRST_Z,
88 	/* Orientation_Status */
89 	F_ORIENT_Z, F_ORIENT_X_Y,
90 	/* Range */
91 	F_FS,
92 	/* ODR */
93 	F_X_AXIS_DIS, F_Y_AXIS_DIS, F_Z_AXIS_DIS, F_ODR,
94 	/* Power Mode/Bandwidth */
95 	F_PWR_MODE, F_LOW_POWER_BW,
96 	/* Swap_Polarity */
97 	F_X_POLARITY, F_Y_POLARITY, F_Z_POLARITY, F_X_Y_SWAP,
98 	/* Int_Set_0 */
99 	F_ORIENT_INT_EN, F_S_TAP_INT_EN, F_D_TAP_INT_EN, F_ACTIVE_INT_EN_Z,
100 	F_ACTIVE_INT_EN_Y, F_ACTIVE_INT_EN_X,
101 	/* Int_Set_1 */
102 	F_NEW_DATA_INT_EN, F_FREEFALL_INT_EN,
103 	/* Int_Map_0 */
104 	F_INT1_ORIENT, F_INT1_S_TAP, F_INT1_D_TAP, F_INT1_ACTIVE,
105 	F_INT1_FREEFALL,
106 	/* Int_Map_1 */
107 	F_INT1_NEW_DATA,
108 	/* Int_Config */
109 	F_INT1_OD, F_INT1_LVL,
110 	/* Int_Latch */
111 	F_RESET_INT, F_LATCH_INT,
112 	/* Freefall_Hy */
113 	F_FREEFALL_MODE, F_FREEFALL_HY,
114 	/* Active_Dur */
115 	F_ACTIVE_DUR,
116 	/* Tap_Dur */
117 	F_TAP_QUIET, F_TAP_SHOCK, F_TAP_DUR,
118 	/* Tap_Th */
119 	F_TAP_TH,
120 	/* Orient_Hy */
121 	F_ORIENT_HYST, F_ORIENT_BLOCKING, F_ORIENT_MODE,
122 	/* Z_Block */
123 	F_Z_BLOCKING,
124 	/* End of register map */
125 	F_MAX_FIELDS,
126 };
127 
128 static const struct reg_field msa311_reg_fields[] = {
129 	/* Soft_Reset */
130 	[F_SOFT_RESET_I2C] = REG_FIELD(MSA311_SOFT_RESET_REG, 2, 2),
131 	[F_SOFT_RESET_SPI] = REG_FIELD(MSA311_SOFT_RESET_REG, 5, 5),
132 	/* Motion_Interrupt */
133 	[F_ORIENT_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 6, 6),
134 	[F_S_TAP_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 5, 5),
135 	[F_D_TAP_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 4, 4),
136 	[F_ACTIVE_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 2, 2),
137 	[F_FREEFALL_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 0, 0),
138 	/* Data_Interrupt */
139 	[F_NEW_DATA_INT] = REG_FIELD(MSA311_DATA_INT_REG, 0, 0),
140 	/* Tap_Active_Status */
141 	[F_TAP_SIGN] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 7, 7),
142 	[F_TAP_FIRST_X] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 6, 6),
143 	[F_TAP_FIRST_Y] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 5, 5),
144 	[F_TAP_FIRST_Z] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 4, 4),
145 	[F_ACTV_SIGN] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 3, 3),
146 	[F_ACTV_FIRST_X] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 2, 2),
147 	[F_ACTV_FIRST_Y] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 1, 1),
148 	[F_ACTV_FIRST_Z] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 0, 0),
149 	/* Orientation_Status */
150 	[F_ORIENT_Z] = REG_FIELD(MSA311_ORIENT_STS_REG, 6, 6),
151 	[F_ORIENT_X_Y] = REG_FIELD(MSA311_ORIENT_STS_REG, 4, 5),
152 	/* Range */
153 	[F_FS] = REG_FIELD(MSA311_RANGE_REG, 0, 1),
154 	/* ODR */
155 	[F_X_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 7, 7),
156 	[F_Y_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 6, 6),
157 	[F_Z_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 5, 5),
158 	[F_ODR] = REG_FIELD(MSA311_ODR_REG, 0, 3),
159 	/* Power Mode/Bandwidth */
160 	[F_PWR_MODE] = REG_FIELD(MSA311_PWR_MODE_REG, 6, 7),
161 	[F_LOW_POWER_BW] = REG_FIELD(MSA311_PWR_MODE_REG, 1, 4),
162 	/* Swap_Polarity */
163 	[F_X_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 3, 3),
164 	[F_Y_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 2, 2),
165 	[F_Z_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 1, 1),
166 	[F_X_Y_SWAP] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 0, 0),
167 	/* Int_Set_0 */
168 	[F_ORIENT_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 6, 6),
169 	[F_S_TAP_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 5, 5),
170 	[F_D_TAP_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 4, 4),
171 	[F_ACTIVE_INT_EN_Z] = REG_FIELD(MSA311_INT_SET_0_REG, 2, 2),
172 	[F_ACTIVE_INT_EN_Y] = REG_FIELD(MSA311_INT_SET_0_REG, 1, 1),
173 	[F_ACTIVE_INT_EN_X] = REG_FIELD(MSA311_INT_SET_0_REG, 0, 0),
174 	/* Int_Set_1 */
175 	[F_NEW_DATA_INT_EN] = REG_FIELD(MSA311_INT_SET_1_REG, 4, 4),
176 	[F_FREEFALL_INT_EN] = REG_FIELD(MSA311_INT_SET_1_REG, 3, 3),
177 	/* Int_Map_0 */
178 	[F_INT1_ORIENT] = REG_FIELD(MSA311_INT_MAP_0_REG, 6, 6),
179 	[F_INT1_S_TAP] = REG_FIELD(MSA311_INT_MAP_0_REG, 5, 5),
180 	[F_INT1_D_TAP] = REG_FIELD(MSA311_INT_MAP_0_REG, 4, 4),
181 	[F_INT1_ACTIVE] = REG_FIELD(MSA311_INT_MAP_0_REG, 2, 2),
182 	[F_INT1_FREEFALL] = REG_FIELD(MSA311_INT_MAP_0_REG, 0, 0),
183 	/* Int_Map_1 */
184 	[F_INT1_NEW_DATA] = REG_FIELD(MSA311_INT_MAP_1_REG, 0, 0),
185 	/* Int_Config */
186 	[F_INT1_OD] = REG_FIELD(MSA311_INT_CONFIG_REG, 1, 1),
187 	[F_INT1_LVL] = REG_FIELD(MSA311_INT_CONFIG_REG, 0, 0),
188 	/* Int_Latch */
189 	[F_RESET_INT] = REG_FIELD(MSA311_INT_LATCH_REG, 7, 7),
190 	[F_LATCH_INT] = REG_FIELD(MSA311_INT_LATCH_REG, 0, 3),
191 	/* Freefall_Hy */
192 	[F_FREEFALL_MODE] = REG_FIELD(MSA311_FREEFALL_HY_REG, 2, 2),
193 	[F_FREEFALL_HY] = REG_FIELD(MSA311_FREEFALL_HY_REG, 0, 1),
194 	/* Active_Dur */
195 	[F_ACTIVE_DUR] = REG_FIELD(MSA311_ACTIVE_DUR_REG, 0, 1),
196 	/* Tap_Dur */
197 	[F_TAP_QUIET] = REG_FIELD(MSA311_TAP_DUR_REG, 7, 7),
198 	[F_TAP_SHOCK] = REG_FIELD(MSA311_TAP_DUR_REG, 6, 6),
199 	[F_TAP_DUR] = REG_FIELD(MSA311_TAP_DUR_REG, 0, 2),
200 	/* Tap_Th */
201 	[F_TAP_TH] = REG_FIELD(MSA311_TAP_TH_REG, 0, 4),
202 	/* Orient_Hy */
203 	[F_ORIENT_HYST] = REG_FIELD(MSA311_ORIENT_HY_REG, 4, 6),
204 	[F_ORIENT_BLOCKING] = REG_FIELD(MSA311_ORIENT_HY_REG, 2, 3),
205 	[F_ORIENT_MODE] = REG_FIELD(MSA311_ORIENT_HY_REG, 0, 1),
206 	/* Z_Block */
207 	[F_Z_BLOCKING] = REG_FIELD(MSA311_Z_BLOCK_REG, 0, 3),
208 };
209 
210 #define MSA311_WHO_AM_I 0x13
211 
212 /*
213  * Possible Full Scale ranges
214  *
215  * Axis data is 12-bit signed value, so
216  *
217  * fs0 = (2 + 2) * 9.81 / (2^11) = 0.009580
218  * fs1 = (4 + 4) * 9.81 / (2^11) = 0.019160
219  * fs2 = (8 + 8) * 9.81 / (2^11) = 0.038320
220  * fs3 = (16 + 16) * 9.81 / (2^11) = 0.076641
221  */
222 enum {
223 	MSA311_FS_2G,
224 	MSA311_FS_4G,
225 	MSA311_FS_8G,
226 	MSA311_FS_16G,
227 };
228 
229 struct iio_decimal_fract {
230 	int integral;
231 	int microfract;
232 };
233 
234 static const struct iio_decimal_fract msa311_fs_table[] = {
235 	{0, 9580}, {0, 19160}, {0, 38320}, {0, 76641},
236 };
237 
238 /* Possible Output Data Rate values */
239 enum {
240 	MSA311_ODR_1_HZ,
241 	MSA311_ODR_1_95_HZ,
242 	MSA311_ODR_3_9_HZ,
243 	MSA311_ODR_7_81_HZ,
244 	MSA311_ODR_15_63_HZ,
245 	MSA311_ODR_31_25_HZ,
246 	MSA311_ODR_62_5_HZ,
247 	MSA311_ODR_125_HZ,
248 	MSA311_ODR_250_HZ,
249 	MSA311_ODR_500_HZ,
250 	MSA311_ODR_1000_HZ,
251 };
252 
253 static const struct iio_decimal_fract msa311_odr_table[] = {
254 	{1, 0}, {1, 950000}, {3, 900000}, {7, 810000}, {15, 630000},
255 	{31, 250000}, {62, 500000}, {125, 0}, {250, 0}, {500, 0}, {1000, 0},
256 };
257 
258 /* All supported power modes */
259 #define MSA311_PWR_MODE_NORMAL  0b00
260 #define MSA311_PWR_MODE_LOW     0b01
261 #define MSA311_PWR_MODE_UNKNOWN 0b10
262 #define MSA311_PWR_MODE_SUSPEND 0b11
263 static const char * const msa311_pwr_modes[] = {
264 	[MSA311_PWR_MODE_NORMAL] = "normal",
265 	[MSA311_PWR_MODE_LOW] = "low",
266 	[MSA311_PWR_MODE_UNKNOWN] = "unknown",
267 	[MSA311_PWR_MODE_SUSPEND] = "suspend",
268 };
269 
270 /* Autosuspend delay */
271 #define MSA311_PWR_SLEEP_DELAY_MS 2000
272 
273 /* Possible INT1 types and levels */
274 enum {
275 	MSA311_INT1_OD_PUSH_PULL,
276 	MSA311_INT1_OD_OPEN_DRAIN,
277 };
278 
279 enum {
280 	MSA311_INT1_LVL_LOW,
281 	MSA311_INT1_LVL_HIGH,
282 };
283 
284 /* Latch INT modes */
285 #define MSA311_LATCH_INT_NOT_LATCHED 0b0000
286 #define MSA311_LATCH_INT_250MS       0b0001
287 #define MSA311_LATCH_INT_500MS       0b0010
288 #define MSA311_LATCH_INT_1S          0b0011
289 #define MSA311_LATCH_INT_2S          0b0100
290 #define MSA311_LATCH_INT_4S          0b0101
291 #define MSA311_LATCH_INT_8S          0b0110
292 #define MSA311_LATCH_INT_1MS         0b1010
293 #define MSA311_LATCH_INT_2MS         0b1011
294 #define MSA311_LATCH_INT_25MS        0b1100
295 #define MSA311_LATCH_INT_50MS        0b1101
296 #define MSA311_LATCH_INT_100MS       0b1110
297 #define MSA311_LATCH_INT_LATCHED     0b0111
298 
299 static const struct regmap_range msa311_readonly_registers[] = {
300 	regmap_reg_range(MSA311_PARTID_REG, MSA311_ORIENT_STS_REG),
301 };
302 
303 static const struct regmap_access_table msa311_writeable_table = {
304 	.no_ranges = msa311_readonly_registers,
305 	.n_no_ranges = ARRAY_SIZE(msa311_readonly_registers),
306 };
307 
308 static const struct regmap_range msa311_writeonly_registers[] = {
309 	regmap_reg_range(MSA311_SOFT_RESET_REG, MSA311_SOFT_RESET_REG),
310 };
311 
312 static const struct regmap_access_table msa311_readable_table = {
313 	.no_ranges = msa311_writeonly_registers,
314 	.n_no_ranges = ARRAY_SIZE(msa311_writeonly_registers),
315 };
316 
317 static const struct regmap_range msa311_volatile_registers[] = {
318 	regmap_reg_range(MSA311_ACC_X_REG, MSA311_ORIENT_STS_REG),
319 };
320 
321 static const struct regmap_access_table msa311_volatile_table = {
322 	.yes_ranges = msa311_volatile_registers,
323 	.n_yes_ranges = ARRAY_SIZE(msa311_volatile_registers),
324 };
325 
326 static const struct regmap_config msa311_regmap_config = {
327 	.name = "msa311",
328 	.reg_bits = 8,
329 	.val_bits = 8,
330 	.max_register = MSA311_OFFSET_Z_REG,
331 	.wr_table = &msa311_writeable_table,
332 	.rd_table = &msa311_readable_table,
333 	.volatile_table = &msa311_volatile_table,
334 	.cache_type = REGCACHE_RBTREE,
335 };
336 
337 #define MSA311_GENMASK(field) ({                \
338 	typeof(&(msa311_reg_fields)[0]) _field; \
339 	_field = &msa311_reg_fields[(field)];   \
340 	GENMASK(_field->msb, _field->lsb);      \
341 })
342 
343 /**
344  * struct msa311_priv - MSA311 internal private state
345  * @regs: Underlying I2C bus adapter used to abstract slave
346  *        register accesses
347  * @fields: Abstract objects for each registers fields access
348  * @dev: Device handler associated with appropriate bus client
349  * @lock: Protects msa311 device state between setup and data access routines
350  *        (power transitions, samp_freq/scale tune, retrieving axes data, etc)
351  * @chip_name: Chip name in the format "msa311-%02x" % partid
352  * @new_data_trig: Optional NEW_DATA interrupt driven trigger used
353  *                 to notify external consumers a new sample is ready
354  * @vdd: Optional external voltage regulator for the device power supply
355  */
356 struct msa311_priv {
357 	struct regmap *regs;
358 	struct regmap_field *fields[F_MAX_FIELDS];
359 
360 	struct device *dev;
361 	struct mutex lock;
362 	char *chip_name;
363 
364 	struct iio_trigger *new_data_trig;
365 	struct regulator *vdd;
366 };
367 
368 enum msa311_si {
369 	MSA311_SI_X,
370 	MSA311_SI_Y,
371 	MSA311_SI_Z,
372 	MSA311_SI_TIMESTAMP,
373 };
374 
375 #define MSA311_ACCEL_CHANNEL(axis) {                                        \
376 	.type = IIO_ACCEL,                                                  \
377 	.modified = 1,                                                      \
378 	.channel2 = IIO_MOD_##axis,                                         \
379 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),                       \
380 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |              \
381 				    BIT(IIO_CHAN_INFO_SAMP_FREQ),           \
382 	.info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE) |    \
383 					      BIT(IIO_CHAN_INFO_SAMP_FREQ), \
384 	.scan_index = MSA311_SI_##axis,                                     \
385 	.scan_type = {                                                      \
386 		.sign = 's',                                                \
387 		.realbits = 12,                                             \
388 		.storagebits = 16,                                          \
389 		.shift = 4,                                                 \
390 		.endianness = IIO_LE,                                       \
391 	},                                                                  \
392 	.datasheet_name = "ACC_"#axis,                                      \
393 }
394 
395 static const struct iio_chan_spec msa311_channels[] = {
396 	MSA311_ACCEL_CHANNEL(X),
397 	MSA311_ACCEL_CHANNEL(Y),
398 	MSA311_ACCEL_CHANNEL(Z),
399 	IIO_CHAN_SOFT_TIMESTAMP(MSA311_SI_TIMESTAMP),
400 };
401 
402 /**
403  * msa311_get_odr() - Read Output Data Rate (ODR) value from MSA311 accel
404  * @msa311: MSA311 internal private state
405  * @odr: output ODR value
406  *
407  * This function should be called under msa311->lock.
408  *
409  * Return: 0 on success, -ERRNO in other failures
410  */
411 static int msa311_get_odr(struct msa311_priv *msa311, unsigned int *odr)
412 {
413 	int err;
414 
415 	err = regmap_field_read(msa311->fields[F_ODR], odr);
416 	if (err)
417 		return err;
418 
419 	/*
420 	 * Filter the same 1000Hz ODR register values based on datasheet info.
421 	 * ODR can be equal to 1010-1111 for 1000Hz, but function returns 1010
422 	 * all the time.
423 	 */
424 	if (*odr > MSA311_ODR_1000_HZ)
425 		*odr = MSA311_ODR_1000_HZ;
426 
427 	return 0;
428 }
429 
430 /**
431  * msa311_set_odr() - Setup Output Data Rate (ODR) value for MSA311 accel
432  * @msa311: MSA311 internal private state
433  * @odr: requested ODR value
434  *
435  * This function should be called under msa311->lock. Possible ODR values:
436  *     - 1Hz (not available in normal mode)
437  *     - 1.95Hz (not available in normal mode)
438  *     - 3.9Hz
439  *     - 7.81Hz
440  *     - 15.63Hz
441  *     - 31.25Hz
442  *     - 62.5Hz
443  *     - 125Hz
444  *     - 250Hz
445  *     - 500Hz
446  *     - 1000Hz
447  *
448  * Return: 0 on success, -EINVAL for bad ODR value in the certain power mode,
449  *         -ERRNO in other failures
450  */
451 static int msa311_set_odr(struct msa311_priv *msa311, unsigned int odr)
452 {
453 	struct device *dev = msa311->dev;
454 	unsigned int pwr_mode;
455 	bool good_odr;
456 	int err;
457 
458 	err = regmap_field_read(msa311->fields[F_PWR_MODE], &pwr_mode);
459 	if (err)
460 		return err;
461 
462 	/* Filter bad ODR values */
463 	if (pwr_mode == MSA311_PWR_MODE_NORMAL)
464 		good_odr = (odr > MSA311_ODR_1_95_HZ);
465 	else
466 		good_odr = false;
467 
468 	if (!good_odr) {
469 		dev_err(dev,
470 			"can't set odr %u.%06uHz, not available in %s mode\n",
471 			msa311_odr_table[odr].integral,
472 			msa311_odr_table[odr].microfract,
473 			msa311_pwr_modes[pwr_mode]);
474 		return -EINVAL;
475 	}
476 
477 	return regmap_field_write(msa311->fields[F_ODR], odr);
478 }
479 
480 /**
481  * msa311_wait_for_next_data() - Wait next accel data available after resume
482  * @msa311: MSA311 internal private state
483  *
484  * Return: 0 on success, -EINTR if msleep() was interrupted,
485  *         -ERRNO in other failures
486  */
487 static int msa311_wait_for_next_data(struct msa311_priv *msa311)
488 {
489 	static const unsigned int unintr_thresh_ms = 20;
490 	struct device *dev = msa311->dev;
491 	unsigned long freq_uhz;
492 	unsigned long wait_ms;
493 	unsigned int odr;
494 	int err;
495 
496 	err = msa311_get_odr(msa311, &odr);
497 	if (err) {
498 		dev_err(dev, "can't get actual frequency (%pe)\n",
499 			ERR_PTR(err));
500 		return err;
501 	}
502 
503 	/*
504 	 * After msa311 resuming is done, we need to wait for data
505 	 * to be refreshed by accel logic.
506 	 * A certain timeout is calculated based on the current ODR value.
507 	 * If requested timeout isn't so long (let's assume 20ms),
508 	 * we can wait for next data in uninterruptible sleep.
509 	 */
510 	freq_uhz = msa311_odr_table[odr].integral * MICROHZ_PER_HZ +
511 		   msa311_odr_table[odr].microfract;
512 	wait_ms = (MICROHZ_PER_HZ / freq_uhz) * MSEC_PER_SEC;
513 
514 	if (wait_ms < unintr_thresh_ms)
515 		usleep_range(wait_ms * USEC_PER_MSEC,
516 			     unintr_thresh_ms * USEC_PER_MSEC);
517 	else if (msleep_interruptible(wait_ms))
518 		return -EINTR;
519 
520 	return 0;
521 }
522 
523 /**
524  * msa311_set_pwr_mode() - Install certain MSA311 power mode
525  * @msa311: MSA311 internal private state
526  * @mode: Power mode can be equal to NORMAL or SUSPEND
527  *
528  * This function should be called under msa311->lock.
529  *
530  * Return: 0 on success, -ERRNO on failure
531  */
532 static int msa311_set_pwr_mode(struct msa311_priv *msa311, unsigned int mode)
533 {
534 	struct device *dev = msa311->dev;
535 	unsigned int prev_mode;
536 	int err;
537 
538 	if (mode >= ARRAY_SIZE(msa311_pwr_modes))
539 		return -EINVAL;
540 
541 	dev_dbg(dev, "transition to %s mode\n", msa311_pwr_modes[mode]);
542 
543 	err = regmap_field_read(msa311->fields[F_PWR_MODE], &prev_mode);
544 	if (err)
545 		return err;
546 
547 	err = regmap_field_write(msa311->fields[F_PWR_MODE], mode);
548 	if (err)
549 		return err;
550 
551 	/* Wait actual data if we wake up */
552 	if (prev_mode == MSA311_PWR_MODE_SUSPEND &&
553 	    mode == MSA311_PWR_MODE_NORMAL)
554 		return msa311_wait_for_next_data(msa311);
555 
556 	return 0;
557 }
558 
559 /**
560  * msa311_get_axis() - Read MSA311 accel data for certain IIO channel axis spec
561  * @msa311: MSA311 internal private state
562  * @chan: IIO channel specification
563  * @axis: Output accel axis data for requested IIO channel spec
564  *
565  * This function should be called under msa311->lock.
566  *
567  * Return: 0 on success, -EINVAL for unknown IIO channel specification,
568  *         -ERRNO in other failures
569  */
570 static int msa311_get_axis(struct msa311_priv *msa311,
571 			   const struct iio_chan_spec * const chan,
572 			   __le16 *axis)
573 {
574 	struct device *dev = msa311->dev;
575 	unsigned int axis_reg;
576 
577 	if (chan->scan_index < MSA311_SI_X || chan->scan_index > MSA311_SI_Z) {
578 		dev_err(dev, "invalid scan_index value [%d]\n",
579 			chan->scan_index);
580 		return -EINVAL;
581 	}
582 
583 	/* Axes data layout has 2 byte gap for each axis starting from X axis */
584 	axis_reg = MSA311_ACC_X_REG + (chan->scan_index << 1);
585 
586 	return regmap_bulk_read(msa311->regs, axis_reg, axis, sizeof(*axis));
587 }
588 
589 static int msa311_read_raw_data(struct iio_dev *indio_dev,
590 				struct iio_chan_spec const *chan,
591 				int *val, int *val2)
592 {
593 	struct msa311_priv *msa311 = iio_priv(indio_dev);
594 	struct device *dev = msa311->dev;
595 	__le16 axis;
596 	int err;
597 
598 	err = pm_runtime_resume_and_get(dev);
599 	if (err)
600 		return err;
601 
602 	err = iio_device_claim_direct_mode(indio_dev);
603 	if (err)
604 		return err;
605 
606 	mutex_lock(&msa311->lock);
607 	err = msa311_get_axis(msa311, chan, &axis);
608 	mutex_unlock(&msa311->lock);
609 
610 	iio_device_release_direct_mode(indio_dev);
611 
612 	pm_runtime_mark_last_busy(dev);
613 	pm_runtime_put_autosuspend(dev);
614 
615 	if (err) {
616 		dev_err(dev, "can't get axis %s (%pe)\n",
617 			chan->datasheet_name, ERR_PTR(err));
618 		return err;
619 	}
620 
621 	/*
622 	 * Axis data format is:
623 	 * ACC_X = (ACC_X_MSB[7:0] << 4) | ACC_X_LSB[7:4]
624 	 */
625 	*val = sign_extend32(le16_to_cpu(axis) >> chan->scan_type.shift,
626 			     chan->scan_type.realbits - 1);
627 
628 	return IIO_VAL_INT;
629 }
630 
631 static int msa311_read_scale(struct iio_dev *indio_dev, int *val, int *val2)
632 {
633 	struct msa311_priv *msa311 = iio_priv(indio_dev);
634 	struct device *dev = msa311->dev;
635 	unsigned int fs;
636 	int err;
637 
638 	mutex_lock(&msa311->lock);
639 	err = regmap_field_read(msa311->fields[F_FS], &fs);
640 	mutex_unlock(&msa311->lock);
641 	if (err) {
642 		dev_err(dev, "can't get actual scale (%pe)\n", ERR_PTR(err));
643 		return err;
644 	}
645 
646 	*val = msa311_fs_table[fs].integral;
647 	*val2 = msa311_fs_table[fs].microfract;
648 
649 	return IIO_VAL_INT_PLUS_MICRO;
650 }
651 
652 static int msa311_read_samp_freq(struct iio_dev *indio_dev,
653 				 int *val, int *val2)
654 {
655 	struct msa311_priv *msa311 = iio_priv(indio_dev);
656 	struct device *dev = msa311->dev;
657 	unsigned int odr;
658 	int err;
659 
660 	mutex_lock(&msa311->lock);
661 	err = msa311_get_odr(msa311, &odr);
662 	mutex_unlock(&msa311->lock);
663 	if (err) {
664 		dev_err(dev, "can't get actual frequency (%pe)\n",
665 			ERR_PTR(err));
666 		return err;
667 	}
668 
669 	*val = msa311_odr_table[odr].integral;
670 	*val2 = msa311_odr_table[odr].microfract;
671 
672 	return IIO_VAL_INT_PLUS_MICRO;
673 }
674 
675 static int msa311_read_raw(struct iio_dev *indio_dev,
676 			   struct iio_chan_spec const *chan,
677 			   int *val, int *val2, long mask)
678 {
679 	switch (mask) {
680 	case IIO_CHAN_INFO_RAW:
681 		return msa311_read_raw_data(indio_dev, chan, val, val2);
682 
683 	case IIO_CHAN_INFO_SCALE:
684 		return msa311_read_scale(indio_dev, val, val2);
685 
686 	case IIO_CHAN_INFO_SAMP_FREQ:
687 		return msa311_read_samp_freq(indio_dev, val, val2);
688 
689 	default:
690 		return -EINVAL;
691 	}
692 }
693 
694 static int msa311_read_avail(struct iio_dev *indio_dev,
695 			     struct iio_chan_spec const *chan,
696 			     const int **vals, int *type,
697 			     int *length, long mask)
698 {
699 	switch (mask) {
700 	case IIO_CHAN_INFO_SAMP_FREQ:
701 		*vals = (int *)msa311_odr_table;
702 		*type = IIO_VAL_INT_PLUS_MICRO;
703 		/* ODR value has 2 ints (integer and fractional parts) */
704 		*length = ARRAY_SIZE(msa311_odr_table) * 2;
705 		return IIO_AVAIL_LIST;
706 
707 	case IIO_CHAN_INFO_SCALE:
708 		*vals = (int *)msa311_fs_table;
709 		*type = IIO_VAL_INT_PLUS_MICRO;
710 		/* FS value has 2 ints (integer and fractional parts) */
711 		*length = ARRAY_SIZE(msa311_fs_table) * 2;
712 		return IIO_AVAIL_LIST;
713 
714 	default:
715 		return -EINVAL;
716 	}
717 }
718 
719 static int msa311_write_scale(struct iio_dev *indio_dev, int val, int val2)
720 {
721 	struct msa311_priv *msa311 = iio_priv(indio_dev);
722 	struct device *dev = msa311->dev;
723 	unsigned int fs;
724 	int err;
725 
726 	/* We do not have fs >= 1, so skip such values */
727 	if (val)
728 		return 0;
729 
730 	err = pm_runtime_resume_and_get(dev);
731 	if (err)
732 		return err;
733 
734 	err = -EINVAL;
735 	for (fs = 0; fs < ARRAY_SIZE(msa311_fs_table); fs++)
736 		/* Do not check msa311_fs_table[fs].integral, it's always 0 */
737 		if (val2 == msa311_fs_table[fs].microfract) {
738 			mutex_lock(&msa311->lock);
739 			err = regmap_field_write(msa311->fields[F_FS], fs);
740 			mutex_unlock(&msa311->lock);
741 			break;
742 		}
743 
744 	pm_runtime_mark_last_busy(dev);
745 	pm_runtime_put_autosuspend(dev);
746 
747 	if (err)
748 		dev_err(dev, "can't update scale (%pe)\n", ERR_PTR(err));
749 
750 	return err;
751 }
752 
753 static int msa311_write_samp_freq(struct iio_dev *indio_dev, int val, int val2)
754 {
755 	struct msa311_priv *msa311 = iio_priv(indio_dev);
756 	struct device *dev = msa311->dev;
757 	unsigned int odr;
758 	int err;
759 
760 	err = pm_runtime_resume_and_get(dev);
761 	if (err)
762 		return err;
763 
764 	/*
765 	 * Sampling frequency changing is prohibited when buffer mode is
766 	 * enabled, because sometimes MSA311 chip returns outliers during
767 	 * frequency values growing up in the read operation moment.
768 	 */
769 	err = iio_device_claim_direct_mode(indio_dev);
770 	if (err)
771 		return err;
772 
773 	err = -EINVAL;
774 	for (odr = 0; odr < ARRAY_SIZE(msa311_odr_table); odr++)
775 		if (val == msa311_odr_table[odr].integral &&
776 		    val2 == msa311_odr_table[odr].microfract) {
777 			mutex_lock(&msa311->lock);
778 			err = msa311_set_odr(msa311, odr);
779 			mutex_unlock(&msa311->lock);
780 			break;
781 		}
782 
783 	iio_device_release_direct_mode(indio_dev);
784 
785 	pm_runtime_mark_last_busy(dev);
786 	pm_runtime_put_autosuspend(dev);
787 
788 	if (err)
789 		dev_err(dev, "can't update frequency (%pe)\n", ERR_PTR(err));
790 
791 	return err;
792 }
793 
794 static int msa311_write_raw(struct iio_dev *indio_dev,
795 			    struct iio_chan_spec const *chan,
796 			    int val, int val2, long mask)
797 {
798 	switch (mask) {
799 	case IIO_CHAN_INFO_SCALE:
800 		return msa311_write_scale(indio_dev, val, val2);
801 
802 	case IIO_CHAN_INFO_SAMP_FREQ:
803 		return msa311_write_samp_freq(indio_dev, val, val2);
804 
805 	default:
806 		return -EINVAL;
807 	}
808 }
809 
810 static int msa311_debugfs_reg_access(struct iio_dev *indio_dev,
811 				     unsigned int reg, unsigned int writeval,
812 				     unsigned int *readval)
813 {
814 	struct msa311_priv *msa311 = iio_priv(indio_dev);
815 	struct device *dev = msa311->dev;
816 	int err;
817 
818 	if (reg > regmap_get_max_register(msa311->regs))
819 		return -EINVAL;
820 
821 	err = pm_runtime_resume_and_get(dev);
822 	if (err)
823 		return err;
824 
825 	mutex_lock(&msa311->lock);
826 
827 	if (readval)
828 		err = regmap_read(msa311->regs, reg, readval);
829 	else
830 		err = regmap_write(msa311->regs, reg, writeval);
831 
832 	mutex_unlock(&msa311->lock);
833 
834 	pm_runtime_mark_last_busy(dev);
835 	pm_runtime_put_autosuspend(dev);
836 
837 	if (err)
838 		dev_err(dev, "can't %s register %u from debugfs (%pe)\n",
839 			str_read_write(readval), reg, ERR_PTR(err));
840 
841 	return err;
842 }
843 
844 static int msa311_buffer_preenable(struct iio_dev *indio_dev)
845 {
846 	struct msa311_priv *msa311 = iio_priv(indio_dev);
847 	struct device *dev = msa311->dev;
848 
849 	return pm_runtime_resume_and_get(dev);
850 }
851 
852 static int msa311_buffer_postdisable(struct iio_dev *indio_dev)
853 {
854 	struct msa311_priv *msa311 = iio_priv(indio_dev);
855 	struct device *dev = msa311->dev;
856 
857 	pm_runtime_mark_last_busy(dev);
858 	pm_runtime_put_autosuspend(dev);
859 
860 	return 0;
861 }
862 
863 static int msa311_set_new_data_trig_state(struct iio_trigger *trig, bool state)
864 {
865 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
866 	struct msa311_priv *msa311 = iio_priv(indio_dev);
867 	struct device *dev = msa311->dev;
868 	int err;
869 
870 	mutex_lock(&msa311->lock);
871 	err = regmap_field_write(msa311->fields[F_NEW_DATA_INT_EN], state);
872 	mutex_unlock(&msa311->lock);
873 	if (err)
874 		dev_err(dev,
875 			"can't %s buffer due to new_data_int failure (%pe)\n",
876 			str_enable_disable(state), ERR_PTR(err));
877 
878 	return err;
879 }
880 
881 static int msa311_validate_device(struct iio_trigger *trig,
882 				  struct iio_dev *indio_dev)
883 {
884 	return iio_trigger_get_drvdata(trig) == indio_dev ? 0 : -EINVAL;
885 }
886 
887 static irqreturn_t msa311_buffer_thread(int irq, void *p)
888 {
889 	struct iio_poll_func *pf = p;
890 	struct msa311_priv *msa311 = iio_priv(pf->indio_dev);
891 	struct iio_dev *indio_dev = pf->indio_dev;
892 	const struct iio_chan_spec *chan;
893 	struct device *dev = msa311->dev;
894 	int bit, err, i = 0;
895 	__le16 axis;
896 	struct {
897 		__le16 channels[MSA311_SI_Z + 1];
898 		s64 ts __aligned(8);
899 	} buf;
900 
901 	memset(&buf, 0, sizeof(buf));
902 
903 	mutex_lock(&msa311->lock);
904 
905 	for_each_set_bit(bit, indio_dev->active_scan_mask,
906 			 indio_dev->masklength) {
907 		chan = &msa311_channels[bit];
908 
909 		err = msa311_get_axis(msa311, chan, &axis);
910 		if (err) {
911 			mutex_unlock(&msa311->lock);
912 			dev_err(dev, "can't get axis %s (%pe)\n",
913 				chan->datasheet_name, ERR_PTR(err));
914 			goto notify_done;
915 		}
916 
917 		buf.channels[i++] = axis;
918 	}
919 
920 	mutex_unlock(&msa311->lock);
921 
922 	iio_push_to_buffers_with_timestamp(indio_dev, &buf,
923 					   iio_get_time_ns(indio_dev));
924 
925 notify_done:
926 	iio_trigger_notify_done(indio_dev->trig);
927 
928 	return IRQ_HANDLED;
929 }
930 
931 static irqreturn_t msa311_irq_thread(int irq, void *p)
932 {
933 	struct msa311_priv *msa311 = iio_priv(p);
934 	unsigned int new_data_int_enabled;
935 	struct device *dev = msa311->dev;
936 	int err;
937 
938 	mutex_lock(&msa311->lock);
939 
940 	/*
941 	 * We do not check NEW_DATA int status, because based on the
942 	 * specification it's cleared automatically after a fixed time.
943 	 * So just check that is enabled by driver logic.
944 	 */
945 	err = regmap_field_read(msa311->fields[F_NEW_DATA_INT_EN],
946 				&new_data_int_enabled);
947 
948 	mutex_unlock(&msa311->lock);
949 	if (err) {
950 		dev_err(dev, "can't read new_data interrupt state (%pe)\n",
951 			ERR_PTR(err));
952 		return IRQ_NONE;
953 	}
954 
955 	if (new_data_int_enabled)
956 		iio_trigger_poll_chained(msa311->new_data_trig);
957 
958 	return IRQ_HANDLED;
959 }
960 
961 static const struct iio_info msa311_info = {
962 	.read_raw = msa311_read_raw,
963 	.read_avail = msa311_read_avail,
964 	.write_raw = msa311_write_raw,
965 	.debugfs_reg_access = msa311_debugfs_reg_access,
966 };
967 
968 static const struct iio_buffer_setup_ops msa311_buffer_setup_ops = {
969 	.preenable = msa311_buffer_preenable,
970 	.postdisable = msa311_buffer_postdisable,
971 };
972 
973 static const struct iio_trigger_ops msa311_new_data_trig_ops = {
974 	.set_trigger_state = msa311_set_new_data_trig_state,
975 	.validate_device = msa311_validate_device,
976 };
977 
978 static int msa311_check_partid(struct msa311_priv *msa311)
979 {
980 	struct device *dev = msa311->dev;
981 	unsigned int partid;
982 	int err;
983 
984 	err = regmap_read(msa311->regs, MSA311_PARTID_REG, &partid);
985 	if (err)
986 		return dev_err_probe(dev, err, "failed to read partid\n");
987 
988 	if (partid != MSA311_WHO_AM_I)
989 		dev_warn(dev, "invalid partid (%#x), expected (%#x)\n",
990 			 partid, MSA311_WHO_AM_I);
991 
992 	msa311->chip_name = devm_kasprintf(dev, GFP_KERNEL,
993 					   "msa311-%02x", partid);
994 	if (!msa311->chip_name)
995 		return dev_err_probe(dev, -ENOMEM, "can't alloc chip name\n");
996 
997 	return 0;
998 }
999 
1000 static int msa311_soft_reset(struct msa311_priv *msa311)
1001 {
1002 	struct device *dev = msa311->dev;
1003 	int err;
1004 
1005 	err = regmap_write(msa311->regs, MSA311_SOFT_RESET_REG,
1006 			   MSA311_GENMASK(F_SOFT_RESET_I2C) |
1007 			   MSA311_GENMASK(F_SOFT_RESET_SPI));
1008 	if (err)
1009 		return dev_err_probe(dev, err, "can't soft reset all logic\n");
1010 
1011 	return 0;
1012 }
1013 
1014 static int msa311_chip_init(struct msa311_priv *msa311)
1015 {
1016 	struct device *dev = msa311->dev;
1017 	const char zero_bulk[2] = { };
1018 	int err;
1019 
1020 	err = regmap_write(msa311->regs, MSA311_RANGE_REG, MSA311_FS_16G);
1021 	if (err)
1022 		return dev_err_probe(dev, err, "failed to setup accel range\n");
1023 
1024 	/* Disable all interrupts by default */
1025 	err = regmap_bulk_write(msa311->regs, MSA311_INT_SET_0_REG,
1026 				zero_bulk, sizeof(zero_bulk));
1027 	if (err)
1028 		return dev_err_probe(dev, err,
1029 				     "can't disable set0/set1 interrupts\n");
1030 
1031 	/* Unmap all INT1 interrupts by default */
1032 	err = regmap_bulk_write(msa311->regs, MSA311_INT_MAP_0_REG,
1033 				zero_bulk, sizeof(zero_bulk));
1034 	if (err)
1035 		return dev_err_probe(dev, err,
1036 				     "failed to unmap map0/map1 interrupts\n");
1037 
1038 	/* Disable all axes by default */
1039 	err = regmap_update_bits(msa311->regs, MSA311_ODR_REG,
1040 				 MSA311_GENMASK(F_X_AXIS_DIS) |
1041 				 MSA311_GENMASK(F_Y_AXIS_DIS) |
1042 				 MSA311_GENMASK(F_Z_AXIS_DIS), 0);
1043 	if (err)
1044 		return dev_err_probe(dev, err, "can't enable all axes\n");
1045 
1046 	err = msa311_set_odr(msa311, MSA311_ODR_125_HZ);
1047 	if (err)
1048 		return dev_err_probe(dev, err,
1049 				     "failed to set accel frequency\n");
1050 
1051 	return 0;
1052 }
1053 
1054 static int msa311_setup_interrupts(struct msa311_priv *msa311)
1055 {
1056 	struct device *dev = msa311->dev;
1057 	struct i2c_client *i2c = to_i2c_client(dev);
1058 	struct iio_dev *indio_dev = i2c_get_clientdata(i2c);
1059 	struct iio_trigger *trig;
1060 	int err;
1061 
1062 	/* Keep going without interrupts if no initialized I2C IRQ */
1063 	if (i2c->irq <= 0)
1064 		return 0;
1065 
1066 	err = devm_request_threaded_irq(&i2c->dev, i2c->irq, NULL,
1067 					msa311_irq_thread, IRQF_ONESHOT,
1068 					msa311->chip_name, indio_dev);
1069 	if (err)
1070 		return dev_err_probe(dev, err, "failed to request IRQ\n");
1071 
1072 	trig = devm_iio_trigger_alloc(dev, "%s-new-data", msa311->chip_name);
1073 	if (!trig)
1074 		return dev_err_probe(dev, -ENOMEM,
1075 				     "can't allocate newdata trigger\n");
1076 
1077 	msa311->new_data_trig = trig;
1078 	msa311->new_data_trig->ops = &msa311_new_data_trig_ops;
1079 	iio_trigger_set_drvdata(msa311->new_data_trig, indio_dev);
1080 
1081 	err = devm_iio_trigger_register(dev, msa311->new_data_trig);
1082 	if (err)
1083 		return dev_err_probe(dev, err,
1084 				     "can't register newdata trigger\n");
1085 
1086 	err = regmap_field_write(msa311->fields[F_INT1_OD],
1087 				 MSA311_INT1_OD_PUSH_PULL);
1088 	if (err)
1089 		return dev_err_probe(dev, err,
1090 				     "can't enable push-pull interrupt\n");
1091 
1092 	err = regmap_field_write(msa311->fields[F_INT1_LVL],
1093 				 MSA311_INT1_LVL_HIGH);
1094 	if (err)
1095 		return dev_err_probe(dev, err,
1096 				     "can't set active interrupt level\n");
1097 
1098 	err = regmap_field_write(msa311->fields[F_LATCH_INT],
1099 				 MSA311_LATCH_INT_LATCHED);
1100 	if (err)
1101 		return dev_err_probe(dev, err,
1102 				     "can't latch interrupt\n");
1103 
1104 	err = regmap_field_write(msa311->fields[F_RESET_INT], 1);
1105 	if (err)
1106 		return dev_err_probe(dev, err,
1107 				     "can't reset interrupt\n");
1108 
1109 	err = regmap_field_write(msa311->fields[F_INT1_NEW_DATA], 1);
1110 	if (err)
1111 		return dev_err_probe(dev, err,
1112 				     "can't map new data interrupt\n");
1113 
1114 	return 0;
1115 }
1116 
1117 static int msa311_regmap_init(struct msa311_priv *msa311)
1118 {
1119 	struct regmap_field **fields = msa311->fields;
1120 	struct device *dev = msa311->dev;
1121 	struct i2c_client *i2c = to_i2c_client(dev);
1122 	struct regmap *regmap;
1123 	int i;
1124 
1125 	regmap = devm_regmap_init_i2c(i2c, &msa311_regmap_config);
1126 	if (IS_ERR(regmap))
1127 		return dev_err_probe(dev, PTR_ERR(regmap),
1128 				     "failed to register i2c regmap\n");
1129 
1130 	msa311->regs = regmap;
1131 
1132 	for (i = 0; i < F_MAX_FIELDS; i++) {
1133 		fields[i] = devm_regmap_field_alloc(dev,
1134 						    msa311->regs,
1135 						    msa311_reg_fields[i]);
1136 		if (IS_ERR(msa311->fields[i]))
1137 			return dev_err_probe(dev, PTR_ERR(msa311->fields[i]),
1138 					     "can't alloc field[%d]\n", i);
1139 	}
1140 
1141 	return 0;
1142 }
1143 
1144 static void msa311_powerdown(void *msa311)
1145 {
1146 	msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_SUSPEND);
1147 }
1148 
1149 static void msa311_vdd_disable(void *vdd)
1150 {
1151 	regulator_disable(vdd);
1152 }
1153 
1154 static int msa311_probe(struct i2c_client *i2c)
1155 {
1156 	struct device *dev = &i2c->dev;
1157 	struct msa311_priv *msa311;
1158 	struct iio_dev *indio_dev;
1159 	int err;
1160 
1161 	indio_dev = devm_iio_device_alloc(dev, sizeof(*msa311));
1162 	if (!indio_dev)
1163 		return dev_err_probe(dev, -ENOMEM,
1164 				     "IIO device allocation failed\n");
1165 
1166 	msa311 = iio_priv(indio_dev);
1167 	msa311->dev = dev;
1168 	i2c_set_clientdata(i2c, indio_dev);
1169 
1170 	err = msa311_regmap_init(msa311);
1171 	if (err)
1172 		return err;
1173 
1174 	mutex_init(&msa311->lock);
1175 
1176 	msa311->vdd = devm_regulator_get(dev, "vdd");
1177 	if (IS_ERR(msa311->vdd))
1178 		return dev_err_probe(dev, PTR_ERR(msa311->vdd),
1179 				     "can't get vdd supply\n");
1180 
1181 	err = regulator_enable(msa311->vdd);
1182 	if (err)
1183 		return dev_err_probe(dev, err, "can't enable vdd supply\n");
1184 
1185 	err = devm_add_action_or_reset(dev, msa311_vdd_disable, msa311->vdd);
1186 	if (err)
1187 		return dev_err_probe(dev, err,
1188 				     "can't add vdd disable action\n");
1189 
1190 	err = msa311_check_partid(msa311);
1191 	if (err)
1192 		return err;
1193 
1194 	err = msa311_soft_reset(msa311);
1195 	if (err)
1196 		return err;
1197 
1198 	err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_NORMAL);
1199 	if (err)
1200 		return dev_err_probe(dev, err, "failed to power on device\n");
1201 
1202 	/*
1203 	 * Register powerdown deferred callback which suspends the chip
1204 	 * after module unloaded.
1205 	 *
1206 	 * MSA311 should be in SUSPEND mode in the two cases:
1207 	 * 1) When driver is loaded, but we do not have any data or
1208 	 *    configuration requests to it (we are solving it using
1209 	 *    autosuspend feature).
1210 	 * 2) When driver is unloaded and device is not used (devm action is
1211 	 *    used in this case).
1212 	 */
1213 	err = devm_add_action_or_reset(dev, msa311_powerdown, msa311);
1214 	if (err)
1215 		return dev_err_probe(dev, err, "can't add powerdown action\n");
1216 
1217 	err = pm_runtime_set_active(dev);
1218 	if (err)
1219 		return err;
1220 
1221 	err = devm_pm_runtime_enable(dev);
1222 	if (err)
1223 		return err;
1224 
1225 	pm_runtime_get_noresume(dev);
1226 	pm_runtime_set_autosuspend_delay(dev, MSA311_PWR_SLEEP_DELAY_MS);
1227 	pm_runtime_use_autosuspend(dev);
1228 
1229 	err = msa311_chip_init(msa311);
1230 	if (err)
1231 		return err;
1232 
1233 	indio_dev->modes = INDIO_DIRECT_MODE;
1234 	indio_dev->channels = msa311_channels;
1235 	indio_dev->num_channels = ARRAY_SIZE(msa311_channels);
1236 	indio_dev->name = msa311->chip_name;
1237 	indio_dev->info = &msa311_info;
1238 
1239 	err = devm_iio_triggered_buffer_setup(dev, indio_dev,
1240 					      iio_pollfunc_store_time,
1241 					      msa311_buffer_thread,
1242 					      &msa311_buffer_setup_ops);
1243 	if (err)
1244 		return dev_err_probe(dev, err,
1245 				     "can't setup IIO trigger buffer\n");
1246 
1247 	err = msa311_setup_interrupts(msa311);
1248 	if (err)
1249 		return err;
1250 
1251 	pm_runtime_mark_last_busy(dev);
1252 	pm_runtime_put_autosuspend(dev);
1253 
1254 	err = devm_iio_device_register(dev, indio_dev);
1255 	if (err)
1256 		return dev_err_probe(dev, err, "IIO device register failed\n");
1257 
1258 	return 0;
1259 }
1260 
1261 static int msa311_runtime_suspend(struct device *dev)
1262 {
1263 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1264 	struct msa311_priv *msa311 = iio_priv(indio_dev);
1265 	int err;
1266 
1267 	mutex_lock(&msa311->lock);
1268 	err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_SUSPEND);
1269 	mutex_unlock(&msa311->lock);
1270 	if (err)
1271 		dev_err(dev, "failed to power off device (%pe)\n",
1272 			ERR_PTR(err));
1273 
1274 	return err;
1275 }
1276 
1277 static int msa311_runtime_resume(struct device *dev)
1278 {
1279 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1280 	struct msa311_priv *msa311 = iio_priv(indio_dev);
1281 	int err;
1282 
1283 	mutex_lock(&msa311->lock);
1284 	err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_NORMAL);
1285 	mutex_unlock(&msa311->lock);
1286 	if (err)
1287 		dev_err(dev, "failed to power on device (%pe)\n",
1288 			ERR_PTR(err));
1289 
1290 	return err;
1291 }
1292 
1293 static DEFINE_RUNTIME_DEV_PM_OPS(msa311_pm_ops, msa311_runtime_suspend,
1294 				 msa311_runtime_resume, NULL);
1295 
1296 static const struct i2c_device_id msa311_i2c_id[] = {
1297 	{ .name = "msa311" },
1298 	{ }
1299 };
1300 MODULE_DEVICE_TABLE(i2c, msa311_i2c_id);
1301 
1302 static const struct of_device_id msa311_of_match[] = {
1303 	{ .compatible = "memsensing,msa311" },
1304 	{ }
1305 };
1306 MODULE_DEVICE_TABLE(of, msa311_of_match);
1307 
1308 static struct i2c_driver msa311_driver = {
1309 	.driver = {
1310 		.name = "msa311",
1311 		.of_match_table = msa311_of_match,
1312 		.pm = pm_ptr(&msa311_pm_ops),
1313 	},
1314 	.probe_new	= msa311_probe,
1315 	.id_table	= msa311_i2c_id,
1316 };
1317 module_i2c_driver(msa311_driver);
1318 
1319 MODULE_AUTHOR("Dmitry Rokosov <ddrokosov@sberdevices.ru>");
1320 MODULE_DESCRIPTION("MEMSensing MSA311 3-axis accelerometer driver");
1321 MODULE_LICENSE("GPL");
1322