1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2022 ROHM Semiconductors 4 * 5 * ROHM/KIONIX KX022A accelerometer driver 6 */ 7 8 #include <linux/delay.h> 9 #include <linux/device.h> 10 #include <linux/interrupt.h> 11 #include <linux/module.h> 12 #include <linux/moduleparam.h> 13 #include <linux/mutex.h> 14 #include <linux/property.h> 15 #include <linux/regmap.h> 16 #include <linux/regulator/consumer.h> 17 #include <linux/slab.h> 18 #include <linux/string_helpers.h> 19 #include <linux/units.h> 20 21 #include <linux/iio/iio.h> 22 #include <linux/iio/sysfs.h> 23 #include <linux/iio/trigger.h> 24 #include <linux/iio/trigger_consumer.h> 25 #include <linux/iio/triggered_buffer.h> 26 27 #include "kionix-kx022a.h" 28 29 /* 30 * The KX022A has FIFO which can store 43 samples of HiRes data from 2 31 * channels. This equals to 43 (samples) * 3 (channels) * 2 (bytes/sample) to 32 * 258 bytes of sample data. The quirk to know is that the amount of bytes in 33 * the FIFO is advertised via 8 bit register (max value 255). The thing to note 34 * is that full 258 bytes of data is indicated using the max value 255. 35 */ 36 #define KX022A_FIFO_LENGTH 43 37 #define KX022A_FIFO_FULL_VALUE 255 38 #define KX022A_SOFT_RESET_WAIT_TIME_US (5 * USEC_PER_MSEC) 39 #define KX022A_SOFT_RESET_TOTAL_WAIT_TIME_US (500 * USEC_PER_MSEC) 40 41 /* 3 axis, 2 bytes of data for each of the axis */ 42 #define KX022A_FIFO_SAMPLES_SIZE_BYTES 6 43 #define KX022A_FIFO_MAX_BYTES \ 44 (KX022A_FIFO_LENGTH * KX022A_FIFO_SAMPLES_SIZE_BYTES) 45 46 enum { 47 KX022A_STATE_SAMPLE, 48 KX022A_STATE_FIFO, 49 }; 50 51 /* Regmap configs */ 52 static const struct regmap_range kx022a_volatile_ranges[] = { 53 { 54 .range_min = KX022A_REG_XHP_L, 55 .range_max = KX022A_REG_COTR, 56 }, { 57 .range_min = KX022A_REG_TSCP, 58 .range_max = KX022A_REG_INT_REL, 59 }, { 60 /* The reset bit will be cleared by sensor */ 61 .range_min = KX022A_REG_CNTL2, 62 .range_max = KX022A_REG_CNTL2, 63 }, { 64 .range_min = KX022A_REG_BUF_STATUS_1, 65 .range_max = KX022A_REG_BUF_READ, 66 }, 67 }; 68 69 static const struct regmap_access_table kx022a_volatile_regs = { 70 .yes_ranges = &kx022a_volatile_ranges[0], 71 .n_yes_ranges = ARRAY_SIZE(kx022a_volatile_ranges), 72 }; 73 74 static const struct regmap_range kx022a_precious_ranges[] = { 75 { 76 .range_min = KX022A_REG_INT_REL, 77 .range_max = KX022A_REG_INT_REL, 78 }, 79 }; 80 81 static const struct regmap_access_table kx022a_precious_regs = { 82 .yes_ranges = &kx022a_precious_ranges[0], 83 .n_yes_ranges = ARRAY_SIZE(kx022a_precious_ranges), 84 }; 85 86 /* 87 * The HW does not set WHO_AM_I reg as read-only but we don't want to write it 88 * so we still include it in the read-only ranges. 89 */ 90 static const struct regmap_range kx022a_read_only_ranges[] = { 91 { 92 .range_min = KX022A_REG_XHP_L, 93 .range_max = KX022A_REG_INT_REL, 94 }, { 95 .range_min = KX022A_REG_BUF_STATUS_1, 96 .range_max = KX022A_REG_BUF_STATUS_2, 97 }, { 98 .range_min = KX022A_REG_BUF_READ, 99 .range_max = KX022A_REG_BUF_READ, 100 }, 101 }; 102 103 static const struct regmap_access_table kx022a_ro_regs = { 104 .no_ranges = &kx022a_read_only_ranges[0], 105 .n_no_ranges = ARRAY_SIZE(kx022a_read_only_ranges), 106 }; 107 108 static const struct regmap_range kx022a_write_only_ranges[] = { 109 { 110 .range_min = KX022A_REG_BTS_WUF_TH, 111 .range_max = KX022A_REG_BTS_WUF_TH, 112 }, { 113 .range_min = KX022A_REG_MAN_WAKE, 114 .range_max = KX022A_REG_MAN_WAKE, 115 }, { 116 .range_min = KX022A_REG_SELF_TEST, 117 .range_max = KX022A_REG_SELF_TEST, 118 }, { 119 .range_min = KX022A_REG_BUF_CLEAR, 120 .range_max = KX022A_REG_BUF_CLEAR, 121 }, 122 }; 123 124 static const struct regmap_access_table kx022a_wo_regs = { 125 .no_ranges = &kx022a_write_only_ranges[0], 126 .n_no_ranges = ARRAY_SIZE(kx022a_write_only_ranges), 127 }; 128 129 static const struct regmap_range kx022a_noinc_read_ranges[] = { 130 { 131 .range_min = KX022A_REG_BUF_READ, 132 .range_max = KX022A_REG_BUF_READ, 133 }, 134 }; 135 136 static const struct regmap_access_table kx022a_nir_regs = { 137 .yes_ranges = &kx022a_noinc_read_ranges[0], 138 .n_yes_ranges = ARRAY_SIZE(kx022a_noinc_read_ranges), 139 }; 140 141 const struct regmap_config kx022a_regmap = { 142 .reg_bits = 8, 143 .val_bits = 8, 144 .volatile_table = &kx022a_volatile_regs, 145 .rd_table = &kx022a_wo_regs, 146 .wr_table = &kx022a_ro_regs, 147 .rd_noinc_table = &kx022a_nir_regs, 148 .precious_table = &kx022a_precious_regs, 149 .max_register = KX022A_MAX_REGISTER, 150 .cache_type = REGCACHE_RBTREE, 151 }; 152 EXPORT_SYMBOL_NS_GPL(kx022a_regmap, IIO_KX022A); 153 154 struct kx022a_data { 155 struct regmap *regmap; 156 struct iio_trigger *trig; 157 struct device *dev; 158 struct iio_mount_matrix orientation; 159 int64_t timestamp, old_timestamp; 160 161 int irq; 162 int inc_reg; 163 int ien_reg; 164 165 unsigned int state; 166 unsigned int odr_ns; 167 168 bool trigger_enabled; 169 /* 170 * Prevent toggling the sensor stby/active state (PC1 bit) in the 171 * middle of a configuration, or when the fifo is enabled. Also, 172 * protect the data stored/retrieved from this structure from 173 * concurrent accesses. 174 */ 175 struct mutex mutex; 176 u8 watermark; 177 178 /* 3 x 16bit accel data + timestamp */ 179 __le16 buffer[8] __aligned(IIO_DMA_MINALIGN); 180 struct { 181 __le16 channels[3]; 182 s64 ts __aligned(8); 183 } scan; 184 }; 185 186 static const struct iio_mount_matrix * 187 kx022a_get_mount_matrix(const struct iio_dev *idev, 188 const struct iio_chan_spec *chan) 189 { 190 struct kx022a_data *data = iio_priv(idev); 191 192 return &data->orientation; 193 } 194 195 enum { 196 AXIS_X, 197 AXIS_Y, 198 AXIS_Z, 199 AXIS_MAX 200 }; 201 202 static const unsigned long kx022a_scan_masks[] = { 203 BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z), 0 204 }; 205 206 static const struct iio_chan_spec_ext_info kx022a_ext_info[] = { 207 IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, kx022a_get_mount_matrix), 208 { } 209 }; 210 211 #define KX022A_ACCEL_CHAN(axis, index) \ 212 { \ 213 .type = IIO_ACCEL, \ 214 .modified = 1, \ 215 .channel2 = IIO_MOD_##axis, \ 216 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 217 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ 218 BIT(IIO_CHAN_INFO_SAMP_FREQ), \ 219 .info_mask_shared_by_type_available = \ 220 BIT(IIO_CHAN_INFO_SCALE) | \ 221 BIT(IIO_CHAN_INFO_SAMP_FREQ), \ 222 .ext_info = kx022a_ext_info, \ 223 .address = KX022A_REG_##axis##OUT_L, \ 224 .scan_index = index, \ 225 .scan_type = { \ 226 .sign = 's', \ 227 .realbits = 16, \ 228 .storagebits = 16, \ 229 .endianness = IIO_LE, \ 230 }, \ 231 } 232 233 static const struct iio_chan_spec kx022a_channels[] = { 234 KX022A_ACCEL_CHAN(X, 0), 235 KX022A_ACCEL_CHAN(Y, 1), 236 KX022A_ACCEL_CHAN(Z, 2), 237 IIO_CHAN_SOFT_TIMESTAMP(3), 238 }; 239 240 /* 241 * The sensor HW can support ODR up to 1600 Hz, which is beyond what most of the 242 * Linux CPUs can handle without dropping samples. Also, the low power mode is 243 * not available for higher sample rates. Thus, the driver only supports 200 Hz 244 * and slower ODRs. The slowest is 0.78 Hz. 245 */ 246 static const int kx022a_accel_samp_freq_table[][2] = { 247 { 0, 780000 }, 248 { 1, 563000 }, 249 { 3, 125000 }, 250 { 6, 250000 }, 251 { 12, 500000 }, 252 { 25, 0 }, 253 { 50, 0 }, 254 { 100, 0 }, 255 { 200, 0 }, 256 }; 257 258 static const unsigned int kx022a_odrs[] = { 259 1282051282, 260 639795266, 261 320 * MEGA, 262 160 * MEGA, 263 80 * MEGA, 264 40 * MEGA, 265 20 * MEGA, 266 10 * MEGA, 267 5 * MEGA, 268 }; 269 270 /* 271 * range is typically +-2G/4G/8G/16G, distributed over the amount of bits. 272 * The scale table can be calculated using 273 * (range / 2^bits) * g = (range / 2^bits) * 9.80665 m/s^2 274 * => KX022A uses 16 bit (HiRes mode - assume the low 8 bits are zeroed 275 * in low-power mode(?) ) 276 * => +/-2G => 4 / 2^16 * 9,80665 * 10^6 (to scale to micro) 277 * => +/-2G - 598.550415 278 * +/-4G - 1197.10083 279 * +/-8G - 2394.20166 280 * +/-16G - 4788.40332 281 */ 282 static const int kx022a_scale_table[][2] = { 283 { 598, 550415 }, 284 { 1197, 100830 }, 285 { 2394, 201660 }, 286 { 4788, 403320 }, 287 }; 288 289 static int kx022a_read_avail(struct iio_dev *indio_dev, 290 struct iio_chan_spec const *chan, 291 const int **vals, int *type, int *length, 292 long mask) 293 { 294 switch (mask) { 295 case IIO_CHAN_INFO_SAMP_FREQ: 296 *vals = (const int *)kx022a_accel_samp_freq_table; 297 *length = ARRAY_SIZE(kx022a_accel_samp_freq_table) * 298 ARRAY_SIZE(kx022a_accel_samp_freq_table[0]); 299 *type = IIO_VAL_INT_PLUS_MICRO; 300 return IIO_AVAIL_LIST; 301 case IIO_CHAN_INFO_SCALE: 302 *vals = (const int *)kx022a_scale_table; 303 *length = ARRAY_SIZE(kx022a_scale_table) * 304 ARRAY_SIZE(kx022a_scale_table[0]); 305 *type = IIO_VAL_INT_PLUS_MICRO; 306 return IIO_AVAIL_LIST; 307 default: 308 return -EINVAL; 309 } 310 } 311 312 #define KX022A_DEFAULT_PERIOD_NS (20 * NSEC_PER_MSEC) 313 314 static void kx022a_reg2freq(unsigned int val, int *val1, int *val2) 315 { 316 *val1 = kx022a_accel_samp_freq_table[val & KX022A_MASK_ODR][0]; 317 *val2 = kx022a_accel_samp_freq_table[val & KX022A_MASK_ODR][1]; 318 } 319 320 static void kx022a_reg2scale(unsigned int val, unsigned int *val1, 321 unsigned int *val2) 322 { 323 val &= KX022A_MASK_GSEL; 324 val >>= KX022A_GSEL_SHIFT; 325 326 *val1 = kx022a_scale_table[val][0]; 327 *val2 = kx022a_scale_table[val][1]; 328 } 329 330 static int kx022a_turn_on_off_unlocked(struct kx022a_data *data, bool on) 331 { 332 int ret; 333 334 if (on) 335 ret = regmap_set_bits(data->regmap, KX022A_REG_CNTL, 336 KX022A_MASK_PC1); 337 else 338 ret = regmap_clear_bits(data->regmap, KX022A_REG_CNTL, 339 KX022A_MASK_PC1); 340 if (ret) 341 dev_err(data->dev, "Turn %s fail %d\n", str_on_off(on), ret); 342 343 return ret; 344 345 } 346 347 static int kx022a_turn_off_lock(struct kx022a_data *data) 348 { 349 int ret; 350 351 mutex_lock(&data->mutex); 352 ret = kx022a_turn_on_off_unlocked(data, false); 353 if (ret) 354 mutex_unlock(&data->mutex); 355 356 return ret; 357 } 358 359 static int kx022a_turn_on_unlock(struct kx022a_data *data) 360 { 361 int ret; 362 363 ret = kx022a_turn_on_off_unlocked(data, true); 364 mutex_unlock(&data->mutex); 365 366 return ret; 367 } 368 369 static int kx022a_write_raw(struct iio_dev *idev, 370 struct iio_chan_spec const *chan, 371 int val, int val2, long mask) 372 { 373 struct kx022a_data *data = iio_priv(idev); 374 int ret, n; 375 376 /* 377 * We should not allow changing scale or frequency when FIFO is running 378 * as it will mess the timestamp/scale for samples existing in the 379 * buffer. If this turns out to be an issue we can later change logic 380 * to internally flush the fifo before reconfiguring so the samples in 381 * fifo keep matching the freq/scale settings. (Such setup could cause 382 * issues if users trust the watermark to be reached within known 383 * time-limit). 384 */ 385 ret = iio_device_claim_direct_mode(idev); 386 if (ret) 387 return ret; 388 389 switch (mask) { 390 case IIO_CHAN_INFO_SAMP_FREQ: 391 n = ARRAY_SIZE(kx022a_accel_samp_freq_table); 392 393 while (n--) 394 if (val == kx022a_accel_samp_freq_table[n][0] && 395 val2 == kx022a_accel_samp_freq_table[n][1]) 396 break; 397 if (n < 0) { 398 ret = -EINVAL; 399 goto unlock_out; 400 } 401 ret = kx022a_turn_off_lock(data); 402 if (ret) 403 break; 404 405 ret = regmap_update_bits(data->regmap, 406 KX022A_REG_ODCNTL, 407 KX022A_MASK_ODR, n); 408 data->odr_ns = kx022a_odrs[n]; 409 kx022a_turn_on_unlock(data); 410 break; 411 case IIO_CHAN_INFO_SCALE: 412 n = ARRAY_SIZE(kx022a_scale_table); 413 414 while (n-- > 0) 415 if (val == kx022a_scale_table[n][0] && 416 val2 == kx022a_scale_table[n][1]) 417 break; 418 if (n < 0) { 419 ret = -EINVAL; 420 goto unlock_out; 421 } 422 423 ret = kx022a_turn_off_lock(data); 424 if (ret) 425 break; 426 427 ret = regmap_update_bits(data->regmap, KX022A_REG_CNTL, 428 KX022A_MASK_GSEL, 429 n << KX022A_GSEL_SHIFT); 430 kx022a_turn_on_unlock(data); 431 break; 432 default: 433 ret = -EINVAL; 434 break; 435 } 436 437 unlock_out: 438 iio_device_release_direct_mode(idev); 439 440 return ret; 441 } 442 443 static int kx022a_fifo_set_wmi(struct kx022a_data *data) 444 { 445 u8 threshold; 446 447 threshold = data->watermark; 448 449 return regmap_update_bits(data->regmap, KX022A_REG_BUF_CNTL1, 450 KX022A_MASK_WM_TH, threshold); 451 } 452 453 static int kx022a_get_axis(struct kx022a_data *data, 454 struct iio_chan_spec const *chan, 455 int *val) 456 { 457 int ret; 458 459 ret = regmap_bulk_read(data->regmap, chan->address, &data->buffer[0], 460 sizeof(__le16)); 461 if (ret) 462 return ret; 463 464 *val = le16_to_cpu(data->buffer[0]); 465 466 return IIO_VAL_INT; 467 } 468 469 static int kx022a_read_raw(struct iio_dev *idev, 470 struct iio_chan_spec const *chan, 471 int *val, int *val2, long mask) 472 { 473 struct kx022a_data *data = iio_priv(idev); 474 unsigned int regval; 475 int ret; 476 477 switch (mask) { 478 case IIO_CHAN_INFO_RAW: 479 ret = iio_device_claim_direct_mode(idev); 480 if (ret) 481 return ret; 482 483 mutex_lock(&data->mutex); 484 ret = kx022a_get_axis(data, chan, val); 485 mutex_unlock(&data->mutex); 486 487 iio_device_release_direct_mode(idev); 488 489 return ret; 490 491 case IIO_CHAN_INFO_SAMP_FREQ: 492 ret = regmap_read(data->regmap, KX022A_REG_ODCNTL, ®val); 493 if (ret) 494 return ret; 495 496 if ((regval & KX022A_MASK_ODR) > 497 ARRAY_SIZE(kx022a_accel_samp_freq_table)) { 498 dev_err(data->dev, "Invalid ODR\n"); 499 return -EINVAL; 500 } 501 502 kx022a_reg2freq(regval, val, val2); 503 504 return IIO_VAL_INT_PLUS_MICRO; 505 506 case IIO_CHAN_INFO_SCALE: 507 ret = regmap_read(data->regmap, KX022A_REG_CNTL, ®val); 508 if (ret < 0) 509 return ret; 510 511 kx022a_reg2scale(regval, val, val2); 512 513 return IIO_VAL_INT_PLUS_MICRO; 514 } 515 516 return -EINVAL; 517 }; 518 519 static int kx022a_set_watermark(struct iio_dev *idev, unsigned int val) 520 { 521 struct kx022a_data *data = iio_priv(idev); 522 523 if (val > KX022A_FIFO_LENGTH) 524 val = KX022A_FIFO_LENGTH; 525 526 mutex_lock(&data->mutex); 527 data->watermark = val; 528 mutex_unlock(&data->mutex); 529 530 return 0; 531 } 532 533 static ssize_t hwfifo_enabled_show(struct device *dev, 534 struct device_attribute *attr, 535 char *buf) 536 { 537 struct iio_dev *idev = dev_to_iio_dev(dev); 538 struct kx022a_data *data = iio_priv(idev); 539 bool state; 540 541 mutex_lock(&data->mutex); 542 state = data->state; 543 mutex_unlock(&data->mutex); 544 545 return sysfs_emit(buf, "%d\n", state); 546 } 547 548 static ssize_t hwfifo_watermark_show(struct device *dev, 549 struct device_attribute *attr, 550 char *buf) 551 { 552 struct iio_dev *idev = dev_to_iio_dev(dev); 553 struct kx022a_data *data = iio_priv(idev); 554 int wm; 555 556 mutex_lock(&data->mutex); 557 wm = data->watermark; 558 mutex_unlock(&data->mutex); 559 560 return sysfs_emit(buf, "%d\n", wm); 561 } 562 563 static IIO_DEVICE_ATTR_RO(hwfifo_enabled, 0); 564 static IIO_DEVICE_ATTR_RO(hwfifo_watermark, 0); 565 566 static const struct iio_dev_attr *kx022a_fifo_attributes[] = { 567 &iio_dev_attr_hwfifo_watermark, 568 &iio_dev_attr_hwfifo_enabled, 569 NULL 570 }; 571 572 static int kx022a_drop_fifo_contents(struct kx022a_data *data) 573 { 574 /* 575 * We must clear the old time-stamp to avoid computing the timestamps 576 * based on samples acquired when buffer was last enabled. 577 * 578 * We don't need to protect the timestamp as long as we are only 579 * called from fifo-disable where we can guarantee the sensor is not 580 * triggering interrupts and where the mutex is locked to prevent the 581 * user-space access. 582 */ 583 data->timestamp = 0; 584 585 return regmap_write(data->regmap, KX022A_REG_BUF_CLEAR, 0x0); 586 } 587 588 static int __kx022a_fifo_flush(struct iio_dev *idev, unsigned int samples, 589 bool irq) 590 { 591 struct kx022a_data *data = iio_priv(idev); 592 struct device *dev = regmap_get_device(data->regmap); 593 __le16 buffer[KX022A_FIFO_LENGTH * 3]; 594 uint64_t sample_period; 595 int count, fifo_bytes; 596 bool renable = false; 597 int64_t tstamp; 598 int ret, i; 599 600 ret = regmap_read(data->regmap, KX022A_REG_BUF_STATUS_1, &fifo_bytes); 601 if (ret) { 602 dev_err(dev, "Error reading buffer status\n"); 603 return ret; 604 } 605 606 /* Let's not overflow if we for some reason get bogus value from i2c */ 607 if (fifo_bytes == KX022A_FIFO_FULL_VALUE) 608 fifo_bytes = KX022A_FIFO_MAX_BYTES; 609 610 if (fifo_bytes % KX022A_FIFO_SAMPLES_SIZE_BYTES) 611 dev_warn(data->dev, "Bad FIFO alignment. Data may be corrupt\n"); 612 613 count = fifo_bytes / KX022A_FIFO_SAMPLES_SIZE_BYTES; 614 if (!count) 615 return 0; 616 617 /* 618 * If we are being called from IRQ handler we know the stored timestamp 619 * is fairly accurate for the last stored sample. Otherwise, if we are 620 * called as a result of a read operation from userspace and hence 621 * before the watermark interrupt was triggered, take a timestamp 622 * now. We can fall anywhere in between two samples so the error in this 623 * case is at most one sample period. 624 */ 625 if (!irq) { 626 /* 627 * We need to have the IRQ disabled or we risk of messing-up 628 * the timestamps. If we are ran from IRQ, then the 629 * IRQF_ONESHOT has us covered - but if we are ran by the 630 * user-space read we need to disable the IRQ to be on a safe 631 * side. We do this usng synchronous disable so that if the 632 * IRQ thread is being ran on other CPU we wait for it to be 633 * finished. 634 */ 635 disable_irq(data->irq); 636 renable = true; 637 638 data->old_timestamp = data->timestamp; 639 data->timestamp = iio_get_time_ns(idev); 640 } 641 642 /* 643 * Approximate timestamps for each of the sample based on the sampling 644 * frequency, timestamp for last sample and number of samples. 645 * 646 * We'd better not use the current bandwidth settings to compute the 647 * sample period. The real sample rate varies with the device and 648 * small variation adds when we store a large number of samples. 649 * 650 * To avoid this issue we compute the actual sample period ourselves 651 * based on the timestamp delta between the last two flush operations. 652 */ 653 if (data->old_timestamp) { 654 sample_period = data->timestamp - data->old_timestamp; 655 do_div(sample_period, count); 656 } else { 657 sample_period = data->odr_ns; 658 } 659 tstamp = data->timestamp - (count - 1) * sample_period; 660 661 if (samples && count > samples) { 662 /* 663 * Here we leave some old samples to the buffer. We need to 664 * adjust the timestamp to match the first sample in the buffer 665 * or we will miscalculate the sample_period at next round. 666 */ 667 data->timestamp -= (count - samples) * sample_period; 668 count = samples; 669 } 670 671 fifo_bytes = count * KX022A_FIFO_SAMPLES_SIZE_BYTES; 672 ret = regmap_noinc_read(data->regmap, KX022A_REG_BUF_READ, 673 &buffer[0], fifo_bytes); 674 if (ret) 675 goto renable_out; 676 677 for (i = 0; i < count; i++) { 678 __le16 *sam = &buffer[i * 3]; 679 __le16 *chs; 680 int bit; 681 682 chs = &data->scan.channels[0]; 683 for_each_set_bit(bit, idev->active_scan_mask, AXIS_MAX) 684 chs[bit] = sam[bit]; 685 686 iio_push_to_buffers_with_timestamp(idev, &data->scan, tstamp); 687 688 tstamp += sample_period; 689 } 690 691 ret = count; 692 693 renable_out: 694 if (renable) 695 enable_irq(data->irq); 696 697 return ret; 698 } 699 700 static int kx022a_fifo_flush(struct iio_dev *idev, unsigned int samples) 701 { 702 struct kx022a_data *data = iio_priv(idev); 703 int ret; 704 705 mutex_lock(&data->mutex); 706 ret = __kx022a_fifo_flush(idev, samples, false); 707 mutex_unlock(&data->mutex); 708 709 return ret; 710 } 711 712 static const struct iio_info kx022a_info = { 713 .read_raw = &kx022a_read_raw, 714 .write_raw = &kx022a_write_raw, 715 .read_avail = &kx022a_read_avail, 716 717 .validate_trigger = iio_validate_own_trigger, 718 .hwfifo_set_watermark = kx022a_set_watermark, 719 .hwfifo_flush_to_buffer = kx022a_fifo_flush, 720 }; 721 722 static int kx022a_set_drdy_irq(struct kx022a_data *data, bool en) 723 { 724 if (en) 725 return regmap_set_bits(data->regmap, KX022A_REG_CNTL, 726 KX022A_MASK_DRDY); 727 728 return regmap_clear_bits(data->regmap, KX022A_REG_CNTL, 729 KX022A_MASK_DRDY); 730 } 731 732 static int kx022a_prepare_irq_pin(struct kx022a_data *data) 733 { 734 /* Enable IRQ1 pin. Set polarity to active low */ 735 int mask = KX022A_MASK_IEN | KX022A_MASK_IPOL | 736 KX022A_MASK_ITYP; 737 int val = KX022A_MASK_IEN | KX022A_IPOL_LOW | 738 KX022A_ITYP_LEVEL; 739 int ret; 740 741 ret = regmap_update_bits(data->regmap, data->inc_reg, mask, val); 742 if (ret) 743 return ret; 744 745 /* We enable WMI to IRQ pin only at buffer_enable */ 746 mask = KX022A_MASK_INS2_DRDY; 747 748 return regmap_set_bits(data->regmap, data->ien_reg, mask); 749 } 750 751 static int kx022a_fifo_disable(struct kx022a_data *data) 752 { 753 int ret = 0; 754 755 ret = kx022a_turn_off_lock(data); 756 if (ret) 757 return ret; 758 759 ret = regmap_clear_bits(data->regmap, data->ien_reg, KX022A_MASK_WMI); 760 if (ret) 761 goto unlock_out; 762 763 ret = regmap_clear_bits(data->regmap, KX022A_REG_BUF_CNTL2, 764 KX022A_MASK_BUF_EN); 765 if (ret) 766 goto unlock_out; 767 768 data->state &= ~KX022A_STATE_FIFO; 769 770 kx022a_drop_fifo_contents(data); 771 772 return kx022a_turn_on_unlock(data); 773 774 unlock_out: 775 mutex_unlock(&data->mutex); 776 777 return ret; 778 } 779 780 static int kx022a_buffer_predisable(struct iio_dev *idev) 781 { 782 struct kx022a_data *data = iio_priv(idev); 783 784 if (iio_device_get_current_mode(idev) == INDIO_BUFFER_TRIGGERED) 785 return 0; 786 787 return kx022a_fifo_disable(data); 788 } 789 790 static int kx022a_fifo_enable(struct kx022a_data *data) 791 { 792 int ret; 793 794 ret = kx022a_turn_off_lock(data); 795 if (ret) 796 return ret; 797 798 /* Update watermark to HW */ 799 ret = kx022a_fifo_set_wmi(data); 800 if (ret) 801 goto unlock_out; 802 803 /* Enable buffer */ 804 ret = regmap_set_bits(data->regmap, KX022A_REG_BUF_CNTL2, 805 KX022A_MASK_BUF_EN); 806 if (ret) 807 goto unlock_out; 808 809 data->state |= KX022A_STATE_FIFO; 810 ret = regmap_set_bits(data->regmap, data->ien_reg, 811 KX022A_MASK_WMI); 812 if (ret) 813 goto unlock_out; 814 815 return kx022a_turn_on_unlock(data); 816 817 unlock_out: 818 mutex_unlock(&data->mutex); 819 820 return ret; 821 } 822 823 static int kx022a_buffer_postenable(struct iio_dev *idev) 824 { 825 struct kx022a_data *data = iio_priv(idev); 826 827 /* 828 * If we use data-ready trigger, then the IRQ masks should be handled by 829 * trigger enable and the hardware buffer is not used but we just update 830 * results to the IIO fifo when data-ready triggers. 831 */ 832 if (iio_device_get_current_mode(idev) == INDIO_BUFFER_TRIGGERED) 833 return 0; 834 835 return kx022a_fifo_enable(data); 836 } 837 838 static const struct iio_buffer_setup_ops kx022a_buffer_ops = { 839 .postenable = kx022a_buffer_postenable, 840 .predisable = kx022a_buffer_predisable, 841 }; 842 843 static irqreturn_t kx022a_trigger_handler(int irq, void *p) 844 { 845 struct iio_poll_func *pf = p; 846 struct iio_dev *idev = pf->indio_dev; 847 struct kx022a_data *data = iio_priv(idev); 848 int ret; 849 850 ret = regmap_bulk_read(data->regmap, KX022A_REG_XOUT_L, data->buffer, 851 KX022A_FIFO_SAMPLES_SIZE_BYTES); 852 if (ret < 0) 853 goto err_read; 854 855 iio_push_to_buffers_with_timestamp(idev, data->buffer, data->timestamp); 856 err_read: 857 iio_trigger_notify_done(idev->trig); 858 859 return IRQ_HANDLED; 860 } 861 862 /* Get timestamps and wake the thread if we need to read data */ 863 static irqreturn_t kx022a_irq_handler(int irq, void *private) 864 { 865 struct iio_dev *idev = private; 866 struct kx022a_data *data = iio_priv(idev); 867 868 data->old_timestamp = data->timestamp; 869 data->timestamp = iio_get_time_ns(idev); 870 871 if (data->state & KX022A_STATE_FIFO || data->trigger_enabled) 872 return IRQ_WAKE_THREAD; 873 874 return IRQ_NONE; 875 } 876 877 /* 878 * WMI and data-ready IRQs are acked when results are read. If we add 879 * TILT/WAKE or other IRQs - then we may need to implement the acking 880 * (which is racy). 881 */ 882 static irqreturn_t kx022a_irq_thread_handler(int irq, void *private) 883 { 884 struct iio_dev *idev = private; 885 struct kx022a_data *data = iio_priv(idev); 886 irqreturn_t ret = IRQ_NONE; 887 888 mutex_lock(&data->mutex); 889 890 if (data->trigger_enabled) { 891 iio_trigger_poll_nested(data->trig); 892 ret = IRQ_HANDLED; 893 } 894 895 if (data->state & KX022A_STATE_FIFO) { 896 int ok; 897 898 ok = __kx022a_fifo_flush(idev, KX022A_FIFO_LENGTH, true); 899 if (ok > 0) 900 ret = IRQ_HANDLED; 901 } 902 903 mutex_unlock(&data->mutex); 904 905 return ret; 906 } 907 908 static int kx022a_trigger_set_state(struct iio_trigger *trig, 909 bool state) 910 { 911 struct kx022a_data *data = iio_trigger_get_drvdata(trig); 912 int ret = 0; 913 914 mutex_lock(&data->mutex); 915 916 if (data->trigger_enabled == state) 917 goto unlock_out; 918 919 if (data->state & KX022A_STATE_FIFO) { 920 dev_warn(data->dev, "Can't set trigger when FIFO enabled\n"); 921 ret = -EBUSY; 922 goto unlock_out; 923 } 924 925 ret = kx022a_turn_on_off_unlocked(data, false); 926 if (ret) 927 goto unlock_out; 928 929 data->trigger_enabled = state; 930 ret = kx022a_set_drdy_irq(data, state); 931 if (ret) 932 goto unlock_out; 933 934 ret = kx022a_turn_on_off_unlocked(data, true); 935 936 unlock_out: 937 mutex_unlock(&data->mutex); 938 939 return ret; 940 } 941 942 static const struct iio_trigger_ops kx022a_trigger_ops = { 943 .set_trigger_state = kx022a_trigger_set_state, 944 }; 945 946 static int kx022a_chip_init(struct kx022a_data *data) 947 { 948 int ret, val; 949 950 /* Reset the senor */ 951 ret = regmap_write(data->regmap, KX022A_REG_CNTL2, KX022A_MASK_SRST); 952 if (ret) 953 return ret; 954 955 /* 956 * I've seen I2C read failures if we poll too fast after the sensor 957 * reset. Slight delay gives I2C block the time to recover. 958 */ 959 msleep(1); 960 961 ret = regmap_read_poll_timeout(data->regmap, KX022A_REG_CNTL2, val, 962 !(val & KX022A_MASK_SRST), 963 KX022A_SOFT_RESET_WAIT_TIME_US, 964 KX022A_SOFT_RESET_TOTAL_WAIT_TIME_US); 965 if (ret) { 966 dev_err(data->dev, "Sensor reset %s\n", 967 val & KX022A_MASK_SRST ? "timeout" : "fail#"); 968 return ret; 969 } 970 971 ret = regmap_reinit_cache(data->regmap, &kx022a_regmap); 972 if (ret) { 973 dev_err(data->dev, "Failed to reinit reg cache\n"); 974 return ret; 975 } 976 977 /* set data res 16bit */ 978 ret = regmap_set_bits(data->regmap, KX022A_REG_BUF_CNTL2, 979 KX022A_MASK_BRES16); 980 if (ret) { 981 dev_err(data->dev, "Failed to set data resolution\n"); 982 return ret; 983 } 984 985 return kx022a_prepare_irq_pin(data); 986 } 987 988 int kx022a_probe_internal(struct device *dev) 989 { 990 static const char * const regulator_names[] = {"io-vdd", "vdd"}; 991 struct iio_trigger *indio_trig; 992 struct fwnode_handle *fwnode; 993 struct kx022a_data *data; 994 struct regmap *regmap; 995 unsigned int chip_id; 996 struct iio_dev *idev; 997 int ret, irq; 998 char *name; 999 1000 regmap = dev_get_regmap(dev, NULL); 1001 if (!regmap) { 1002 dev_err(dev, "no regmap\n"); 1003 return -EINVAL; 1004 } 1005 1006 fwnode = dev_fwnode(dev); 1007 if (!fwnode) 1008 return -ENODEV; 1009 1010 idev = devm_iio_device_alloc(dev, sizeof(*data)); 1011 if (!idev) 1012 return -ENOMEM; 1013 1014 data = iio_priv(idev); 1015 1016 /* 1017 * VDD is the analog and digital domain voltage supply and 1018 * IO_VDD is the digital I/O voltage supply. 1019 */ 1020 ret = devm_regulator_bulk_get_enable(dev, ARRAY_SIZE(regulator_names), 1021 regulator_names); 1022 if (ret && ret != -ENODEV) 1023 return dev_err_probe(dev, ret, "failed to enable regulator\n"); 1024 1025 ret = regmap_read(regmap, KX022A_REG_WHO, &chip_id); 1026 if (ret) 1027 return dev_err_probe(dev, ret, "Failed to access sensor\n"); 1028 1029 if (chip_id != KX022A_ID) { 1030 dev_err(dev, "unsupported device 0x%x\n", chip_id); 1031 return -EINVAL; 1032 } 1033 1034 irq = fwnode_irq_get_byname(fwnode, "INT1"); 1035 if (irq > 0) { 1036 data->inc_reg = KX022A_REG_INC1; 1037 data->ien_reg = KX022A_REG_INC4; 1038 } else { 1039 irq = fwnode_irq_get_byname(fwnode, "INT2"); 1040 if (irq < 0) 1041 return dev_err_probe(dev, irq, "No suitable IRQ\n"); 1042 1043 data->inc_reg = KX022A_REG_INC5; 1044 data->ien_reg = KX022A_REG_INC6; 1045 } 1046 1047 data->regmap = regmap; 1048 data->dev = dev; 1049 data->irq = irq; 1050 data->odr_ns = KX022A_DEFAULT_PERIOD_NS; 1051 mutex_init(&data->mutex); 1052 1053 idev->channels = kx022a_channels; 1054 idev->num_channels = ARRAY_SIZE(kx022a_channels); 1055 idev->name = "kx022-accel"; 1056 idev->info = &kx022a_info; 1057 idev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE; 1058 idev->available_scan_masks = kx022a_scan_masks; 1059 1060 /* Read the mounting matrix, if present */ 1061 ret = iio_read_mount_matrix(dev, &data->orientation); 1062 if (ret) 1063 return ret; 1064 1065 /* The sensor must be turned off for configuration */ 1066 ret = kx022a_turn_off_lock(data); 1067 if (ret) 1068 return ret; 1069 1070 ret = kx022a_chip_init(data); 1071 if (ret) { 1072 mutex_unlock(&data->mutex); 1073 return ret; 1074 } 1075 1076 ret = kx022a_turn_on_unlock(data); 1077 if (ret) 1078 return ret; 1079 1080 ret = devm_iio_triggered_buffer_setup_ext(dev, idev, 1081 &iio_pollfunc_store_time, 1082 kx022a_trigger_handler, 1083 IIO_BUFFER_DIRECTION_IN, 1084 &kx022a_buffer_ops, 1085 kx022a_fifo_attributes); 1086 1087 if (ret) 1088 return dev_err_probe(data->dev, ret, 1089 "iio_triggered_buffer_setup_ext FAIL\n"); 1090 indio_trig = devm_iio_trigger_alloc(dev, "%sdata-rdy-dev%d", idev->name, 1091 iio_device_id(idev)); 1092 if (!indio_trig) 1093 return -ENOMEM; 1094 1095 data->trig = indio_trig; 1096 1097 indio_trig->ops = &kx022a_trigger_ops; 1098 iio_trigger_set_drvdata(indio_trig, data); 1099 1100 /* 1101 * No need to check for NULL. request_threaded_irq() defaults to 1102 * dev_name() should the alloc fail. 1103 */ 1104 name = devm_kasprintf(data->dev, GFP_KERNEL, "%s-kx022a", 1105 dev_name(data->dev)); 1106 1107 ret = devm_request_threaded_irq(data->dev, irq, kx022a_irq_handler, 1108 &kx022a_irq_thread_handler, 1109 IRQF_ONESHOT, name, idev); 1110 if (ret) 1111 return dev_err_probe(data->dev, ret, "Could not request IRQ\n"); 1112 1113 1114 ret = devm_iio_trigger_register(dev, indio_trig); 1115 if (ret) 1116 return dev_err_probe(data->dev, ret, 1117 "Trigger registration failed\n"); 1118 1119 ret = devm_iio_device_register(data->dev, idev); 1120 if (ret < 0) 1121 return dev_err_probe(dev, ret, 1122 "Unable to register iio device\n"); 1123 1124 return ret; 1125 } 1126 EXPORT_SYMBOL_NS_GPL(kx022a_probe_internal, IIO_KX022A); 1127 1128 MODULE_DESCRIPTION("ROHM/Kionix KX022A accelerometer driver"); 1129 MODULE_AUTHOR("Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>"); 1130 MODULE_LICENSE("GPL"); 1131