xref: /openbmc/linux/drivers/iio/accel/bmc150-accel-core.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
4  *  - BMC150
5  *  - BMI055
6  *  - BMA255
7  *  - BMA250E
8  *  - BMA222E
9  *  - BMA280
10  *
11  * Copyright (c) 2014, Intel Corporation.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/i2c.h>
16 #include <linux/interrupt.h>
17 #include <linux/delay.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <linux/pm.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/iio/iio.h>
23 #include <linux/iio/sysfs.h>
24 #include <linux/iio/buffer.h>
25 #include <linux/iio/events.h>
26 #include <linux/iio/trigger.h>
27 #include <linux/iio/trigger_consumer.h>
28 #include <linux/iio/triggered_buffer.h>
29 #include <linux/regmap.h>
30 
31 #include "bmc150-accel.h"
32 
33 #define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
34 #define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"
35 
36 #define BMC150_ACCEL_REG_CHIP_ID		0x00
37 
38 #define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
39 #define BMC150_ACCEL_ANY_MOTION_MASK		0x07
40 #define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
41 #define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
42 #define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
43 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)
44 
45 #define BMC150_ACCEL_REG_PMU_LPW		0x11
46 #define BMC150_ACCEL_PMU_MODE_MASK		0xE0
47 #define BMC150_ACCEL_PMU_MODE_SHIFT		5
48 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
49 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1
50 
51 #define BMC150_ACCEL_REG_PMU_RANGE		0x0F
52 
53 #define BMC150_ACCEL_DEF_RANGE_2G		0x03
54 #define BMC150_ACCEL_DEF_RANGE_4G		0x05
55 #define BMC150_ACCEL_DEF_RANGE_8G		0x08
56 #define BMC150_ACCEL_DEF_RANGE_16G		0x0C
57 
58 /* Default BW: 125Hz */
59 #define BMC150_ACCEL_REG_PMU_BW		0x10
60 #define BMC150_ACCEL_DEF_BW			125
61 
62 #define BMC150_ACCEL_REG_RESET			0x14
63 #define BMC150_ACCEL_RESET_VAL			0xB6
64 
65 #define BMC150_ACCEL_REG_INT_MAP_0		0x19
66 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE	BIT(2)
67 
68 #define BMC150_ACCEL_REG_INT_MAP_1		0x1A
69 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA		BIT(0)
70 #define BMC150_ACCEL_INT_MAP_1_BIT_FWM		BIT(1)
71 #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL	BIT(2)
72 
73 #define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
74 #define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
75 #define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
76 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00
77 
78 #define BMC150_ACCEL_REG_INT_EN_0		0x16
79 #define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
80 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
81 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)
82 
83 #define BMC150_ACCEL_REG_INT_EN_1		0x17
84 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
85 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
86 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
87 
88 #define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
89 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)
90 
91 #define BMC150_ACCEL_REG_INT_5			0x27
92 #define BMC150_ACCEL_SLOPE_DUR_MASK		0x03
93 
94 #define BMC150_ACCEL_REG_INT_6			0x28
95 #define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF
96 
97 /* Slope duration in terms of number of samples */
98 #define BMC150_ACCEL_DEF_SLOPE_DURATION		1
99 /* in terms of multiples of g's/LSB, based on range */
100 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
101 
102 #define BMC150_ACCEL_REG_XOUT_L		0x02
103 
104 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100
105 
106 /* Sleep Duration values */
107 #define BMC150_ACCEL_SLEEP_500_MICRO		0x05
108 #define BMC150_ACCEL_SLEEP_1_MS		0x06
109 #define BMC150_ACCEL_SLEEP_2_MS		0x07
110 #define BMC150_ACCEL_SLEEP_4_MS		0x08
111 #define BMC150_ACCEL_SLEEP_6_MS		0x09
112 #define BMC150_ACCEL_SLEEP_10_MS		0x0A
113 #define BMC150_ACCEL_SLEEP_25_MS		0x0B
114 #define BMC150_ACCEL_SLEEP_50_MS		0x0C
115 #define BMC150_ACCEL_SLEEP_100_MS		0x0D
116 #define BMC150_ACCEL_SLEEP_500_MS		0x0E
117 #define BMC150_ACCEL_SLEEP_1_SEC		0x0F
118 
119 #define BMC150_ACCEL_REG_TEMP			0x08
120 #define BMC150_ACCEL_TEMP_CENTER_VAL		23
121 
122 #define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
123 #define BMC150_AUTO_SUSPEND_DELAY_MS		2000
124 
125 #define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
126 #define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
127 #define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
128 #define BMC150_ACCEL_REG_FIFO_DATA		0x3F
129 #define BMC150_ACCEL_FIFO_LENGTH		32
130 
131 enum bmc150_accel_axis {
132 	AXIS_X,
133 	AXIS_Y,
134 	AXIS_Z,
135 	AXIS_MAX,
136 };
137 
138 enum bmc150_power_modes {
139 	BMC150_ACCEL_SLEEP_MODE_NORMAL,
140 	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
141 	BMC150_ACCEL_SLEEP_MODE_LPM,
142 	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
143 };
144 
145 struct bmc150_scale_info {
146 	int scale;
147 	u8 reg_range;
148 };
149 
150 struct bmc150_accel_chip_info {
151 	const char *name;
152 	u8 chip_id;
153 	const struct iio_chan_spec *channels;
154 	int num_channels;
155 	const struct bmc150_scale_info scale_table[4];
156 };
157 
158 struct bmc150_accel_interrupt {
159 	const struct bmc150_accel_interrupt_info *info;
160 	atomic_t users;
161 };
162 
163 struct bmc150_accel_trigger {
164 	struct bmc150_accel_data *data;
165 	struct iio_trigger *indio_trig;
166 	int (*setup)(struct bmc150_accel_trigger *t, bool state);
167 	int intr;
168 	bool enabled;
169 };
170 
171 enum bmc150_accel_interrupt_id {
172 	BMC150_ACCEL_INT_DATA_READY,
173 	BMC150_ACCEL_INT_ANY_MOTION,
174 	BMC150_ACCEL_INT_WATERMARK,
175 	BMC150_ACCEL_INTERRUPTS,
176 };
177 
178 enum bmc150_accel_trigger_id {
179 	BMC150_ACCEL_TRIGGER_DATA_READY,
180 	BMC150_ACCEL_TRIGGER_ANY_MOTION,
181 	BMC150_ACCEL_TRIGGERS,
182 };
183 
184 struct bmc150_accel_data {
185 	struct regmap *regmap;
186 	int irq;
187 	struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
188 	struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
189 	struct mutex mutex;
190 	u8 fifo_mode, watermark;
191 	s16 buffer[8];
192 	/*
193 	 * Ensure there is sufficient space and correct alignment for
194 	 * the timestamp if enabled
195 	 */
196 	struct {
197 		__le16 channels[3];
198 		s64 ts __aligned(8);
199 	} scan;
200 	u8 bw_bits;
201 	u32 slope_dur;
202 	u32 slope_thres;
203 	u32 range;
204 	int ev_enable_state;
205 	int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
206 	const struct bmc150_accel_chip_info *chip_info;
207 	struct iio_mount_matrix orientation;
208 };
209 
210 static const struct {
211 	int val;
212 	int val2;
213 	u8 bw_bits;
214 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
215 				     {31, 260000, 0x09},
216 				     {62, 500000, 0x0A},
217 				     {125, 0, 0x0B},
218 				     {250, 0, 0x0C},
219 				     {500, 0, 0x0D},
220 				     {1000, 0, 0x0E},
221 				     {2000, 0, 0x0F} };
222 
223 static const struct {
224 	int bw_bits;
225 	int msec;
226 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
227 				     {0x09, 32},
228 				     {0x0A, 16},
229 				     {0x0B, 8},
230 				     {0x0C, 4},
231 				     {0x0D, 2},
232 				     {0x0E, 1},
233 				     {0x0F, 1} };
234 
235 static const struct {
236 	int sleep_dur;
237 	u8 reg_value;
238 } bmc150_accel_sleep_value_table[] = { {0, 0},
239 				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
240 				       {1000, BMC150_ACCEL_SLEEP_1_MS},
241 				       {2000, BMC150_ACCEL_SLEEP_2_MS},
242 				       {4000, BMC150_ACCEL_SLEEP_4_MS},
243 				       {6000, BMC150_ACCEL_SLEEP_6_MS},
244 				       {10000, BMC150_ACCEL_SLEEP_10_MS},
245 				       {25000, BMC150_ACCEL_SLEEP_25_MS},
246 				       {50000, BMC150_ACCEL_SLEEP_50_MS},
247 				       {100000, BMC150_ACCEL_SLEEP_100_MS},
248 				       {500000, BMC150_ACCEL_SLEEP_500_MS},
249 				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
250 
251 const struct regmap_config bmc150_regmap_conf = {
252 	.reg_bits = 8,
253 	.val_bits = 8,
254 	.max_register = 0x3f,
255 };
256 EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
257 
258 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
259 				 enum bmc150_power_modes mode,
260 				 int dur_us)
261 {
262 	struct device *dev = regmap_get_device(data->regmap);
263 	int i;
264 	int ret;
265 	u8 lpw_bits;
266 	int dur_val = -1;
267 
268 	if (dur_us > 0) {
269 		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
270 									 ++i) {
271 			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
272 									dur_us)
273 				dur_val =
274 				bmc150_accel_sleep_value_table[i].reg_value;
275 		}
276 	} else {
277 		dur_val = 0;
278 	}
279 
280 	if (dur_val < 0)
281 		return -EINVAL;
282 
283 	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
284 	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
285 
286 	dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
287 
288 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
289 	if (ret < 0) {
290 		dev_err(dev, "Error writing reg_pmu_lpw\n");
291 		return ret;
292 	}
293 
294 	return 0;
295 }
296 
297 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
298 			       int val2)
299 {
300 	int i;
301 	int ret;
302 
303 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
304 		if (bmc150_accel_samp_freq_table[i].val == val &&
305 		    bmc150_accel_samp_freq_table[i].val2 == val2) {
306 			ret = regmap_write(data->regmap,
307 				BMC150_ACCEL_REG_PMU_BW,
308 				bmc150_accel_samp_freq_table[i].bw_bits);
309 			if (ret < 0)
310 				return ret;
311 
312 			data->bw_bits =
313 				bmc150_accel_samp_freq_table[i].bw_bits;
314 			return 0;
315 		}
316 	}
317 
318 	return -EINVAL;
319 }
320 
321 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
322 {
323 	struct device *dev = regmap_get_device(data->regmap);
324 	int ret;
325 
326 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
327 					data->slope_thres);
328 	if (ret < 0) {
329 		dev_err(dev, "Error writing reg_int_6\n");
330 		return ret;
331 	}
332 
333 	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
334 				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
335 	if (ret < 0) {
336 		dev_err(dev, "Error updating reg_int_5\n");
337 		return ret;
338 	}
339 
340 	dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
341 
342 	return ret;
343 }
344 
345 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
346 					 bool state)
347 {
348 	if (state)
349 		return bmc150_accel_update_slope(t->data);
350 
351 	return 0;
352 }
353 
354 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
355 			       int *val2)
356 {
357 	int i;
358 
359 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
360 		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
361 			*val = bmc150_accel_samp_freq_table[i].val;
362 			*val2 = bmc150_accel_samp_freq_table[i].val2;
363 			return IIO_VAL_INT_PLUS_MICRO;
364 		}
365 	}
366 
367 	return -EINVAL;
368 }
369 
370 #ifdef CONFIG_PM
371 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
372 {
373 	int i;
374 
375 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
376 		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
377 			return bmc150_accel_sample_upd_time[i].msec;
378 	}
379 
380 	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
381 }
382 
383 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
384 {
385 	struct device *dev = regmap_get_device(data->regmap);
386 	int ret;
387 
388 	if (on) {
389 		ret = pm_runtime_get_sync(dev);
390 	} else {
391 		pm_runtime_mark_last_busy(dev);
392 		ret = pm_runtime_put_autosuspend(dev);
393 	}
394 
395 	if (ret < 0) {
396 		dev_err(dev,
397 			"Failed: %s for %d\n", __func__, on);
398 		if (on)
399 			pm_runtime_put_noidle(dev);
400 
401 		return ret;
402 	}
403 
404 	return 0;
405 }
406 #else
407 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
408 {
409 	return 0;
410 }
411 #endif
412 
413 static const struct bmc150_accel_interrupt_info {
414 	u8 map_reg;
415 	u8 map_bitmask;
416 	u8 en_reg;
417 	u8 en_bitmask;
418 } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
419 	{ /* data ready interrupt */
420 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
421 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
422 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
423 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
424 	},
425 	{  /* motion interrupt */
426 		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
427 		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
428 		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
429 		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
430 			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
431 			BMC150_ACCEL_INT_EN_BIT_SLP_Z
432 	},
433 	{ /* fifo watermark interrupt */
434 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
435 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
436 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
437 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
438 	},
439 };
440 
441 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
442 					  struct bmc150_accel_data *data)
443 {
444 	int i;
445 
446 	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
447 		data->interrupts[i].info = &bmc150_accel_interrupts[i];
448 }
449 
450 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
451 				      bool state)
452 {
453 	struct device *dev = regmap_get_device(data->regmap);
454 	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
455 	const struct bmc150_accel_interrupt_info *info = intr->info;
456 	int ret;
457 
458 	if (state) {
459 		if (atomic_inc_return(&intr->users) > 1)
460 			return 0;
461 	} else {
462 		if (atomic_dec_return(&intr->users) > 0)
463 			return 0;
464 	}
465 
466 	/*
467 	 * We will expect the enable and disable to do operation in reverse
468 	 * order. This will happen here anyway, as our resume operation uses
469 	 * sync mode runtime pm calls. The suspend operation will be delayed
470 	 * by autosuspend delay.
471 	 * So the disable operation will still happen in reverse order of
472 	 * enable operation. When runtime pm is disabled the mode is always on,
473 	 * so sequence doesn't matter.
474 	 */
475 	ret = bmc150_accel_set_power_state(data, state);
476 	if (ret < 0)
477 		return ret;
478 
479 	/* map the interrupt to the appropriate pins */
480 	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
481 				 (state ? info->map_bitmask : 0));
482 	if (ret < 0) {
483 		dev_err(dev, "Error updating reg_int_map\n");
484 		goto out_fix_power_state;
485 	}
486 
487 	/* enable/disable the interrupt */
488 	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
489 				 (state ? info->en_bitmask : 0));
490 	if (ret < 0) {
491 		dev_err(dev, "Error updating reg_int_en\n");
492 		goto out_fix_power_state;
493 	}
494 
495 	return 0;
496 
497 out_fix_power_state:
498 	bmc150_accel_set_power_state(data, false);
499 	return ret;
500 }
501 
502 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
503 {
504 	struct device *dev = regmap_get_device(data->regmap);
505 	int ret, i;
506 
507 	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
508 		if (data->chip_info->scale_table[i].scale == val) {
509 			ret = regmap_write(data->regmap,
510 				     BMC150_ACCEL_REG_PMU_RANGE,
511 				     data->chip_info->scale_table[i].reg_range);
512 			if (ret < 0) {
513 				dev_err(dev, "Error writing pmu_range\n");
514 				return ret;
515 			}
516 
517 			data->range = data->chip_info->scale_table[i].reg_range;
518 			return 0;
519 		}
520 	}
521 
522 	return -EINVAL;
523 }
524 
525 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
526 {
527 	struct device *dev = regmap_get_device(data->regmap);
528 	int ret;
529 	unsigned int value;
530 
531 	mutex_lock(&data->mutex);
532 
533 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
534 	if (ret < 0) {
535 		dev_err(dev, "Error reading reg_temp\n");
536 		mutex_unlock(&data->mutex);
537 		return ret;
538 	}
539 	*val = sign_extend32(value, 7);
540 
541 	mutex_unlock(&data->mutex);
542 
543 	return IIO_VAL_INT;
544 }
545 
546 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
547 				 struct iio_chan_spec const *chan,
548 				 int *val)
549 {
550 	struct device *dev = regmap_get_device(data->regmap);
551 	int ret;
552 	int axis = chan->scan_index;
553 	__le16 raw_val;
554 
555 	mutex_lock(&data->mutex);
556 	ret = bmc150_accel_set_power_state(data, true);
557 	if (ret < 0) {
558 		mutex_unlock(&data->mutex);
559 		return ret;
560 	}
561 
562 	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
563 			       &raw_val, sizeof(raw_val));
564 	if (ret < 0) {
565 		dev_err(dev, "Error reading axis %d\n", axis);
566 		bmc150_accel_set_power_state(data, false);
567 		mutex_unlock(&data->mutex);
568 		return ret;
569 	}
570 	*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
571 			     chan->scan_type.realbits - 1);
572 	ret = bmc150_accel_set_power_state(data, false);
573 	mutex_unlock(&data->mutex);
574 	if (ret < 0)
575 		return ret;
576 
577 	return IIO_VAL_INT;
578 }
579 
580 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
581 				 struct iio_chan_spec const *chan,
582 				 int *val, int *val2, long mask)
583 {
584 	struct bmc150_accel_data *data = iio_priv(indio_dev);
585 	int ret;
586 
587 	switch (mask) {
588 	case IIO_CHAN_INFO_RAW:
589 		switch (chan->type) {
590 		case IIO_TEMP:
591 			return bmc150_accel_get_temp(data, val);
592 		case IIO_ACCEL:
593 			if (iio_buffer_enabled(indio_dev))
594 				return -EBUSY;
595 			else
596 				return bmc150_accel_get_axis(data, chan, val);
597 		default:
598 			return -EINVAL;
599 		}
600 	case IIO_CHAN_INFO_OFFSET:
601 		if (chan->type == IIO_TEMP) {
602 			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
603 			return IIO_VAL_INT;
604 		} else {
605 			return -EINVAL;
606 		}
607 	case IIO_CHAN_INFO_SCALE:
608 		*val = 0;
609 		switch (chan->type) {
610 		case IIO_TEMP:
611 			*val2 = 500000;
612 			return IIO_VAL_INT_PLUS_MICRO;
613 		case IIO_ACCEL:
614 		{
615 			int i;
616 			const struct bmc150_scale_info *si;
617 			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
618 
619 			for (i = 0; i < st_size; ++i) {
620 				si = &data->chip_info->scale_table[i];
621 				if (si->reg_range == data->range) {
622 					*val2 = si->scale;
623 					return IIO_VAL_INT_PLUS_MICRO;
624 				}
625 			}
626 			return -EINVAL;
627 		}
628 		default:
629 			return -EINVAL;
630 		}
631 	case IIO_CHAN_INFO_SAMP_FREQ:
632 		mutex_lock(&data->mutex);
633 		ret = bmc150_accel_get_bw(data, val, val2);
634 		mutex_unlock(&data->mutex);
635 		return ret;
636 	default:
637 		return -EINVAL;
638 	}
639 }
640 
641 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
642 				  struct iio_chan_spec const *chan,
643 				  int val, int val2, long mask)
644 {
645 	struct bmc150_accel_data *data = iio_priv(indio_dev);
646 	int ret;
647 
648 	switch (mask) {
649 	case IIO_CHAN_INFO_SAMP_FREQ:
650 		mutex_lock(&data->mutex);
651 		ret = bmc150_accel_set_bw(data, val, val2);
652 		mutex_unlock(&data->mutex);
653 		break;
654 	case IIO_CHAN_INFO_SCALE:
655 		if (val)
656 			return -EINVAL;
657 
658 		mutex_lock(&data->mutex);
659 		ret = bmc150_accel_set_scale(data, val2);
660 		mutex_unlock(&data->mutex);
661 		return ret;
662 	default:
663 		ret = -EINVAL;
664 	}
665 
666 	return ret;
667 }
668 
669 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
670 				   const struct iio_chan_spec *chan,
671 				   enum iio_event_type type,
672 				   enum iio_event_direction dir,
673 				   enum iio_event_info info,
674 				   int *val, int *val2)
675 {
676 	struct bmc150_accel_data *data = iio_priv(indio_dev);
677 
678 	*val2 = 0;
679 	switch (info) {
680 	case IIO_EV_INFO_VALUE:
681 		*val = data->slope_thres;
682 		break;
683 	case IIO_EV_INFO_PERIOD:
684 		*val = data->slope_dur;
685 		break;
686 	default:
687 		return -EINVAL;
688 	}
689 
690 	return IIO_VAL_INT;
691 }
692 
693 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
694 				    const struct iio_chan_spec *chan,
695 				    enum iio_event_type type,
696 				    enum iio_event_direction dir,
697 				    enum iio_event_info info,
698 				    int val, int val2)
699 {
700 	struct bmc150_accel_data *data = iio_priv(indio_dev);
701 
702 	if (data->ev_enable_state)
703 		return -EBUSY;
704 
705 	switch (info) {
706 	case IIO_EV_INFO_VALUE:
707 		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
708 		break;
709 	case IIO_EV_INFO_PERIOD:
710 		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
711 		break;
712 	default:
713 		return -EINVAL;
714 	}
715 
716 	return 0;
717 }
718 
719 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
720 					  const struct iio_chan_spec *chan,
721 					  enum iio_event_type type,
722 					  enum iio_event_direction dir)
723 {
724 	struct bmc150_accel_data *data = iio_priv(indio_dev);
725 
726 	return data->ev_enable_state;
727 }
728 
729 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
730 					   const struct iio_chan_spec *chan,
731 					   enum iio_event_type type,
732 					   enum iio_event_direction dir,
733 					   int state)
734 {
735 	struct bmc150_accel_data *data = iio_priv(indio_dev);
736 	int ret;
737 
738 	if (state == data->ev_enable_state)
739 		return 0;
740 
741 	mutex_lock(&data->mutex);
742 
743 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
744 					 state);
745 	if (ret < 0) {
746 		mutex_unlock(&data->mutex);
747 		return ret;
748 	}
749 
750 	data->ev_enable_state = state;
751 	mutex_unlock(&data->mutex);
752 
753 	return 0;
754 }
755 
756 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
757 					 struct iio_trigger *trig)
758 {
759 	struct bmc150_accel_data *data = iio_priv(indio_dev);
760 	int i;
761 
762 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
763 		if (data->triggers[i].indio_trig == trig)
764 			return 0;
765 	}
766 
767 	return -EINVAL;
768 }
769 
770 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
771 					       struct device_attribute *attr,
772 					       char *buf)
773 {
774 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
775 	struct bmc150_accel_data *data = iio_priv(indio_dev);
776 	int wm;
777 
778 	mutex_lock(&data->mutex);
779 	wm = data->watermark;
780 	mutex_unlock(&data->mutex);
781 
782 	return sprintf(buf, "%d\n", wm);
783 }
784 
785 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
786 					   struct device_attribute *attr,
787 					   char *buf)
788 {
789 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
790 	struct bmc150_accel_data *data = iio_priv(indio_dev);
791 	bool state;
792 
793 	mutex_lock(&data->mutex);
794 	state = data->fifo_mode;
795 	mutex_unlock(&data->mutex);
796 
797 	return sprintf(buf, "%d\n", state);
798 }
799 
800 static const struct iio_mount_matrix *
801 bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev,
802 				const struct iio_chan_spec *chan)
803 {
804 	struct bmc150_accel_data *data = iio_priv(indio_dev);
805 
806 	return &data->orientation;
807 }
808 
809 static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = {
810 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix),
811 	{ }
812 };
813 
814 static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
815 static IIO_CONST_ATTR(hwfifo_watermark_max,
816 		      __stringify(BMC150_ACCEL_FIFO_LENGTH));
817 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
818 		       bmc150_accel_get_fifo_state, NULL, 0);
819 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
820 		       bmc150_accel_get_fifo_watermark, NULL, 0);
821 
822 static const struct attribute *bmc150_accel_fifo_attributes[] = {
823 	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
824 	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
825 	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
826 	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
827 	NULL,
828 };
829 
830 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
831 {
832 	struct bmc150_accel_data *data = iio_priv(indio_dev);
833 
834 	if (val > BMC150_ACCEL_FIFO_LENGTH)
835 		val = BMC150_ACCEL_FIFO_LENGTH;
836 
837 	mutex_lock(&data->mutex);
838 	data->watermark = val;
839 	mutex_unlock(&data->mutex);
840 
841 	return 0;
842 }
843 
844 /*
845  * We must read at least one full frame in one burst, otherwise the rest of the
846  * frame data is discarded.
847  */
848 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
849 				      char *buffer, int samples)
850 {
851 	struct device *dev = regmap_get_device(data->regmap);
852 	int sample_length = 3 * 2;
853 	int ret;
854 	int total_length = samples * sample_length;
855 
856 	ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
857 			      buffer, total_length);
858 	if (ret)
859 		dev_err(dev,
860 			"Error transferring data from fifo: %d\n", ret);
861 
862 	return ret;
863 }
864 
865 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
866 				     unsigned samples, bool irq)
867 {
868 	struct bmc150_accel_data *data = iio_priv(indio_dev);
869 	struct device *dev = regmap_get_device(data->regmap);
870 	int ret, i;
871 	u8 count;
872 	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
873 	int64_t tstamp;
874 	uint64_t sample_period;
875 	unsigned int val;
876 
877 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
878 	if (ret < 0) {
879 		dev_err(dev, "Error reading reg_fifo_status\n");
880 		return ret;
881 	}
882 
883 	count = val & 0x7F;
884 
885 	if (!count)
886 		return 0;
887 
888 	/*
889 	 * If we getting called from IRQ handler we know the stored timestamp is
890 	 * fairly accurate for the last stored sample. Otherwise, if we are
891 	 * called as a result of a read operation from userspace and hence
892 	 * before the watermark interrupt was triggered, take a timestamp
893 	 * now. We can fall anywhere in between two samples so the error in this
894 	 * case is at most one sample period.
895 	 */
896 	if (!irq) {
897 		data->old_timestamp = data->timestamp;
898 		data->timestamp = iio_get_time_ns(indio_dev);
899 	}
900 
901 	/*
902 	 * Approximate timestamps for each of the sample based on the sampling
903 	 * frequency, timestamp for last sample and number of samples.
904 	 *
905 	 * Note that we can't use the current bandwidth settings to compute the
906 	 * sample period because the sample rate varies with the device
907 	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
908 	 * small variation adds when we store a large number of samples and
909 	 * creates significant jitter between the last and first samples in
910 	 * different batches (e.g. 32ms vs 21ms).
911 	 *
912 	 * To avoid this issue we compute the actual sample period ourselves
913 	 * based on the timestamp delta between the last two flush operations.
914 	 */
915 	sample_period = (data->timestamp - data->old_timestamp);
916 	do_div(sample_period, count);
917 	tstamp = data->timestamp - (count - 1) * sample_period;
918 
919 	if (samples && count > samples)
920 		count = samples;
921 
922 	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
923 	if (ret)
924 		return ret;
925 
926 	/*
927 	 * Ideally we want the IIO core to handle the demux when running in fifo
928 	 * mode but not when running in triggered buffer mode. Unfortunately
929 	 * this does not seem to be possible, so stick with driver demux for
930 	 * now.
931 	 */
932 	for (i = 0; i < count; i++) {
933 		int j, bit;
934 
935 		j = 0;
936 		for_each_set_bit(bit, indio_dev->active_scan_mask,
937 				 indio_dev->masklength)
938 			memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit],
939 			       sizeof(data->scan.channels[0]));
940 
941 		iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
942 						   tstamp);
943 
944 		tstamp += sample_period;
945 	}
946 
947 	return count;
948 }
949 
950 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
951 {
952 	struct bmc150_accel_data *data = iio_priv(indio_dev);
953 	int ret;
954 
955 	mutex_lock(&data->mutex);
956 	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
957 	mutex_unlock(&data->mutex);
958 
959 	return ret;
960 }
961 
962 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
963 		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
964 
965 static struct attribute *bmc150_accel_attributes[] = {
966 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
967 	NULL,
968 };
969 
970 static const struct attribute_group bmc150_accel_attrs_group = {
971 	.attrs = bmc150_accel_attributes,
972 };
973 
974 static const struct iio_event_spec bmc150_accel_event = {
975 		.type = IIO_EV_TYPE_ROC,
976 		.dir = IIO_EV_DIR_EITHER,
977 		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
978 				 BIT(IIO_EV_INFO_ENABLE) |
979 				 BIT(IIO_EV_INFO_PERIOD)
980 };
981 
982 #define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
983 	.type = IIO_ACCEL,						\
984 	.modified = 1,							\
985 	.channel2 = IIO_MOD_##_axis,					\
986 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
987 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
988 				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
989 	.scan_index = AXIS_##_axis,					\
990 	.scan_type = {							\
991 		.sign = 's',						\
992 		.realbits = (bits),					\
993 		.storagebits = 16,					\
994 		.shift = 16 - (bits),					\
995 		.endianness = IIO_LE,					\
996 	},								\
997 	.ext_info = bmc150_accel_ext_info,				\
998 	.event_spec = &bmc150_accel_event,				\
999 	.num_event_specs = 1						\
1000 }
1001 
1002 #define BMC150_ACCEL_CHANNELS(bits) {					\
1003 	{								\
1004 		.type = IIO_TEMP,					\
1005 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
1006 				      BIT(IIO_CHAN_INFO_SCALE) |	\
1007 				      BIT(IIO_CHAN_INFO_OFFSET),	\
1008 		.scan_index = -1,					\
1009 	},								\
1010 	BMC150_ACCEL_CHANNEL(X, bits),					\
1011 	BMC150_ACCEL_CHANNEL(Y, bits),					\
1012 	BMC150_ACCEL_CHANNEL(Z, bits),					\
1013 	IIO_CHAN_SOFT_TIMESTAMP(3),					\
1014 }
1015 
1016 static const struct iio_chan_spec bma222e_accel_channels[] =
1017 	BMC150_ACCEL_CHANNELS(8);
1018 static const struct iio_chan_spec bma250e_accel_channels[] =
1019 	BMC150_ACCEL_CHANNELS(10);
1020 static const struct iio_chan_spec bmc150_accel_channels[] =
1021 	BMC150_ACCEL_CHANNELS(12);
1022 static const struct iio_chan_spec bma280_accel_channels[] =
1023 	BMC150_ACCEL_CHANNELS(14);
1024 
1025 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1026 	[bmc150] = {
1027 		.name = "BMC150A",
1028 		.chip_id = 0xFA,
1029 		.channels = bmc150_accel_channels,
1030 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1031 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1032 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1033 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1034 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1035 	},
1036 	[bmi055] = {
1037 		.name = "BMI055A",
1038 		.chip_id = 0xFA,
1039 		.channels = bmc150_accel_channels,
1040 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1041 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1042 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1043 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1044 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1045 	},
1046 	[bma255] = {
1047 		.name = "BMA0255",
1048 		.chip_id = 0xFA,
1049 		.channels = bmc150_accel_channels,
1050 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1051 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1052 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1053 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1054 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1055 	},
1056 	[bma250e] = {
1057 		.name = "BMA250E",
1058 		.chip_id = 0xF9,
1059 		.channels = bma250e_accel_channels,
1060 		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
1061 		.scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1062 				 {76590, BMC150_ACCEL_DEF_RANGE_4G},
1063 				 {153277, BMC150_ACCEL_DEF_RANGE_8G},
1064 				 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1065 	},
1066 	[bma222e] = {
1067 		.name = "BMA222E",
1068 		.chip_id = 0xF8,
1069 		.channels = bma222e_accel_channels,
1070 		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
1071 		.scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1072 				 {306457, BMC150_ACCEL_DEF_RANGE_4G},
1073 				 {612915, BMC150_ACCEL_DEF_RANGE_8G},
1074 				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1075 	},
1076 	[bma280] = {
1077 		.name = "BMA0280",
1078 		.chip_id = 0xFB,
1079 		.channels = bma280_accel_channels,
1080 		.num_channels = ARRAY_SIZE(bma280_accel_channels),
1081 		.scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1082 				 {4785, BMC150_ACCEL_DEF_RANGE_4G},
1083 				 {9581, BMC150_ACCEL_DEF_RANGE_8G},
1084 				 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1085 	},
1086 };
1087 
1088 static const struct iio_info bmc150_accel_info = {
1089 	.attrs			= &bmc150_accel_attrs_group,
1090 	.read_raw		= bmc150_accel_read_raw,
1091 	.write_raw		= bmc150_accel_write_raw,
1092 	.read_event_value	= bmc150_accel_read_event,
1093 	.write_event_value	= bmc150_accel_write_event,
1094 	.write_event_config	= bmc150_accel_write_event_config,
1095 	.read_event_config	= bmc150_accel_read_event_config,
1096 };
1097 
1098 static const struct iio_info bmc150_accel_info_fifo = {
1099 	.attrs			= &bmc150_accel_attrs_group,
1100 	.read_raw		= bmc150_accel_read_raw,
1101 	.write_raw		= bmc150_accel_write_raw,
1102 	.read_event_value	= bmc150_accel_read_event,
1103 	.write_event_value	= bmc150_accel_write_event,
1104 	.write_event_config	= bmc150_accel_write_event_config,
1105 	.read_event_config	= bmc150_accel_read_event_config,
1106 	.validate_trigger	= bmc150_accel_validate_trigger,
1107 	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
1108 	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
1109 };
1110 
1111 static const unsigned long bmc150_accel_scan_masks[] = {
1112 					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
1113 					0};
1114 
1115 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1116 {
1117 	struct iio_poll_func *pf = p;
1118 	struct iio_dev *indio_dev = pf->indio_dev;
1119 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1120 	int ret;
1121 
1122 	mutex_lock(&data->mutex);
1123 	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
1124 			       data->buffer, AXIS_MAX * 2);
1125 	mutex_unlock(&data->mutex);
1126 	if (ret < 0)
1127 		goto err_read;
1128 
1129 	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1130 					   pf->timestamp);
1131 err_read:
1132 	iio_trigger_notify_done(indio_dev->trig);
1133 
1134 	return IRQ_HANDLED;
1135 }
1136 
1137 static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1138 {
1139 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1140 	struct bmc150_accel_data *data = t->data;
1141 	struct device *dev = regmap_get_device(data->regmap);
1142 	int ret;
1143 
1144 	/* new data interrupts don't need ack */
1145 	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1146 		return 0;
1147 
1148 	mutex_lock(&data->mutex);
1149 	/* clear any latched interrupt */
1150 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1151 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1152 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1153 	mutex_unlock(&data->mutex);
1154 	if (ret < 0) {
1155 		dev_err(dev, "Error writing reg_int_rst_latch\n");
1156 		return ret;
1157 	}
1158 
1159 	return 0;
1160 }
1161 
1162 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1163 					  bool state)
1164 {
1165 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1166 	struct bmc150_accel_data *data = t->data;
1167 	int ret;
1168 
1169 	mutex_lock(&data->mutex);
1170 
1171 	if (t->enabled == state) {
1172 		mutex_unlock(&data->mutex);
1173 		return 0;
1174 	}
1175 
1176 	if (t->setup) {
1177 		ret = t->setup(t, state);
1178 		if (ret < 0) {
1179 			mutex_unlock(&data->mutex);
1180 			return ret;
1181 		}
1182 	}
1183 
1184 	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1185 	if (ret < 0) {
1186 		mutex_unlock(&data->mutex);
1187 		return ret;
1188 	}
1189 
1190 	t->enabled = state;
1191 
1192 	mutex_unlock(&data->mutex);
1193 
1194 	return ret;
1195 }
1196 
1197 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1198 	.set_trigger_state = bmc150_accel_trigger_set_state,
1199 	.try_reenable = bmc150_accel_trig_try_reen,
1200 };
1201 
1202 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1203 {
1204 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1205 	struct device *dev = regmap_get_device(data->regmap);
1206 	int dir;
1207 	int ret;
1208 	unsigned int val;
1209 
1210 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1211 	if (ret < 0) {
1212 		dev_err(dev, "Error reading reg_int_status_2\n");
1213 		return ret;
1214 	}
1215 
1216 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1217 		dir = IIO_EV_DIR_FALLING;
1218 	else
1219 		dir = IIO_EV_DIR_RISING;
1220 
1221 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1222 		iio_push_event(indio_dev,
1223 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1224 						  0,
1225 						  IIO_MOD_X,
1226 						  IIO_EV_TYPE_ROC,
1227 						  dir),
1228 			       data->timestamp);
1229 
1230 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1231 		iio_push_event(indio_dev,
1232 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1233 						  0,
1234 						  IIO_MOD_Y,
1235 						  IIO_EV_TYPE_ROC,
1236 						  dir),
1237 			       data->timestamp);
1238 
1239 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1240 		iio_push_event(indio_dev,
1241 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1242 						  0,
1243 						  IIO_MOD_Z,
1244 						  IIO_EV_TYPE_ROC,
1245 						  dir),
1246 			       data->timestamp);
1247 
1248 	return ret;
1249 }
1250 
1251 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1252 {
1253 	struct iio_dev *indio_dev = private;
1254 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1255 	struct device *dev = regmap_get_device(data->regmap);
1256 	bool ack = false;
1257 	int ret;
1258 
1259 	mutex_lock(&data->mutex);
1260 
1261 	if (data->fifo_mode) {
1262 		ret = __bmc150_accel_fifo_flush(indio_dev,
1263 						BMC150_ACCEL_FIFO_LENGTH, true);
1264 		if (ret > 0)
1265 			ack = true;
1266 	}
1267 
1268 	if (data->ev_enable_state) {
1269 		ret = bmc150_accel_handle_roc_event(indio_dev);
1270 		if (ret > 0)
1271 			ack = true;
1272 	}
1273 
1274 	if (ack) {
1275 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1276 				   BMC150_ACCEL_INT_MODE_LATCH_INT |
1277 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1278 		if (ret)
1279 			dev_err(dev, "Error writing reg_int_rst_latch\n");
1280 
1281 		ret = IRQ_HANDLED;
1282 	} else {
1283 		ret = IRQ_NONE;
1284 	}
1285 
1286 	mutex_unlock(&data->mutex);
1287 
1288 	return ret;
1289 }
1290 
1291 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1292 {
1293 	struct iio_dev *indio_dev = private;
1294 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1295 	bool ack = false;
1296 	int i;
1297 
1298 	data->old_timestamp = data->timestamp;
1299 	data->timestamp = iio_get_time_ns(indio_dev);
1300 
1301 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1302 		if (data->triggers[i].enabled) {
1303 			iio_trigger_poll(data->triggers[i].indio_trig);
1304 			ack = true;
1305 			break;
1306 		}
1307 	}
1308 
1309 	if (data->ev_enable_state || data->fifo_mode)
1310 		return IRQ_WAKE_THREAD;
1311 
1312 	if (ack)
1313 		return IRQ_HANDLED;
1314 
1315 	return IRQ_NONE;
1316 }
1317 
1318 static const struct {
1319 	int intr;
1320 	const char *name;
1321 	int (*setup)(struct bmc150_accel_trigger *t, bool state);
1322 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1323 	{
1324 		.intr = 0,
1325 		.name = "%s-dev%d",
1326 	},
1327 	{
1328 		.intr = 1,
1329 		.name = "%s-any-motion-dev%d",
1330 		.setup = bmc150_accel_any_motion_setup,
1331 	},
1332 };
1333 
1334 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1335 					     int from)
1336 {
1337 	int i;
1338 
1339 	for (i = from; i >= 0; i--) {
1340 		if (data->triggers[i].indio_trig) {
1341 			iio_trigger_unregister(data->triggers[i].indio_trig);
1342 			data->triggers[i].indio_trig = NULL;
1343 		}
1344 	}
1345 }
1346 
1347 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1348 				       struct bmc150_accel_data *data)
1349 {
1350 	struct device *dev = regmap_get_device(data->regmap);
1351 	int i, ret;
1352 
1353 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1354 		struct bmc150_accel_trigger *t = &data->triggers[i];
1355 
1356 		t->indio_trig = devm_iio_trigger_alloc(dev,
1357 					bmc150_accel_triggers[i].name,
1358 						       indio_dev->name,
1359 						       indio_dev->id);
1360 		if (!t->indio_trig) {
1361 			ret = -ENOMEM;
1362 			break;
1363 		}
1364 
1365 		t->indio_trig->dev.parent = dev;
1366 		t->indio_trig->ops = &bmc150_accel_trigger_ops;
1367 		t->intr = bmc150_accel_triggers[i].intr;
1368 		t->data = data;
1369 		t->setup = bmc150_accel_triggers[i].setup;
1370 		iio_trigger_set_drvdata(t->indio_trig, t);
1371 
1372 		ret = iio_trigger_register(t->indio_trig);
1373 		if (ret)
1374 			break;
1375 	}
1376 
1377 	if (ret)
1378 		bmc150_accel_unregister_triggers(data, i - 1);
1379 
1380 	return ret;
1381 }
1382 
1383 #define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1384 #define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1385 #define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1386 
1387 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1388 {
1389 	struct device *dev = regmap_get_device(data->regmap);
1390 	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1391 	int ret;
1392 
1393 	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1394 	if (ret < 0) {
1395 		dev_err(dev, "Error writing reg_fifo_config1\n");
1396 		return ret;
1397 	}
1398 
1399 	if (!data->fifo_mode)
1400 		return 0;
1401 
1402 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1403 			   data->watermark);
1404 	if (ret < 0)
1405 		dev_err(dev, "Error writing reg_fifo_config0\n");
1406 
1407 	return ret;
1408 }
1409 
1410 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1411 {
1412 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1413 
1414 	return bmc150_accel_set_power_state(data, true);
1415 }
1416 
1417 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1418 {
1419 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1420 	int ret = 0;
1421 
1422 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1423 		return 0;
1424 
1425 	mutex_lock(&data->mutex);
1426 
1427 	if (!data->watermark)
1428 		goto out;
1429 
1430 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1431 					 true);
1432 	if (ret)
1433 		goto out;
1434 
1435 	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1436 
1437 	ret = bmc150_accel_fifo_set_mode(data);
1438 	if (ret) {
1439 		data->fifo_mode = 0;
1440 		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1441 					   false);
1442 	}
1443 
1444 out:
1445 	mutex_unlock(&data->mutex);
1446 
1447 	return ret;
1448 }
1449 
1450 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1451 {
1452 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1453 
1454 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1455 		return 0;
1456 
1457 	mutex_lock(&data->mutex);
1458 
1459 	if (!data->fifo_mode)
1460 		goto out;
1461 
1462 	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1463 	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1464 	data->fifo_mode = 0;
1465 	bmc150_accel_fifo_set_mode(data);
1466 
1467 out:
1468 	mutex_unlock(&data->mutex);
1469 
1470 	return 0;
1471 }
1472 
1473 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1474 {
1475 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1476 
1477 	return bmc150_accel_set_power_state(data, false);
1478 }
1479 
1480 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1481 	.preenable = bmc150_accel_buffer_preenable,
1482 	.postenable = bmc150_accel_buffer_postenable,
1483 	.predisable = bmc150_accel_buffer_predisable,
1484 	.postdisable = bmc150_accel_buffer_postdisable,
1485 };
1486 
1487 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1488 {
1489 	struct device *dev = regmap_get_device(data->regmap);
1490 	int ret, i;
1491 	unsigned int val;
1492 
1493 	/*
1494 	 * Reset chip to get it in a known good state. A delay of 1.8ms after
1495 	 * reset is required according to the data sheets of supported chips.
1496 	 */
1497 	regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
1498 		     BMC150_ACCEL_RESET_VAL);
1499 	usleep_range(1800, 2500);
1500 
1501 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1502 	if (ret < 0) {
1503 		dev_err(dev, "Error: Reading chip id\n");
1504 		return ret;
1505 	}
1506 
1507 	dev_dbg(dev, "Chip Id %x\n", val);
1508 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1509 		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1510 			data->chip_info = &bmc150_accel_chip_info_tbl[i];
1511 			break;
1512 		}
1513 	}
1514 
1515 	if (!data->chip_info) {
1516 		dev_err(dev, "Invalid chip %x\n", val);
1517 		return -ENODEV;
1518 	}
1519 
1520 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1521 	if (ret < 0)
1522 		return ret;
1523 
1524 	/* Set Bandwidth */
1525 	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1526 	if (ret < 0)
1527 		return ret;
1528 
1529 	/* Set Default Range */
1530 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1531 			   BMC150_ACCEL_DEF_RANGE_4G);
1532 	if (ret < 0) {
1533 		dev_err(dev, "Error writing reg_pmu_range\n");
1534 		return ret;
1535 	}
1536 
1537 	data->range = BMC150_ACCEL_DEF_RANGE_4G;
1538 
1539 	/* Set default slope duration and thresholds */
1540 	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1541 	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1542 	ret = bmc150_accel_update_slope(data);
1543 	if (ret < 0)
1544 		return ret;
1545 
1546 	/* Set default as latched interrupts */
1547 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1548 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1549 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1550 	if (ret < 0) {
1551 		dev_err(dev, "Error writing reg_int_rst_latch\n");
1552 		return ret;
1553 	}
1554 
1555 	return 0;
1556 }
1557 
1558 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1559 			    const char *name, bool block_supported)
1560 {
1561 	const struct attribute **fifo_attrs;
1562 	struct bmc150_accel_data *data;
1563 	struct iio_dev *indio_dev;
1564 	int ret;
1565 
1566 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1567 	if (!indio_dev)
1568 		return -ENOMEM;
1569 
1570 	data = iio_priv(indio_dev);
1571 	dev_set_drvdata(dev, indio_dev);
1572 	data->irq = irq;
1573 
1574 	data->regmap = regmap;
1575 
1576 	ret = iio_read_mount_matrix(dev, "mount-matrix",
1577 				     &data->orientation);
1578 	if (ret)
1579 		return ret;
1580 
1581 	ret = bmc150_accel_chip_init(data);
1582 	if (ret < 0)
1583 		return ret;
1584 
1585 	mutex_init(&data->mutex);
1586 
1587 	indio_dev->channels = data->chip_info->channels;
1588 	indio_dev->num_channels = data->chip_info->num_channels;
1589 	indio_dev->name = name ? name : data->chip_info->name;
1590 	indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1591 	indio_dev->modes = INDIO_DIRECT_MODE;
1592 	indio_dev->info = &bmc150_accel_info;
1593 
1594 	if (block_supported) {
1595 		indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1596 		indio_dev->info = &bmc150_accel_info_fifo;
1597 		fifo_attrs = bmc150_accel_fifo_attributes;
1598 	} else {
1599 		fifo_attrs = NULL;
1600 	}
1601 
1602 	ret = iio_triggered_buffer_setup_ext(indio_dev,
1603 					     &iio_pollfunc_store_time,
1604 					     bmc150_accel_trigger_handler,
1605 					     &bmc150_accel_buffer_ops,
1606 					     fifo_attrs);
1607 	if (ret < 0) {
1608 		dev_err(dev, "Failed: iio triggered buffer setup\n");
1609 		return ret;
1610 	}
1611 
1612 	if (data->irq > 0) {
1613 		ret = devm_request_threaded_irq(
1614 						dev, data->irq,
1615 						bmc150_accel_irq_handler,
1616 						bmc150_accel_irq_thread_handler,
1617 						IRQF_TRIGGER_RISING,
1618 						BMC150_ACCEL_IRQ_NAME,
1619 						indio_dev);
1620 		if (ret)
1621 			goto err_buffer_cleanup;
1622 
1623 		/*
1624 		 * Set latched mode interrupt. While certain interrupts are
1625 		 * non-latched regardless of this settings (e.g. new data) we
1626 		 * want to use latch mode when we can to prevent interrupt
1627 		 * flooding.
1628 		 */
1629 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1630 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1631 		if (ret < 0) {
1632 			dev_err(dev, "Error writing reg_int_rst_latch\n");
1633 			goto err_buffer_cleanup;
1634 		}
1635 
1636 		bmc150_accel_interrupts_setup(indio_dev, data);
1637 
1638 		ret = bmc150_accel_triggers_setup(indio_dev, data);
1639 		if (ret)
1640 			goto err_buffer_cleanup;
1641 	}
1642 
1643 	ret = pm_runtime_set_active(dev);
1644 	if (ret)
1645 		goto err_trigger_unregister;
1646 
1647 	pm_runtime_enable(dev);
1648 	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1649 	pm_runtime_use_autosuspend(dev);
1650 
1651 	ret = iio_device_register(indio_dev);
1652 	if (ret < 0) {
1653 		dev_err(dev, "Unable to register iio device\n");
1654 		goto err_trigger_unregister;
1655 	}
1656 
1657 	return 0;
1658 
1659 err_trigger_unregister:
1660 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1661 err_buffer_cleanup:
1662 	iio_triggered_buffer_cleanup(indio_dev);
1663 
1664 	return ret;
1665 }
1666 EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1667 
1668 int bmc150_accel_core_remove(struct device *dev)
1669 {
1670 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1671 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1672 
1673 	iio_device_unregister(indio_dev);
1674 
1675 	pm_runtime_disable(dev);
1676 	pm_runtime_set_suspended(dev);
1677 	pm_runtime_put_noidle(dev);
1678 
1679 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1680 
1681 	iio_triggered_buffer_cleanup(indio_dev);
1682 
1683 	mutex_lock(&data->mutex);
1684 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1685 	mutex_unlock(&data->mutex);
1686 
1687 	return 0;
1688 }
1689 EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1690 
1691 #ifdef CONFIG_PM_SLEEP
1692 static int bmc150_accel_suspend(struct device *dev)
1693 {
1694 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1695 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1696 
1697 	mutex_lock(&data->mutex);
1698 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1699 	mutex_unlock(&data->mutex);
1700 
1701 	return 0;
1702 }
1703 
1704 static int bmc150_accel_resume(struct device *dev)
1705 {
1706 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1707 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1708 
1709 	mutex_lock(&data->mutex);
1710 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1711 	bmc150_accel_fifo_set_mode(data);
1712 	mutex_unlock(&data->mutex);
1713 
1714 	return 0;
1715 }
1716 #endif
1717 
1718 #ifdef CONFIG_PM
1719 static int bmc150_accel_runtime_suspend(struct device *dev)
1720 {
1721 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1722 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1723 	int ret;
1724 
1725 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1726 	if (ret < 0)
1727 		return -EAGAIN;
1728 
1729 	return 0;
1730 }
1731 
1732 static int bmc150_accel_runtime_resume(struct device *dev)
1733 {
1734 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1735 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1736 	int ret;
1737 	int sleep_val;
1738 
1739 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1740 	if (ret < 0)
1741 		return ret;
1742 	ret = bmc150_accel_fifo_set_mode(data);
1743 	if (ret < 0)
1744 		return ret;
1745 
1746 	sleep_val = bmc150_accel_get_startup_times(data);
1747 	if (sleep_val < 20)
1748 		usleep_range(sleep_val * 1000, 20000);
1749 	else
1750 		msleep_interruptible(sleep_val);
1751 
1752 	return 0;
1753 }
1754 #endif
1755 
1756 const struct dev_pm_ops bmc150_accel_pm_ops = {
1757 	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1758 	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1759 			   bmc150_accel_runtime_resume, NULL)
1760 };
1761 EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1762 
1763 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1764 MODULE_LICENSE("GPL v2");
1765 MODULE_DESCRIPTION("BMC150 accelerometer driver");
1766