1 /* 2 * 3-axis accelerometer driver supporting following Bosch-Sensortec chips: 3 * - BMC150 4 * - BMI055 5 * - BMA255 6 * - BMA250E 7 * - BMA222E 8 * - BMA280 9 * 10 * Copyright (c) 2014, Intel Corporation. 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms and conditions of the GNU General Public License, 14 * version 2, as published by the Free Software Foundation. 15 * 16 * This program is distributed in the hope it will be useful, but WITHOUT 17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 19 * more details. 20 */ 21 22 #include <linux/module.h> 23 #include <linux/i2c.h> 24 #include <linux/interrupt.h> 25 #include <linux/delay.h> 26 #include <linux/slab.h> 27 #include <linux/acpi.h> 28 #include <linux/pm.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/iio/iio.h> 31 #include <linux/iio/sysfs.h> 32 #include <linux/iio/buffer.h> 33 #include <linux/iio/events.h> 34 #include <linux/iio/trigger.h> 35 #include <linux/iio/trigger_consumer.h> 36 #include <linux/iio/triggered_buffer.h> 37 #include <linux/regmap.h> 38 39 #include "bmc150-accel.h" 40 41 #define BMC150_ACCEL_DRV_NAME "bmc150_accel" 42 #define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event" 43 44 #define BMC150_ACCEL_REG_CHIP_ID 0x00 45 46 #define BMC150_ACCEL_REG_INT_STATUS_2 0x0B 47 #define BMC150_ACCEL_ANY_MOTION_MASK 0x07 48 #define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0) 49 #define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1) 50 #define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2) 51 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3) 52 53 #define BMC150_ACCEL_REG_PMU_LPW 0x11 54 #define BMC150_ACCEL_PMU_MODE_MASK 0xE0 55 #define BMC150_ACCEL_PMU_MODE_SHIFT 5 56 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17 57 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1 58 59 #define BMC150_ACCEL_REG_PMU_RANGE 0x0F 60 61 #define BMC150_ACCEL_DEF_RANGE_2G 0x03 62 #define BMC150_ACCEL_DEF_RANGE_4G 0x05 63 #define BMC150_ACCEL_DEF_RANGE_8G 0x08 64 #define BMC150_ACCEL_DEF_RANGE_16G 0x0C 65 66 /* Default BW: 125Hz */ 67 #define BMC150_ACCEL_REG_PMU_BW 0x10 68 #define BMC150_ACCEL_DEF_BW 125 69 70 #define BMC150_ACCEL_REG_RESET 0x14 71 #define BMC150_ACCEL_RESET_VAL 0xB6 72 73 #define BMC150_ACCEL_REG_INT_MAP_0 0x19 74 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE BIT(2) 75 76 #define BMC150_ACCEL_REG_INT_MAP_1 0x1A 77 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA BIT(0) 78 #define BMC150_ACCEL_INT_MAP_1_BIT_FWM BIT(1) 79 #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL BIT(2) 80 81 #define BMC150_ACCEL_REG_INT_RST_LATCH 0x21 82 #define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80 83 #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F 84 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00 85 86 #define BMC150_ACCEL_REG_INT_EN_0 0x16 87 #define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0) 88 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1) 89 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2) 90 91 #define BMC150_ACCEL_REG_INT_EN_1 0x17 92 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4) 93 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5) 94 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6) 95 96 #define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20 97 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0) 98 99 #define BMC150_ACCEL_REG_INT_5 0x27 100 #define BMC150_ACCEL_SLOPE_DUR_MASK 0x03 101 102 #define BMC150_ACCEL_REG_INT_6 0x28 103 #define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF 104 105 /* Slope duration in terms of number of samples */ 106 #define BMC150_ACCEL_DEF_SLOPE_DURATION 1 107 /* in terms of multiples of g's/LSB, based on range */ 108 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1 109 110 #define BMC150_ACCEL_REG_XOUT_L 0x02 111 112 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100 113 114 /* Sleep Duration values */ 115 #define BMC150_ACCEL_SLEEP_500_MICRO 0x05 116 #define BMC150_ACCEL_SLEEP_1_MS 0x06 117 #define BMC150_ACCEL_SLEEP_2_MS 0x07 118 #define BMC150_ACCEL_SLEEP_4_MS 0x08 119 #define BMC150_ACCEL_SLEEP_6_MS 0x09 120 #define BMC150_ACCEL_SLEEP_10_MS 0x0A 121 #define BMC150_ACCEL_SLEEP_25_MS 0x0B 122 #define BMC150_ACCEL_SLEEP_50_MS 0x0C 123 #define BMC150_ACCEL_SLEEP_100_MS 0x0D 124 #define BMC150_ACCEL_SLEEP_500_MS 0x0E 125 #define BMC150_ACCEL_SLEEP_1_SEC 0x0F 126 127 #define BMC150_ACCEL_REG_TEMP 0x08 128 #define BMC150_ACCEL_TEMP_CENTER_VAL 24 129 130 #define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2)) 131 #define BMC150_AUTO_SUSPEND_DELAY_MS 2000 132 133 #define BMC150_ACCEL_REG_FIFO_STATUS 0x0E 134 #define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30 135 #define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E 136 #define BMC150_ACCEL_REG_FIFO_DATA 0x3F 137 #define BMC150_ACCEL_FIFO_LENGTH 32 138 139 enum bmc150_accel_axis { 140 AXIS_X, 141 AXIS_Y, 142 AXIS_Z, 143 AXIS_MAX, 144 }; 145 146 enum bmc150_power_modes { 147 BMC150_ACCEL_SLEEP_MODE_NORMAL, 148 BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 149 BMC150_ACCEL_SLEEP_MODE_LPM, 150 BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04, 151 }; 152 153 struct bmc150_scale_info { 154 int scale; 155 u8 reg_range; 156 }; 157 158 struct bmc150_accel_chip_info { 159 const char *name; 160 u8 chip_id; 161 const struct iio_chan_spec *channels; 162 int num_channels; 163 const struct bmc150_scale_info scale_table[4]; 164 }; 165 166 struct bmc150_accel_interrupt { 167 const struct bmc150_accel_interrupt_info *info; 168 atomic_t users; 169 }; 170 171 struct bmc150_accel_trigger { 172 struct bmc150_accel_data *data; 173 struct iio_trigger *indio_trig; 174 int (*setup)(struct bmc150_accel_trigger *t, bool state); 175 int intr; 176 bool enabled; 177 }; 178 179 enum bmc150_accel_interrupt_id { 180 BMC150_ACCEL_INT_DATA_READY, 181 BMC150_ACCEL_INT_ANY_MOTION, 182 BMC150_ACCEL_INT_WATERMARK, 183 BMC150_ACCEL_INTERRUPTS, 184 }; 185 186 enum bmc150_accel_trigger_id { 187 BMC150_ACCEL_TRIGGER_DATA_READY, 188 BMC150_ACCEL_TRIGGER_ANY_MOTION, 189 BMC150_ACCEL_TRIGGERS, 190 }; 191 192 struct bmc150_accel_data { 193 struct regmap *regmap; 194 int irq; 195 struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS]; 196 struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS]; 197 struct mutex mutex; 198 u8 fifo_mode, watermark; 199 s16 buffer[8]; 200 u8 bw_bits; 201 u32 slope_dur; 202 u32 slope_thres; 203 u32 range; 204 int ev_enable_state; 205 int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */ 206 const struct bmc150_accel_chip_info *chip_info; 207 }; 208 209 static const struct { 210 int val; 211 int val2; 212 u8 bw_bits; 213 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08}, 214 {31, 260000, 0x09}, 215 {62, 500000, 0x0A}, 216 {125, 0, 0x0B}, 217 {250, 0, 0x0C}, 218 {500, 0, 0x0D}, 219 {1000, 0, 0x0E}, 220 {2000, 0, 0x0F} }; 221 222 static const struct { 223 int bw_bits; 224 int msec; 225 } bmc150_accel_sample_upd_time[] = { {0x08, 64}, 226 {0x09, 32}, 227 {0x0A, 16}, 228 {0x0B, 8}, 229 {0x0C, 4}, 230 {0x0D, 2}, 231 {0x0E, 1}, 232 {0x0F, 1} }; 233 234 static const struct { 235 int sleep_dur; 236 u8 reg_value; 237 } bmc150_accel_sleep_value_table[] = { {0, 0}, 238 {500, BMC150_ACCEL_SLEEP_500_MICRO}, 239 {1000, BMC150_ACCEL_SLEEP_1_MS}, 240 {2000, BMC150_ACCEL_SLEEP_2_MS}, 241 {4000, BMC150_ACCEL_SLEEP_4_MS}, 242 {6000, BMC150_ACCEL_SLEEP_6_MS}, 243 {10000, BMC150_ACCEL_SLEEP_10_MS}, 244 {25000, BMC150_ACCEL_SLEEP_25_MS}, 245 {50000, BMC150_ACCEL_SLEEP_50_MS}, 246 {100000, BMC150_ACCEL_SLEEP_100_MS}, 247 {500000, BMC150_ACCEL_SLEEP_500_MS}, 248 {1000000, BMC150_ACCEL_SLEEP_1_SEC} }; 249 250 const struct regmap_config bmc150_regmap_conf = { 251 .reg_bits = 8, 252 .val_bits = 8, 253 .max_register = 0x3f, 254 }; 255 EXPORT_SYMBOL_GPL(bmc150_regmap_conf); 256 257 static int bmc150_accel_set_mode(struct bmc150_accel_data *data, 258 enum bmc150_power_modes mode, 259 int dur_us) 260 { 261 struct device *dev = regmap_get_device(data->regmap); 262 int i; 263 int ret; 264 u8 lpw_bits; 265 int dur_val = -1; 266 267 if (dur_us > 0) { 268 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table); 269 ++i) { 270 if (bmc150_accel_sleep_value_table[i].sleep_dur == 271 dur_us) 272 dur_val = 273 bmc150_accel_sleep_value_table[i].reg_value; 274 } 275 } else { 276 dur_val = 0; 277 } 278 279 if (dur_val < 0) 280 return -EINVAL; 281 282 lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT; 283 lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT); 284 285 dev_dbg(dev, "Set Mode bits %x\n", lpw_bits); 286 287 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits); 288 if (ret < 0) { 289 dev_err(dev, "Error writing reg_pmu_lpw\n"); 290 return ret; 291 } 292 293 return 0; 294 } 295 296 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val, 297 int val2) 298 { 299 int i; 300 int ret; 301 302 for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) { 303 if (bmc150_accel_samp_freq_table[i].val == val && 304 bmc150_accel_samp_freq_table[i].val2 == val2) { 305 ret = regmap_write(data->regmap, 306 BMC150_ACCEL_REG_PMU_BW, 307 bmc150_accel_samp_freq_table[i].bw_bits); 308 if (ret < 0) 309 return ret; 310 311 data->bw_bits = 312 bmc150_accel_samp_freq_table[i].bw_bits; 313 return 0; 314 } 315 } 316 317 return -EINVAL; 318 } 319 320 static int bmc150_accel_update_slope(struct bmc150_accel_data *data) 321 { 322 struct device *dev = regmap_get_device(data->regmap); 323 int ret; 324 325 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6, 326 data->slope_thres); 327 if (ret < 0) { 328 dev_err(dev, "Error writing reg_int_6\n"); 329 return ret; 330 } 331 332 ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5, 333 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur); 334 if (ret < 0) { 335 dev_err(dev, "Error updating reg_int_5\n"); 336 return ret; 337 } 338 339 dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur); 340 341 return ret; 342 } 343 344 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t, 345 bool state) 346 { 347 if (state) 348 return bmc150_accel_update_slope(t->data); 349 350 return 0; 351 } 352 353 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val, 354 int *val2) 355 { 356 int i; 357 358 for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) { 359 if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) { 360 *val = bmc150_accel_samp_freq_table[i].val; 361 *val2 = bmc150_accel_samp_freq_table[i].val2; 362 return IIO_VAL_INT_PLUS_MICRO; 363 } 364 } 365 366 return -EINVAL; 367 } 368 369 #ifdef CONFIG_PM 370 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data) 371 { 372 int i; 373 374 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) { 375 if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits) 376 return bmc150_accel_sample_upd_time[i].msec; 377 } 378 379 return BMC150_ACCEL_MAX_STARTUP_TIME_MS; 380 } 381 382 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on) 383 { 384 struct device *dev = regmap_get_device(data->regmap); 385 int ret; 386 387 if (on) { 388 ret = pm_runtime_get_sync(dev); 389 } else { 390 pm_runtime_mark_last_busy(dev); 391 ret = pm_runtime_put_autosuspend(dev); 392 } 393 394 if (ret < 0) { 395 dev_err(dev, 396 "Failed: bmc150_accel_set_power_state for %d\n", on); 397 if (on) 398 pm_runtime_put_noidle(dev); 399 400 return ret; 401 } 402 403 return 0; 404 } 405 #else 406 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on) 407 { 408 return 0; 409 } 410 #endif 411 412 static const struct bmc150_accel_interrupt_info { 413 u8 map_reg; 414 u8 map_bitmask; 415 u8 en_reg; 416 u8 en_bitmask; 417 } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = { 418 { /* data ready interrupt */ 419 .map_reg = BMC150_ACCEL_REG_INT_MAP_1, 420 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA, 421 .en_reg = BMC150_ACCEL_REG_INT_EN_1, 422 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN, 423 }, 424 { /* motion interrupt */ 425 .map_reg = BMC150_ACCEL_REG_INT_MAP_0, 426 .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE, 427 .en_reg = BMC150_ACCEL_REG_INT_EN_0, 428 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X | 429 BMC150_ACCEL_INT_EN_BIT_SLP_Y | 430 BMC150_ACCEL_INT_EN_BIT_SLP_Z 431 }, 432 { /* fifo watermark interrupt */ 433 .map_reg = BMC150_ACCEL_REG_INT_MAP_1, 434 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM, 435 .en_reg = BMC150_ACCEL_REG_INT_EN_1, 436 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN, 437 }, 438 }; 439 440 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev, 441 struct bmc150_accel_data *data) 442 { 443 int i; 444 445 for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++) 446 data->interrupts[i].info = &bmc150_accel_interrupts[i]; 447 } 448 449 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i, 450 bool state) 451 { 452 struct device *dev = regmap_get_device(data->regmap); 453 struct bmc150_accel_interrupt *intr = &data->interrupts[i]; 454 const struct bmc150_accel_interrupt_info *info = intr->info; 455 int ret; 456 457 if (state) { 458 if (atomic_inc_return(&intr->users) > 1) 459 return 0; 460 } else { 461 if (atomic_dec_return(&intr->users) > 0) 462 return 0; 463 } 464 465 /* 466 * We will expect the enable and disable to do operation in reverse 467 * order. This will happen here anyway, as our resume operation uses 468 * sync mode runtime pm calls. The suspend operation will be delayed 469 * by autosuspend delay. 470 * So the disable operation will still happen in reverse order of 471 * enable operation. When runtime pm is disabled the mode is always on, 472 * so sequence doesn't matter. 473 */ 474 ret = bmc150_accel_set_power_state(data, state); 475 if (ret < 0) 476 return ret; 477 478 /* map the interrupt to the appropriate pins */ 479 ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask, 480 (state ? info->map_bitmask : 0)); 481 if (ret < 0) { 482 dev_err(dev, "Error updating reg_int_map\n"); 483 goto out_fix_power_state; 484 } 485 486 /* enable/disable the interrupt */ 487 ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask, 488 (state ? info->en_bitmask : 0)); 489 if (ret < 0) { 490 dev_err(dev, "Error updating reg_int_en\n"); 491 goto out_fix_power_state; 492 } 493 494 return 0; 495 496 out_fix_power_state: 497 bmc150_accel_set_power_state(data, false); 498 return ret; 499 } 500 501 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val) 502 { 503 struct device *dev = regmap_get_device(data->regmap); 504 int ret, i; 505 506 for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) { 507 if (data->chip_info->scale_table[i].scale == val) { 508 ret = regmap_write(data->regmap, 509 BMC150_ACCEL_REG_PMU_RANGE, 510 data->chip_info->scale_table[i].reg_range); 511 if (ret < 0) { 512 dev_err(dev, "Error writing pmu_range\n"); 513 return ret; 514 } 515 516 data->range = data->chip_info->scale_table[i].reg_range; 517 return 0; 518 } 519 } 520 521 return -EINVAL; 522 } 523 524 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val) 525 { 526 struct device *dev = regmap_get_device(data->regmap); 527 int ret; 528 unsigned int value; 529 530 mutex_lock(&data->mutex); 531 532 ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value); 533 if (ret < 0) { 534 dev_err(dev, "Error reading reg_temp\n"); 535 mutex_unlock(&data->mutex); 536 return ret; 537 } 538 *val = sign_extend32(value, 7); 539 540 mutex_unlock(&data->mutex); 541 542 return IIO_VAL_INT; 543 } 544 545 static int bmc150_accel_get_axis(struct bmc150_accel_data *data, 546 struct iio_chan_spec const *chan, 547 int *val) 548 { 549 struct device *dev = regmap_get_device(data->regmap); 550 int ret; 551 int axis = chan->scan_index; 552 __le16 raw_val; 553 554 mutex_lock(&data->mutex); 555 ret = bmc150_accel_set_power_state(data, true); 556 if (ret < 0) { 557 mutex_unlock(&data->mutex); 558 return ret; 559 } 560 561 ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis), 562 &raw_val, sizeof(raw_val)); 563 if (ret < 0) { 564 dev_err(dev, "Error reading axis %d\n", axis); 565 bmc150_accel_set_power_state(data, false); 566 mutex_unlock(&data->mutex); 567 return ret; 568 } 569 *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift, 570 chan->scan_type.realbits - 1); 571 ret = bmc150_accel_set_power_state(data, false); 572 mutex_unlock(&data->mutex); 573 if (ret < 0) 574 return ret; 575 576 return IIO_VAL_INT; 577 } 578 579 static int bmc150_accel_read_raw(struct iio_dev *indio_dev, 580 struct iio_chan_spec const *chan, 581 int *val, int *val2, long mask) 582 { 583 struct bmc150_accel_data *data = iio_priv(indio_dev); 584 int ret; 585 586 switch (mask) { 587 case IIO_CHAN_INFO_RAW: 588 switch (chan->type) { 589 case IIO_TEMP: 590 return bmc150_accel_get_temp(data, val); 591 case IIO_ACCEL: 592 if (iio_buffer_enabled(indio_dev)) 593 return -EBUSY; 594 else 595 return bmc150_accel_get_axis(data, chan, val); 596 default: 597 return -EINVAL; 598 } 599 case IIO_CHAN_INFO_OFFSET: 600 if (chan->type == IIO_TEMP) { 601 *val = BMC150_ACCEL_TEMP_CENTER_VAL; 602 return IIO_VAL_INT; 603 } else { 604 return -EINVAL; 605 } 606 case IIO_CHAN_INFO_SCALE: 607 *val = 0; 608 switch (chan->type) { 609 case IIO_TEMP: 610 *val2 = 500000; 611 return IIO_VAL_INT_PLUS_MICRO; 612 case IIO_ACCEL: 613 { 614 int i; 615 const struct bmc150_scale_info *si; 616 int st_size = ARRAY_SIZE(data->chip_info->scale_table); 617 618 for (i = 0; i < st_size; ++i) { 619 si = &data->chip_info->scale_table[i]; 620 if (si->reg_range == data->range) { 621 *val2 = si->scale; 622 return IIO_VAL_INT_PLUS_MICRO; 623 } 624 } 625 return -EINVAL; 626 } 627 default: 628 return -EINVAL; 629 } 630 case IIO_CHAN_INFO_SAMP_FREQ: 631 mutex_lock(&data->mutex); 632 ret = bmc150_accel_get_bw(data, val, val2); 633 mutex_unlock(&data->mutex); 634 return ret; 635 default: 636 return -EINVAL; 637 } 638 } 639 640 static int bmc150_accel_write_raw(struct iio_dev *indio_dev, 641 struct iio_chan_spec const *chan, 642 int val, int val2, long mask) 643 { 644 struct bmc150_accel_data *data = iio_priv(indio_dev); 645 int ret; 646 647 switch (mask) { 648 case IIO_CHAN_INFO_SAMP_FREQ: 649 mutex_lock(&data->mutex); 650 ret = bmc150_accel_set_bw(data, val, val2); 651 mutex_unlock(&data->mutex); 652 break; 653 case IIO_CHAN_INFO_SCALE: 654 if (val) 655 return -EINVAL; 656 657 mutex_lock(&data->mutex); 658 ret = bmc150_accel_set_scale(data, val2); 659 mutex_unlock(&data->mutex); 660 return ret; 661 default: 662 ret = -EINVAL; 663 } 664 665 return ret; 666 } 667 668 static int bmc150_accel_read_event(struct iio_dev *indio_dev, 669 const struct iio_chan_spec *chan, 670 enum iio_event_type type, 671 enum iio_event_direction dir, 672 enum iio_event_info info, 673 int *val, int *val2) 674 { 675 struct bmc150_accel_data *data = iio_priv(indio_dev); 676 677 *val2 = 0; 678 switch (info) { 679 case IIO_EV_INFO_VALUE: 680 *val = data->slope_thres; 681 break; 682 case IIO_EV_INFO_PERIOD: 683 *val = data->slope_dur; 684 break; 685 default: 686 return -EINVAL; 687 } 688 689 return IIO_VAL_INT; 690 } 691 692 static int bmc150_accel_write_event(struct iio_dev *indio_dev, 693 const struct iio_chan_spec *chan, 694 enum iio_event_type type, 695 enum iio_event_direction dir, 696 enum iio_event_info info, 697 int val, int val2) 698 { 699 struct bmc150_accel_data *data = iio_priv(indio_dev); 700 701 if (data->ev_enable_state) 702 return -EBUSY; 703 704 switch (info) { 705 case IIO_EV_INFO_VALUE: 706 data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK; 707 break; 708 case IIO_EV_INFO_PERIOD: 709 data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK; 710 break; 711 default: 712 return -EINVAL; 713 } 714 715 return 0; 716 } 717 718 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev, 719 const struct iio_chan_spec *chan, 720 enum iio_event_type type, 721 enum iio_event_direction dir) 722 { 723 struct bmc150_accel_data *data = iio_priv(indio_dev); 724 725 return data->ev_enable_state; 726 } 727 728 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev, 729 const struct iio_chan_spec *chan, 730 enum iio_event_type type, 731 enum iio_event_direction dir, 732 int state) 733 { 734 struct bmc150_accel_data *data = iio_priv(indio_dev); 735 int ret; 736 737 if (state == data->ev_enable_state) 738 return 0; 739 740 mutex_lock(&data->mutex); 741 742 ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION, 743 state); 744 if (ret < 0) { 745 mutex_unlock(&data->mutex); 746 return ret; 747 } 748 749 data->ev_enable_state = state; 750 mutex_unlock(&data->mutex); 751 752 return 0; 753 } 754 755 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev, 756 struct iio_trigger *trig) 757 { 758 struct bmc150_accel_data *data = iio_priv(indio_dev); 759 int i; 760 761 for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) { 762 if (data->triggers[i].indio_trig == trig) 763 return 0; 764 } 765 766 return -EINVAL; 767 } 768 769 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev, 770 struct device_attribute *attr, 771 char *buf) 772 { 773 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 774 struct bmc150_accel_data *data = iio_priv(indio_dev); 775 int wm; 776 777 mutex_lock(&data->mutex); 778 wm = data->watermark; 779 mutex_unlock(&data->mutex); 780 781 return sprintf(buf, "%d\n", wm); 782 } 783 784 static ssize_t bmc150_accel_get_fifo_state(struct device *dev, 785 struct device_attribute *attr, 786 char *buf) 787 { 788 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 789 struct bmc150_accel_data *data = iio_priv(indio_dev); 790 bool state; 791 792 mutex_lock(&data->mutex); 793 state = data->fifo_mode; 794 mutex_unlock(&data->mutex); 795 796 return sprintf(buf, "%d\n", state); 797 } 798 799 static IIO_CONST_ATTR(hwfifo_watermark_min, "1"); 800 static IIO_CONST_ATTR(hwfifo_watermark_max, 801 __stringify(BMC150_ACCEL_FIFO_LENGTH)); 802 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO, 803 bmc150_accel_get_fifo_state, NULL, 0); 804 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO, 805 bmc150_accel_get_fifo_watermark, NULL, 0); 806 807 static const struct attribute *bmc150_accel_fifo_attributes[] = { 808 &iio_const_attr_hwfifo_watermark_min.dev_attr.attr, 809 &iio_const_attr_hwfifo_watermark_max.dev_attr.attr, 810 &iio_dev_attr_hwfifo_watermark.dev_attr.attr, 811 &iio_dev_attr_hwfifo_enabled.dev_attr.attr, 812 NULL, 813 }; 814 815 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val) 816 { 817 struct bmc150_accel_data *data = iio_priv(indio_dev); 818 819 if (val > BMC150_ACCEL_FIFO_LENGTH) 820 val = BMC150_ACCEL_FIFO_LENGTH; 821 822 mutex_lock(&data->mutex); 823 data->watermark = val; 824 mutex_unlock(&data->mutex); 825 826 return 0; 827 } 828 829 /* 830 * We must read at least one full frame in one burst, otherwise the rest of the 831 * frame data is discarded. 832 */ 833 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data, 834 char *buffer, int samples) 835 { 836 struct device *dev = regmap_get_device(data->regmap); 837 int sample_length = 3 * 2; 838 int ret; 839 int total_length = samples * sample_length; 840 int i; 841 size_t step = regmap_get_raw_read_max(data->regmap); 842 843 if (!step || step > total_length) 844 step = total_length; 845 else if (step < total_length) 846 step = sample_length; 847 848 /* 849 * Seems we have a bus with size limitation so we have to execute 850 * multiple reads 851 */ 852 for (i = 0; i < total_length; i += step) { 853 ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA, 854 &buffer[i], step); 855 if (ret) 856 break; 857 } 858 859 if (ret) 860 dev_err(dev, 861 "Error transferring data from fifo in single steps of %zu\n", 862 step); 863 864 return ret; 865 } 866 867 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev, 868 unsigned samples, bool irq) 869 { 870 struct bmc150_accel_data *data = iio_priv(indio_dev); 871 struct device *dev = regmap_get_device(data->regmap); 872 int ret, i; 873 u8 count; 874 u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3]; 875 int64_t tstamp; 876 uint64_t sample_period; 877 unsigned int val; 878 879 ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val); 880 if (ret < 0) { 881 dev_err(dev, "Error reading reg_fifo_status\n"); 882 return ret; 883 } 884 885 count = val & 0x7F; 886 887 if (!count) 888 return 0; 889 890 /* 891 * If we getting called from IRQ handler we know the stored timestamp is 892 * fairly accurate for the last stored sample. Otherwise, if we are 893 * called as a result of a read operation from userspace and hence 894 * before the watermark interrupt was triggered, take a timestamp 895 * now. We can fall anywhere in between two samples so the error in this 896 * case is at most one sample period. 897 */ 898 if (!irq) { 899 data->old_timestamp = data->timestamp; 900 data->timestamp = iio_get_time_ns(indio_dev); 901 } 902 903 /* 904 * Approximate timestamps for each of the sample based on the sampling 905 * frequency, timestamp for last sample and number of samples. 906 * 907 * Note that we can't use the current bandwidth settings to compute the 908 * sample period because the sample rate varies with the device 909 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That 910 * small variation adds when we store a large number of samples and 911 * creates significant jitter between the last and first samples in 912 * different batches (e.g. 32ms vs 21ms). 913 * 914 * To avoid this issue we compute the actual sample period ourselves 915 * based on the timestamp delta between the last two flush operations. 916 */ 917 sample_period = (data->timestamp - data->old_timestamp); 918 do_div(sample_period, count); 919 tstamp = data->timestamp - (count - 1) * sample_period; 920 921 if (samples && count > samples) 922 count = samples; 923 924 ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count); 925 if (ret) 926 return ret; 927 928 /* 929 * Ideally we want the IIO core to handle the demux when running in fifo 930 * mode but not when running in triggered buffer mode. Unfortunately 931 * this does not seem to be possible, so stick with driver demux for 932 * now. 933 */ 934 for (i = 0; i < count; i++) { 935 u16 sample[8]; 936 int j, bit; 937 938 j = 0; 939 for_each_set_bit(bit, indio_dev->active_scan_mask, 940 indio_dev->masklength) 941 memcpy(&sample[j++], &buffer[i * 3 + bit], 2); 942 943 iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp); 944 945 tstamp += sample_period; 946 } 947 948 return count; 949 } 950 951 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples) 952 { 953 struct bmc150_accel_data *data = iio_priv(indio_dev); 954 int ret; 955 956 mutex_lock(&data->mutex); 957 ret = __bmc150_accel_fifo_flush(indio_dev, samples, false); 958 mutex_unlock(&data->mutex); 959 960 return ret; 961 } 962 963 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL( 964 "15.620000 31.260000 62.50000 125 250 500 1000 2000"); 965 966 static struct attribute *bmc150_accel_attributes[] = { 967 &iio_const_attr_sampling_frequency_available.dev_attr.attr, 968 NULL, 969 }; 970 971 static const struct attribute_group bmc150_accel_attrs_group = { 972 .attrs = bmc150_accel_attributes, 973 }; 974 975 static const struct iio_event_spec bmc150_accel_event = { 976 .type = IIO_EV_TYPE_ROC, 977 .dir = IIO_EV_DIR_EITHER, 978 .mask_separate = BIT(IIO_EV_INFO_VALUE) | 979 BIT(IIO_EV_INFO_ENABLE) | 980 BIT(IIO_EV_INFO_PERIOD) 981 }; 982 983 #define BMC150_ACCEL_CHANNEL(_axis, bits) { \ 984 .type = IIO_ACCEL, \ 985 .modified = 1, \ 986 .channel2 = IIO_MOD_##_axis, \ 987 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 988 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ 989 BIT(IIO_CHAN_INFO_SAMP_FREQ), \ 990 .scan_index = AXIS_##_axis, \ 991 .scan_type = { \ 992 .sign = 's', \ 993 .realbits = (bits), \ 994 .storagebits = 16, \ 995 .shift = 16 - (bits), \ 996 .endianness = IIO_LE, \ 997 }, \ 998 .event_spec = &bmc150_accel_event, \ 999 .num_event_specs = 1 \ 1000 } 1001 1002 #define BMC150_ACCEL_CHANNELS(bits) { \ 1003 { \ 1004 .type = IIO_TEMP, \ 1005 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 1006 BIT(IIO_CHAN_INFO_SCALE) | \ 1007 BIT(IIO_CHAN_INFO_OFFSET), \ 1008 .scan_index = -1, \ 1009 }, \ 1010 BMC150_ACCEL_CHANNEL(X, bits), \ 1011 BMC150_ACCEL_CHANNEL(Y, bits), \ 1012 BMC150_ACCEL_CHANNEL(Z, bits), \ 1013 IIO_CHAN_SOFT_TIMESTAMP(3), \ 1014 } 1015 1016 static const struct iio_chan_spec bma222e_accel_channels[] = 1017 BMC150_ACCEL_CHANNELS(8); 1018 static const struct iio_chan_spec bma250e_accel_channels[] = 1019 BMC150_ACCEL_CHANNELS(10); 1020 static const struct iio_chan_spec bmc150_accel_channels[] = 1021 BMC150_ACCEL_CHANNELS(12); 1022 static const struct iio_chan_spec bma280_accel_channels[] = 1023 BMC150_ACCEL_CHANNELS(14); 1024 1025 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = { 1026 [bmc150] = { 1027 .name = "BMC150A", 1028 .chip_id = 0xFA, 1029 .channels = bmc150_accel_channels, 1030 .num_channels = ARRAY_SIZE(bmc150_accel_channels), 1031 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G}, 1032 {19122, BMC150_ACCEL_DEF_RANGE_4G}, 1033 {38344, BMC150_ACCEL_DEF_RANGE_8G}, 1034 {76590, BMC150_ACCEL_DEF_RANGE_16G} }, 1035 }, 1036 [bmi055] = { 1037 .name = "BMI055A", 1038 .chip_id = 0xFA, 1039 .channels = bmc150_accel_channels, 1040 .num_channels = ARRAY_SIZE(bmc150_accel_channels), 1041 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G}, 1042 {19122, BMC150_ACCEL_DEF_RANGE_4G}, 1043 {38344, BMC150_ACCEL_DEF_RANGE_8G}, 1044 {76590, BMC150_ACCEL_DEF_RANGE_16G} }, 1045 }, 1046 [bma255] = { 1047 .name = "BMA0255", 1048 .chip_id = 0xFA, 1049 .channels = bmc150_accel_channels, 1050 .num_channels = ARRAY_SIZE(bmc150_accel_channels), 1051 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G}, 1052 {19122, BMC150_ACCEL_DEF_RANGE_4G}, 1053 {38344, BMC150_ACCEL_DEF_RANGE_8G}, 1054 {76590, BMC150_ACCEL_DEF_RANGE_16G} }, 1055 }, 1056 [bma250e] = { 1057 .name = "BMA250E", 1058 .chip_id = 0xF9, 1059 .channels = bma250e_accel_channels, 1060 .num_channels = ARRAY_SIZE(bma250e_accel_channels), 1061 .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G}, 1062 {76590, BMC150_ACCEL_DEF_RANGE_4G}, 1063 {153277, BMC150_ACCEL_DEF_RANGE_8G}, 1064 {306457, BMC150_ACCEL_DEF_RANGE_16G} }, 1065 }, 1066 [bma222e] = { 1067 .name = "BMA222E", 1068 .chip_id = 0xF8, 1069 .channels = bma222e_accel_channels, 1070 .num_channels = ARRAY_SIZE(bma222e_accel_channels), 1071 .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G}, 1072 {306457, BMC150_ACCEL_DEF_RANGE_4G}, 1073 {612915, BMC150_ACCEL_DEF_RANGE_8G}, 1074 {1225831, BMC150_ACCEL_DEF_RANGE_16G} }, 1075 }, 1076 [bma280] = { 1077 .name = "BMA0280", 1078 .chip_id = 0xFB, 1079 .channels = bma280_accel_channels, 1080 .num_channels = ARRAY_SIZE(bma280_accel_channels), 1081 .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G}, 1082 {4785, BMC150_ACCEL_DEF_RANGE_4G}, 1083 {9581, BMC150_ACCEL_DEF_RANGE_8G}, 1084 {19152, BMC150_ACCEL_DEF_RANGE_16G} }, 1085 }, 1086 }; 1087 1088 static const struct iio_info bmc150_accel_info = { 1089 .attrs = &bmc150_accel_attrs_group, 1090 .read_raw = bmc150_accel_read_raw, 1091 .write_raw = bmc150_accel_write_raw, 1092 .read_event_value = bmc150_accel_read_event, 1093 .write_event_value = bmc150_accel_write_event, 1094 .write_event_config = bmc150_accel_write_event_config, 1095 .read_event_config = bmc150_accel_read_event_config, 1096 }; 1097 1098 static const struct iio_info bmc150_accel_info_fifo = { 1099 .attrs = &bmc150_accel_attrs_group, 1100 .read_raw = bmc150_accel_read_raw, 1101 .write_raw = bmc150_accel_write_raw, 1102 .read_event_value = bmc150_accel_read_event, 1103 .write_event_value = bmc150_accel_write_event, 1104 .write_event_config = bmc150_accel_write_event_config, 1105 .read_event_config = bmc150_accel_read_event_config, 1106 .validate_trigger = bmc150_accel_validate_trigger, 1107 .hwfifo_set_watermark = bmc150_accel_set_watermark, 1108 .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush, 1109 }; 1110 1111 static const unsigned long bmc150_accel_scan_masks[] = { 1112 BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z), 1113 0}; 1114 1115 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p) 1116 { 1117 struct iio_poll_func *pf = p; 1118 struct iio_dev *indio_dev = pf->indio_dev; 1119 struct bmc150_accel_data *data = iio_priv(indio_dev); 1120 int ret; 1121 1122 mutex_lock(&data->mutex); 1123 ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L, 1124 data->buffer, AXIS_MAX * 2); 1125 mutex_unlock(&data->mutex); 1126 if (ret < 0) 1127 goto err_read; 1128 1129 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer, 1130 pf->timestamp); 1131 err_read: 1132 iio_trigger_notify_done(indio_dev->trig); 1133 1134 return IRQ_HANDLED; 1135 } 1136 1137 static int bmc150_accel_trig_try_reen(struct iio_trigger *trig) 1138 { 1139 struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig); 1140 struct bmc150_accel_data *data = t->data; 1141 struct device *dev = regmap_get_device(data->regmap); 1142 int ret; 1143 1144 /* new data interrupts don't need ack */ 1145 if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY]) 1146 return 0; 1147 1148 mutex_lock(&data->mutex); 1149 /* clear any latched interrupt */ 1150 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH, 1151 BMC150_ACCEL_INT_MODE_LATCH_INT | 1152 BMC150_ACCEL_INT_MODE_LATCH_RESET); 1153 mutex_unlock(&data->mutex); 1154 if (ret < 0) { 1155 dev_err(dev, "Error writing reg_int_rst_latch\n"); 1156 return ret; 1157 } 1158 1159 return 0; 1160 } 1161 1162 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig, 1163 bool state) 1164 { 1165 struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig); 1166 struct bmc150_accel_data *data = t->data; 1167 int ret; 1168 1169 mutex_lock(&data->mutex); 1170 1171 if (t->enabled == state) { 1172 mutex_unlock(&data->mutex); 1173 return 0; 1174 } 1175 1176 if (t->setup) { 1177 ret = t->setup(t, state); 1178 if (ret < 0) { 1179 mutex_unlock(&data->mutex); 1180 return ret; 1181 } 1182 } 1183 1184 ret = bmc150_accel_set_interrupt(data, t->intr, state); 1185 if (ret < 0) { 1186 mutex_unlock(&data->mutex); 1187 return ret; 1188 } 1189 1190 t->enabled = state; 1191 1192 mutex_unlock(&data->mutex); 1193 1194 return ret; 1195 } 1196 1197 static const struct iio_trigger_ops bmc150_accel_trigger_ops = { 1198 .set_trigger_state = bmc150_accel_trigger_set_state, 1199 .try_reenable = bmc150_accel_trig_try_reen, 1200 }; 1201 1202 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev) 1203 { 1204 struct bmc150_accel_data *data = iio_priv(indio_dev); 1205 struct device *dev = regmap_get_device(data->regmap); 1206 int dir; 1207 int ret; 1208 unsigned int val; 1209 1210 ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val); 1211 if (ret < 0) { 1212 dev_err(dev, "Error reading reg_int_status_2\n"); 1213 return ret; 1214 } 1215 1216 if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN) 1217 dir = IIO_EV_DIR_FALLING; 1218 else 1219 dir = IIO_EV_DIR_RISING; 1220 1221 if (val & BMC150_ACCEL_ANY_MOTION_BIT_X) 1222 iio_push_event(indio_dev, 1223 IIO_MOD_EVENT_CODE(IIO_ACCEL, 1224 0, 1225 IIO_MOD_X, 1226 IIO_EV_TYPE_ROC, 1227 dir), 1228 data->timestamp); 1229 1230 if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y) 1231 iio_push_event(indio_dev, 1232 IIO_MOD_EVENT_CODE(IIO_ACCEL, 1233 0, 1234 IIO_MOD_Y, 1235 IIO_EV_TYPE_ROC, 1236 dir), 1237 data->timestamp); 1238 1239 if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z) 1240 iio_push_event(indio_dev, 1241 IIO_MOD_EVENT_CODE(IIO_ACCEL, 1242 0, 1243 IIO_MOD_Z, 1244 IIO_EV_TYPE_ROC, 1245 dir), 1246 data->timestamp); 1247 1248 return ret; 1249 } 1250 1251 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private) 1252 { 1253 struct iio_dev *indio_dev = private; 1254 struct bmc150_accel_data *data = iio_priv(indio_dev); 1255 struct device *dev = regmap_get_device(data->regmap); 1256 bool ack = false; 1257 int ret; 1258 1259 mutex_lock(&data->mutex); 1260 1261 if (data->fifo_mode) { 1262 ret = __bmc150_accel_fifo_flush(indio_dev, 1263 BMC150_ACCEL_FIFO_LENGTH, true); 1264 if (ret > 0) 1265 ack = true; 1266 } 1267 1268 if (data->ev_enable_state) { 1269 ret = bmc150_accel_handle_roc_event(indio_dev); 1270 if (ret > 0) 1271 ack = true; 1272 } 1273 1274 if (ack) { 1275 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH, 1276 BMC150_ACCEL_INT_MODE_LATCH_INT | 1277 BMC150_ACCEL_INT_MODE_LATCH_RESET); 1278 if (ret) 1279 dev_err(dev, "Error writing reg_int_rst_latch\n"); 1280 1281 ret = IRQ_HANDLED; 1282 } else { 1283 ret = IRQ_NONE; 1284 } 1285 1286 mutex_unlock(&data->mutex); 1287 1288 return ret; 1289 } 1290 1291 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private) 1292 { 1293 struct iio_dev *indio_dev = private; 1294 struct bmc150_accel_data *data = iio_priv(indio_dev); 1295 bool ack = false; 1296 int i; 1297 1298 data->old_timestamp = data->timestamp; 1299 data->timestamp = iio_get_time_ns(indio_dev); 1300 1301 for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) { 1302 if (data->triggers[i].enabled) { 1303 iio_trigger_poll(data->triggers[i].indio_trig); 1304 ack = true; 1305 break; 1306 } 1307 } 1308 1309 if (data->ev_enable_state || data->fifo_mode) 1310 return IRQ_WAKE_THREAD; 1311 1312 if (ack) 1313 return IRQ_HANDLED; 1314 1315 return IRQ_NONE; 1316 } 1317 1318 static const struct { 1319 int intr; 1320 const char *name; 1321 int (*setup)(struct bmc150_accel_trigger *t, bool state); 1322 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = { 1323 { 1324 .intr = 0, 1325 .name = "%s-dev%d", 1326 }, 1327 { 1328 .intr = 1, 1329 .name = "%s-any-motion-dev%d", 1330 .setup = bmc150_accel_any_motion_setup, 1331 }, 1332 }; 1333 1334 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data, 1335 int from) 1336 { 1337 int i; 1338 1339 for (i = from; i >= 0; i--) { 1340 if (data->triggers[i].indio_trig) { 1341 iio_trigger_unregister(data->triggers[i].indio_trig); 1342 data->triggers[i].indio_trig = NULL; 1343 } 1344 } 1345 } 1346 1347 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev, 1348 struct bmc150_accel_data *data) 1349 { 1350 struct device *dev = regmap_get_device(data->regmap); 1351 int i, ret; 1352 1353 for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) { 1354 struct bmc150_accel_trigger *t = &data->triggers[i]; 1355 1356 t->indio_trig = devm_iio_trigger_alloc(dev, 1357 bmc150_accel_triggers[i].name, 1358 indio_dev->name, 1359 indio_dev->id); 1360 if (!t->indio_trig) { 1361 ret = -ENOMEM; 1362 break; 1363 } 1364 1365 t->indio_trig->dev.parent = dev; 1366 t->indio_trig->ops = &bmc150_accel_trigger_ops; 1367 t->intr = bmc150_accel_triggers[i].intr; 1368 t->data = data; 1369 t->setup = bmc150_accel_triggers[i].setup; 1370 iio_trigger_set_drvdata(t->indio_trig, t); 1371 1372 ret = iio_trigger_register(t->indio_trig); 1373 if (ret) 1374 break; 1375 } 1376 1377 if (ret) 1378 bmc150_accel_unregister_triggers(data, i - 1); 1379 1380 return ret; 1381 } 1382 1383 #define BMC150_ACCEL_FIFO_MODE_STREAM 0x80 1384 #define BMC150_ACCEL_FIFO_MODE_FIFO 0x40 1385 #define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00 1386 1387 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data) 1388 { 1389 struct device *dev = regmap_get_device(data->regmap); 1390 u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1; 1391 int ret; 1392 1393 ret = regmap_write(data->regmap, reg, data->fifo_mode); 1394 if (ret < 0) { 1395 dev_err(dev, "Error writing reg_fifo_config1\n"); 1396 return ret; 1397 } 1398 1399 if (!data->fifo_mode) 1400 return 0; 1401 1402 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0, 1403 data->watermark); 1404 if (ret < 0) 1405 dev_err(dev, "Error writing reg_fifo_config0\n"); 1406 1407 return ret; 1408 } 1409 1410 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev) 1411 { 1412 struct bmc150_accel_data *data = iio_priv(indio_dev); 1413 1414 return bmc150_accel_set_power_state(data, true); 1415 } 1416 1417 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev) 1418 { 1419 struct bmc150_accel_data *data = iio_priv(indio_dev); 1420 int ret = 0; 1421 1422 if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED) 1423 return iio_triggered_buffer_postenable(indio_dev); 1424 1425 mutex_lock(&data->mutex); 1426 1427 if (!data->watermark) 1428 goto out; 1429 1430 ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, 1431 true); 1432 if (ret) 1433 goto out; 1434 1435 data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO; 1436 1437 ret = bmc150_accel_fifo_set_mode(data); 1438 if (ret) { 1439 data->fifo_mode = 0; 1440 bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, 1441 false); 1442 } 1443 1444 out: 1445 mutex_unlock(&data->mutex); 1446 1447 return ret; 1448 } 1449 1450 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev) 1451 { 1452 struct bmc150_accel_data *data = iio_priv(indio_dev); 1453 1454 if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED) 1455 return iio_triggered_buffer_predisable(indio_dev); 1456 1457 mutex_lock(&data->mutex); 1458 1459 if (!data->fifo_mode) 1460 goto out; 1461 1462 bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false); 1463 __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false); 1464 data->fifo_mode = 0; 1465 bmc150_accel_fifo_set_mode(data); 1466 1467 out: 1468 mutex_unlock(&data->mutex); 1469 1470 return 0; 1471 } 1472 1473 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev) 1474 { 1475 struct bmc150_accel_data *data = iio_priv(indio_dev); 1476 1477 return bmc150_accel_set_power_state(data, false); 1478 } 1479 1480 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = { 1481 .preenable = bmc150_accel_buffer_preenable, 1482 .postenable = bmc150_accel_buffer_postenable, 1483 .predisable = bmc150_accel_buffer_predisable, 1484 .postdisable = bmc150_accel_buffer_postdisable, 1485 }; 1486 1487 static int bmc150_accel_chip_init(struct bmc150_accel_data *data) 1488 { 1489 struct device *dev = regmap_get_device(data->regmap); 1490 int ret, i; 1491 unsigned int val; 1492 1493 /* 1494 * Reset chip to get it in a known good state. A delay of 1.8ms after 1495 * reset is required according to the data sheets of supported chips. 1496 */ 1497 regmap_write(data->regmap, BMC150_ACCEL_REG_RESET, 1498 BMC150_ACCEL_RESET_VAL); 1499 usleep_range(1800, 2500); 1500 1501 ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val); 1502 if (ret < 0) { 1503 dev_err(dev, "Error: Reading chip id\n"); 1504 return ret; 1505 } 1506 1507 dev_dbg(dev, "Chip Id %x\n", val); 1508 for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) { 1509 if (bmc150_accel_chip_info_tbl[i].chip_id == val) { 1510 data->chip_info = &bmc150_accel_chip_info_tbl[i]; 1511 break; 1512 } 1513 } 1514 1515 if (!data->chip_info) { 1516 dev_err(dev, "Invalid chip %x\n", val); 1517 return -ENODEV; 1518 } 1519 1520 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0); 1521 if (ret < 0) 1522 return ret; 1523 1524 /* Set Bandwidth */ 1525 ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0); 1526 if (ret < 0) 1527 return ret; 1528 1529 /* Set Default Range */ 1530 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE, 1531 BMC150_ACCEL_DEF_RANGE_4G); 1532 if (ret < 0) { 1533 dev_err(dev, "Error writing reg_pmu_range\n"); 1534 return ret; 1535 } 1536 1537 data->range = BMC150_ACCEL_DEF_RANGE_4G; 1538 1539 /* Set default slope duration and thresholds */ 1540 data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD; 1541 data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION; 1542 ret = bmc150_accel_update_slope(data); 1543 if (ret < 0) 1544 return ret; 1545 1546 /* Set default as latched interrupts */ 1547 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH, 1548 BMC150_ACCEL_INT_MODE_LATCH_INT | 1549 BMC150_ACCEL_INT_MODE_LATCH_RESET); 1550 if (ret < 0) { 1551 dev_err(dev, "Error writing reg_int_rst_latch\n"); 1552 return ret; 1553 } 1554 1555 return 0; 1556 } 1557 1558 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq, 1559 const char *name, bool block_supported) 1560 { 1561 struct bmc150_accel_data *data; 1562 struct iio_dev *indio_dev; 1563 int ret; 1564 1565 indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); 1566 if (!indio_dev) 1567 return -ENOMEM; 1568 1569 data = iio_priv(indio_dev); 1570 dev_set_drvdata(dev, indio_dev); 1571 data->irq = irq; 1572 1573 data->regmap = regmap; 1574 1575 ret = bmc150_accel_chip_init(data); 1576 if (ret < 0) 1577 return ret; 1578 1579 mutex_init(&data->mutex); 1580 1581 indio_dev->dev.parent = dev; 1582 indio_dev->channels = data->chip_info->channels; 1583 indio_dev->num_channels = data->chip_info->num_channels; 1584 indio_dev->name = name ? name : data->chip_info->name; 1585 indio_dev->available_scan_masks = bmc150_accel_scan_masks; 1586 indio_dev->modes = INDIO_DIRECT_MODE; 1587 indio_dev->info = &bmc150_accel_info; 1588 1589 ret = iio_triggered_buffer_setup(indio_dev, 1590 &iio_pollfunc_store_time, 1591 bmc150_accel_trigger_handler, 1592 &bmc150_accel_buffer_ops); 1593 if (ret < 0) { 1594 dev_err(dev, "Failed: iio triggered buffer setup\n"); 1595 return ret; 1596 } 1597 1598 if (data->irq > 0) { 1599 ret = devm_request_threaded_irq( 1600 dev, data->irq, 1601 bmc150_accel_irq_handler, 1602 bmc150_accel_irq_thread_handler, 1603 IRQF_TRIGGER_RISING, 1604 BMC150_ACCEL_IRQ_NAME, 1605 indio_dev); 1606 if (ret) 1607 goto err_buffer_cleanup; 1608 1609 /* 1610 * Set latched mode interrupt. While certain interrupts are 1611 * non-latched regardless of this settings (e.g. new data) we 1612 * want to use latch mode when we can to prevent interrupt 1613 * flooding. 1614 */ 1615 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH, 1616 BMC150_ACCEL_INT_MODE_LATCH_RESET); 1617 if (ret < 0) { 1618 dev_err(dev, "Error writing reg_int_rst_latch\n"); 1619 goto err_buffer_cleanup; 1620 } 1621 1622 bmc150_accel_interrupts_setup(indio_dev, data); 1623 1624 ret = bmc150_accel_triggers_setup(indio_dev, data); 1625 if (ret) 1626 goto err_buffer_cleanup; 1627 1628 if (block_supported) { 1629 indio_dev->modes |= INDIO_BUFFER_SOFTWARE; 1630 indio_dev->info = &bmc150_accel_info_fifo; 1631 iio_buffer_set_attrs(indio_dev->buffer, 1632 bmc150_accel_fifo_attributes); 1633 } 1634 } 1635 1636 ret = pm_runtime_set_active(dev); 1637 if (ret) 1638 goto err_trigger_unregister; 1639 1640 pm_runtime_enable(dev); 1641 pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS); 1642 pm_runtime_use_autosuspend(dev); 1643 1644 ret = iio_device_register(indio_dev); 1645 if (ret < 0) { 1646 dev_err(dev, "Unable to register iio device\n"); 1647 goto err_trigger_unregister; 1648 } 1649 1650 return 0; 1651 1652 err_trigger_unregister: 1653 bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1); 1654 err_buffer_cleanup: 1655 iio_triggered_buffer_cleanup(indio_dev); 1656 1657 return ret; 1658 } 1659 EXPORT_SYMBOL_GPL(bmc150_accel_core_probe); 1660 1661 int bmc150_accel_core_remove(struct device *dev) 1662 { 1663 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1664 struct bmc150_accel_data *data = iio_priv(indio_dev); 1665 1666 iio_device_unregister(indio_dev); 1667 1668 pm_runtime_disable(dev); 1669 pm_runtime_set_suspended(dev); 1670 pm_runtime_put_noidle(dev); 1671 1672 bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1); 1673 1674 iio_triggered_buffer_cleanup(indio_dev); 1675 1676 mutex_lock(&data->mutex); 1677 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0); 1678 mutex_unlock(&data->mutex); 1679 1680 return 0; 1681 } 1682 EXPORT_SYMBOL_GPL(bmc150_accel_core_remove); 1683 1684 #ifdef CONFIG_PM_SLEEP 1685 static int bmc150_accel_suspend(struct device *dev) 1686 { 1687 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1688 struct bmc150_accel_data *data = iio_priv(indio_dev); 1689 1690 mutex_lock(&data->mutex); 1691 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0); 1692 mutex_unlock(&data->mutex); 1693 1694 return 0; 1695 } 1696 1697 static int bmc150_accel_resume(struct device *dev) 1698 { 1699 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1700 struct bmc150_accel_data *data = iio_priv(indio_dev); 1701 1702 mutex_lock(&data->mutex); 1703 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0); 1704 bmc150_accel_fifo_set_mode(data); 1705 mutex_unlock(&data->mutex); 1706 1707 return 0; 1708 } 1709 #endif 1710 1711 #ifdef CONFIG_PM 1712 static int bmc150_accel_runtime_suspend(struct device *dev) 1713 { 1714 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1715 struct bmc150_accel_data *data = iio_priv(indio_dev); 1716 int ret; 1717 1718 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0); 1719 if (ret < 0) 1720 return -EAGAIN; 1721 1722 return 0; 1723 } 1724 1725 static int bmc150_accel_runtime_resume(struct device *dev) 1726 { 1727 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1728 struct bmc150_accel_data *data = iio_priv(indio_dev); 1729 int ret; 1730 int sleep_val; 1731 1732 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0); 1733 if (ret < 0) 1734 return ret; 1735 ret = bmc150_accel_fifo_set_mode(data); 1736 if (ret < 0) 1737 return ret; 1738 1739 sleep_val = bmc150_accel_get_startup_times(data); 1740 if (sleep_val < 20) 1741 usleep_range(sleep_val * 1000, 20000); 1742 else 1743 msleep_interruptible(sleep_val); 1744 1745 return 0; 1746 } 1747 #endif 1748 1749 const struct dev_pm_ops bmc150_accel_pm_ops = { 1750 SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume) 1751 SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend, 1752 bmc150_accel_runtime_resume, NULL) 1753 }; 1754 EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops); 1755 1756 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>"); 1757 MODULE_LICENSE("GPL v2"); 1758 MODULE_DESCRIPTION("BMC150 accelerometer driver"); 1759