1 /*
2  * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
3  *  - BMC150
4  *  - BMI055
5  *  - BMA255
6  *  - BMA250E
7  *  - BMA222E
8  *  - BMA280
9  *
10  * Copyright (c) 2014, Intel Corporation.
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms and conditions of the GNU General Public License,
14  * version 2, as published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope it will be useful, but WITHOUT
17  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
19  * more details.
20  */
21 
22 #include <linux/module.h>
23 #include <linux/i2c.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/acpi.h>
28 #include <linux/pm.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/iio/iio.h>
31 #include <linux/iio/sysfs.h>
32 #include <linux/iio/buffer.h>
33 #include <linux/iio/events.h>
34 #include <linux/iio/trigger.h>
35 #include <linux/iio/trigger_consumer.h>
36 #include <linux/iio/triggered_buffer.h>
37 #include <linux/regmap.h>
38 
39 #include "bmc150-accel.h"
40 
41 #define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
42 #define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"
43 
44 #define BMC150_ACCEL_REG_CHIP_ID		0x00
45 
46 #define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
47 #define BMC150_ACCEL_ANY_MOTION_MASK		0x07
48 #define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
49 #define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
50 #define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
51 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)
52 
53 #define BMC150_ACCEL_REG_PMU_LPW		0x11
54 #define BMC150_ACCEL_PMU_MODE_MASK		0xE0
55 #define BMC150_ACCEL_PMU_MODE_SHIFT		5
56 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
57 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1
58 
59 #define BMC150_ACCEL_REG_PMU_RANGE		0x0F
60 
61 #define BMC150_ACCEL_DEF_RANGE_2G		0x03
62 #define BMC150_ACCEL_DEF_RANGE_4G		0x05
63 #define BMC150_ACCEL_DEF_RANGE_8G		0x08
64 #define BMC150_ACCEL_DEF_RANGE_16G		0x0C
65 
66 /* Default BW: 125Hz */
67 #define BMC150_ACCEL_REG_PMU_BW		0x10
68 #define BMC150_ACCEL_DEF_BW			125
69 
70 #define BMC150_ACCEL_REG_RESET			0x14
71 #define BMC150_ACCEL_RESET_VAL			0xB6
72 
73 #define BMC150_ACCEL_REG_INT_MAP_0		0x19
74 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE	BIT(2)
75 
76 #define BMC150_ACCEL_REG_INT_MAP_1		0x1A
77 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA		BIT(0)
78 #define BMC150_ACCEL_INT_MAP_1_BIT_FWM		BIT(1)
79 #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL	BIT(2)
80 
81 #define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
82 #define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
83 #define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
84 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00
85 
86 #define BMC150_ACCEL_REG_INT_EN_0		0x16
87 #define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
88 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
89 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)
90 
91 #define BMC150_ACCEL_REG_INT_EN_1		0x17
92 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
93 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
94 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
95 
96 #define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
97 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)
98 
99 #define BMC150_ACCEL_REG_INT_5			0x27
100 #define BMC150_ACCEL_SLOPE_DUR_MASK		0x03
101 
102 #define BMC150_ACCEL_REG_INT_6			0x28
103 #define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF
104 
105 /* Slope duration in terms of number of samples */
106 #define BMC150_ACCEL_DEF_SLOPE_DURATION		1
107 /* in terms of multiples of g's/LSB, based on range */
108 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
109 
110 #define BMC150_ACCEL_REG_XOUT_L		0x02
111 
112 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100
113 
114 /* Sleep Duration values */
115 #define BMC150_ACCEL_SLEEP_500_MICRO		0x05
116 #define BMC150_ACCEL_SLEEP_1_MS		0x06
117 #define BMC150_ACCEL_SLEEP_2_MS		0x07
118 #define BMC150_ACCEL_SLEEP_4_MS		0x08
119 #define BMC150_ACCEL_SLEEP_6_MS		0x09
120 #define BMC150_ACCEL_SLEEP_10_MS		0x0A
121 #define BMC150_ACCEL_SLEEP_25_MS		0x0B
122 #define BMC150_ACCEL_SLEEP_50_MS		0x0C
123 #define BMC150_ACCEL_SLEEP_100_MS		0x0D
124 #define BMC150_ACCEL_SLEEP_500_MS		0x0E
125 #define BMC150_ACCEL_SLEEP_1_SEC		0x0F
126 
127 #define BMC150_ACCEL_REG_TEMP			0x08
128 #define BMC150_ACCEL_TEMP_CENTER_VAL		24
129 
130 #define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
131 #define BMC150_AUTO_SUSPEND_DELAY_MS		2000
132 
133 #define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
134 #define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
135 #define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
136 #define BMC150_ACCEL_REG_FIFO_DATA		0x3F
137 #define BMC150_ACCEL_FIFO_LENGTH		32
138 
139 enum bmc150_accel_axis {
140 	AXIS_X,
141 	AXIS_Y,
142 	AXIS_Z,
143 	AXIS_MAX,
144 };
145 
146 enum bmc150_power_modes {
147 	BMC150_ACCEL_SLEEP_MODE_NORMAL,
148 	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
149 	BMC150_ACCEL_SLEEP_MODE_LPM,
150 	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
151 };
152 
153 struct bmc150_scale_info {
154 	int scale;
155 	u8 reg_range;
156 };
157 
158 struct bmc150_accel_chip_info {
159 	const char *name;
160 	u8 chip_id;
161 	const struct iio_chan_spec *channels;
162 	int num_channels;
163 	const struct bmc150_scale_info scale_table[4];
164 };
165 
166 struct bmc150_accel_interrupt {
167 	const struct bmc150_accel_interrupt_info *info;
168 	atomic_t users;
169 };
170 
171 struct bmc150_accel_trigger {
172 	struct bmc150_accel_data *data;
173 	struct iio_trigger *indio_trig;
174 	int (*setup)(struct bmc150_accel_trigger *t, bool state);
175 	int intr;
176 	bool enabled;
177 };
178 
179 enum bmc150_accel_interrupt_id {
180 	BMC150_ACCEL_INT_DATA_READY,
181 	BMC150_ACCEL_INT_ANY_MOTION,
182 	BMC150_ACCEL_INT_WATERMARK,
183 	BMC150_ACCEL_INTERRUPTS,
184 };
185 
186 enum bmc150_accel_trigger_id {
187 	BMC150_ACCEL_TRIGGER_DATA_READY,
188 	BMC150_ACCEL_TRIGGER_ANY_MOTION,
189 	BMC150_ACCEL_TRIGGERS,
190 };
191 
192 struct bmc150_accel_data {
193 	struct regmap *regmap;
194 	int irq;
195 	struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
196 	atomic_t active_intr;
197 	struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
198 	struct mutex mutex;
199 	u8 fifo_mode, watermark;
200 	s16 buffer[8];
201 	u8 bw_bits;
202 	u32 slope_dur;
203 	u32 slope_thres;
204 	u32 range;
205 	int ev_enable_state;
206 	int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
207 	const struct bmc150_accel_chip_info *chip_info;
208 };
209 
210 static const struct {
211 	int val;
212 	int val2;
213 	u8 bw_bits;
214 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
215 				     {31, 260000, 0x09},
216 				     {62, 500000, 0x0A},
217 				     {125, 0, 0x0B},
218 				     {250, 0, 0x0C},
219 				     {500, 0, 0x0D},
220 				     {1000, 0, 0x0E},
221 				     {2000, 0, 0x0F} };
222 
223 static const struct {
224 	int bw_bits;
225 	int msec;
226 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
227 				     {0x09, 32},
228 				     {0x0A, 16},
229 				     {0x0B, 8},
230 				     {0x0C, 4},
231 				     {0x0D, 2},
232 				     {0x0E, 1},
233 				     {0x0F, 1} };
234 
235 static const struct {
236 	int sleep_dur;
237 	u8 reg_value;
238 } bmc150_accel_sleep_value_table[] = { {0, 0},
239 				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
240 				       {1000, BMC150_ACCEL_SLEEP_1_MS},
241 				       {2000, BMC150_ACCEL_SLEEP_2_MS},
242 				       {4000, BMC150_ACCEL_SLEEP_4_MS},
243 				       {6000, BMC150_ACCEL_SLEEP_6_MS},
244 				       {10000, BMC150_ACCEL_SLEEP_10_MS},
245 				       {25000, BMC150_ACCEL_SLEEP_25_MS},
246 				       {50000, BMC150_ACCEL_SLEEP_50_MS},
247 				       {100000, BMC150_ACCEL_SLEEP_100_MS},
248 				       {500000, BMC150_ACCEL_SLEEP_500_MS},
249 				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
250 
251 const struct regmap_config bmc150_regmap_conf = {
252 	.reg_bits = 8,
253 	.val_bits = 8,
254 	.max_register = 0x3f,
255 };
256 EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
257 
258 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
259 				 enum bmc150_power_modes mode,
260 				 int dur_us)
261 {
262 	struct device *dev = regmap_get_device(data->regmap);
263 	int i;
264 	int ret;
265 	u8 lpw_bits;
266 	int dur_val = -1;
267 
268 	if (dur_us > 0) {
269 		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
270 									 ++i) {
271 			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
272 									dur_us)
273 				dur_val =
274 				bmc150_accel_sleep_value_table[i].reg_value;
275 		}
276 	} else {
277 		dur_val = 0;
278 	}
279 
280 	if (dur_val < 0)
281 		return -EINVAL;
282 
283 	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
284 	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
285 
286 	dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
287 
288 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
289 	if (ret < 0) {
290 		dev_err(dev, "Error writing reg_pmu_lpw\n");
291 		return ret;
292 	}
293 
294 	return 0;
295 }
296 
297 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
298 			       int val2)
299 {
300 	int i;
301 	int ret;
302 
303 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
304 		if (bmc150_accel_samp_freq_table[i].val == val &&
305 		    bmc150_accel_samp_freq_table[i].val2 == val2) {
306 			ret = regmap_write(data->regmap,
307 				BMC150_ACCEL_REG_PMU_BW,
308 				bmc150_accel_samp_freq_table[i].bw_bits);
309 			if (ret < 0)
310 				return ret;
311 
312 			data->bw_bits =
313 				bmc150_accel_samp_freq_table[i].bw_bits;
314 			return 0;
315 		}
316 	}
317 
318 	return -EINVAL;
319 }
320 
321 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
322 {
323 	struct device *dev = regmap_get_device(data->regmap);
324 	int ret;
325 
326 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
327 					data->slope_thres);
328 	if (ret < 0) {
329 		dev_err(dev, "Error writing reg_int_6\n");
330 		return ret;
331 	}
332 
333 	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
334 				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
335 	if (ret < 0) {
336 		dev_err(dev, "Error updating reg_int_5\n");
337 		return ret;
338 	}
339 
340 	dev_dbg(dev, "%s: %x %x\n", __func__, data->slope_thres,
341 		data->slope_dur);
342 
343 	return ret;
344 }
345 
346 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
347 					 bool state)
348 {
349 	if (state)
350 		return bmc150_accel_update_slope(t->data);
351 
352 	return 0;
353 }
354 
355 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
356 			       int *val2)
357 {
358 	int i;
359 
360 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
361 		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
362 			*val = bmc150_accel_samp_freq_table[i].val;
363 			*val2 = bmc150_accel_samp_freq_table[i].val2;
364 			return IIO_VAL_INT_PLUS_MICRO;
365 		}
366 	}
367 
368 	return -EINVAL;
369 }
370 
371 #ifdef CONFIG_PM
372 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
373 {
374 	int i;
375 
376 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
377 		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
378 			return bmc150_accel_sample_upd_time[i].msec;
379 	}
380 
381 	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
382 }
383 
384 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
385 {
386 	struct device *dev = regmap_get_device(data->regmap);
387 	int ret;
388 
389 	if (on) {
390 		ret = pm_runtime_get_sync(dev);
391 	} else {
392 		pm_runtime_mark_last_busy(dev);
393 		ret = pm_runtime_put_autosuspend(dev);
394 	}
395 
396 	if (ret < 0) {
397 		dev_err(dev,
398 			"Failed: bmc150_accel_set_power_state for %d\n", on);
399 		if (on)
400 			pm_runtime_put_noidle(dev);
401 
402 		return ret;
403 	}
404 
405 	return 0;
406 }
407 #else
408 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
409 {
410 	return 0;
411 }
412 #endif
413 
414 static const struct bmc150_accel_interrupt_info {
415 	u8 map_reg;
416 	u8 map_bitmask;
417 	u8 en_reg;
418 	u8 en_bitmask;
419 } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
420 	{ /* data ready interrupt */
421 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
422 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
423 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
424 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
425 	},
426 	{  /* motion interrupt */
427 		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
428 		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
429 		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
430 		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
431 			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
432 			BMC150_ACCEL_INT_EN_BIT_SLP_Z
433 	},
434 	{ /* fifo watermark interrupt */
435 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
436 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
437 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
438 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
439 	},
440 };
441 
442 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
443 					  struct bmc150_accel_data *data)
444 {
445 	int i;
446 
447 	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
448 		data->interrupts[i].info = &bmc150_accel_interrupts[i];
449 }
450 
451 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
452 				      bool state)
453 {
454 	struct device *dev = regmap_get_device(data->regmap);
455 	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
456 	const struct bmc150_accel_interrupt_info *info = intr->info;
457 	int ret;
458 
459 	if (state) {
460 		if (atomic_inc_return(&intr->users) > 1)
461 			return 0;
462 	} else {
463 		if (atomic_dec_return(&intr->users) > 0)
464 			return 0;
465 	}
466 
467 	/*
468 	 * We will expect the enable and disable to do operation in reverse
469 	 * order. This will happen here anyway, as our resume operation uses
470 	 * sync mode runtime pm calls. The suspend operation will be delayed
471 	 * by autosuspend delay.
472 	 * So the disable operation will still happen in reverse order of
473 	 * enable operation. When runtime pm is disabled the mode is always on,
474 	 * so sequence doesn't matter.
475 	 */
476 	ret = bmc150_accel_set_power_state(data, state);
477 	if (ret < 0)
478 		return ret;
479 
480 	/* map the interrupt to the appropriate pins */
481 	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
482 				 (state ? info->map_bitmask : 0));
483 	if (ret < 0) {
484 		dev_err(dev, "Error updating reg_int_map\n");
485 		goto out_fix_power_state;
486 	}
487 
488 	/* enable/disable the interrupt */
489 	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
490 				 (state ? info->en_bitmask : 0));
491 	if (ret < 0) {
492 		dev_err(dev, "Error updating reg_int_en\n");
493 		goto out_fix_power_state;
494 	}
495 
496 	if (state)
497 		atomic_inc(&data->active_intr);
498 	else
499 		atomic_dec(&data->active_intr);
500 
501 	return 0;
502 
503 out_fix_power_state:
504 	bmc150_accel_set_power_state(data, false);
505 	return ret;
506 }
507 
508 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
509 {
510 	struct device *dev = regmap_get_device(data->regmap);
511 	int ret, i;
512 
513 	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
514 		if (data->chip_info->scale_table[i].scale == val) {
515 			ret = regmap_write(data->regmap,
516 				     BMC150_ACCEL_REG_PMU_RANGE,
517 				     data->chip_info->scale_table[i].reg_range);
518 			if (ret < 0) {
519 				dev_err(dev, "Error writing pmu_range\n");
520 				return ret;
521 			}
522 
523 			data->range = data->chip_info->scale_table[i].reg_range;
524 			return 0;
525 		}
526 	}
527 
528 	return -EINVAL;
529 }
530 
531 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
532 {
533 	struct device *dev = regmap_get_device(data->regmap);
534 	int ret;
535 	unsigned int value;
536 
537 	mutex_lock(&data->mutex);
538 
539 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
540 	if (ret < 0) {
541 		dev_err(dev, "Error reading reg_temp\n");
542 		mutex_unlock(&data->mutex);
543 		return ret;
544 	}
545 	*val = sign_extend32(value, 7);
546 
547 	mutex_unlock(&data->mutex);
548 
549 	return IIO_VAL_INT;
550 }
551 
552 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
553 				 struct iio_chan_spec const *chan,
554 				 int *val)
555 {
556 	struct device *dev = regmap_get_device(data->regmap);
557 	int ret;
558 	int axis = chan->scan_index;
559 	__le16 raw_val;
560 
561 	mutex_lock(&data->mutex);
562 	ret = bmc150_accel_set_power_state(data, true);
563 	if (ret < 0) {
564 		mutex_unlock(&data->mutex);
565 		return ret;
566 	}
567 
568 	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
569 			       &raw_val, sizeof(raw_val));
570 	if (ret < 0) {
571 		dev_err(dev, "Error reading axis %d\n", axis);
572 		bmc150_accel_set_power_state(data, false);
573 		mutex_unlock(&data->mutex);
574 		return ret;
575 	}
576 	*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
577 			     chan->scan_type.realbits - 1);
578 	ret = bmc150_accel_set_power_state(data, false);
579 	mutex_unlock(&data->mutex);
580 	if (ret < 0)
581 		return ret;
582 
583 	return IIO_VAL_INT;
584 }
585 
586 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
587 				 struct iio_chan_spec const *chan,
588 				 int *val, int *val2, long mask)
589 {
590 	struct bmc150_accel_data *data = iio_priv(indio_dev);
591 	int ret;
592 
593 	switch (mask) {
594 	case IIO_CHAN_INFO_RAW:
595 		switch (chan->type) {
596 		case IIO_TEMP:
597 			return bmc150_accel_get_temp(data, val);
598 		case IIO_ACCEL:
599 			if (iio_buffer_enabled(indio_dev))
600 				return -EBUSY;
601 			else
602 				return bmc150_accel_get_axis(data, chan, val);
603 		default:
604 			return -EINVAL;
605 		}
606 	case IIO_CHAN_INFO_OFFSET:
607 		if (chan->type == IIO_TEMP) {
608 			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
609 			return IIO_VAL_INT;
610 		} else {
611 			return -EINVAL;
612 		}
613 	case IIO_CHAN_INFO_SCALE:
614 		*val = 0;
615 		switch (chan->type) {
616 		case IIO_TEMP:
617 			*val2 = 500000;
618 			return IIO_VAL_INT_PLUS_MICRO;
619 		case IIO_ACCEL:
620 		{
621 			int i;
622 			const struct bmc150_scale_info *si;
623 			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
624 
625 			for (i = 0; i < st_size; ++i) {
626 				si = &data->chip_info->scale_table[i];
627 				if (si->reg_range == data->range) {
628 					*val2 = si->scale;
629 					return IIO_VAL_INT_PLUS_MICRO;
630 				}
631 			}
632 			return -EINVAL;
633 		}
634 		default:
635 			return -EINVAL;
636 		}
637 	case IIO_CHAN_INFO_SAMP_FREQ:
638 		mutex_lock(&data->mutex);
639 		ret = bmc150_accel_get_bw(data, val, val2);
640 		mutex_unlock(&data->mutex);
641 		return ret;
642 	default:
643 		return -EINVAL;
644 	}
645 }
646 
647 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
648 				  struct iio_chan_spec const *chan,
649 				  int val, int val2, long mask)
650 {
651 	struct bmc150_accel_data *data = iio_priv(indio_dev);
652 	int ret;
653 
654 	switch (mask) {
655 	case IIO_CHAN_INFO_SAMP_FREQ:
656 		mutex_lock(&data->mutex);
657 		ret = bmc150_accel_set_bw(data, val, val2);
658 		mutex_unlock(&data->mutex);
659 		break;
660 	case IIO_CHAN_INFO_SCALE:
661 		if (val)
662 			return -EINVAL;
663 
664 		mutex_lock(&data->mutex);
665 		ret = bmc150_accel_set_scale(data, val2);
666 		mutex_unlock(&data->mutex);
667 		return ret;
668 	default:
669 		ret = -EINVAL;
670 	}
671 
672 	return ret;
673 }
674 
675 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
676 				   const struct iio_chan_spec *chan,
677 				   enum iio_event_type type,
678 				   enum iio_event_direction dir,
679 				   enum iio_event_info info,
680 				   int *val, int *val2)
681 {
682 	struct bmc150_accel_data *data = iio_priv(indio_dev);
683 
684 	*val2 = 0;
685 	switch (info) {
686 	case IIO_EV_INFO_VALUE:
687 		*val = data->slope_thres;
688 		break;
689 	case IIO_EV_INFO_PERIOD:
690 		*val = data->slope_dur;
691 		break;
692 	default:
693 		return -EINVAL;
694 	}
695 
696 	return IIO_VAL_INT;
697 }
698 
699 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
700 				    const struct iio_chan_spec *chan,
701 				    enum iio_event_type type,
702 				    enum iio_event_direction dir,
703 				    enum iio_event_info info,
704 				    int val, int val2)
705 {
706 	struct bmc150_accel_data *data = iio_priv(indio_dev);
707 
708 	if (data->ev_enable_state)
709 		return -EBUSY;
710 
711 	switch (info) {
712 	case IIO_EV_INFO_VALUE:
713 		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
714 		break;
715 	case IIO_EV_INFO_PERIOD:
716 		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
717 		break;
718 	default:
719 		return -EINVAL;
720 	}
721 
722 	return 0;
723 }
724 
725 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
726 					  const struct iio_chan_spec *chan,
727 					  enum iio_event_type type,
728 					  enum iio_event_direction dir)
729 {
730 	struct bmc150_accel_data *data = iio_priv(indio_dev);
731 
732 	return data->ev_enable_state;
733 }
734 
735 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
736 					   const struct iio_chan_spec *chan,
737 					   enum iio_event_type type,
738 					   enum iio_event_direction dir,
739 					   int state)
740 {
741 	struct bmc150_accel_data *data = iio_priv(indio_dev);
742 	int ret;
743 
744 	if (state == data->ev_enable_state)
745 		return 0;
746 
747 	mutex_lock(&data->mutex);
748 
749 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
750 					 state);
751 	if (ret < 0) {
752 		mutex_unlock(&data->mutex);
753 		return ret;
754 	}
755 
756 	data->ev_enable_state = state;
757 	mutex_unlock(&data->mutex);
758 
759 	return 0;
760 }
761 
762 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
763 					 struct iio_trigger *trig)
764 {
765 	struct bmc150_accel_data *data = iio_priv(indio_dev);
766 	int i;
767 
768 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
769 		if (data->triggers[i].indio_trig == trig)
770 			return 0;
771 	}
772 
773 	return -EINVAL;
774 }
775 
776 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
777 					       struct device_attribute *attr,
778 					       char *buf)
779 {
780 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
781 	struct bmc150_accel_data *data = iio_priv(indio_dev);
782 	int wm;
783 
784 	mutex_lock(&data->mutex);
785 	wm = data->watermark;
786 	mutex_unlock(&data->mutex);
787 
788 	return sprintf(buf, "%d\n", wm);
789 }
790 
791 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
792 					   struct device_attribute *attr,
793 					   char *buf)
794 {
795 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
796 	struct bmc150_accel_data *data = iio_priv(indio_dev);
797 	bool state;
798 
799 	mutex_lock(&data->mutex);
800 	state = data->fifo_mode;
801 	mutex_unlock(&data->mutex);
802 
803 	return sprintf(buf, "%d\n", state);
804 }
805 
806 static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
807 static IIO_CONST_ATTR(hwfifo_watermark_max,
808 		      __stringify(BMC150_ACCEL_FIFO_LENGTH));
809 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
810 		       bmc150_accel_get_fifo_state, NULL, 0);
811 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
812 		       bmc150_accel_get_fifo_watermark, NULL, 0);
813 
814 static const struct attribute *bmc150_accel_fifo_attributes[] = {
815 	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
816 	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
817 	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
818 	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
819 	NULL,
820 };
821 
822 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
823 {
824 	struct bmc150_accel_data *data = iio_priv(indio_dev);
825 
826 	if (val > BMC150_ACCEL_FIFO_LENGTH)
827 		val = BMC150_ACCEL_FIFO_LENGTH;
828 
829 	mutex_lock(&data->mutex);
830 	data->watermark = val;
831 	mutex_unlock(&data->mutex);
832 
833 	return 0;
834 }
835 
836 /*
837  * We must read at least one full frame in one burst, otherwise the rest of the
838  * frame data is discarded.
839  */
840 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
841 				      char *buffer, int samples)
842 {
843 	struct device *dev = regmap_get_device(data->regmap);
844 	int sample_length = 3 * 2;
845 	int ret;
846 	int total_length = samples * sample_length;
847 	int i;
848 	size_t step = regmap_get_raw_read_max(data->regmap);
849 
850 	if (!step || step > total_length)
851 		step = total_length;
852 	else if (step < total_length)
853 		step = sample_length;
854 
855 	/*
856 	 * Seems we have a bus with size limitation so we have to execute
857 	 * multiple reads
858 	 */
859 	for (i = 0; i < total_length; i += step) {
860 		ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
861 				      &buffer[i], step);
862 		if (ret)
863 			break;
864 	}
865 
866 	if (ret)
867 		dev_err(dev,
868 			"Error transferring data from fifo in single steps of %zu\n",
869 			step);
870 
871 	return ret;
872 }
873 
874 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
875 				     unsigned samples, bool irq)
876 {
877 	struct bmc150_accel_data *data = iio_priv(indio_dev);
878 	struct device *dev = regmap_get_device(data->regmap);
879 	int ret, i;
880 	u8 count;
881 	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
882 	int64_t tstamp;
883 	uint64_t sample_period;
884 	unsigned int val;
885 
886 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
887 	if (ret < 0) {
888 		dev_err(dev, "Error reading reg_fifo_status\n");
889 		return ret;
890 	}
891 
892 	count = val & 0x7F;
893 
894 	if (!count)
895 		return 0;
896 
897 	/*
898 	 * If we getting called from IRQ handler we know the stored timestamp is
899 	 * fairly accurate for the last stored sample. Otherwise, if we are
900 	 * called as a result of a read operation from userspace and hence
901 	 * before the watermark interrupt was triggered, take a timestamp
902 	 * now. We can fall anywhere in between two samples so the error in this
903 	 * case is at most one sample period.
904 	 */
905 	if (!irq) {
906 		data->old_timestamp = data->timestamp;
907 		data->timestamp = iio_get_time_ns(indio_dev);
908 	}
909 
910 	/*
911 	 * Approximate timestamps for each of the sample based on the sampling
912 	 * frequency, timestamp for last sample and number of samples.
913 	 *
914 	 * Note that we can't use the current bandwidth settings to compute the
915 	 * sample period because the sample rate varies with the device
916 	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
917 	 * small variation adds when we store a large number of samples and
918 	 * creates significant jitter between the last and first samples in
919 	 * different batches (e.g. 32ms vs 21ms).
920 	 *
921 	 * To avoid this issue we compute the actual sample period ourselves
922 	 * based on the timestamp delta between the last two flush operations.
923 	 */
924 	sample_period = (data->timestamp - data->old_timestamp);
925 	do_div(sample_period, count);
926 	tstamp = data->timestamp - (count - 1) * sample_period;
927 
928 	if (samples && count > samples)
929 		count = samples;
930 
931 	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
932 	if (ret)
933 		return ret;
934 
935 	/*
936 	 * Ideally we want the IIO core to handle the demux when running in fifo
937 	 * mode but not when running in triggered buffer mode. Unfortunately
938 	 * this does not seem to be possible, so stick with driver demux for
939 	 * now.
940 	 */
941 	for (i = 0; i < count; i++) {
942 		u16 sample[8];
943 		int j, bit;
944 
945 		j = 0;
946 		for_each_set_bit(bit, indio_dev->active_scan_mask,
947 				 indio_dev->masklength)
948 			memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
949 
950 		iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
951 
952 		tstamp += sample_period;
953 	}
954 
955 	return count;
956 }
957 
958 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
959 {
960 	struct bmc150_accel_data *data = iio_priv(indio_dev);
961 	int ret;
962 
963 	mutex_lock(&data->mutex);
964 	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
965 	mutex_unlock(&data->mutex);
966 
967 	return ret;
968 }
969 
970 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
971 		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
972 
973 static struct attribute *bmc150_accel_attributes[] = {
974 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
975 	NULL,
976 };
977 
978 static const struct attribute_group bmc150_accel_attrs_group = {
979 	.attrs = bmc150_accel_attributes,
980 };
981 
982 static const struct iio_event_spec bmc150_accel_event = {
983 		.type = IIO_EV_TYPE_ROC,
984 		.dir = IIO_EV_DIR_EITHER,
985 		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
986 				 BIT(IIO_EV_INFO_ENABLE) |
987 				 BIT(IIO_EV_INFO_PERIOD)
988 };
989 
990 #define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
991 	.type = IIO_ACCEL,						\
992 	.modified = 1,							\
993 	.channel2 = IIO_MOD_##_axis,					\
994 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
995 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
996 				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
997 	.scan_index = AXIS_##_axis,					\
998 	.scan_type = {							\
999 		.sign = 's',						\
1000 		.realbits = (bits),					\
1001 		.storagebits = 16,					\
1002 		.shift = 16 - (bits),					\
1003 		.endianness = IIO_LE,					\
1004 	},								\
1005 	.event_spec = &bmc150_accel_event,				\
1006 	.num_event_specs = 1						\
1007 }
1008 
1009 #define BMC150_ACCEL_CHANNELS(bits) {					\
1010 	{								\
1011 		.type = IIO_TEMP,					\
1012 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
1013 				      BIT(IIO_CHAN_INFO_SCALE) |	\
1014 				      BIT(IIO_CHAN_INFO_OFFSET),	\
1015 		.scan_index = -1,					\
1016 	},								\
1017 	BMC150_ACCEL_CHANNEL(X, bits),					\
1018 	BMC150_ACCEL_CHANNEL(Y, bits),					\
1019 	BMC150_ACCEL_CHANNEL(Z, bits),					\
1020 	IIO_CHAN_SOFT_TIMESTAMP(3),					\
1021 }
1022 
1023 static const struct iio_chan_spec bma222e_accel_channels[] =
1024 	BMC150_ACCEL_CHANNELS(8);
1025 static const struct iio_chan_spec bma250e_accel_channels[] =
1026 	BMC150_ACCEL_CHANNELS(10);
1027 static const struct iio_chan_spec bmc150_accel_channels[] =
1028 	BMC150_ACCEL_CHANNELS(12);
1029 static const struct iio_chan_spec bma280_accel_channels[] =
1030 	BMC150_ACCEL_CHANNELS(14);
1031 
1032 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1033 	[bmc150] = {
1034 		.name = "BMC150A",
1035 		.chip_id = 0xFA,
1036 		.channels = bmc150_accel_channels,
1037 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1038 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1039 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1040 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1041 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1042 	},
1043 	[bmi055] = {
1044 		.name = "BMI055A",
1045 		.chip_id = 0xFA,
1046 		.channels = bmc150_accel_channels,
1047 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1048 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1049 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1050 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1051 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1052 	},
1053 	[bma255] = {
1054 		.name = "BMA0255",
1055 		.chip_id = 0xFA,
1056 		.channels = bmc150_accel_channels,
1057 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1058 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1059 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1060 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1061 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1062 	},
1063 	[bma250e] = {
1064 		.name = "BMA250E",
1065 		.chip_id = 0xF9,
1066 		.channels = bma250e_accel_channels,
1067 		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
1068 		.scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1069 				 {76590, BMC150_ACCEL_DEF_RANGE_4G},
1070 				 {153277, BMC150_ACCEL_DEF_RANGE_8G},
1071 				 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1072 	},
1073 	[bma222e] = {
1074 		.name = "BMA222E",
1075 		.chip_id = 0xF8,
1076 		.channels = bma222e_accel_channels,
1077 		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
1078 		.scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1079 				 {306457, BMC150_ACCEL_DEF_RANGE_4G},
1080 				 {612915, BMC150_ACCEL_DEF_RANGE_8G},
1081 				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1082 	},
1083 	[bma280] = {
1084 		.name = "BMA0280",
1085 		.chip_id = 0xFB,
1086 		.channels = bma280_accel_channels,
1087 		.num_channels = ARRAY_SIZE(bma280_accel_channels),
1088 		.scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1089 				 {4785, BMC150_ACCEL_DEF_RANGE_4G},
1090 				 {9581, BMC150_ACCEL_DEF_RANGE_8G},
1091 				 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1092 	},
1093 };
1094 
1095 static const struct iio_info bmc150_accel_info = {
1096 	.attrs			= &bmc150_accel_attrs_group,
1097 	.read_raw		= bmc150_accel_read_raw,
1098 	.write_raw		= bmc150_accel_write_raw,
1099 	.read_event_value	= bmc150_accel_read_event,
1100 	.write_event_value	= bmc150_accel_write_event,
1101 	.write_event_config	= bmc150_accel_write_event_config,
1102 	.read_event_config	= bmc150_accel_read_event_config,
1103 	.driver_module		= THIS_MODULE,
1104 };
1105 
1106 static const struct iio_info bmc150_accel_info_fifo = {
1107 	.attrs			= &bmc150_accel_attrs_group,
1108 	.read_raw		= bmc150_accel_read_raw,
1109 	.write_raw		= bmc150_accel_write_raw,
1110 	.read_event_value	= bmc150_accel_read_event,
1111 	.write_event_value	= bmc150_accel_write_event,
1112 	.write_event_config	= bmc150_accel_write_event_config,
1113 	.read_event_config	= bmc150_accel_read_event_config,
1114 	.validate_trigger	= bmc150_accel_validate_trigger,
1115 	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
1116 	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
1117 	.driver_module		= THIS_MODULE,
1118 };
1119 
1120 static const unsigned long bmc150_accel_scan_masks[] = {
1121 					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
1122 					0};
1123 
1124 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1125 {
1126 	struct iio_poll_func *pf = p;
1127 	struct iio_dev *indio_dev = pf->indio_dev;
1128 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1129 	int ret;
1130 
1131 	mutex_lock(&data->mutex);
1132 	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
1133 			       data->buffer, AXIS_MAX * 2);
1134 	mutex_unlock(&data->mutex);
1135 	if (ret < 0)
1136 		goto err_read;
1137 
1138 	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1139 					   pf->timestamp);
1140 err_read:
1141 	iio_trigger_notify_done(indio_dev->trig);
1142 
1143 	return IRQ_HANDLED;
1144 }
1145 
1146 static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1147 {
1148 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1149 	struct bmc150_accel_data *data = t->data;
1150 	struct device *dev = regmap_get_device(data->regmap);
1151 	int ret;
1152 
1153 	/* new data interrupts don't need ack */
1154 	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1155 		return 0;
1156 
1157 	mutex_lock(&data->mutex);
1158 	/* clear any latched interrupt */
1159 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1160 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1161 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1162 	mutex_unlock(&data->mutex);
1163 	if (ret < 0) {
1164 		dev_err(dev, "Error writing reg_int_rst_latch\n");
1165 		return ret;
1166 	}
1167 
1168 	return 0;
1169 }
1170 
1171 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1172 					  bool state)
1173 {
1174 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1175 	struct bmc150_accel_data *data = t->data;
1176 	int ret;
1177 
1178 	mutex_lock(&data->mutex);
1179 
1180 	if (t->enabled == state) {
1181 		mutex_unlock(&data->mutex);
1182 		return 0;
1183 	}
1184 
1185 	if (t->setup) {
1186 		ret = t->setup(t, state);
1187 		if (ret < 0) {
1188 			mutex_unlock(&data->mutex);
1189 			return ret;
1190 		}
1191 	}
1192 
1193 	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1194 	if (ret < 0) {
1195 		mutex_unlock(&data->mutex);
1196 		return ret;
1197 	}
1198 
1199 	t->enabled = state;
1200 
1201 	mutex_unlock(&data->mutex);
1202 
1203 	return ret;
1204 }
1205 
1206 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1207 	.set_trigger_state = bmc150_accel_trigger_set_state,
1208 	.try_reenable = bmc150_accel_trig_try_reen,
1209 	.owner = THIS_MODULE,
1210 };
1211 
1212 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1213 {
1214 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1215 	struct device *dev = regmap_get_device(data->regmap);
1216 	int dir;
1217 	int ret;
1218 	unsigned int val;
1219 
1220 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1221 	if (ret < 0) {
1222 		dev_err(dev, "Error reading reg_int_status_2\n");
1223 		return ret;
1224 	}
1225 
1226 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1227 		dir = IIO_EV_DIR_FALLING;
1228 	else
1229 		dir = IIO_EV_DIR_RISING;
1230 
1231 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1232 		iio_push_event(indio_dev,
1233 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1234 						  0,
1235 						  IIO_MOD_X,
1236 						  IIO_EV_TYPE_ROC,
1237 						  dir),
1238 			       data->timestamp);
1239 
1240 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1241 		iio_push_event(indio_dev,
1242 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1243 						  0,
1244 						  IIO_MOD_Y,
1245 						  IIO_EV_TYPE_ROC,
1246 						  dir),
1247 			       data->timestamp);
1248 
1249 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1250 		iio_push_event(indio_dev,
1251 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1252 						  0,
1253 						  IIO_MOD_Z,
1254 						  IIO_EV_TYPE_ROC,
1255 						  dir),
1256 			       data->timestamp);
1257 
1258 	return ret;
1259 }
1260 
1261 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1262 {
1263 	struct iio_dev *indio_dev = private;
1264 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1265 	struct device *dev = regmap_get_device(data->regmap);
1266 	bool ack = false;
1267 	int ret;
1268 
1269 	mutex_lock(&data->mutex);
1270 
1271 	if (data->fifo_mode) {
1272 		ret = __bmc150_accel_fifo_flush(indio_dev,
1273 						BMC150_ACCEL_FIFO_LENGTH, true);
1274 		if (ret > 0)
1275 			ack = true;
1276 	}
1277 
1278 	if (data->ev_enable_state) {
1279 		ret = bmc150_accel_handle_roc_event(indio_dev);
1280 		if (ret > 0)
1281 			ack = true;
1282 	}
1283 
1284 	if (ack) {
1285 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1286 				   BMC150_ACCEL_INT_MODE_LATCH_INT |
1287 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1288 		if (ret)
1289 			dev_err(dev, "Error writing reg_int_rst_latch\n");
1290 
1291 		ret = IRQ_HANDLED;
1292 	} else {
1293 		ret = IRQ_NONE;
1294 	}
1295 
1296 	mutex_unlock(&data->mutex);
1297 
1298 	return ret;
1299 }
1300 
1301 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1302 {
1303 	struct iio_dev *indio_dev = private;
1304 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1305 	bool ack = false;
1306 	int i;
1307 
1308 	data->old_timestamp = data->timestamp;
1309 	data->timestamp = iio_get_time_ns(indio_dev);
1310 
1311 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1312 		if (data->triggers[i].enabled) {
1313 			iio_trigger_poll(data->triggers[i].indio_trig);
1314 			ack = true;
1315 			break;
1316 		}
1317 	}
1318 
1319 	if (data->ev_enable_state || data->fifo_mode)
1320 		return IRQ_WAKE_THREAD;
1321 
1322 	if (ack)
1323 		return IRQ_HANDLED;
1324 
1325 	return IRQ_NONE;
1326 }
1327 
1328 static const struct {
1329 	int intr;
1330 	const char *name;
1331 	int (*setup)(struct bmc150_accel_trigger *t, bool state);
1332 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1333 	{
1334 		.intr = 0,
1335 		.name = "%s-dev%d",
1336 	},
1337 	{
1338 		.intr = 1,
1339 		.name = "%s-any-motion-dev%d",
1340 		.setup = bmc150_accel_any_motion_setup,
1341 	},
1342 };
1343 
1344 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1345 					     int from)
1346 {
1347 	int i;
1348 
1349 	for (i = from; i >= 0; i--) {
1350 		if (data->triggers[i].indio_trig) {
1351 			iio_trigger_unregister(data->triggers[i].indio_trig);
1352 			data->triggers[i].indio_trig = NULL;
1353 		}
1354 	}
1355 }
1356 
1357 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1358 				       struct bmc150_accel_data *data)
1359 {
1360 	struct device *dev = regmap_get_device(data->regmap);
1361 	int i, ret;
1362 
1363 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1364 		struct bmc150_accel_trigger *t = &data->triggers[i];
1365 
1366 		t->indio_trig = devm_iio_trigger_alloc(dev,
1367 					bmc150_accel_triggers[i].name,
1368 						       indio_dev->name,
1369 						       indio_dev->id);
1370 		if (!t->indio_trig) {
1371 			ret = -ENOMEM;
1372 			break;
1373 		}
1374 
1375 		t->indio_trig->dev.parent = dev;
1376 		t->indio_trig->ops = &bmc150_accel_trigger_ops;
1377 		t->intr = bmc150_accel_triggers[i].intr;
1378 		t->data = data;
1379 		t->setup = bmc150_accel_triggers[i].setup;
1380 		iio_trigger_set_drvdata(t->indio_trig, t);
1381 
1382 		ret = iio_trigger_register(t->indio_trig);
1383 		if (ret)
1384 			break;
1385 	}
1386 
1387 	if (ret)
1388 		bmc150_accel_unregister_triggers(data, i - 1);
1389 
1390 	return ret;
1391 }
1392 
1393 #define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1394 #define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1395 #define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1396 
1397 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1398 {
1399 	struct device *dev = regmap_get_device(data->regmap);
1400 	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1401 	int ret;
1402 
1403 	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1404 	if (ret < 0) {
1405 		dev_err(dev, "Error writing reg_fifo_config1\n");
1406 		return ret;
1407 	}
1408 
1409 	if (!data->fifo_mode)
1410 		return 0;
1411 
1412 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1413 			   data->watermark);
1414 	if (ret < 0)
1415 		dev_err(dev, "Error writing reg_fifo_config0\n");
1416 
1417 	return ret;
1418 }
1419 
1420 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1421 {
1422 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1423 
1424 	return bmc150_accel_set_power_state(data, true);
1425 }
1426 
1427 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1428 {
1429 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1430 	int ret = 0;
1431 
1432 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1433 		return iio_triggered_buffer_postenable(indio_dev);
1434 
1435 	mutex_lock(&data->mutex);
1436 
1437 	if (!data->watermark)
1438 		goto out;
1439 
1440 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1441 					 true);
1442 	if (ret)
1443 		goto out;
1444 
1445 	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1446 
1447 	ret = bmc150_accel_fifo_set_mode(data);
1448 	if (ret) {
1449 		data->fifo_mode = 0;
1450 		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1451 					   false);
1452 	}
1453 
1454 out:
1455 	mutex_unlock(&data->mutex);
1456 
1457 	return ret;
1458 }
1459 
1460 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1461 {
1462 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1463 
1464 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1465 		return iio_triggered_buffer_predisable(indio_dev);
1466 
1467 	mutex_lock(&data->mutex);
1468 
1469 	if (!data->fifo_mode)
1470 		goto out;
1471 
1472 	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1473 	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1474 	data->fifo_mode = 0;
1475 	bmc150_accel_fifo_set_mode(data);
1476 
1477 out:
1478 	mutex_unlock(&data->mutex);
1479 
1480 	return 0;
1481 }
1482 
1483 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1484 {
1485 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1486 
1487 	return bmc150_accel_set_power_state(data, false);
1488 }
1489 
1490 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1491 	.preenable = bmc150_accel_buffer_preenable,
1492 	.postenable = bmc150_accel_buffer_postenable,
1493 	.predisable = bmc150_accel_buffer_predisable,
1494 	.postdisable = bmc150_accel_buffer_postdisable,
1495 };
1496 
1497 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1498 {
1499 	struct device *dev = regmap_get_device(data->regmap);
1500 	int ret, i;
1501 	unsigned int val;
1502 
1503 	/*
1504 	 * Reset chip to get it in a known good state. A delay of 1.8ms after
1505 	 * reset is required according to the data sheets of supported chips.
1506 	 */
1507 	regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
1508 		     BMC150_ACCEL_RESET_VAL);
1509 	usleep_range(1800, 2500);
1510 
1511 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1512 	if (ret < 0) {
1513 		dev_err(dev, "Error: Reading chip id\n");
1514 		return ret;
1515 	}
1516 
1517 	dev_dbg(dev, "Chip Id %x\n", val);
1518 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1519 		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1520 			data->chip_info = &bmc150_accel_chip_info_tbl[i];
1521 			break;
1522 		}
1523 	}
1524 
1525 	if (!data->chip_info) {
1526 		dev_err(dev, "Invalid chip %x\n", val);
1527 		return -ENODEV;
1528 	}
1529 
1530 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1531 	if (ret < 0)
1532 		return ret;
1533 
1534 	/* Set Bandwidth */
1535 	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1536 	if (ret < 0)
1537 		return ret;
1538 
1539 	/* Set Default Range */
1540 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1541 			   BMC150_ACCEL_DEF_RANGE_4G);
1542 	if (ret < 0) {
1543 		dev_err(dev, "Error writing reg_pmu_range\n");
1544 		return ret;
1545 	}
1546 
1547 	data->range = BMC150_ACCEL_DEF_RANGE_4G;
1548 
1549 	/* Set default slope duration and thresholds */
1550 	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1551 	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1552 	ret = bmc150_accel_update_slope(data);
1553 	if (ret < 0)
1554 		return ret;
1555 
1556 	/* Set default as latched interrupts */
1557 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1558 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1559 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1560 	if (ret < 0) {
1561 		dev_err(dev, "Error writing reg_int_rst_latch\n");
1562 		return ret;
1563 	}
1564 
1565 	return 0;
1566 }
1567 
1568 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1569 			    const char *name, bool block_supported)
1570 {
1571 	struct bmc150_accel_data *data;
1572 	struct iio_dev *indio_dev;
1573 	int ret;
1574 
1575 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1576 	if (!indio_dev)
1577 		return -ENOMEM;
1578 
1579 	data = iio_priv(indio_dev);
1580 	dev_set_drvdata(dev, indio_dev);
1581 	data->irq = irq;
1582 
1583 	data->regmap = regmap;
1584 
1585 	ret = bmc150_accel_chip_init(data);
1586 	if (ret < 0)
1587 		return ret;
1588 
1589 	mutex_init(&data->mutex);
1590 
1591 	indio_dev->dev.parent = dev;
1592 	indio_dev->channels = data->chip_info->channels;
1593 	indio_dev->num_channels = data->chip_info->num_channels;
1594 	indio_dev->name = name ? name : data->chip_info->name;
1595 	indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1596 	indio_dev->modes = INDIO_DIRECT_MODE;
1597 	indio_dev->info = &bmc150_accel_info;
1598 
1599 	ret = iio_triggered_buffer_setup(indio_dev,
1600 					 &iio_pollfunc_store_time,
1601 					 bmc150_accel_trigger_handler,
1602 					 &bmc150_accel_buffer_ops);
1603 	if (ret < 0) {
1604 		dev_err(dev, "Failed: iio triggered buffer setup\n");
1605 		return ret;
1606 	}
1607 
1608 	if (data->irq > 0) {
1609 		ret = devm_request_threaded_irq(
1610 						dev, data->irq,
1611 						bmc150_accel_irq_handler,
1612 						bmc150_accel_irq_thread_handler,
1613 						IRQF_TRIGGER_RISING,
1614 						BMC150_ACCEL_IRQ_NAME,
1615 						indio_dev);
1616 		if (ret)
1617 			goto err_buffer_cleanup;
1618 
1619 		/*
1620 		 * Set latched mode interrupt. While certain interrupts are
1621 		 * non-latched regardless of this settings (e.g. new data) we
1622 		 * want to use latch mode when we can to prevent interrupt
1623 		 * flooding.
1624 		 */
1625 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1626 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1627 		if (ret < 0) {
1628 			dev_err(dev, "Error writing reg_int_rst_latch\n");
1629 			goto err_buffer_cleanup;
1630 		}
1631 
1632 		bmc150_accel_interrupts_setup(indio_dev, data);
1633 
1634 		ret = bmc150_accel_triggers_setup(indio_dev, data);
1635 		if (ret)
1636 			goto err_buffer_cleanup;
1637 
1638 		if (block_supported) {
1639 			indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1640 			indio_dev->info = &bmc150_accel_info_fifo;
1641 			indio_dev->buffer->attrs = bmc150_accel_fifo_attributes;
1642 		}
1643 	}
1644 
1645 	ret = pm_runtime_set_active(dev);
1646 	if (ret)
1647 		goto err_trigger_unregister;
1648 
1649 	pm_runtime_enable(dev);
1650 	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1651 	pm_runtime_use_autosuspend(dev);
1652 
1653 	ret = iio_device_register(indio_dev);
1654 	if (ret < 0) {
1655 		dev_err(dev, "Unable to register iio device\n");
1656 		goto err_trigger_unregister;
1657 	}
1658 
1659 	return 0;
1660 
1661 err_trigger_unregister:
1662 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1663 err_buffer_cleanup:
1664 	iio_triggered_buffer_cleanup(indio_dev);
1665 
1666 	return ret;
1667 }
1668 EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1669 
1670 int bmc150_accel_core_remove(struct device *dev)
1671 {
1672 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1673 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1674 
1675 	iio_device_unregister(indio_dev);
1676 
1677 	pm_runtime_disable(dev);
1678 	pm_runtime_set_suspended(dev);
1679 	pm_runtime_put_noidle(dev);
1680 
1681 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1682 
1683 	iio_triggered_buffer_cleanup(indio_dev);
1684 
1685 	mutex_lock(&data->mutex);
1686 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1687 	mutex_unlock(&data->mutex);
1688 
1689 	return 0;
1690 }
1691 EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1692 
1693 #ifdef CONFIG_PM_SLEEP
1694 static int bmc150_accel_suspend(struct device *dev)
1695 {
1696 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1697 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1698 
1699 	mutex_lock(&data->mutex);
1700 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1701 	mutex_unlock(&data->mutex);
1702 
1703 	return 0;
1704 }
1705 
1706 static int bmc150_accel_resume(struct device *dev)
1707 {
1708 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1709 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1710 
1711 	mutex_lock(&data->mutex);
1712 	if (atomic_read(&data->active_intr))
1713 		bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1714 	bmc150_accel_fifo_set_mode(data);
1715 	mutex_unlock(&data->mutex);
1716 
1717 	return 0;
1718 }
1719 #endif
1720 
1721 #ifdef CONFIG_PM
1722 static int bmc150_accel_runtime_suspend(struct device *dev)
1723 {
1724 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1725 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1726 	int ret;
1727 
1728 	dev_dbg(dev,  __func__);
1729 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1730 	if (ret < 0)
1731 		return -EAGAIN;
1732 
1733 	return 0;
1734 }
1735 
1736 static int bmc150_accel_runtime_resume(struct device *dev)
1737 {
1738 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1739 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1740 	int ret;
1741 	int sleep_val;
1742 
1743 	dev_dbg(dev,  __func__);
1744 
1745 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1746 	if (ret < 0)
1747 		return ret;
1748 	ret = bmc150_accel_fifo_set_mode(data);
1749 	if (ret < 0)
1750 		return ret;
1751 
1752 	sleep_val = bmc150_accel_get_startup_times(data);
1753 	if (sleep_val < 20)
1754 		usleep_range(sleep_val * 1000, 20000);
1755 	else
1756 		msleep_interruptible(sleep_val);
1757 
1758 	return 0;
1759 }
1760 #endif
1761 
1762 const struct dev_pm_ops bmc150_accel_pm_ops = {
1763 	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1764 	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1765 			   bmc150_accel_runtime_resume, NULL)
1766 };
1767 EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1768 
1769 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1770 MODULE_LICENSE("GPL v2");
1771 MODULE_DESCRIPTION("BMC150 accelerometer driver");
1772