1 /*
2  * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
3  *  - BMC150
4  *  - BMI055
5  *  - BMA255
6  *  - BMA250E
7  *  - BMA222E
8  *  - BMA280
9  *
10  * Copyright (c) 2014, Intel Corporation.
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms and conditions of the GNU General Public License,
14  * version 2, as published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope it will be useful, but WITHOUT
17  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
19  * more details.
20  */
21 
22 #include <linux/module.h>
23 #include <linux/i2c.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/acpi.h>
28 #include <linux/pm.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/iio/iio.h>
31 #include <linux/iio/sysfs.h>
32 #include <linux/iio/buffer.h>
33 #include <linux/iio/events.h>
34 #include <linux/iio/trigger.h>
35 #include <linux/iio/trigger_consumer.h>
36 #include <linux/iio/triggered_buffer.h>
37 #include <linux/regmap.h>
38 
39 #include "bmc150-accel.h"
40 
41 #define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
42 #define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"
43 
44 #define BMC150_ACCEL_REG_CHIP_ID		0x00
45 
46 #define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
47 #define BMC150_ACCEL_ANY_MOTION_MASK		0x07
48 #define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
49 #define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
50 #define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
51 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)
52 
53 #define BMC150_ACCEL_REG_PMU_LPW		0x11
54 #define BMC150_ACCEL_PMU_MODE_MASK		0xE0
55 #define BMC150_ACCEL_PMU_MODE_SHIFT		5
56 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
57 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1
58 
59 #define BMC150_ACCEL_REG_PMU_RANGE		0x0F
60 
61 #define BMC150_ACCEL_DEF_RANGE_2G		0x03
62 #define BMC150_ACCEL_DEF_RANGE_4G		0x05
63 #define BMC150_ACCEL_DEF_RANGE_8G		0x08
64 #define BMC150_ACCEL_DEF_RANGE_16G		0x0C
65 
66 /* Default BW: 125Hz */
67 #define BMC150_ACCEL_REG_PMU_BW		0x10
68 #define BMC150_ACCEL_DEF_BW			125
69 
70 #define BMC150_ACCEL_REG_RESET			0x14
71 #define BMC150_ACCEL_RESET_VAL			0xB6
72 
73 #define BMC150_ACCEL_REG_INT_MAP_0		0x19
74 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE	BIT(2)
75 
76 #define BMC150_ACCEL_REG_INT_MAP_1		0x1A
77 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA		BIT(0)
78 #define BMC150_ACCEL_INT_MAP_1_BIT_FWM		BIT(1)
79 #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL	BIT(2)
80 
81 #define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
82 #define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
83 #define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
84 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00
85 
86 #define BMC150_ACCEL_REG_INT_EN_0		0x16
87 #define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
88 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
89 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)
90 
91 #define BMC150_ACCEL_REG_INT_EN_1		0x17
92 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
93 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
94 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
95 
96 #define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
97 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)
98 
99 #define BMC150_ACCEL_REG_INT_5			0x27
100 #define BMC150_ACCEL_SLOPE_DUR_MASK		0x03
101 
102 #define BMC150_ACCEL_REG_INT_6			0x28
103 #define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF
104 
105 /* Slope duration in terms of number of samples */
106 #define BMC150_ACCEL_DEF_SLOPE_DURATION		1
107 /* in terms of multiples of g's/LSB, based on range */
108 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
109 
110 #define BMC150_ACCEL_REG_XOUT_L		0x02
111 
112 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100
113 
114 /* Sleep Duration values */
115 #define BMC150_ACCEL_SLEEP_500_MICRO		0x05
116 #define BMC150_ACCEL_SLEEP_1_MS		0x06
117 #define BMC150_ACCEL_SLEEP_2_MS		0x07
118 #define BMC150_ACCEL_SLEEP_4_MS		0x08
119 #define BMC150_ACCEL_SLEEP_6_MS		0x09
120 #define BMC150_ACCEL_SLEEP_10_MS		0x0A
121 #define BMC150_ACCEL_SLEEP_25_MS		0x0B
122 #define BMC150_ACCEL_SLEEP_50_MS		0x0C
123 #define BMC150_ACCEL_SLEEP_100_MS		0x0D
124 #define BMC150_ACCEL_SLEEP_500_MS		0x0E
125 #define BMC150_ACCEL_SLEEP_1_SEC		0x0F
126 
127 #define BMC150_ACCEL_REG_TEMP			0x08
128 #define BMC150_ACCEL_TEMP_CENTER_VAL		24
129 
130 #define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
131 #define BMC150_AUTO_SUSPEND_DELAY_MS		2000
132 
133 #define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
134 #define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
135 #define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
136 #define BMC150_ACCEL_REG_FIFO_DATA		0x3F
137 #define BMC150_ACCEL_FIFO_LENGTH		32
138 
139 enum bmc150_accel_axis {
140 	AXIS_X,
141 	AXIS_Y,
142 	AXIS_Z,
143 	AXIS_MAX,
144 };
145 
146 enum bmc150_power_modes {
147 	BMC150_ACCEL_SLEEP_MODE_NORMAL,
148 	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
149 	BMC150_ACCEL_SLEEP_MODE_LPM,
150 	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
151 };
152 
153 struct bmc150_scale_info {
154 	int scale;
155 	u8 reg_range;
156 };
157 
158 struct bmc150_accel_chip_info {
159 	const char *name;
160 	u8 chip_id;
161 	const struct iio_chan_spec *channels;
162 	int num_channels;
163 	const struct bmc150_scale_info scale_table[4];
164 };
165 
166 struct bmc150_accel_interrupt {
167 	const struct bmc150_accel_interrupt_info *info;
168 	atomic_t users;
169 };
170 
171 struct bmc150_accel_trigger {
172 	struct bmc150_accel_data *data;
173 	struct iio_trigger *indio_trig;
174 	int (*setup)(struct bmc150_accel_trigger *t, bool state);
175 	int intr;
176 	bool enabled;
177 };
178 
179 enum bmc150_accel_interrupt_id {
180 	BMC150_ACCEL_INT_DATA_READY,
181 	BMC150_ACCEL_INT_ANY_MOTION,
182 	BMC150_ACCEL_INT_WATERMARK,
183 	BMC150_ACCEL_INTERRUPTS,
184 };
185 
186 enum bmc150_accel_trigger_id {
187 	BMC150_ACCEL_TRIGGER_DATA_READY,
188 	BMC150_ACCEL_TRIGGER_ANY_MOTION,
189 	BMC150_ACCEL_TRIGGERS,
190 };
191 
192 struct bmc150_accel_data {
193 	struct regmap *regmap;
194 	int irq;
195 	struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
196 	struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
197 	struct mutex mutex;
198 	u8 fifo_mode, watermark;
199 	s16 buffer[8];
200 	u8 bw_bits;
201 	u32 slope_dur;
202 	u32 slope_thres;
203 	u32 range;
204 	int ev_enable_state;
205 	int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
206 	const struct bmc150_accel_chip_info *chip_info;
207 };
208 
209 static const struct {
210 	int val;
211 	int val2;
212 	u8 bw_bits;
213 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
214 				     {31, 260000, 0x09},
215 				     {62, 500000, 0x0A},
216 				     {125, 0, 0x0B},
217 				     {250, 0, 0x0C},
218 				     {500, 0, 0x0D},
219 				     {1000, 0, 0x0E},
220 				     {2000, 0, 0x0F} };
221 
222 static const struct {
223 	int bw_bits;
224 	int msec;
225 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
226 				     {0x09, 32},
227 				     {0x0A, 16},
228 				     {0x0B, 8},
229 				     {0x0C, 4},
230 				     {0x0D, 2},
231 				     {0x0E, 1},
232 				     {0x0F, 1} };
233 
234 static const struct {
235 	int sleep_dur;
236 	u8 reg_value;
237 } bmc150_accel_sleep_value_table[] = { {0, 0},
238 				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
239 				       {1000, BMC150_ACCEL_SLEEP_1_MS},
240 				       {2000, BMC150_ACCEL_SLEEP_2_MS},
241 				       {4000, BMC150_ACCEL_SLEEP_4_MS},
242 				       {6000, BMC150_ACCEL_SLEEP_6_MS},
243 				       {10000, BMC150_ACCEL_SLEEP_10_MS},
244 				       {25000, BMC150_ACCEL_SLEEP_25_MS},
245 				       {50000, BMC150_ACCEL_SLEEP_50_MS},
246 				       {100000, BMC150_ACCEL_SLEEP_100_MS},
247 				       {500000, BMC150_ACCEL_SLEEP_500_MS},
248 				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
249 
250 const struct regmap_config bmc150_regmap_conf = {
251 	.reg_bits = 8,
252 	.val_bits = 8,
253 	.max_register = 0x3f,
254 };
255 EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
256 
257 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
258 				 enum bmc150_power_modes mode,
259 				 int dur_us)
260 {
261 	struct device *dev = regmap_get_device(data->regmap);
262 	int i;
263 	int ret;
264 	u8 lpw_bits;
265 	int dur_val = -1;
266 
267 	if (dur_us > 0) {
268 		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
269 									 ++i) {
270 			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
271 									dur_us)
272 				dur_val =
273 				bmc150_accel_sleep_value_table[i].reg_value;
274 		}
275 	} else {
276 		dur_val = 0;
277 	}
278 
279 	if (dur_val < 0)
280 		return -EINVAL;
281 
282 	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
283 	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
284 
285 	dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
286 
287 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
288 	if (ret < 0) {
289 		dev_err(dev, "Error writing reg_pmu_lpw\n");
290 		return ret;
291 	}
292 
293 	return 0;
294 }
295 
296 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
297 			       int val2)
298 {
299 	int i;
300 	int ret;
301 
302 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
303 		if (bmc150_accel_samp_freq_table[i].val == val &&
304 		    bmc150_accel_samp_freq_table[i].val2 == val2) {
305 			ret = regmap_write(data->regmap,
306 				BMC150_ACCEL_REG_PMU_BW,
307 				bmc150_accel_samp_freq_table[i].bw_bits);
308 			if (ret < 0)
309 				return ret;
310 
311 			data->bw_bits =
312 				bmc150_accel_samp_freq_table[i].bw_bits;
313 			return 0;
314 		}
315 	}
316 
317 	return -EINVAL;
318 }
319 
320 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
321 {
322 	struct device *dev = regmap_get_device(data->regmap);
323 	int ret;
324 
325 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
326 					data->slope_thres);
327 	if (ret < 0) {
328 		dev_err(dev, "Error writing reg_int_6\n");
329 		return ret;
330 	}
331 
332 	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
333 				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
334 	if (ret < 0) {
335 		dev_err(dev, "Error updating reg_int_5\n");
336 		return ret;
337 	}
338 
339 	dev_dbg(dev, "%s: %x %x\n", __func__, data->slope_thres,
340 		data->slope_dur);
341 
342 	return ret;
343 }
344 
345 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
346 					 bool state)
347 {
348 	if (state)
349 		return bmc150_accel_update_slope(t->data);
350 
351 	return 0;
352 }
353 
354 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
355 			       int *val2)
356 {
357 	int i;
358 
359 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
360 		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
361 			*val = bmc150_accel_samp_freq_table[i].val;
362 			*val2 = bmc150_accel_samp_freq_table[i].val2;
363 			return IIO_VAL_INT_PLUS_MICRO;
364 		}
365 	}
366 
367 	return -EINVAL;
368 }
369 
370 #ifdef CONFIG_PM
371 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
372 {
373 	int i;
374 
375 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
376 		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
377 			return bmc150_accel_sample_upd_time[i].msec;
378 	}
379 
380 	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
381 }
382 
383 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
384 {
385 	struct device *dev = regmap_get_device(data->regmap);
386 	int ret;
387 
388 	if (on) {
389 		ret = pm_runtime_get_sync(dev);
390 	} else {
391 		pm_runtime_mark_last_busy(dev);
392 		ret = pm_runtime_put_autosuspend(dev);
393 	}
394 
395 	if (ret < 0) {
396 		dev_err(dev,
397 			"Failed: bmc150_accel_set_power_state for %d\n", on);
398 		if (on)
399 			pm_runtime_put_noidle(dev);
400 
401 		return ret;
402 	}
403 
404 	return 0;
405 }
406 #else
407 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
408 {
409 	return 0;
410 }
411 #endif
412 
413 static const struct bmc150_accel_interrupt_info {
414 	u8 map_reg;
415 	u8 map_bitmask;
416 	u8 en_reg;
417 	u8 en_bitmask;
418 } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
419 	{ /* data ready interrupt */
420 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
421 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
422 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
423 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
424 	},
425 	{  /* motion interrupt */
426 		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
427 		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
428 		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
429 		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
430 			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
431 			BMC150_ACCEL_INT_EN_BIT_SLP_Z
432 	},
433 	{ /* fifo watermark interrupt */
434 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
435 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
436 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
437 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
438 	},
439 };
440 
441 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
442 					  struct bmc150_accel_data *data)
443 {
444 	int i;
445 
446 	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
447 		data->interrupts[i].info = &bmc150_accel_interrupts[i];
448 }
449 
450 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
451 				      bool state)
452 {
453 	struct device *dev = regmap_get_device(data->regmap);
454 	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
455 	const struct bmc150_accel_interrupt_info *info = intr->info;
456 	int ret;
457 
458 	if (state) {
459 		if (atomic_inc_return(&intr->users) > 1)
460 			return 0;
461 	} else {
462 		if (atomic_dec_return(&intr->users) > 0)
463 			return 0;
464 	}
465 
466 	/*
467 	 * We will expect the enable and disable to do operation in reverse
468 	 * order. This will happen here anyway, as our resume operation uses
469 	 * sync mode runtime pm calls. The suspend operation will be delayed
470 	 * by autosuspend delay.
471 	 * So the disable operation will still happen in reverse order of
472 	 * enable operation. When runtime pm is disabled the mode is always on,
473 	 * so sequence doesn't matter.
474 	 */
475 	ret = bmc150_accel_set_power_state(data, state);
476 	if (ret < 0)
477 		return ret;
478 
479 	/* map the interrupt to the appropriate pins */
480 	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
481 				 (state ? info->map_bitmask : 0));
482 	if (ret < 0) {
483 		dev_err(dev, "Error updating reg_int_map\n");
484 		goto out_fix_power_state;
485 	}
486 
487 	/* enable/disable the interrupt */
488 	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
489 				 (state ? info->en_bitmask : 0));
490 	if (ret < 0) {
491 		dev_err(dev, "Error updating reg_int_en\n");
492 		goto out_fix_power_state;
493 	}
494 
495 	return 0;
496 
497 out_fix_power_state:
498 	bmc150_accel_set_power_state(data, false);
499 	return ret;
500 }
501 
502 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
503 {
504 	struct device *dev = regmap_get_device(data->regmap);
505 	int ret, i;
506 
507 	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
508 		if (data->chip_info->scale_table[i].scale == val) {
509 			ret = regmap_write(data->regmap,
510 				     BMC150_ACCEL_REG_PMU_RANGE,
511 				     data->chip_info->scale_table[i].reg_range);
512 			if (ret < 0) {
513 				dev_err(dev, "Error writing pmu_range\n");
514 				return ret;
515 			}
516 
517 			data->range = data->chip_info->scale_table[i].reg_range;
518 			return 0;
519 		}
520 	}
521 
522 	return -EINVAL;
523 }
524 
525 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
526 {
527 	struct device *dev = regmap_get_device(data->regmap);
528 	int ret;
529 	unsigned int value;
530 
531 	mutex_lock(&data->mutex);
532 
533 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
534 	if (ret < 0) {
535 		dev_err(dev, "Error reading reg_temp\n");
536 		mutex_unlock(&data->mutex);
537 		return ret;
538 	}
539 	*val = sign_extend32(value, 7);
540 
541 	mutex_unlock(&data->mutex);
542 
543 	return IIO_VAL_INT;
544 }
545 
546 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
547 				 struct iio_chan_spec const *chan,
548 				 int *val)
549 {
550 	struct device *dev = regmap_get_device(data->regmap);
551 	int ret;
552 	int axis = chan->scan_index;
553 	__le16 raw_val;
554 
555 	mutex_lock(&data->mutex);
556 	ret = bmc150_accel_set_power_state(data, true);
557 	if (ret < 0) {
558 		mutex_unlock(&data->mutex);
559 		return ret;
560 	}
561 
562 	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
563 			       &raw_val, sizeof(raw_val));
564 	if (ret < 0) {
565 		dev_err(dev, "Error reading axis %d\n", axis);
566 		bmc150_accel_set_power_state(data, false);
567 		mutex_unlock(&data->mutex);
568 		return ret;
569 	}
570 	*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
571 			     chan->scan_type.realbits - 1);
572 	ret = bmc150_accel_set_power_state(data, false);
573 	mutex_unlock(&data->mutex);
574 	if (ret < 0)
575 		return ret;
576 
577 	return IIO_VAL_INT;
578 }
579 
580 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
581 				 struct iio_chan_spec const *chan,
582 				 int *val, int *val2, long mask)
583 {
584 	struct bmc150_accel_data *data = iio_priv(indio_dev);
585 	int ret;
586 
587 	switch (mask) {
588 	case IIO_CHAN_INFO_RAW:
589 		switch (chan->type) {
590 		case IIO_TEMP:
591 			return bmc150_accel_get_temp(data, val);
592 		case IIO_ACCEL:
593 			if (iio_buffer_enabled(indio_dev))
594 				return -EBUSY;
595 			else
596 				return bmc150_accel_get_axis(data, chan, val);
597 		default:
598 			return -EINVAL;
599 		}
600 	case IIO_CHAN_INFO_OFFSET:
601 		if (chan->type == IIO_TEMP) {
602 			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
603 			return IIO_VAL_INT;
604 		} else {
605 			return -EINVAL;
606 		}
607 	case IIO_CHAN_INFO_SCALE:
608 		*val = 0;
609 		switch (chan->type) {
610 		case IIO_TEMP:
611 			*val2 = 500000;
612 			return IIO_VAL_INT_PLUS_MICRO;
613 		case IIO_ACCEL:
614 		{
615 			int i;
616 			const struct bmc150_scale_info *si;
617 			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
618 
619 			for (i = 0; i < st_size; ++i) {
620 				si = &data->chip_info->scale_table[i];
621 				if (si->reg_range == data->range) {
622 					*val2 = si->scale;
623 					return IIO_VAL_INT_PLUS_MICRO;
624 				}
625 			}
626 			return -EINVAL;
627 		}
628 		default:
629 			return -EINVAL;
630 		}
631 	case IIO_CHAN_INFO_SAMP_FREQ:
632 		mutex_lock(&data->mutex);
633 		ret = bmc150_accel_get_bw(data, val, val2);
634 		mutex_unlock(&data->mutex);
635 		return ret;
636 	default:
637 		return -EINVAL;
638 	}
639 }
640 
641 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
642 				  struct iio_chan_spec const *chan,
643 				  int val, int val2, long mask)
644 {
645 	struct bmc150_accel_data *data = iio_priv(indio_dev);
646 	int ret;
647 
648 	switch (mask) {
649 	case IIO_CHAN_INFO_SAMP_FREQ:
650 		mutex_lock(&data->mutex);
651 		ret = bmc150_accel_set_bw(data, val, val2);
652 		mutex_unlock(&data->mutex);
653 		break;
654 	case IIO_CHAN_INFO_SCALE:
655 		if (val)
656 			return -EINVAL;
657 
658 		mutex_lock(&data->mutex);
659 		ret = bmc150_accel_set_scale(data, val2);
660 		mutex_unlock(&data->mutex);
661 		return ret;
662 	default:
663 		ret = -EINVAL;
664 	}
665 
666 	return ret;
667 }
668 
669 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
670 				   const struct iio_chan_spec *chan,
671 				   enum iio_event_type type,
672 				   enum iio_event_direction dir,
673 				   enum iio_event_info info,
674 				   int *val, int *val2)
675 {
676 	struct bmc150_accel_data *data = iio_priv(indio_dev);
677 
678 	*val2 = 0;
679 	switch (info) {
680 	case IIO_EV_INFO_VALUE:
681 		*val = data->slope_thres;
682 		break;
683 	case IIO_EV_INFO_PERIOD:
684 		*val = data->slope_dur;
685 		break;
686 	default:
687 		return -EINVAL;
688 	}
689 
690 	return IIO_VAL_INT;
691 }
692 
693 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
694 				    const struct iio_chan_spec *chan,
695 				    enum iio_event_type type,
696 				    enum iio_event_direction dir,
697 				    enum iio_event_info info,
698 				    int val, int val2)
699 {
700 	struct bmc150_accel_data *data = iio_priv(indio_dev);
701 
702 	if (data->ev_enable_state)
703 		return -EBUSY;
704 
705 	switch (info) {
706 	case IIO_EV_INFO_VALUE:
707 		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
708 		break;
709 	case IIO_EV_INFO_PERIOD:
710 		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
711 		break;
712 	default:
713 		return -EINVAL;
714 	}
715 
716 	return 0;
717 }
718 
719 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
720 					  const struct iio_chan_spec *chan,
721 					  enum iio_event_type type,
722 					  enum iio_event_direction dir)
723 {
724 	struct bmc150_accel_data *data = iio_priv(indio_dev);
725 
726 	return data->ev_enable_state;
727 }
728 
729 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
730 					   const struct iio_chan_spec *chan,
731 					   enum iio_event_type type,
732 					   enum iio_event_direction dir,
733 					   int state)
734 {
735 	struct bmc150_accel_data *data = iio_priv(indio_dev);
736 	int ret;
737 
738 	if (state == data->ev_enable_state)
739 		return 0;
740 
741 	mutex_lock(&data->mutex);
742 
743 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
744 					 state);
745 	if (ret < 0) {
746 		mutex_unlock(&data->mutex);
747 		return ret;
748 	}
749 
750 	data->ev_enable_state = state;
751 	mutex_unlock(&data->mutex);
752 
753 	return 0;
754 }
755 
756 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
757 					 struct iio_trigger *trig)
758 {
759 	struct bmc150_accel_data *data = iio_priv(indio_dev);
760 	int i;
761 
762 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
763 		if (data->triggers[i].indio_trig == trig)
764 			return 0;
765 	}
766 
767 	return -EINVAL;
768 }
769 
770 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
771 					       struct device_attribute *attr,
772 					       char *buf)
773 {
774 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
775 	struct bmc150_accel_data *data = iio_priv(indio_dev);
776 	int wm;
777 
778 	mutex_lock(&data->mutex);
779 	wm = data->watermark;
780 	mutex_unlock(&data->mutex);
781 
782 	return sprintf(buf, "%d\n", wm);
783 }
784 
785 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
786 					   struct device_attribute *attr,
787 					   char *buf)
788 {
789 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
790 	struct bmc150_accel_data *data = iio_priv(indio_dev);
791 	bool state;
792 
793 	mutex_lock(&data->mutex);
794 	state = data->fifo_mode;
795 	mutex_unlock(&data->mutex);
796 
797 	return sprintf(buf, "%d\n", state);
798 }
799 
800 static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
801 static IIO_CONST_ATTR(hwfifo_watermark_max,
802 		      __stringify(BMC150_ACCEL_FIFO_LENGTH));
803 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
804 		       bmc150_accel_get_fifo_state, NULL, 0);
805 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
806 		       bmc150_accel_get_fifo_watermark, NULL, 0);
807 
808 static const struct attribute *bmc150_accel_fifo_attributes[] = {
809 	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
810 	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
811 	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
812 	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
813 	NULL,
814 };
815 
816 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
817 {
818 	struct bmc150_accel_data *data = iio_priv(indio_dev);
819 
820 	if (val > BMC150_ACCEL_FIFO_LENGTH)
821 		val = BMC150_ACCEL_FIFO_LENGTH;
822 
823 	mutex_lock(&data->mutex);
824 	data->watermark = val;
825 	mutex_unlock(&data->mutex);
826 
827 	return 0;
828 }
829 
830 /*
831  * We must read at least one full frame in one burst, otherwise the rest of the
832  * frame data is discarded.
833  */
834 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
835 				      char *buffer, int samples)
836 {
837 	struct device *dev = regmap_get_device(data->regmap);
838 	int sample_length = 3 * 2;
839 	int ret;
840 	int total_length = samples * sample_length;
841 	int i;
842 	size_t step = regmap_get_raw_read_max(data->regmap);
843 
844 	if (!step || step > total_length)
845 		step = total_length;
846 	else if (step < total_length)
847 		step = sample_length;
848 
849 	/*
850 	 * Seems we have a bus with size limitation so we have to execute
851 	 * multiple reads
852 	 */
853 	for (i = 0; i < total_length; i += step) {
854 		ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
855 				      &buffer[i], step);
856 		if (ret)
857 			break;
858 	}
859 
860 	if (ret)
861 		dev_err(dev,
862 			"Error transferring data from fifo in single steps of %zu\n",
863 			step);
864 
865 	return ret;
866 }
867 
868 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
869 				     unsigned samples, bool irq)
870 {
871 	struct bmc150_accel_data *data = iio_priv(indio_dev);
872 	struct device *dev = regmap_get_device(data->regmap);
873 	int ret, i;
874 	u8 count;
875 	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
876 	int64_t tstamp;
877 	uint64_t sample_period;
878 	unsigned int val;
879 
880 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
881 	if (ret < 0) {
882 		dev_err(dev, "Error reading reg_fifo_status\n");
883 		return ret;
884 	}
885 
886 	count = val & 0x7F;
887 
888 	if (!count)
889 		return 0;
890 
891 	/*
892 	 * If we getting called from IRQ handler we know the stored timestamp is
893 	 * fairly accurate for the last stored sample. Otherwise, if we are
894 	 * called as a result of a read operation from userspace and hence
895 	 * before the watermark interrupt was triggered, take a timestamp
896 	 * now. We can fall anywhere in between two samples so the error in this
897 	 * case is at most one sample period.
898 	 */
899 	if (!irq) {
900 		data->old_timestamp = data->timestamp;
901 		data->timestamp = iio_get_time_ns(indio_dev);
902 	}
903 
904 	/*
905 	 * Approximate timestamps for each of the sample based on the sampling
906 	 * frequency, timestamp for last sample and number of samples.
907 	 *
908 	 * Note that we can't use the current bandwidth settings to compute the
909 	 * sample period because the sample rate varies with the device
910 	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
911 	 * small variation adds when we store a large number of samples and
912 	 * creates significant jitter between the last and first samples in
913 	 * different batches (e.g. 32ms vs 21ms).
914 	 *
915 	 * To avoid this issue we compute the actual sample period ourselves
916 	 * based on the timestamp delta between the last two flush operations.
917 	 */
918 	sample_period = (data->timestamp - data->old_timestamp);
919 	do_div(sample_period, count);
920 	tstamp = data->timestamp - (count - 1) * sample_period;
921 
922 	if (samples && count > samples)
923 		count = samples;
924 
925 	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
926 	if (ret)
927 		return ret;
928 
929 	/*
930 	 * Ideally we want the IIO core to handle the demux when running in fifo
931 	 * mode but not when running in triggered buffer mode. Unfortunately
932 	 * this does not seem to be possible, so stick with driver demux for
933 	 * now.
934 	 */
935 	for (i = 0; i < count; i++) {
936 		u16 sample[8];
937 		int j, bit;
938 
939 		j = 0;
940 		for_each_set_bit(bit, indio_dev->active_scan_mask,
941 				 indio_dev->masklength)
942 			memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
943 
944 		iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
945 
946 		tstamp += sample_period;
947 	}
948 
949 	return count;
950 }
951 
952 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
953 {
954 	struct bmc150_accel_data *data = iio_priv(indio_dev);
955 	int ret;
956 
957 	mutex_lock(&data->mutex);
958 	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
959 	mutex_unlock(&data->mutex);
960 
961 	return ret;
962 }
963 
964 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
965 		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
966 
967 static struct attribute *bmc150_accel_attributes[] = {
968 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
969 	NULL,
970 };
971 
972 static const struct attribute_group bmc150_accel_attrs_group = {
973 	.attrs = bmc150_accel_attributes,
974 };
975 
976 static const struct iio_event_spec bmc150_accel_event = {
977 		.type = IIO_EV_TYPE_ROC,
978 		.dir = IIO_EV_DIR_EITHER,
979 		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
980 				 BIT(IIO_EV_INFO_ENABLE) |
981 				 BIT(IIO_EV_INFO_PERIOD)
982 };
983 
984 #define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
985 	.type = IIO_ACCEL,						\
986 	.modified = 1,							\
987 	.channel2 = IIO_MOD_##_axis,					\
988 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
989 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
990 				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
991 	.scan_index = AXIS_##_axis,					\
992 	.scan_type = {							\
993 		.sign = 's',						\
994 		.realbits = (bits),					\
995 		.storagebits = 16,					\
996 		.shift = 16 - (bits),					\
997 		.endianness = IIO_LE,					\
998 	},								\
999 	.event_spec = &bmc150_accel_event,				\
1000 	.num_event_specs = 1						\
1001 }
1002 
1003 #define BMC150_ACCEL_CHANNELS(bits) {					\
1004 	{								\
1005 		.type = IIO_TEMP,					\
1006 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
1007 				      BIT(IIO_CHAN_INFO_SCALE) |	\
1008 				      BIT(IIO_CHAN_INFO_OFFSET),	\
1009 		.scan_index = -1,					\
1010 	},								\
1011 	BMC150_ACCEL_CHANNEL(X, bits),					\
1012 	BMC150_ACCEL_CHANNEL(Y, bits),					\
1013 	BMC150_ACCEL_CHANNEL(Z, bits),					\
1014 	IIO_CHAN_SOFT_TIMESTAMP(3),					\
1015 }
1016 
1017 static const struct iio_chan_spec bma222e_accel_channels[] =
1018 	BMC150_ACCEL_CHANNELS(8);
1019 static const struct iio_chan_spec bma250e_accel_channels[] =
1020 	BMC150_ACCEL_CHANNELS(10);
1021 static const struct iio_chan_spec bmc150_accel_channels[] =
1022 	BMC150_ACCEL_CHANNELS(12);
1023 static const struct iio_chan_spec bma280_accel_channels[] =
1024 	BMC150_ACCEL_CHANNELS(14);
1025 
1026 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1027 	[bmc150] = {
1028 		.name = "BMC150A",
1029 		.chip_id = 0xFA,
1030 		.channels = bmc150_accel_channels,
1031 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1032 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1033 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1034 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1035 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1036 	},
1037 	[bmi055] = {
1038 		.name = "BMI055A",
1039 		.chip_id = 0xFA,
1040 		.channels = bmc150_accel_channels,
1041 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1042 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1043 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1044 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1045 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1046 	},
1047 	[bma255] = {
1048 		.name = "BMA0255",
1049 		.chip_id = 0xFA,
1050 		.channels = bmc150_accel_channels,
1051 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1052 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1053 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1054 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1055 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1056 	},
1057 	[bma250e] = {
1058 		.name = "BMA250E",
1059 		.chip_id = 0xF9,
1060 		.channels = bma250e_accel_channels,
1061 		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
1062 		.scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1063 				 {76590, BMC150_ACCEL_DEF_RANGE_4G},
1064 				 {153277, BMC150_ACCEL_DEF_RANGE_8G},
1065 				 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1066 	},
1067 	[bma222e] = {
1068 		.name = "BMA222E",
1069 		.chip_id = 0xF8,
1070 		.channels = bma222e_accel_channels,
1071 		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
1072 		.scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1073 				 {306457, BMC150_ACCEL_DEF_RANGE_4G},
1074 				 {612915, BMC150_ACCEL_DEF_RANGE_8G},
1075 				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1076 	},
1077 	[bma280] = {
1078 		.name = "BMA0280",
1079 		.chip_id = 0xFB,
1080 		.channels = bma280_accel_channels,
1081 		.num_channels = ARRAY_SIZE(bma280_accel_channels),
1082 		.scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1083 				 {4785, BMC150_ACCEL_DEF_RANGE_4G},
1084 				 {9581, BMC150_ACCEL_DEF_RANGE_8G},
1085 				 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1086 	},
1087 };
1088 
1089 static const struct iio_info bmc150_accel_info = {
1090 	.attrs			= &bmc150_accel_attrs_group,
1091 	.read_raw		= bmc150_accel_read_raw,
1092 	.write_raw		= bmc150_accel_write_raw,
1093 	.read_event_value	= bmc150_accel_read_event,
1094 	.write_event_value	= bmc150_accel_write_event,
1095 	.write_event_config	= bmc150_accel_write_event_config,
1096 	.read_event_config	= bmc150_accel_read_event_config,
1097 };
1098 
1099 static const struct iio_info bmc150_accel_info_fifo = {
1100 	.attrs			= &bmc150_accel_attrs_group,
1101 	.read_raw		= bmc150_accel_read_raw,
1102 	.write_raw		= bmc150_accel_write_raw,
1103 	.read_event_value	= bmc150_accel_read_event,
1104 	.write_event_value	= bmc150_accel_write_event,
1105 	.write_event_config	= bmc150_accel_write_event_config,
1106 	.read_event_config	= bmc150_accel_read_event_config,
1107 	.validate_trigger	= bmc150_accel_validate_trigger,
1108 	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
1109 	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
1110 };
1111 
1112 static const unsigned long bmc150_accel_scan_masks[] = {
1113 					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
1114 					0};
1115 
1116 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1117 {
1118 	struct iio_poll_func *pf = p;
1119 	struct iio_dev *indio_dev = pf->indio_dev;
1120 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1121 	int ret;
1122 
1123 	mutex_lock(&data->mutex);
1124 	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
1125 			       data->buffer, AXIS_MAX * 2);
1126 	mutex_unlock(&data->mutex);
1127 	if (ret < 0)
1128 		goto err_read;
1129 
1130 	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1131 					   pf->timestamp);
1132 err_read:
1133 	iio_trigger_notify_done(indio_dev->trig);
1134 
1135 	return IRQ_HANDLED;
1136 }
1137 
1138 static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1139 {
1140 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1141 	struct bmc150_accel_data *data = t->data;
1142 	struct device *dev = regmap_get_device(data->regmap);
1143 	int ret;
1144 
1145 	/* new data interrupts don't need ack */
1146 	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1147 		return 0;
1148 
1149 	mutex_lock(&data->mutex);
1150 	/* clear any latched interrupt */
1151 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1152 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1153 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1154 	mutex_unlock(&data->mutex);
1155 	if (ret < 0) {
1156 		dev_err(dev, "Error writing reg_int_rst_latch\n");
1157 		return ret;
1158 	}
1159 
1160 	return 0;
1161 }
1162 
1163 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1164 					  bool state)
1165 {
1166 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1167 	struct bmc150_accel_data *data = t->data;
1168 	int ret;
1169 
1170 	mutex_lock(&data->mutex);
1171 
1172 	if (t->enabled == state) {
1173 		mutex_unlock(&data->mutex);
1174 		return 0;
1175 	}
1176 
1177 	if (t->setup) {
1178 		ret = t->setup(t, state);
1179 		if (ret < 0) {
1180 			mutex_unlock(&data->mutex);
1181 			return ret;
1182 		}
1183 	}
1184 
1185 	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1186 	if (ret < 0) {
1187 		mutex_unlock(&data->mutex);
1188 		return ret;
1189 	}
1190 
1191 	t->enabled = state;
1192 
1193 	mutex_unlock(&data->mutex);
1194 
1195 	return ret;
1196 }
1197 
1198 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1199 	.set_trigger_state = bmc150_accel_trigger_set_state,
1200 	.try_reenable = bmc150_accel_trig_try_reen,
1201 };
1202 
1203 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1204 {
1205 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1206 	struct device *dev = regmap_get_device(data->regmap);
1207 	int dir;
1208 	int ret;
1209 	unsigned int val;
1210 
1211 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1212 	if (ret < 0) {
1213 		dev_err(dev, "Error reading reg_int_status_2\n");
1214 		return ret;
1215 	}
1216 
1217 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1218 		dir = IIO_EV_DIR_FALLING;
1219 	else
1220 		dir = IIO_EV_DIR_RISING;
1221 
1222 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1223 		iio_push_event(indio_dev,
1224 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1225 						  0,
1226 						  IIO_MOD_X,
1227 						  IIO_EV_TYPE_ROC,
1228 						  dir),
1229 			       data->timestamp);
1230 
1231 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1232 		iio_push_event(indio_dev,
1233 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1234 						  0,
1235 						  IIO_MOD_Y,
1236 						  IIO_EV_TYPE_ROC,
1237 						  dir),
1238 			       data->timestamp);
1239 
1240 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1241 		iio_push_event(indio_dev,
1242 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1243 						  0,
1244 						  IIO_MOD_Z,
1245 						  IIO_EV_TYPE_ROC,
1246 						  dir),
1247 			       data->timestamp);
1248 
1249 	return ret;
1250 }
1251 
1252 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1253 {
1254 	struct iio_dev *indio_dev = private;
1255 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1256 	struct device *dev = regmap_get_device(data->regmap);
1257 	bool ack = false;
1258 	int ret;
1259 
1260 	mutex_lock(&data->mutex);
1261 
1262 	if (data->fifo_mode) {
1263 		ret = __bmc150_accel_fifo_flush(indio_dev,
1264 						BMC150_ACCEL_FIFO_LENGTH, true);
1265 		if (ret > 0)
1266 			ack = true;
1267 	}
1268 
1269 	if (data->ev_enable_state) {
1270 		ret = bmc150_accel_handle_roc_event(indio_dev);
1271 		if (ret > 0)
1272 			ack = true;
1273 	}
1274 
1275 	if (ack) {
1276 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1277 				   BMC150_ACCEL_INT_MODE_LATCH_INT |
1278 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1279 		if (ret)
1280 			dev_err(dev, "Error writing reg_int_rst_latch\n");
1281 
1282 		ret = IRQ_HANDLED;
1283 	} else {
1284 		ret = IRQ_NONE;
1285 	}
1286 
1287 	mutex_unlock(&data->mutex);
1288 
1289 	return ret;
1290 }
1291 
1292 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1293 {
1294 	struct iio_dev *indio_dev = private;
1295 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1296 	bool ack = false;
1297 	int i;
1298 
1299 	data->old_timestamp = data->timestamp;
1300 	data->timestamp = iio_get_time_ns(indio_dev);
1301 
1302 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1303 		if (data->triggers[i].enabled) {
1304 			iio_trigger_poll(data->triggers[i].indio_trig);
1305 			ack = true;
1306 			break;
1307 		}
1308 	}
1309 
1310 	if (data->ev_enable_state || data->fifo_mode)
1311 		return IRQ_WAKE_THREAD;
1312 
1313 	if (ack)
1314 		return IRQ_HANDLED;
1315 
1316 	return IRQ_NONE;
1317 }
1318 
1319 static const struct {
1320 	int intr;
1321 	const char *name;
1322 	int (*setup)(struct bmc150_accel_trigger *t, bool state);
1323 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1324 	{
1325 		.intr = 0,
1326 		.name = "%s-dev%d",
1327 	},
1328 	{
1329 		.intr = 1,
1330 		.name = "%s-any-motion-dev%d",
1331 		.setup = bmc150_accel_any_motion_setup,
1332 	},
1333 };
1334 
1335 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1336 					     int from)
1337 {
1338 	int i;
1339 
1340 	for (i = from; i >= 0; i--) {
1341 		if (data->triggers[i].indio_trig) {
1342 			iio_trigger_unregister(data->triggers[i].indio_trig);
1343 			data->triggers[i].indio_trig = NULL;
1344 		}
1345 	}
1346 }
1347 
1348 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1349 				       struct bmc150_accel_data *data)
1350 {
1351 	struct device *dev = regmap_get_device(data->regmap);
1352 	int i, ret;
1353 
1354 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1355 		struct bmc150_accel_trigger *t = &data->triggers[i];
1356 
1357 		t->indio_trig = devm_iio_trigger_alloc(dev,
1358 					bmc150_accel_triggers[i].name,
1359 						       indio_dev->name,
1360 						       indio_dev->id);
1361 		if (!t->indio_trig) {
1362 			ret = -ENOMEM;
1363 			break;
1364 		}
1365 
1366 		t->indio_trig->dev.parent = dev;
1367 		t->indio_trig->ops = &bmc150_accel_trigger_ops;
1368 		t->intr = bmc150_accel_triggers[i].intr;
1369 		t->data = data;
1370 		t->setup = bmc150_accel_triggers[i].setup;
1371 		iio_trigger_set_drvdata(t->indio_trig, t);
1372 
1373 		ret = iio_trigger_register(t->indio_trig);
1374 		if (ret)
1375 			break;
1376 	}
1377 
1378 	if (ret)
1379 		bmc150_accel_unregister_triggers(data, i - 1);
1380 
1381 	return ret;
1382 }
1383 
1384 #define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1385 #define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1386 #define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1387 
1388 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1389 {
1390 	struct device *dev = regmap_get_device(data->regmap);
1391 	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1392 	int ret;
1393 
1394 	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1395 	if (ret < 0) {
1396 		dev_err(dev, "Error writing reg_fifo_config1\n");
1397 		return ret;
1398 	}
1399 
1400 	if (!data->fifo_mode)
1401 		return 0;
1402 
1403 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1404 			   data->watermark);
1405 	if (ret < 0)
1406 		dev_err(dev, "Error writing reg_fifo_config0\n");
1407 
1408 	return ret;
1409 }
1410 
1411 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1412 {
1413 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1414 
1415 	return bmc150_accel_set_power_state(data, true);
1416 }
1417 
1418 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1419 {
1420 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1421 	int ret = 0;
1422 
1423 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1424 		return iio_triggered_buffer_postenable(indio_dev);
1425 
1426 	mutex_lock(&data->mutex);
1427 
1428 	if (!data->watermark)
1429 		goto out;
1430 
1431 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1432 					 true);
1433 	if (ret)
1434 		goto out;
1435 
1436 	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1437 
1438 	ret = bmc150_accel_fifo_set_mode(data);
1439 	if (ret) {
1440 		data->fifo_mode = 0;
1441 		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1442 					   false);
1443 	}
1444 
1445 out:
1446 	mutex_unlock(&data->mutex);
1447 
1448 	return ret;
1449 }
1450 
1451 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1452 {
1453 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1454 
1455 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1456 		return iio_triggered_buffer_predisable(indio_dev);
1457 
1458 	mutex_lock(&data->mutex);
1459 
1460 	if (!data->fifo_mode)
1461 		goto out;
1462 
1463 	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1464 	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1465 	data->fifo_mode = 0;
1466 	bmc150_accel_fifo_set_mode(data);
1467 
1468 out:
1469 	mutex_unlock(&data->mutex);
1470 
1471 	return 0;
1472 }
1473 
1474 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1475 {
1476 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1477 
1478 	return bmc150_accel_set_power_state(data, false);
1479 }
1480 
1481 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1482 	.preenable = bmc150_accel_buffer_preenable,
1483 	.postenable = bmc150_accel_buffer_postenable,
1484 	.predisable = bmc150_accel_buffer_predisable,
1485 	.postdisable = bmc150_accel_buffer_postdisable,
1486 };
1487 
1488 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1489 {
1490 	struct device *dev = regmap_get_device(data->regmap);
1491 	int ret, i;
1492 	unsigned int val;
1493 
1494 	/*
1495 	 * Reset chip to get it in a known good state. A delay of 1.8ms after
1496 	 * reset is required according to the data sheets of supported chips.
1497 	 */
1498 	regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
1499 		     BMC150_ACCEL_RESET_VAL);
1500 	usleep_range(1800, 2500);
1501 
1502 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1503 	if (ret < 0) {
1504 		dev_err(dev, "Error: Reading chip id\n");
1505 		return ret;
1506 	}
1507 
1508 	dev_dbg(dev, "Chip Id %x\n", val);
1509 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1510 		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1511 			data->chip_info = &bmc150_accel_chip_info_tbl[i];
1512 			break;
1513 		}
1514 	}
1515 
1516 	if (!data->chip_info) {
1517 		dev_err(dev, "Invalid chip %x\n", val);
1518 		return -ENODEV;
1519 	}
1520 
1521 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1522 	if (ret < 0)
1523 		return ret;
1524 
1525 	/* Set Bandwidth */
1526 	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1527 	if (ret < 0)
1528 		return ret;
1529 
1530 	/* Set Default Range */
1531 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1532 			   BMC150_ACCEL_DEF_RANGE_4G);
1533 	if (ret < 0) {
1534 		dev_err(dev, "Error writing reg_pmu_range\n");
1535 		return ret;
1536 	}
1537 
1538 	data->range = BMC150_ACCEL_DEF_RANGE_4G;
1539 
1540 	/* Set default slope duration and thresholds */
1541 	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1542 	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1543 	ret = bmc150_accel_update_slope(data);
1544 	if (ret < 0)
1545 		return ret;
1546 
1547 	/* Set default as latched interrupts */
1548 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1549 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1550 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1551 	if (ret < 0) {
1552 		dev_err(dev, "Error writing reg_int_rst_latch\n");
1553 		return ret;
1554 	}
1555 
1556 	return 0;
1557 }
1558 
1559 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1560 			    const char *name, bool block_supported)
1561 {
1562 	struct bmc150_accel_data *data;
1563 	struct iio_dev *indio_dev;
1564 	int ret;
1565 
1566 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1567 	if (!indio_dev)
1568 		return -ENOMEM;
1569 
1570 	data = iio_priv(indio_dev);
1571 	dev_set_drvdata(dev, indio_dev);
1572 	data->irq = irq;
1573 
1574 	data->regmap = regmap;
1575 
1576 	ret = bmc150_accel_chip_init(data);
1577 	if (ret < 0)
1578 		return ret;
1579 
1580 	mutex_init(&data->mutex);
1581 
1582 	indio_dev->dev.parent = dev;
1583 	indio_dev->channels = data->chip_info->channels;
1584 	indio_dev->num_channels = data->chip_info->num_channels;
1585 	indio_dev->name = name ? name : data->chip_info->name;
1586 	indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1587 	indio_dev->modes = INDIO_DIRECT_MODE;
1588 	indio_dev->info = &bmc150_accel_info;
1589 
1590 	ret = iio_triggered_buffer_setup(indio_dev,
1591 					 &iio_pollfunc_store_time,
1592 					 bmc150_accel_trigger_handler,
1593 					 &bmc150_accel_buffer_ops);
1594 	if (ret < 0) {
1595 		dev_err(dev, "Failed: iio triggered buffer setup\n");
1596 		return ret;
1597 	}
1598 
1599 	if (data->irq > 0) {
1600 		ret = devm_request_threaded_irq(
1601 						dev, data->irq,
1602 						bmc150_accel_irq_handler,
1603 						bmc150_accel_irq_thread_handler,
1604 						IRQF_TRIGGER_RISING,
1605 						BMC150_ACCEL_IRQ_NAME,
1606 						indio_dev);
1607 		if (ret)
1608 			goto err_buffer_cleanup;
1609 
1610 		/*
1611 		 * Set latched mode interrupt. While certain interrupts are
1612 		 * non-latched regardless of this settings (e.g. new data) we
1613 		 * want to use latch mode when we can to prevent interrupt
1614 		 * flooding.
1615 		 */
1616 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1617 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1618 		if (ret < 0) {
1619 			dev_err(dev, "Error writing reg_int_rst_latch\n");
1620 			goto err_buffer_cleanup;
1621 		}
1622 
1623 		bmc150_accel_interrupts_setup(indio_dev, data);
1624 
1625 		ret = bmc150_accel_triggers_setup(indio_dev, data);
1626 		if (ret)
1627 			goto err_buffer_cleanup;
1628 
1629 		if (block_supported) {
1630 			indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1631 			indio_dev->info = &bmc150_accel_info_fifo;
1632 			iio_buffer_set_attrs(indio_dev->buffer,
1633 					     bmc150_accel_fifo_attributes);
1634 		}
1635 	}
1636 
1637 	ret = pm_runtime_set_active(dev);
1638 	if (ret)
1639 		goto err_trigger_unregister;
1640 
1641 	pm_runtime_enable(dev);
1642 	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1643 	pm_runtime_use_autosuspend(dev);
1644 
1645 	ret = iio_device_register(indio_dev);
1646 	if (ret < 0) {
1647 		dev_err(dev, "Unable to register iio device\n");
1648 		goto err_trigger_unregister;
1649 	}
1650 
1651 	return 0;
1652 
1653 err_trigger_unregister:
1654 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1655 err_buffer_cleanup:
1656 	iio_triggered_buffer_cleanup(indio_dev);
1657 
1658 	return ret;
1659 }
1660 EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1661 
1662 int bmc150_accel_core_remove(struct device *dev)
1663 {
1664 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1665 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1666 
1667 	iio_device_unregister(indio_dev);
1668 
1669 	pm_runtime_disable(dev);
1670 	pm_runtime_set_suspended(dev);
1671 	pm_runtime_put_noidle(dev);
1672 
1673 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1674 
1675 	iio_triggered_buffer_cleanup(indio_dev);
1676 
1677 	mutex_lock(&data->mutex);
1678 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1679 	mutex_unlock(&data->mutex);
1680 
1681 	return 0;
1682 }
1683 EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1684 
1685 #ifdef CONFIG_PM_SLEEP
1686 static int bmc150_accel_suspend(struct device *dev)
1687 {
1688 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1689 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1690 
1691 	mutex_lock(&data->mutex);
1692 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1693 	mutex_unlock(&data->mutex);
1694 
1695 	return 0;
1696 }
1697 
1698 static int bmc150_accel_resume(struct device *dev)
1699 {
1700 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1701 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1702 
1703 	mutex_lock(&data->mutex);
1704 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1705 	bmc150_accel_fifo_set_mode(data);
1706 	mutex_unlock(&data->mutex);
1707 
1708 	return 0;
1709 }
1710 #endif
1711 
1712 #ifdef CONFIG_PM
1713 static int bmc150_accel_runtime_suspend(struct device *dev)
1714 {
1715 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1716 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1717 	int ret;
1718 
1719 	dev_dbg(dev,  __func__);
1720 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1721 	if (ret < 0)
1722 		return -EAGAIN;
1723 
1724 	return 0;
1725 }
1726 
1727 static int bmc150_accel_runtime_resume(struct device *dev)
1728 {
1729 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1730 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1731 	int ret;
1732 	int sleep_val;
1733 
1734 	dev_dbg(dev,  __func__);
1735 
1736 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1737 	if (ret < 0)
1738 		return ret;
1739 	ret = bmc150_accel_fifo_set_mode(data);
1740 	if (ret < 0)
1741 		return ret;
1742 
1743 	sleep_val = bmc150_accel_get_startup_times(data);
1744 	if (sleep_val < 20)
1745 		usleep_range(sleep_val * 1000, 20000);
1746 	else
1747 		msleep_interruptible(sleep_val);
1748 
1749 	return 0;
1750 }
1751 #endif
1752 
1753 const struct dev_pm_ops bmc150_accel_pm_ops = {
1754 	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1755 	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1756 			   bmc150_accel_runtime_resume, NULL)
1757 };
1758 EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1759 
1760 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1761 MODULE_LICENSE("GPL v2");
1762 MODULE_DESCRIPTION("BMC150 accelerometer driver");
1763