1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
4  *  - BMC150
5  *  - BMI055
6  *  - BMA255
7  *  - BMA250E
8  *  - BMA222
9  *  - BMA222E
10  *  - BMA280
11  *
12  * Copyright (c) 2014, Intel Corporation.
13  */
14 
15 #include <linux/module.h>
16 #include <linux/i2c.h>
17 #include <linux/interrupt.h>
18 #include <linux/delay.h>
19 #include <linux/slab.h>
20 #include <linux/acpi.h>
21 #include <linux/pm.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/iio/iio.h>
24 #include <linux/iio/sysfs.h>
25 #include <linux/iio/buffer.h>
26 #include <linux/iio/events.h>
27 #include <linux/iio/trigger.h>
28 #include <linux/iio/trigger_consumer.h>
29 #include <linux/iio/triggered_buffer.h>
30 #include <linux/regmap.h>
31 #include <linux/regulator/consumer.h>
32 
33 #include "bmc150-accel.h"
34 
35 #define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
36 #define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"
37 
38 #define BMC150_ACCEL_REG_CHIP_ID		0x00
39 
40 #define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
41 #define BMC150_ACCEL_ANY_MOTION_MASK		0x07
42 #define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
43 #define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
44 #define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
45 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)
46 
47 #define BMC150_ACCEL_REG_PMU_LPW		0x11
48 #define BMC150_ACCEL_PMU_MODE_MASK		0xE0
49 #define BMC150_ACCEL_PMU_MODE_SHIFT		5
50 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
51 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1
52 
53 #define BMC150_ACCEL_REG_PMU_RANGE		0x0F
54 
55 #define BMC150_ACCEL_DEF_RANGE_2G		0x03
56 #define BMC150_ACCEL_DEF_RANGE_4G		0x05
57 #define BMC150_ACCEL_DEF_RANGE_8G		0x08
58 #define BMC150_ACCEL_DEF_RANGE_16G		0x0C
59 
60 /* Default BW: 125Hz */
61 #define BMC150_ACCEL_REG_PMU_BW		0x10
62 #define BMC150_ACCEL_DEF_BW			125
63 
64 #define BMC150_ACCEL_REG_RESET			0x14
65 #define BMC150_ACCEL_RESET_VAL			0xB6
66 
67 #define BMC150_ACCEL_REG_INT_MAP_0		0x19
68 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE	BIT(2)
69 
70 #define BMC150_ACCEL_REG_INT_MAP_1		0x1A
71 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA		BIT(0)
72 #define BMC150_ACCEL_INT_MAP_1_BIT_FWM		BIT(1)
73 #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL	BIT(2)
74 
75 #define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
76 #define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
77 #define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
78 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00
79 
80 #define BMC150_ACCEL_REG_INT_EN_0		0x16
81 #define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
82 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
83 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)
84 
85 #define BMC150_ACCEL_REG_INT_EN_1		0x17
86 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
87 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
88 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
89 
90 #define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
91 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)
92 
93 #define BMC150_ACCEL_REG_INT_5			0x27
94 #define BMC150_ACCEL_SLOPE_DUR_MASK		0x03
95 
96 #define BMC150_ACCEL_REG_INT_6			0x28
97 #define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF
98 
99 /* Slope duration in terms of number of samples */
100 #define BMC150_ACCEL_DEF_SLOPE_DURATION		1
101 /* in terms of multiples of g's/LSB, based on range */
102 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
103 
104 #define BMC150_ACCEL_REG_XOUT_L		0x02
105 
106 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100
107 
108 /* Sleep Duration values */
109 #define BMC150_ACCEL_SLEEP_500_MICRO		0x05
110 #define BMC150_ACCEL_SLEEP_1_MS		0x06
111 #define BMC150_ACCEL_SLEEP_2_MS		0x07
112 #define BMC150_ACCEL_SLEEP_4_MS		0x08
113 #define BMC150_ACCEL_SLEEP_6_MS		0x09
114 #define BMC150_ACCEL_SLEEP_10_MS		0x0A
115 #define BMC150_ACCEL_SLEEP_25_MS		0x0B
116 #define BMC150_ACCEL_SLEEP_50_MS		0x0C
117 #define BMC150_ACCEL_SLEEP_100_MS		0x0D
118 #define BMC150_ACCEL_SLEEP_500_MS		0x0E
119 #define BMC150_ACCEL_SLEEP_1_SEC		0x0F
120 
121 #define BMC150_ACCEL_REG_TEMP			0x08
122 #define BMC150_ACCEL_TEMP_CENTER_VAL		23
123 
124 #define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
125 #define BMC150_AUTO_SUSPEND_DELAY_MS		2000
126 
127 #define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
128 #define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
129 #define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
130 #define BMC150_ACCEL_REG_FIFO_DATA		0x3F
131 #define BMC150_ACCEL_FIFO_LENGTH		32
132 
133 enum bmc150_accel_axis {
134 	AXIS_X,
135 	AXIS_Y,
136 	AXIS_Z,
137 	AXIS_MAX,
138 };
139 
140 enum bmc150_power_modes {
141 	BMC150_ACCEL_SLEEP_MODE_NORMAL,
142 	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
143 	BMC150_ACCEL_SLEEP_MODE_LPM,
144 	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
145 };
146 
147 struct bmc150_scale_info {
148 	int scale;
149 	u8 reg_range;
150 };
151 
152 struct bmc150_accel_chip_info {
153 	const char *name;
154 	u8 chip_id;
155 	const struct iio_chan_spec *channels;
156 	int num_channels;
157 	const struct bmc150_scale_info scale_table[4];
158 };
159 
160 struct bmc150_accel_interrupt {
161 	const struct bmc150_accel_interrupt_info *info;
162 	atomic_t users;
163 };
164 
165 struct bmc150_accel_trigger {
166 	struct bmc150_accel_data *data;
167 	struct iio_trigger *indio_trig;
168 	int (*setup)(struct bmc150_accel_trigger *t, bool state);
169 	int intr;
170 	bool enabled;
171 };
172 
173 enum bmc150_accel_interrupt_id {
174 	BMC150_ACCEL_INT_DATA_READY,
175 	BMC150_ACCEL_INT_ANY_MOTION,
176 	BMC150_ACCEL_INT_WATERMARK,
177 	BMC150_ACCEL_INTERRUPTS,
178 };
179 
180 enum bmc150_accel_trigger_id {
181 	BMC150_ACCEL_TRIGGER_DATA_READY,
182 	BMC150_ACCEL_TRIGGER_ANY_MOTION,
183 	BMC150_ACCEL_TRIGGERS,
184 };
185 
186 struct bmc150_accel_data {
187 	struct regmap *regmap;
188 	struct regulator_bulk_data regulators[2];
189 	struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
190 	struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
191 	struct mutex mutex;
192 	u8 fifo_mode, watermark;
193 	s16 buffer[8];
194 	/*
195 	 * Ensure there is sufficient space and correct alignment for
196 	 * the timestamp if enabled
197 	 */
198 	struct {
199 		__le16 channels[3];
200 		s64 ts __aligned(8);
201 	} scan;
202 	u8 bw_bits;
203 	u32 slope_dur;
204 	u32 slope_thres;
205 	u32 range;
206 	int ev_enable_state;
207 	int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
208 	const struct bmc150_accel_chip_info *chip_info;
209 	struct i2c_client *second_device;
210 	struct iio_mount_matrix orientation;
211 };
212 
213 static const struct {
214 	int val;
215 	int val2;
216 	u8 bw_bits;
217 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
218 				     {31, 260000, 0x09},
219 				     {62, 500000, 0x0A},
220 				     {125, 0, 0x0B},
221 				     {250, 0, 0x0C},
222 				     {500, 0, 0x0D},
223 				     {1000, 0, 0x0E},
224 				     {2000, 0, 0x0F} };
225 
226 static const struct {
227 	int bw_bits;
228 	int msec;
229 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
230 				     {0x09, 32},
231 				     {0x0A, 16},
232 				     {0x0B, 8},
233 				     {0x0C, 4},
234 				     {0x0D, 2},
235 				     {0x0E, 1},
236 				     {0x0F, 1} };
237 
238 static const struct {
239 	int sleep_dur;
240 	u8 reg_value;
241 } bmc150_accel_sleep_value_table[] = { {0, 0},
242 				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
243 				       {1000, BMC150_ACCEL_SLEEP_1_MS},
244 				       {2000, BMC150_ACCEL_SLEEP_2_MS},
245 				       {4000, BMC150_ACCEL_SLEEP_4_MS},
246 				       {6000, BMC150_ACCEL_SLEEP_6_MS},
247 				       {10000, BMC150_ACCEL_SLEEP_10_MS},
248 				       {25000, BMC150_ACCEL_SLEEP_25_MS},
249 				       {50000, BMC150_ACCEL_SLEEP_50_MS},
250 				       {100000, BMC150_ACCEL_SLEEP_100_MS},
251 				       {500000, BMC150_ACCEL_SLEEP_500_MS},
252 				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
253 
254 const struct regmap_config bmc150_regmap_conf = {
255 	.reg_bits = 8,
256 	.val_bits = 8,
257 	.max_register = 0x3f,
258 };
259 EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
260 
261 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
262 				 enum bmc150_power_modes mode,
263 				 int dur_us)
264 {
265 	struct device *dev = regmap_get_device(data->regmap);
266 	int i;
267 	int ret;
268 	u8 lpw_bits;
269 	int dur_val = -1;
270 
271 	if (dur_us > 0) {
272 		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
273 									 ++i) {
274 			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
275 									dur_us)
276 				dur_val =
277 				bmc150_accel_sleep_value_table[i].reg_value;
278 		}
279 	} else {
280 		dur_val = 0;
281 	}
282 
283 	if (dur_val < 0)
284 		return -EINVAL;
285 
286 	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
287 	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
288 
289 	dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
290 
291 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
292 	if (ret < 0) {
293 		dev_err(dev, "Error writing reg_pmu_lpw\n");
294 		return ret;
295 	}
296 
297 	return 0;
298 }
299 
300 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
301 			       int val2)
302 {
303 	int i;
304 	int ret;
305 
306 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
307 		if (bmc150_accel_samp_freq_table[i].val == val &&
308 		    bmc150_accel_samp_freq_table[i].val2 == val2) {
309 			ret = regmap_write(data->regmap,
310 				BMC150_ACCEL_REG_PMU_BW,
311 				bmc150_accel_samp_freq_table[i].bw_bits);
312 			if (ret < 0)
313 				return ret;
314 
315 			data->bw_bits =
316 				bmc150_accel_samp_freq_table[i].bw_bits;
317 			return 0;
318 		}
319 	}
320 
321 	return -EINVAL;
322 }
323 
324 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
325 {
326 	struct device *dev = regmap_get_device(data->regmap);
327 	int ret;
328 
329 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
330 					data->slope_thres);
331 	if (ret < 0) {
332 		dev_err(dev, "Error writing reg_int_6\n");
333 		return ret;
334 	}
335 
336 	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
337 				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
338 	if (ret < 0) {
339 		dev_err(dev, "Error updating reg_int_5\n");
340 		return ret;
341 	}
342 
343 	dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
344 
345 	return ret;
346 }
347 
348 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
349 					 bool state)
350 {
351 	if (state)
352 		return bmc150_accel_update_slope(t->data);
353 
354 	return 0;
355 }
356 
357 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
358 			       int *val2)
359 {
360 	int i;
361 
362 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
363 		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
364 			*val = bmc150_accel_samp_freq_table[i].val;
365 			*val2 = bmc150_accel_samp_freq_table[i].val2;
366 			return IIO_VAL_INT_PLUS_MICRO;
367 		}
368 	}
369 
370 	return -EINVAL;
371 }
372 
373 #ifdef CONFIG_PM
374 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
375 {
376 	int i;
377 
378 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
379 		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
380 			return bmc150_accel_sample_upd_time[i].msec;
381 	}
382 
383 	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
384 }
385 
386 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
387 {
388 	struct device *dev = regmap_get_device(data->regmap);
389 	int ret;
390 
391 	if (on) {
392 		ret = pm_runtime_get_sync(dev);
393 	} else {
394 		pm_runtime_mark_last_busy(dev);
395 		ret = pm_runtime_put_autosuspend(dev);
396 	}
397 
398 	if (ret < 0) {
399 		dev_err(dev,
400 			"Failed: %s for %d\n", __func__, on);
401 		if (on)
402 			pm_runtime_put_noidle(dev);
403 
404 		return ret;
405 	}
406 
407 	return 0;
408 }
409 #else
410 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
411 {
412 	return 0;
413 }
414 #endif
415 
416 #ifdef CONFIG_ACPI
417 /*
418  * Support for getting accelerometer information from BOSC0200 ACPI nodes.
419  *
420  * There are 2 variants of the BOSC0200 ACPI node. Some 2-in-1s with 360 degree
421  * hinges declare 2 I2C ACPI-resources for 2 accelerometers, 1 in the display
422  * and 1 in the base of the 2-in-1. On these 2-in-1s the ROMS ACPI object
423  * contains the mount-matrix for the sensor in the display and ROMK contains
424  * the mount-matrix for the sensor in the base. On devices using a single
425  * sensor there is a ROTM ACPI object which contains the mount-matrix.
426  *
427  * Here is an incomplete list of devices known to use 1 of these setups:
428  *
429  * Yoga devices with 2 accelerometers using ROMS + ROMK for the mount-matrices:
430  * Lenovo Thinkpad Yoga 11e 3th gen
431  * Lenovo Thinkpad Yoga 11e 4th gen
432  *
433  * Tablets using a single accelerometer using ROTM for the mount-matrix:
434  * Chuwi Hi8 Pro (CWI513)
435  * Chuwi Vi8 Plus (CWI519)
436  * Chuwi Hi13
437  * Irbis TW90
438  * Jumper EZpad mini 3
439  * Onda V80 plus
440  * Predia Basic Tablet
441  */
442 static bool bmc150_apply_acpi_orientation(struct device *dev,
443 					  struct iio_mount_matrix *orientation)
444 {
445 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
446 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
447 	struct acpi_device *adev = ACPI_COMPANION(dev);
448 	char *name, *alt_name, *label, *str;
449 	union acpi_object *obj, *elements;
450 	acpi_status status;
451 	int i, j, val[3];
452 
453 	if (!adev || !acpi_dev_hid_uid_match(adev, "BOSC0200", NULL))
454 		return false;
455 
456 	if (strcmp(dev_name(dev), "i2c-BOSC0200:base") == 0) {
457 		alt_name = "ROMK";
458 		label = "accel-base";
459 	} else {
460 		alt_name = "ROMS";
461 		label = "accel-display";
462 	}
463 
464 	if (acpi_has_method(adev->handle, "ROTM")) {
465 		name = "ROTM";
466 	} else if (acpi_has_method(adev->handle, alt_name)) {
467 		name = alt_name;
468 		indio_dev->label = label;
469 	} else {
470 		return false;
471 	}
472 
473 	status = acpi_evaluate_object(adev->handle, name, NULL, &buffer);
474 	if (ACPI_FAILURE(status)) {
475 		dev_warn(dev, "Failed to get ACPI mount matrix: %d\n", status);
476 		return false;
477 	}
478 
479 	obj = buffer.pointer;
480 	if (obj->type != ACPI_TYPE_PACKAGE || obj->package.count != 3)
481 		goto unknown_format;
482 
483 	elements = obj->package.elements;
484 	for (i = 0; i < 3; i++) {
485 		if (elements[i].type != ACPI_TYPE_STRING)
486 			goto unknown_format;
487 
488 		str = elements[i].string.pointer;
489 		if (sscanf(str, "%d %d %d", &val[0], &val[1], &val[2]) != 3)
490 			goto unknown_format;
491 
492 		for (j = 0; j < 3; j++) {
493 			switch (val[j]) {
494 			case -1: str = "-1"; break;
495 			case 0:  str = "0";  break;
496 			case 1:  str = "1";  break;
497 			default: goto unknown_format;
498 			}
499 			orientation->rotation[i * 3 + j] = str;
500 		}
501 	}
502 
503 	kfree(buffer.pointer);
504 	return true;
505 
506 unknown_format:
507 	dev_warn(dev, "Unknown ACPI mount matrix format, ignoring\n");
508 	kfree(buffer.pointer);
509 	return false;
510 }
511 #else
512 static bool bmc150_apply_acpi_orientation(struct device *dev,
513 					  struct iio_mount_matrix *orientation)
514 {
515 	return false;
516 }
517 #endif
518 
519 static const struct bmc150_accel_interrupt_info {
520 	u8 map_reg;
521 	u8 map_bitmask;
522 	u8 en_reg;
523 	u8 en_bitmask;
524 } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
525 	{ /* data ready interrupt */
526 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
527 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
528 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
529 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
530 	},
531 	{  /* motion interrupt */
532 		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
533 		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
534 		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
535 		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
536 			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
537 			BMC150_ACCEL_INT_EN_BIT_SLP_Z
538 	},
539 	{ /* fifo watermark interrupt */
540 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
541 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
542 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
543 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
544 	},
545 };
546 
547 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
548 					  struct bmc150_accel_data *data)
549 {
550 	int i;
551 
552 	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
553 		data->interrupts[i].info = &bmc150_accel_interrupts[i];
554 }
555 
556 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
557 				      bool state)
558 {
559 	struct device *dev = regmap_get_device(data->regmap);
560 	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
561 	const struct bmc150_accel_interrupt_info *info = intr->info;
562 	int ret;
563 
564 	if (state) {
565 		if (atomic_inc_return(&intr->users) > 1)
566 			return 0;
567 	} else {
568 		if (atomic_dec_return(&intr->users) > 0)
569 			return 0;
570 	}
571 
572 	/*
573 	 * We will expect the enable and disable to do operation in reverse
574 	 * order. This will happen here anyway, as our resume operation uses
575 	 * sync mode runtime pm calls. The suspend operation will be delayed
576 	 * by autosuspend delay.
577 	 * So the disable operation will still happen in reverse order of
578 	 * enable operation. When runtime pm is disabled the mode is always on,
579 	 * so sequence doesn't matter.
580 	 */
581 	ret = bmc150_accel_set_power_state(data, state);
582 	if (ret < 0)
583 		return ret;
584 
585 	/* map the interrupt to the appropriate pins */
586 	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
587 				 (state ? info->map_bitmask : 0));
588 	if (ret < 0) {
589 		dev_err(dev, "Error updating reg_int_map\n");
590 		goto out_fix_power_state;
591 	}
592 
593 	/* enable/disable the interrupt */
594 	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
595 				 (state ? info->en_bitmask : 0));
596 	if (ret < 0) {
597 		dev_err(dev, "Error updating reg_int_en\n");
598 		goto out_fix_power_state;
599 	}
600 
601 	return 0;
602 
603 out_fix_power_state:
604 	bmc150_accel_set_power_state(data, false);
605 	return ret;
606 }
607 
608 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
609 {
610 	struct device *dev = regmap_get_device(data->regmap);
611 	int ret, i;
612 
613 	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
614 		if (data->chip_info->scale_table[i].scale == val) {
615 			ret = regmap_write(data->regmap,
616 				     BMC150_ACCEL_REG_PMU_RANGE,
617 				     data->chip_info->scale_table[i].reg_range);
618 			if (ret < 0) {
619 				dev_err(dev, "Error writing pmu_range\n");
620 				return ret;
621 			}
622 
623 			data->range = data->chip_info->scale_table[i].reg_range;
624 			return 0;
625 		}
626 	}
627 
628 	return -EINVAL;
629 }
630 
631 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
632 {
633 	struct device *dev = regmap_get_device(data->regmap);
634 	int ret;
635 	unsigned int value;
636 
637 	mutex_lock(&data->mutex);
638 
639 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
640 	if (ret < 0) {
641 		dev_err(dev, "Error reading reg_temp\n");
642 		mutex_unlock(&data->mutex);
643 		return ret;
644 	}
645 	*val = sign_extend32(value, 7);
646 
647 	mutex_unlock(&data->mutex);
648 
649 	return IIO_VAL_INT;
650 }
651 
652 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
653 				 struct iio_chan_spec const *chan,
654 				 int *val)
655 {
656 	struct device *dev = regmap_get_device(data->regmap);
657 	int ret;
658 	int axis = chan->scan_index;
659 	__le16 raw_val;
660 
661 	mutex_lock(&data->mutex);
662 	ret = bmc150_accel_set_power_state(data, true);
663 	if (ret < 0) {
664 		mutex_unlock(&data->mutex);
665 		return ret;
666 	}
667 
668 	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
669 			       &raw_val, sizeof(raw_val));
670 	if (ret < 0) {
671 		dev_err(dev, "Error reading axis %d\n", axis);
672 		bmc150_accel_set_power_state(data, false);
673 		mutex_unlock(&data->mutex);
674 		return ret;
675 	}
676 	*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
677 			     chan->scan_type.realbits - 1);
678 	ret = bmc150_accel_set_power_state(data, false);
679 	mutex_unlock(&data->mutex);
680 	if (ret < 0)
681 		return ret;
682 
683 	return IIO_VAL_INT;
684 }
685 
686 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
687 				 struct iio_chan_spec const *chan,
688 				 int *val, int *val2, long mask)
689 {
690 	struct bmc150_accel_data *data = iio_priv(indio_dev);
691 	int ret;
692 
693 	switch (mask) {
694 	case IIO_CHAN_INFO_RAW:
695 		switch (chan->type) {
696 		case IIO_TEMP:
697 			return bmc150_accel_get_temp(data, val);
698 		case IIO_ACCEL:
699 			if (iio_buffer_enabled(indio_dev))
700 				return -EBUSY;
701 			else
702 				return bmc150_accel_get_axis(data, chan, val);
703 		default:
704 			return -EINVAL;
705 		}
706 	case IIO_CHAN_INFO_OFFSET:
707 		if (chan->type == IIO_TEMP) {
708 			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
709 			return IIO_VAL_INT;
710 		} else {
711 			return -EINVAL;
712 		}
713 	case IIO_CHAN_INFO_SCALE:
714 		*val = 0;
715 		switch (chan->type) {
716 		case IIO_TEMP:
717 			*val2 = 500000;
718 			return IIO_VAL_INT_PLUS_MICRO;
719 		case IIO_ACCEL:
720 		{
721 			int i;
722 			const struct bmc150_scale_info *si;
723 			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
724 
725 			for (i = 0; i < st_size; ++i) {
726 				si = &data->chip_info->scale_table[i];
727 				if (si->reg_range == data->range) {
728 					*val2 = si->scale;
729 					return IIO_VAL_INT_PLUS_MICRO;
730 				}
731 			}
732 			return -EINVAL;
733 		}
734 		default:
735 			return -EINVAL;
736 		}
737 	case IIO_CHAN_INFO_SAMP_FREQ:
738 		mutex_lock(&data->mutex);
739 		ret = bmc150_accel_get_bw(data, val, val2);
740 		mutex_unlock(&data->mutex);
741 		return ret;
742 	default:
743 		return -EINVAL;
744 	}
745 }
746 
747 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
748 				  struct iio_chan_spec const *chan,
749 				  int val, int val2, long mask)
750 {
751 	struct bmc150_accel_data *data = iio_priv(indio_dev);
752 	int ret;
753 
754 	switch (mask) {
755 	case IIO_CHAN_INFO_SAMP_FREQ:
756 		mutex_lock(&data->mutex);
757 		ret = bmc150_accel_set_bw(data, val, val2);
758 		mutex_unlock(&data->mutex);
759 		break;
760 	case IIO_CHAN_INFO_SCALE:
761 		if (val)
762 			return -EINVAL;
763 
764 		mutex_lock(&data->mutex);
765 		ret = bmc150_accel_set_scale(data, val2);
766 		mutex_unlock(&data->mutex);
767 		return ret;
768 	default:
769 		ret = -EINVAL;
770 	}
771 
772 	return ret;
773 }
774 
775 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
776 				   const struct iio_chan_spec *chan,
777 				   enum iio_event_type type,
778 				   enum iio_event_direction dir,
779 				   enum iio_event_info info,
780 				   int *val, int *val2)
781 {
782 	struct bmc150_accel_data *data = iio_priv(indio_dev);
783 
784 	*val2 = 0;
785 	switch (info) {
786 	case IIO_EV_INFO_VALUE:
787 		*val = data->slope_thres;
788 		break;
789 	case IIO_EV_INFO_PERIOD:
790 		*val = data->slope_dur;
791 		break;
792 	default:
793 		return -EINVAL;
794 	}
795 
796 	return IIO_VAL_INT;
797 }
798 
799 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
800 				    const struct iio_chan_spec *chan,
801 				    enum iio_event_type type,
802 				    enum iio_event_direction dir,
803 				    enum iio_event_info info,
804 				    int val, int val2)
805 {
806 	struct bmc150_accel_data *data = iio_priv(indio_dev);
807 
808 	if (data->ev_enable_state)
809 		return -EBUSY;
810 
811 	switch (info) {
812 	case IIO_EV_INFO_VALUE:
813 		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
814 		break;
815 	case IIO_EV_INFO_PERIOD:
816 		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
817 		break;
818 	default:
819 		return -EINVAL;
820 	}
821 
822 	return 0;
823 }
824 
825 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
826 					  const struct iio_chan_spec *chan,
827 					  enum iio_event_type type,
828 					  enum iio_event_direction dir)
829 {
830 	struct bmc150_accel_data *data = iio_priv(indio_dev);
831 
832 	return data->ev_enable_state;
833 }
834 
835 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
836 					   const struct iio_chan_spec *chan,
837 					   enum iio_event_type type,
838 					   enum iio_event_direction dir,
839 					   int state)
840 {
841 	struct bmc150_accel_data *data = iio_priv(indio_dev);
842 	int ret;
843 
844 	if (state == data->ev_enable_state)
845 		return 0;
846 
847 	mutex_lock(&data->mutex);
848 
849 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
850 					 state);
851 	if (ret < 0) {
852 		mutex_unlock(&data->mutex);
853 		return ret;
854 	}
855 
856 	data->ev_enable_state = state;
857 	mutex_unlock(&data->mutex);
858 
859 	return 0;
860 }
861 
862 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
863 					 struct iio_trigger *trig)
864 {
865 	struct bmc150_accel_data *data = iio_priv(indio_dev);
866 	int i;
867 
868 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
869 		if (data->triggers[i].indio_trig == trig)
870 			return 0;
871 	}
872 
873 	return -EINVAL;
874 }
875 
876 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
877 					       struct device_attribute *attr,
878 					       char *buf)
879 {
880 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
881 	struct bmc150_accel_data *data = iio_priv(indio_dev);
882 	int wm;
883 
884 	mutex_lock(&data->mutex);
885 	wm = data->watermark;
886 	mutex_unlock(&data->mutex);
887 
888 	return sprintf(buf, "%d\n", wm);
889 }
890 
891 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
892 					   struct device_attribute *attr,
893 					   char *buf)
894 {
895 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
896 	struct bmc150_accel_data *data = iio_priv(indio_dev);
897 	bool state;
898 
899 	mutex_lock(&data->mutex);
900 	state = data->fifo_mode;
901 	mutex_unlock(&data->mutex);
902 
903 	return sprintf(buf, "%d\n", state);
904 }
905 
906 static const struct iio_mount_matrix *
907 bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev,
908 				const struct iio_chan_spec *chan)
909 {
910 	struct bmc150_accel_data *data = iio_priv(indio_dev);
911 
912 	return &data->orientation;
913 }
914 
915 static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = {
916 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix),
917 	{ }
918 };
919 
920 static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
921 static IIO_CONST_ATTR(hwfifo_watermark_max,
922 		      __stringify(BMC150_ACCEL_FIFO_LENGTH));
923 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
924 		       bmc150_accel_get_fifo_state, NULL, 0);
925 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
926 		       bmc150_accel_get_fifo_watermark, NULL, 0);
927 
928 static const struct attribute *bmc150_accel_fifo_attributes[] = {
929 	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
930 	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
931 	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
932 	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
933 	NULL,
934 };
935 
936 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
937 {
938 	struct bmc150_accel_data *data = iio_priv(indio_dev);
939 
940 	if (val > BMC150_ACCEL_FIFO_LENGTH)
941 		val = BMC150_ACCEL_FIFO_LENGTH;
942 
943 	mutex_lock(&data->mutex);
944 	data->watermark = val;
945 	mutex_unlock(&data->mutex);
946 
947 	return 0;
948 }
949 
950 /*
951  * We must read at least one full frame in one burst, otherwise the rest of the
952  * frame data is discarded.
953  */
954 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
955 				      char *buffer, int samples)
956 {
957 	struct device *dev = regmap_get_device(data->regmap);
958 	int sample_length = 3 * 2;
959 	int ret;
960 	int total_length = samples * sample_length;
961 
962 	ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
963 			      buffer, total_length);
964 	if (ret)
965 		dev_err(dev,
966 			"Error transferring data from fifo: %d\n", ret);
967 
968 	return ret;
969 }
970 
971 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
972 				     unsigned samples, bool irq)
973 {
974 	struct bmc150_accel_data *data = iio_priv(indio_dev);
975 	struct device *dev = regmap_get_device(data->regmap);
976 	int ret, i;
977 	u8 count;
978 	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
979 	int64_t tstamp;
980 	uint64_t sample_period;
981 	unsigned int val;
982 
983 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
984 	if (ret < 0) {
985 		dev_err(dev, "Error reading reg_fifo_status\n");
986 		return ret;
987 	}
988 
989 	count = val & 0x7F;
990 
991 	if (!count)
992 		return 0;
993 
994 	/*
995 	 * If we getting called from IRQ handler we know the stored timestamp is
996 	 * fairly accurate for the last stored sample. Otherwise, if we are
997 	 * called as a result of a read operation from userspace and hence
998 	 * before the watermark interrupt was triggered, take a timestamp
999 	 * now. We can fall anywhere in between two samples so the error in this
1000 	 * case is at most one sample period.
1001 	 */
1002 	if (!irq) {
1003 		data->old_timestamp = data->timestamp;
1004 		data->timestamp = iio_get_time_ns(indio_dev);
1005 	}
1006 
1007 	/*
1008 	 * Approximate timestamps for each of the sample based on the sampling
1009 	 * frequency, timestamp for last sample and number of samples.
1010 	 *
1011 	 * Note that we can't use the current bandwidth settings to compute the
1012 	 * sample period because the sample rate varies with the device
1013 	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
1014 	 * small variation adds when we store a large number of samples and
1015 	 * creates significant jitter between the last and first samples in
1016 	 * different batches (e.g. 32ms vs 21ms).
1017 	 *
1018 	 * To avoid this issue we compute the actual sample period ourselves
1019 	 * based on the timestamp delta between the last two flush operations.
1020 	 */
1021 	sample_period = (data->timestamp - data->old_timestamp);
1022 	do_div(sample_period, count);
1023 	tstamp = data->timestamp - (count - 1) * sample_period;
1024 
1025 	if (samples && count > samples)
1026 		count = samples;
1027 
1028 	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
1029 	if (ret)
1030 		return ret;
1031 
1032 	/*
1033 	 * Ideally we want the IIO core to handle the demux when running in fifo
1034 	 * mode but not when running in triggered buffer mode. Unfortunately
1035 	 * this does not seem to be possible, so stick with driver demux for
1036 	 * now.
1037 	 */
1038 	for (i = 0; i < count; i++) {
1039 		int j, bit;
1040 
1041 		j = 0;
1042 		for_each_set_bit(bit, indio_dev->active_scan_mask,
1043 				 indio_dev->masklength)
1044 			memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit],
1045 			       sizeof(data->scan.channels[0]));
1046 
1047 		iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
1048 						   tstamp);
1049 
1050 		tstamp += sample_period;
1051 	}
1052 
1053 	return count;
1054 }
1055 
1056 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
1057 {
1058 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1059 	int ret;
1060 
1061 	mutex_lock(&data->mutex);
1062 	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
1063 	mutex_unlock(&data->mutex);
1064 
1065 	return ret;
1066 }
1067 
1068 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
1069 		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
1070 
1071 static struct attribute *bmc150_accel_attributes[] = {
1072 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
1073 	NULL,
1074 };
1075 
1076 static const struct attribute_group bmc150_accel_attrs_group = {
1077 	.attrs = bmc150_accel_attributes,
1078 };
1079 
1080 static const struct iio_event_spec bmc150_accel_event = {
1081 		.type = IIO_EV_TYPE_ROC,
1082 		.dir = IIO_EV_DIR_EITHER,
1083 		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
1084 				 BIT(IIO_EV_INFO_ENABLE) |
1085 				 BIT(IIO_EV_INFO_PERIOD)
1086 };
1087 
1088 #define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
1089 	.type = IIO_ACCEL,						\
1090 	.modified = 1,							\
1091 	.channel2 = IIO_MOD_##_axis,					\
1092 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
1093 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
1094 				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
1095 	.scan_index = AXIS_##_axis,					\
1096 	.scan_type = {							\
1097 		.sign = 's',						\
1098 		.realbits = (bits),					\
1099 		.storagebits = 16,					\
1100 		.shift = 16 - (bits),					\
1101 		.endianness = IIO_LE,					\
1102 	},								\
1103 	.ext_info = bmc150_accel_ext_info,				\
1104 	.event_spec = &bmc150_accel_event,				\
1105 	.num_event_specs = 1						\
1106 }
1107 
1108 #define BMC150_ACCEL_CHANNELS(bits) {					\
1109 	{								\
1110 		.type = IIO_TEMP,					\
1111 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
1112 				      BIT(IIO_CHAN_INFO_SCALE) |	\
1113 				      BIT(IIO_CHAN_INFO_OFFSET),	\
1114 		.scan_index = -1,					\
1115 	},								\
1116 	BMC150_ACCEL_CHANNEL(X, bits),					\
1117 	BMC150_ACCEL_CHANNEL(Y, bits),					\
1118 	BMC150_ACCEL_CHANNEL(Z, bits),					\
1119 	IIO_CHAN_SOFT_TIMESTAMP(3),					\
1120 }
1121 
1122 static const struct iio_chan_spec bma222e_accel_channels[] =
1123 	BMC150_ACCEL_CHANNELS(8);
1124 static const struct iio_chan_spec bma250e_accel_channels[] =
1125 	BMC150_ACCEL_CHANNELS(10);
1126 static const struct iio_chan_spec bmc150_accel_channels[] =
1127 	BMC150_ACCEL_CHANNELS(12);
1128 static const struct iio_chan_spec bma280_accel_channels[] =
1129 	BMC150_ACCEL_CHANNELS(14);
1130 
1131 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1132 	[bmc150] = {
1133 		.name = "BMC150A",
1134 		.chip_id = 0xFA,
1135 		.channels = bmc150_accel_channels,
1136 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1137 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1138 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1139 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1140 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1141 	},
1142 	[bmi055] = {
1143 		.name = "BMI055A",
1144 		.chip_id = 0xFA,
1145 		.channels = bmc150_accel_channels,
1146 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1147 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1148 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1149 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1150 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1151 	},
1152 	[bma255] = {
1153 		.name = "BMA0255",
1154 		.chip_id = 0xFA,
1155 		.channels = bmc150_accel_channels,
1156 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1157 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1158 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1159 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1160 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1161 	},
1162 	[bma250e] = {
1163 		.name = "BMA250E",
1164 		.chip_id = 0xF9,
1165 		.channels = bma250e_accel_channels,
1166 		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
1167 		.scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1168 				 {76590, BMC150_ACCEL_DEF_RANGE_4G},
1169 				 {153277, BMC150_ACCEL_DEF_RANGE_8G},
1170 				 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1171 	},
1172 	[bma222] = {
1173 		.name = "BMA222",
1174 		.chip_id = 0x03,
1175 		.channels = bma222e_accel_channels,
1176 		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
1177 		/*
1178 		 * The datasheet page 17 says:
1179 		 * 15.6, 31.3, 62.5 and 125 mg per LSB.
1180 		 */
1181 		.scale_table = { {156000, BMC150_ACCEL_DEF_RANGE_2G},
1182 				 {313000, BMC150_ACCEL_DEF_RANGE_4G},
1183 				 {625000, BMC150_ACCEL_DEF_RANGE_8G},
1184 				 {1250000, BMC150_ACCEL_DEF_RANGE_16G} },
1185 	},
1186 	[bma222e] = {
1187 		.name = "BMA222E",
1188 		.chip_id = 0xF8,
1189 		.channels = bma222e_accel_channels,
1190 		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
1191 		.scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1192 				 {306457, BMC150_ACCEL_DEF_RANGE_4G},
1193 				 {612915, BMC150_ACCEL_DEF_RANGE_8G},
1194 				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1195 	},
1196 	[bma280] = {
1197 		.name = "BMA0280",
1198 		.chip_id = 0xFB,
1199 		.channels = bma280_accel_channels,
1200 		.num_channels = ARRAY_SIZE(bma280_accel_channels),
1201 		.scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1202 				 {4785, BMC150_ACCEL_DEF_RANGE_4G},
1203 				 {9581, BMC150_ACCEL_DEF_RANGE_8G},
1204 				 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1205 	},
1206 };
1207 
1208 static const struct iio_info bmc150_accel_info = {
1209 	.attrs			= &bmc150_accel_attrs_group,
1210 	.read_raw		= bmc150_accel_read_raw,
1211 	.write_raw		= bmc150_accel_write_raw,
1212 	.read_event_value	= bmc150_accel_read_event,
1213 	.write_event_value	= bmc150_accel_write_event,
1214 	.write_event_config	= bmc150_accel_write_event_config,
1215 	.read_event_config	= bmc150_accel_read_event_config,
1216 };
1217 
1218 static const struct iio_info bmc150_accel_info_fifo = {
1219 	.attrs			= &bmc150_accel_attrs_group,
1220 	.read_raw		= bmc150_accel_read_raw,
1221 	.write_raw		= bmc150_accel_write_raw,
1222 	.read_event_value	= bmc150_accel_read_event,
1223 	.write_event_value	= bmc150_accel_write_event,
1224 	.write_event_config	= bmc150_accel_write_event_config,
1225 	.read_event_config	= bmc150_accel_read_event_config,
1226 	.validate_trigger	= bmc150_accel_validate_trigger,
1227 	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
1228 	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
1229 };
1230 
1231 static const unsigned long bmc150_accel_scan_masks[] = {
1232 					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
1233 					0};
1234 
1235 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1236 {
1237 	struct iio_poll_func *pf = p;
1238 	struct iio_dev *indio_dev = pf->indio_dev;
1239 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1240 	int ret;
1241 
1242 	mutex_lock(&data->mutex);
1243 	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
1244 			       data->buffer, AXIS_MAX * 2);
1245 	mutex_unlock(&data->mutex);
1246 	if (ret < 0)
1247 		goto err_read;
1248 
1249 	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1250 					   pf->timestamp);
1251 err_read:
1252 	iio_trigger_notify_done(indio_dev->trig);
1253 
1254 	return IRQ_HANDLED;
1255 }
1256 
1257 static void bmc150_accel_trig_reen(struct iio_trigger *trig)
1258 {
1259 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1260 	struct bmc150_accel_data *data = t->data;
1261 	struct device *dev = regmap_get_device(data->regmap);
1262 	int ret;
1263 
1264 	/* new data interrupts don't need ack */
1265 	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1266 		return;
1267 
1268 	mutex_lock(&data->mutex);
1269 	/* clear any latched interrupt */
1270 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1271 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1272 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1273 	mutex_unlock(&data->mutex);
1274 	if (ret < 0)
1275 		dev_err(dev, "Error writing reg_int_rst_latch\n");
1276 }
1277 
1278 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1279 					  bool state)
1280 {
1281 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1282 	struct bmc150_accel_data *data = t->data;
1283 	int ret;
1284 
1285 	mutex_lock(&data->mutex);
1286 
1287 	if (t->enabled == state) {
1288 		mutex_unlock(&data->mutex);
1289 		return 0;
1290 	}
1291 
1292 	if (t->setup) {
1293 		ret = t->setup(t, state);
1294 		if (ret < 0) {
1295 			mutex_unlock(&data->mutex);
1296 			return ret;
1297 		}
1298 	}
1299 
1300 	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1301 	if (ret < 0) {
1302 		mutex_unlock(&data->mutex);
1303 		return ret;
1304 	}
1305 
1306 	t->enabled = state;
1307 
1308 	mutex_unlock(&data->mutex);
1309 
1310 	return ret;
1311 }
1312 
1313 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1314 	.set_trigger_state = bmc150_accel_trigger_set_state,
1315 	.reenable = bmc150_accel_trig_reen,
1316 };
1317 
1318 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1319 {
1320 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1321 	struct device *dev = regmap_get_device(data->regmap);
1322 	int dir;
1323 	int ret;
1324 	unsigned int val;
1325 
1326 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1327 	if (ret < 0) {
1328 		dev_err(dev, "Error reading reg_int_status_2\n");
1329 		return ret;
1330 	}
1331 
1332 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1333 		dir = IIO_EV_DIR_FALLING;
1334 	else
1335 		dir = IIO_EV_DIR_RISING;
1336 
1337 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1338 		iio_push_event(indio_dev,
1339 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1340 						  0,
1341 						  IIO_MOD_X,
1342 						  IIO_EV_TYPE_ROC,
1343 						  dir),
1344 			       data->timestamp);
1345 
1346 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1347 		iio_push_event(indio_dev,
1348 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1349 						  0,
1350 						  IIO_MOD_Y,
1351 						  IIO_EV_TYPE_ROC,
1352 						  dir),
1353 			       data->timestamp);
1354 
1355 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1356 		iio_push_event(indio_dev,
1357 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1358 						  0,
1359 						  IIO_MOD_Z,
1360 						  IIO_EV_TYPE_ROC,
1361 						  dir),
1362 			       data->timestamp);
1363 
1364 	return ret;
1365 }
1366 
1367 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1368 {
1369 	struct iio_dev *indio_dev = private;
1370 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1371 	struct device *dev = regmap_get_device(data->regmap);
1372 	bool ack = false;
1373 	int ret;
1374 
1375 	mutex_lock(&data->mutex);
1376 
1377 	if (data->fifo_mode) {
1378 		ret = __bmc150_accel_fifo_flush(indio_dev,
1379 						BMC150_ACCEL_FIFO_LENGTH, true);
1380 		if (ret > 0)
1381 			ack = true;
1382 	}
1383 
1384 	if (data->ev_enable_state) {
1385 		ret = bmc150_accel_handle_roc_event(indio_dev);
1386 		if (ret > 0)
1387 			ack = true;
1388 	}
1389 
1390 	if (ack) {
1391 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1392 				   BMC150_ACCEL_INT_MODE_LATCH_INT |
1393 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1394 		if (ret)
1395 			dev_err(dev, "Error writing reg_int_rst_latch\n");
1396 
1397 		ret = IRQ_HANDLED;
1398 	} else {
1399 		ret = IRQ_NONE;
1400 	}
1401 
1402 	mutex_unlock(&data->mutex);
1403 
1404 	return ret;
1405 }
1406 
1407 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1408 {
1409 	struct iio_dev *indio_dev = private;
1410 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1411 	bool ack = false;
1412 	int i;
1413 
1414 	data->old_timestamp = data->timestamp;
1415 	data->timestamp = iio_get_time_ns(indio_dev);
1416 
1417 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1418 		if (data->triggers[i].enabled) {
1419 			iio_trigger_poll(data->triggers[i].indio_trig);
1420 			ack = true;
1421 			break;
1422 		}
1423 	}
1424 
1425 	if (data->ev_enable_state || data->fifo_mode)
1426 		return IRQ_WAKE_THREAD;
1427 
1428 	if (ack)
1429 		return IRQ_HANDLED;
1430 
1431 	return IRQ_NONE;
1432 }
1433 
1434 static const struct {
1435 	int intr;
1436 	const char *name;
1437 	int (*setup)(struct bmc150_accel_trigger *t, bool state);
1438 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1439 	{
1440 		.intr = 0,
1441 		.name = "%s-dev%d",
1442 	},
1443 	{
1444 		.intr = 1,
1445 		.name = "%s-any-motion-dev%d",
1446 		.setup = bmc150_accel_any_motion_setup,
1447 	},
1448 };
1449 
1450 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1451 					     int from)
1452 {
1453 	int i;
1454 
1455 	for (i = from; i >= 0; i--) {
1456 		if (data->triggers[i].indio_trig) {
1457 			iio_trigger_unregister(data->triggers[i].indio_trig);
1458 			data->triggers[i].indio_trig = NULL;
1459 		}
1460 	}
1461 }
1462 
1463 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1464 				       struct bmc150_accel_data *data)
1465 {
1466 	struct device *dev = regmap_get_device(data->regmap);
1467 	int i, ret;
1468 
1469 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1470 		struct bmc150_accel_trigger *t = &data->triggers[i];
1471 
1472 		t->indio_trig = devm_iio_trigger_alloc(dev,
1473 					bmc150_accel_triggers[i].name,
1474 						       indio_dev->name,
1475 						       indio_dev->id);
1476 		if (!t->indio_trig) {
1477 			ret = -ENOMEM;
1478 			break;
1479 		}
1480 
1481 		t->indio_trig->ops = &bmc150_accel_trigger_ops;
1482 		t->intr = bmc150_accel_triggers[i].intr;
1483 		t->data = data;
1484 		t->setup = bmc150_accel_triggers[i].setup;
1485 		iio_trigger_set_drvdata(t->indio_trig, t);
1486 
1487 		ret = iio_trigger_register(t->indio_trig);
1488 		if (ret)
1489 			break;
1490 	}
1491 
1492 	if (ret)
1493 		bmc150_accel_unregister_triggers(data, i - 1);
1494 
1495 	return ret;
1496 }
1497 
1498 #define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1499 #define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1500 #define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1501 
1502 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1503 {
1504 	struct device *dev = regmap_get_device(data->regmap);
1505 	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1506 	int ret;
1507 
1508 	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1509 	if (ret < 0) {
1510 		dev_err(dev, "Error writing reg_fifo_config1\n");
1511 		return ret;
1512 	}
1513 
1514 	if (!data->fifo_mode)
1515 		return 0;
1516 
1517 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1518 			   data->watermark);
1519 	if (ret < 0)
1520 		dev_err(dev, "Error writing reg_fifo_config0\n");
1521 
1522 	return ret;
1523 }
1524 
1525 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1526 {
1527 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1528 
1529 	return bmc150_accel_set_power_state(data, true);
1530 }
1531 
1532 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1533 {
1534 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1535 	int ret = 0;
1536 
1537 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1538 		return 0;
1539 
1540 	mutex_lock(&data->mutex);
1541 
1542 	if (!data->watermark)
1543 		goto out;
1544 
1545 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1546 					 true);
1547 	if (ret)
1548 		goto out;
1549 
1550 	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1551 
1552 	ret = bmc150_accel_fifo_set_mode(data);
1553 	if (ret) {
1554 		data->fifo_mode = 0;
1555 		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1556 					   false);
1557 	}
1558 
1559 out:
1560 	mutex_unlock(&data->mutex);
1561 
1562 	return ret;
1563 }
1564 
1565 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1566 {
1567 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1568 
1569 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1570 		return 0;
1571 
1572 	mutex_lock(&data->mutex);
1573 
1574 	if (!data->fifo_mode)
1575 		goto out;
1576 
1577 	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1578 	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1579 	data->fifo_mode = 0;
1580 	bmc150_accel_fifo_set_mode(data);
1581 
1582 out:
1583 	mutex_unlock(&data->mutex);
1584 
1585 	return 0;
1586 }
1587 
1588 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1589 {
1590 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1591 
1592 	return bmc150_accel_set_power_state(data, false);
1593 }
1594 
1595 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1596 	.preenable = bmc150_accel_buffer_preenable,
1597 	.postenable = bmc150_accel_buffer_postenable,
1598 	.predisable = bmc150_accel_buffer_predisable,
1599 	.postdisable = bmc150_accel_buffer_postdisable,
1600 };
1601 
1602 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1603 {
1604 	struct device *dev = regmap_get_device(data->regmap);
1605 	int ret, i;
1606 	unsigned int val;
1607 
1608 	/*
1609 	 * Reset chip to get it in a known good state. A delay of 1.8ms after
1610 	 * reset is required according to the data sheets of supported chips.
1611 	 */
1612 	regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
1613 		     BMC150_ACCEL_RESET_VAL);
1614 	usleep_range(1800, 2500);
1615 
1616 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1617 	if (ret < 0) {
1618 		dev_err(dev, "Error: Reading chip id\n");
1619 		return ret;
1620 	}
1621 
1622 	dev_dbg(dev, "Chip Id %x\n", val);
1623 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1624 		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1625 			data->chip_info = &bmc150_accel_chip_info_tbl[i];
1626 			break;
1627 		}
1628 	}
1629 
1630 	if (!data->chip_info) {
1631 		dev_err(dev, "Invalid chip %x\n", val);
1632 		return -ENODEV;
1633 	}
1634 
1635 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1636 	if (ret < 0)
1637 		return ret;
1638 
1639 	/* Set Bandwidth */
1640 	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1641 	if (ret < 0)
1642 		return ret;
1643 
1644 	/* Set Default Range */
1645 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1646 			   BMC150_ACCEL_DEF_RANGE_4G);
1647 	if (ret < 0) {
1648 		dev_err(dev, "Error writing reg_pmu_range\n");
1649 		return ret;
1650 	}
1651 
1652 	data->range = BMC150_ACCEL_DEF_RANGE_4G;
1653 
1654 	/* Set default slope duration and thresholds */
1655 	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1656 	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1657 	ret = bmc150_accel_update_slope(data);
1658 	if (ret < 0)
1659 		return ret;
1660 
1661 	/* Set default as latched interrupts */
1662 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1663 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1664 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1665 	if (ret < 0) {
1666 		dev_err(dev, "Error writing reg_int_rst_latch\n");
1667 		return ret;
1668 	}
1669 
1670 	return 0;
1671 }
1672 
1673 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1674 			    const char *name, bool block_supported)
1675 {
1676 	const struct attribute **fifo_attrs;
1677 	struct bmc150_accel_data *data;
1678 	struct iio_dev *indio_dev;
1679 	int ret;
1680 
1681 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1682 	if (!indio_dev)
1683 		return -ENOMEM;
1684 
1685 	data = iio_priv(indio_dev);
1686 	dev_set_drvdata(dev, indio_dev);
1687 
1688 	data->regmap = regmap;
1689 
1690 	if (!bmc150_apply_acpi_orientation(dev, &data->orientation)) {
1691 		ret = iio_read_mount_matrix(dev, "mount-matrix",
1692 					     &data->orientation);
1693 		if (ret)
1694 			return ret;
1695 	}
1696 
1697 	/*
1698 	 * VDD   is the analog and digital domain voltage supply
1699 	 * VDDIO is the digital I/O voltage supply
1700 	 */
1701 	data->regulators[0].supply = "vdd";
1702 	data->regulators[1].supply = "vddio";
1703 	ret = devm_regulator_bulk_get(dev,
1704 				      ARRAY_SIZE(data->regulators),
1705 				      data->regulators);
1706 	if (ret)
1707 		return dev_err_probe(dev, ret, "failed to get regulators\n");
1708 
1709 	ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
1710 				    data->regulators);
1711 	if (ret) {
1712 		dev_err(dev, "failed to enable regulators: %d\n", ret);
1713 		return ret;
1714 	}
1715 	/*
1716 	 * 2ms or 3ms power-on time according to datasheets, let's better
1717 	 * be safe than sorry and set this delay to 5ms.
1718 	 */
1719 	msleep(5);
1720 
1721 	ret = bmc150_accel_chip_init(data);
1722 	if (ret < 0)
1723 		goto err_disable_regulators;
1724 
1725 	mutex_init(&data->mutex);
1726 
1727 	indio_dev->channels = data->chip_info->channels;
1728 	indio_dev->num_channels = data->chip_info->num_channels;
1729 	indio_dev->name = name ? name : data->chip_info->name;
1730 	indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1731 	indio_dev->modes = INDIO_DIRECT_MODE;
1732 	indio_dev->info = &bmc150_accel_info;
1733 
1734 	if (block_supported) {
1735 		indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1736 		indio_dev->info = &bmc150_accel_info_fifo;
1737 		fifo_attrs = bmc150_accel_fifo_attributes;
1738 	} else {
1739 		fifo_attrs = NULL;
1740 	}
1741 
1742 	ret = iio_triggered_buffer_setup_ext(indio_dev,
1743 					     &iio_pollfunc_store_time,
1744 					     bmc150_accel_trigger_handler,
1745 					     &bmc150_accel_buffer_ops,
1746 					     fifo_attrs);
1747 	if (ret < 0) {
1748 		dev_err(dev, "Failed: iio triggered buffer setup\n");
1749 		goto err_disable_regulators;
1750 	}
1751 
1752 	if (irq > 0) {
1753 		ret = devm_request_threaded_irq(dev, irq,
1754 						bmc150_accel_irq_handler,
1755 						bmc150_accel_irq_thread_handler,
1756 						IRQF_TRIGGER_RISING,
1757 						BMC150_ACCEL_IRQ_NAME,
1758 						indio_dev);
1759 		if (ret)
1760 			goto err_buffer_cleanup;
1761 
1762 		/*
1763 		 * Set latched mode interrupt. While certain interrupts are
1764 		 * non-latched regardless of this settings (e.g. new data) we
1765 		 * want to use latch mode when we can to prevent interrupt
1766 		 * flooding.
1767 		 */
1768 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1769 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1770 		if (ret < 0) {
1771 			dev_err(dev, "Error writing reg_int_rst_latch\n");
1772 			goto err_buffer_cleanup;
1773 		}
1774 
1775 		bmc150_accel_interrupts_setup(indio_dev, data);
1776 
1777 		ret = bmc150_accel_triggers_setup(indio_dev, data);
1778 		if (ret)
1779 			goto err_buffer_cleanup;
1780 	}
1781 
1782 	ret = pm_runtime_set_active(dev);
1783 	if (ret)
1784 		goto err_trigger_unregister;
1785 
1786 	pm_runtime_enable(dev);
1787 	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1788 	pm_runtime_use_autosuspend(dev);
1789 
1790 	ret = iio_device_register(indio_dev);
1791 	if (ret < 0) {
1792 		dev_err(dev, "Unable to register iio device\n");
1793 		goto err_trigger_unregister;
1794 	}
1795 
1796 	return 0;
1797 
1798 err_trigger_unregister:
1799 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1800 err_buffer_cleanup:
1801 	iio_triggered_buffer_cleanup(indio_dev);
1802 err_disable_regulators:
1803 	regulator_bulk_disable(ARRAY_SIZE(data->regulators),
1804 			       data->regulators);
1805 
1806 	return ret;
1807 }
1808 EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1809 
1810 struct i2c_client *bmc150_get_second_device(struct i2c_client *client)
1811 {
1812 	struct bmc150_accel_data *data = i2c_get_clientdata(client);
1813 
1814 	if (!data)
1815 		return NULL;
1816 
1817 	return data->second_device;
1818 }
1819 EXPORT_SYMBOL_GPL(bmc150_get_second_device);
1820 
1821 void bmc150_set_second_device(struct i2c_client *client)
1822 {
1823 	struct bmc150_accel_data *data = i2c_get_clientdata(client);
1824 
1825 	if (data)
1826 		data->second_device = client;
1827 }
1828 EXPORT_SYMBOL_GPL(bmc150_set_second_device);
1829 
1830 int bmc150_accel_core_remove(struct device *dev)
1831 {
1832 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1833 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1834 
1835 	iio_device_unregister(indio_dev);
1836 
1837 	pm_runtime_disable(dev);
1838 	pm_runtime_set_suspended(dev);
1839 	pm_runtime_put_noidle(dev);
1840 
1841 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1842 
1843 	iio_triggered_buffer_cleanup(indio_dev);
1844 
1845 	mutex_lock(&data->mutex);
1846 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1847 	mutex_unlock(&data->mutex);
1848 
1849 	regulator_bulk_disable(ARRAY_SIZE(data->regulators),
1850 			       data->regulators);
1851 
1852 	return 0;
1853 }
1854 EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1855 
1856 #ifdef CONFIG_PM_SLEEP
1857 static int bmc150_accel_suspend(struct device *dev)
1858 {
1859 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1860 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1861 
1862 	mutex_lock(&data->mutex);
1863 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1864 	mutex_unlock(&data->mutex);
1865 
1866 	return 0;
1867 }
1868 
1869 static int bmc150_accel_resume(struct device *dev)
1870 {
1871 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1872 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1873 
1874 	mutex_lock(&data->mutex);
1875 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1876 	bmc150_accel_fifo_set_mode(data);
1877 	mutex_unlock(&data->mutex);
1878 
1879 	return 0;
1880 }
1881 #endif
1882 
1883 #ifdef CONFIG_PM
1884 static int bmc150_accel_runtime_suspend(struct device *dev)
1885 {
1886 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1887 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1888 	int ret;
1889 
1890 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1891 	if (ret < 0)
1892 		return -EAGAIN;
1893 
1894 	return 0;
1895 }
1896 
1897 static int bmc150_accel_runtime_resume(struct device *dev)
1898 {
1899 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1900 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1901 	int ret;
1902 	int sleep_val;
1903 
1904 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1905 	if (ret < 0)
1906 		return ret;
1907 	ret = bmc150_accel_fifo_set_mode(data);
1908 	if (ret < 0)
1909 		return ret;
1910 
1911 	sleep_val = bmc150_accel_get_startup_times(data);
1912 	if (sleep_val < 20)
1913 		usleep_range(sleep_val * 1000, 20000);
1914 	else
1915 		msleep_interruptible(sleep_val);
1916 
1917 	return 0;
1918 }
1919 #endif
1920 
1921 const struct dev_pm_ops bmc150_accel_pm_ops = {
1922 	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1923 	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1924 			   bmc150_accel_runtime_resume, NULL)
1925 };
1926 EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1927 
1928 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1929 MODULE_LICENSE("GPL v2");
1930 MODULE_DESCRIPTION("BMC150 accelerometer driver");
1931